晶型转变的影响因素

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

影响晶型转变的因素

众所周知,结构决定性质,而对于晶体来说,当外界条件变化时,晶体结构形式发生改变,碳、硅、金属的单质、硫化锌、氧化铁、二氧化硅以及其他很多物质都具有这一现象,所以本文通过查阅文献举例说明影响晶型的一些因素,主要有温度、压力、粒度和组成。

一、温度

温度对晶型影响比较复杂,当温度升高时,晶体中的分子或某些离子团自由旋转,取得较高的对称性,而改变晶体的结构。下面举例说明:

(1) BaO·Al2O3·SiO2(BAS)系微晶玻璃的主晶相为钡长石。钡长石主要的晶型有单斜钡长石(monoclinic celsian)、六方钡长石( hexa celsian)和正交钡长石(orthorhombic celsian),三者的关系如图1所示:

Fig. 1 The phase transformation of celsian

由图中我们可以看到:六方钡长石膨胀系数高,为8. 0×10-6/℃,而且在300℃左右会发生其向正交钡长石的可逆转变,转变过程中伴随着3-4%的体积变化。

(2)当预热温度小于400℃时,反应所得到的产物氧化铝为非晶态的A12O3。非晶A12O3。在热力学上是一种亚稳状态,所以它有向晶态转化的趋势。当温度不够高时,非晶A12O3中的原子的运动幅度较小,同时晶化所必不可少的晶核的形成和生长都比较困难,因此非晶态向晶态的转化就不易。为研究所制备的非晶A12O3。向晶态Al2O3转变的规律,我们把在300℃时点火得到的非晶A12O3 进行了锻烧处理,结果见表2:

Fig.1 XRD Patterns of Produets kept for 1.5h at 700一900℃

Fig.2 XRD Pattems of produets kept for o.5h at l000一l200℃Fig.3 XRD Pattems of produets kept for o.5h at l000℃ and l200℃Fig.4 XRD Pattems of produets kept for different time at l000℃

Fig.5 XRD Pattems of produets kept for different time at 1100℃

从图1中可以看到,非晶态的氧化铝经700、800、900℃锻烧1.5h后,氧化铝从非晶态转变为r-A12O3,并且随着温度的升高r- A12O3。相的衍射峰有所增强;1000℃保温1.5h后有r- A12O3相产生,但仍有部分a- A12O3相存在;1100℃以上产物完全为a- A12O3,如图2所示。所以在本试验条件下由低温燃烧合成法制备的非晶态的A12O3粉体向a相转变的温度>=1000℃。

图3为1000、1100℃保温0.5h的XRD图,从图中可见1000℃保温0.5h产物仍为,r- A12O3,而1100℃保温0.5h产物已完全转变为a- A12O3相。可见r- A12O3向a- A12O3的转变与温度有很大关系。随着温度的升高,r- A12O3向a- A12O3的转变就易于进行。

从图4中可以看出1000℃保温0.5h时没有a- A12O3相产生,保温1.5h时有a- A12O3相产生但没有转变完全,说明r- A12O3向a- A12O3转变与保温时间也有关系,随着保温时间的增加,r- A12O3向a- A12O3的转变逐渐完成。

图5为1100℃保温0.5、1.5h的XRD图,其衍射峰相似,说明影响r- A12O3向a- A12O3的转变最主要的因素是温度。当温度足够高时,,r- A12O3向a-- A12O3的转变速度快,在较短时间内就可以完成r- A12O3向a相的转变。

二、压力

压力的影响比较单纯,当压力增高时,促使晶体结构往高密度和高配位的方向转变。下面看看具体例子:

(1)相同温度下不同压力下的SiO2中硅氧键长、氧离子半径及阳离子硅的半径是不同的。因此,不同压力范围内的SiO2的晶型也有很大差别。如图一所示。

(2)前面已经说过温度对晶型转变有影响,所以温度与压力双重作用也会对晶型转变产生影响。如图二所示。

(3)由图一我们看到,不同压力下SiO2有不同的晶型,那么只需要控制温度一定,改变压力,就可以得到新的晶型。图三就是其中一个例子。

图1 高温下不同压力的SiO2多形中硅氧键长(顶部)、氧离子半径(中部)及阳离子硅的半径(底部)。纵坐标,显示键长及离子半径,单位为 A ,横坐标,1:石英(常压),2:柯石英(4~8GPa,),3:斯石英(8~50GPa,),4:α-PbO2型SiO2(90~200GPa,),5:黄铁矿型SiO2(90~200GPa)

图2二氧化硅(SiO2)物相在高温、高压条件下的相变情况

图3 石英(左)和斯石英(右)的晶体结构图:实验表明,当压力增加到8GPa时阳离子硅会发生从硅氧四面体空隙向硅氧八面体空隙迁移的现象

在上述各多形中晶体结构与常温常压力的石英比较起来最深刻的变化是配位多面体形态的改变。众所周知,在地壳条件下石英如同其他硅酸盐及氧化物矿物一样,硅与氧的连接方式是硅氧四面体,四面体间均以共角顶方式连接(图4左)。当压力高达8GPa以上时石英的。

晶体结构就开始发生相变形成斯石英晶体结构(图4右)。变化发生时阳离子硅会从四面体空隙迁移至八面体空隙。从而形成了与金红石(TiO2)相似的结构。高压相变还导致氧离子半径不断缩小及氧-氧间距不断缩小,如当压力增至200~250GPa时形成黄铁矿型SiO2多形,在该结构中最短的氧-氧间距缩短至2.366 ,说明氧离子间的电子云已有严重交盖,共价键性质已十分明显了。

(2)再看看尼群地平的例子:

Figure 6 X-ray diffraction pattern of nitrendipine polymorphs under high pressure a: NTDI under high pressure of 9.8×104N; b: NTDII under high pressure of9.8×104N; c: NTDIII under high pressure of 9.8×104N; d: NTDI; e: NTDII;f: NTDIII

相关文档
最新文档