第八章 第六节 双曲线(优秀经典课时作业练习及答案详解)
双曲线专题经典练习及答案详解
双曲线专题一、学习目标:1.理解双曲线的定义;2.熟悉双曲线的简单几何性质;3.能根据双曲线的定义和几何性质解决简单实际题目.二、知识点梳理定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22bx =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x aby ±= x ba y ±= 顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=三、课堂练习1.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是( )A.12 B .1或-2 C .1或12D .12.已知F 是双曲线x 24-y 212=1的左焦点,点A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________.3.已知F 1,F 2分别为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1||PF 2|=( )A .2B .4C .6D .84.已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( )A.x 29-y 2=1 B .x 2-y29=1C.x 23-y 27=1D.x 27-y 23=15.若F 1,F 2是双曲线8x 2-y 2=8的两焦点,点P 在该双曲线上,且△PF 1F 2是等腰三角形,则△PF 1F 2的周长为________.6.已知双曲线x 26-y 23=1的焦点为F 1,F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( )A.365B.566C.65D.567.已知△ABC 的两个顶点A ,B 分别为椭圆x 2+5y 2=5的左焦点和右焦点,且三个内角A ,B ,C 满足关系式sin B -sin A =12sin C .(1)求线段AB 的长度; (2)求顶点C 的轨迹方程.8.双曲线C 的中点在原点,右焦点为F ⎝ ⎛⎭⎪⎫233,0,渐近线方程为y =±3x .(1)求双曲线C 的方程;(2)设直线L :y =kx +1与双曲线交于A ,B 两点,问:当k 为何值时,以AB 为直径的圆过原点?。
双曲线专题 (优秀经典练习题及答案详解)
双曲线专题一、学习目标:1.理解双曲线的定义;2.熟悉双曲线的简单几何性质;3.能根据双曲线的定义和几何性质解决简单实际题目.二、知识点梳理定 义1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于21F F )的点的轨迹2、到定点F 与到定直线l 的距离之比等于常数()1>e ee (>1)的点的轨迹标准方程-22a x 22b y =1()0,0>>b a -22a y 22bx =1()0,0>>b a 图 形性质范围a x ≥或a x -≤,R y ∈R x ∈,a y ≥或a y -≤对称性 对称轴: 坐标轴 ;对称中心: 原点渐近线x a by ±=x b a y ±=顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B焦点 ()0,1c F -,()0,2c F()c F -,01,()c F ,02轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2离心率1>=ace ,其中22b a c += 准线准线方程是c a x 2±=准线方程是ca y 2±=三、课堂练习1、双曲线方程为2221x y -=,则它的右焦点坐标为( )A 、2,02⎛⎫ ⎪ ⎪⎝⎭B 、5,02⎛⎫⎪ ⎪⎝⎭C 、6,02⎛⎫⎪ ⎪⎝⎭D 、()3,01.解析:C2.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A . ﹣=1B .﹣=1C .﹣=1D .﹣=12.解析A :在椭圆C 1中,由,得椭圆C 1的焦点为F 1(﹣5,0),F 2(5,0),曲线C 2是以F 1、F 2为焦点,实轴长为8的双曲线, 故C 2的标准方程为:﹣=1,故选A .3.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) A.14 B.35 C.34 D.453.解析C :依题意得a =b =2,∴c =2. ∵|PF 1|=2|PF 2|,设|PF 2|=m ,则|PF 1|=2m .又|PF 1|-|PF 2|=22=m . ∴|PF 1|=42,|PF 2|=2 2. 又|F 1F 2|=4,∴cos ∠F 1PF 2=422+222-422×42×22=34.故选C.4.已知双曲线的两个焦点为F 1(﹣,0)、F 2(,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|•|PF 2|=2,则该双曲线的方程是( ) A.﹣=1 B.﹣=1 C.﹣y 2=1D.x 2﹣=14.解析C :解:设双曲线的方程为﹣=1. 由题意得||PF 1|﹣|PF 2||=2a ,|PF 1|2+|PF 2|2=(2)2=20.又∵|PF 1|•|PF 2|=2, ∴4a 2=20﹣2×2=16 ∴a 2=4,b 2=5﹣4=1.所以双曲线的方程为﹣y 2=1.故选C .5.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1C.x 280-y 220=1D.x 220-y 280=1 5.解析A :设焦距为2c ,则得c =5.点P (2,1)在双曲线的渐近线y =±ba x 上,得a =2b .结合c=5,得4b 2+b 2=25, 解得b 2=5,a 2=20,所以双曲线方程为x 220-y 25=1. 6.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4 D .86.解析C :设等轴双曲线方程为x 2-y 2=a 2,根据题意,得抛物线的准线方程为x =-4,代入双曲线的方程得16-y 2=a 2,因为|AB |=43,所以16-(23)2=a 2,即a 2=4,所以2a =4,所以选C. 7.平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.7.解析:双曲线的右焦点(4,0),点M (3,15)或(3,-15),则点M 到此双曲线的右焦点的距离为4.8.以知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA + 的最小值为 。
第八章 第六节 双曲线 课时作业 经典高考练习及答案详解
课时作业 A 组 基础对点练1.(2017·合肥质检)若双曲线C 1:x 22-y 28=1与C 2:x 2a 2-y 2b 2=1(a >0,b >0)的渐近线相同,且双曲线C 2的焦距为45,则b =( )A .2B .4C .6D .8解析:由题意得,ba =2⇒b =2a ,C 2的焦距2c =45⇒c =a 2+b 2=25⇒b =4,故选B.答案:B2.(2017·广州联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为10,点P (2,1)在C的一条渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 解析:依题意⎩⎪⎨⎪⎧a 2+b 2=25,1=b a×2,解得⎩⎪⎨⎪⎧a 2=20,b 2=5,∴双曲线C 的方程为x 220-y 25=1.答案:A3.已知双曲线x 24-y 2b 2=1(b >0)的离心率等于33b ,则该双曲线的焦距为( )A .2 5B .2 6C .6D .8解析:设双曲线的焦距为2c .由已知得c 2=33b ,又c 2=4+b 2,解得c =4,则该双曲线的焦距为8.答案:D4.(2017·辽宁五校联考)已知双曲线9y 2-m 2x 2=1(m >0)的一个顶点到它的一条渐近线的距离为15,则m =( )A .1B .2C .3D .4解析:依题意,双曲线的一个顶点为⎝⎛⎭⎫0,13,一条渐近线的方程为mx -3y =0,则顶点到渐近线的距离为|-13×3|m 2+9=15,则m =4.答案:D5.(2017·湖南六校联考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,以F 1F 2为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )A.x 216-y 29=1 B.x 23-y 24=1 C.x 29-y 216=1 D.x 24-y 23=1 解析:由已知可得交点(3,4)到原点O 的距离为圆的半径,则半径r =32+42=5,故c =5,a 2+b 2=25,又双曲线的一条渐近线y =ba x 过点(3,4),故3b =4a ,可解得b =4,a =3,故选C.答案:C6.如图,F 1、F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于点B 、A .若△ABF 2为等边三角形,则双曲线的离心率为( )A.7 B .4 C.233D. 3解析:依题意得|AB |=|AF 2|=|BF 2|,结合双曲线的定义可得|BF 1|=2a ,|BF 2|=4a ,|F 1F 2|=2c ,根据等边三角形,可知∠F 1BF 2=120°,应用余弦定理,可得4a 2+16a 2+2·2a ·4a ·12=4c 2,整理得ca=7,故选A.答案:A7.(2017·南昌调研)已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( )A.2x ±y =0 B .x ±2y =0 C .x ±2y =0D .2x ±y =0解析:由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得,|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a ,所以|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2×2c ×4a cos 30°, 得c =3a ,所以b =c 2-a 2=2a ,所以双曲线的渐近线方程为y =±ba x =±2x ,即2x ±y =0.答案:A8.已知A 、B 分别为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右顶点,点P 为双曲线C在第一象限的任意一点,点O 为坐标原点,若双曲线C 的离心率为2,P A ,PB ,PO 的斜率分别为k 1,k 2,k 3,则k 1k 2k 3的取值范围为( )A.⎝⎛⎭⎫0,39 B.()0,3 C.()0,33D .(0,8)解析:法一:因为e =c a =2,所以b =3a ,设P (x 0,y 0)(x 0>0,y 0>0),则x 20a 2-y 20b 2=1,k 1·k 2=y 0x 0+a ·y 0x 0-a =y 20x 20-a 2=b 2a 2=3,又双曲线的渐近线方程为y =±3x ,所以0<k 3<3,所以0<k 1k 2k 3<33,故选C.法二:由双曲线C 的离心率为2可取c =2,a =1,b =3,∴A (-1,0),B (1,0),设P (x 0,y 0)(x 0>0,y 0>0),则x 20-y 203=1,k 1k 2=y 0x 0+1·y 0x 0-1=y 20x 20-1=3,又双曲线的渐近线方程为y =±3x ,所以0<k 3<3,所以0<k 1k 2k 3<33,故选C.答案:C9.(2017·开封模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)满足条件:(1)焦点为F 1(-5,0),F 2(5,0);(2)离心率为53,求得双曲线C 的方程为f (x ,y )=0.若去掉条件(2),另加一个条件求得双曲线C 的方程仍为f (x ,y )=0,则下列四个条件中,符合添加条件的共有( )①双曲线C 上的任意点P 都满足||PF 1|-|PF 2||=6; ②双曲线C 的虚轴长为4;③双曲线C 的一个顶点与抛物线y 2=6x 的焦点重合; ④双曲线C 的渐近线方程为4x ±3y =0. A .1个 B .2个 C .3个D .4个解析:①由||PF 1|-|PF 2||=6,得a =3,又c =5,所以离心率为53,①符合;②中b =2,c =5,a =21,此时离心率等于52121,②不符合;③中a =32,c =5,此时离心率等于103,也不符合;④渐近线方程为4x ±3y =0,所以b a =43,离心率为53,④符合.故选B.答案:B10.已知P 是双曲线x 23-y 2=1上任意一点,过点P 分别作双曲线的两条渐近线的垂线,垂足分别为A ,B ,则P A →·PB →的值是( )A .-38B.316C .-38D .不能确定解析:设P (x 0,y 0),因为该双曲线的渐近线分别是x 3-y =0,x3+y =0,所以可取|P A |=|x 03-y 0|13+1,|PB |=|x 03+y 0|13+1,又cos ∠APB =-cos ∠AOB =-cos 2∠AOx =-cos π3=-12,所以P A →·PB →=|P A →|·|PB →|·cos ∠APB =|x 203-y 20|43·⎝⎛⎭⎫-12=34×(-12)=-38,选A. 答案:A11.(2017·武汉武昌区调研)双曲线Γ:y 2a 2-x 2b 2=1(a >0,b >0)的焦距为10,焦点到渐近线的距离为3,则Γ的实轴长等于__________.解析:双曲线的焦点(0,5)到渐近线y =a b x ,即ax -by =0的距离为|5b |a 2+b 2=5bc =b =3,所以a =4,2a =8.答案:812.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的离心率为________.解析:双曲线的一条渐近线方程为bx -ay =0,一个焦点坐标为(c,0).根据题意得|bc -a ×0|b 2+a 2=14×2c ,所以c =2b ,a =c 2-b 2=3b ,所以e =c a =23=233.答案:23313.(2017·深圳调研)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)与椭圆x 29+y 24=1有相同的焦点,且双曲线C 的渐近线方程为y =±2x ,则双曲线C 的方程为________.解析:易得椭圆的焦点为(-5,0),(5,0),∴⎩⎪⎨⎪⎧a 2+b 2=5,b a =2,∴a 2=1,b 2=4,∴双曲线C 的方程为x 2-y 24=1.答案:x 2-y 24=114.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 2的两条切线,记切点分别为A 、B ,双曲线的左顶点为C ,若∠ACB =120°,则双曲线的离心率e =________.解析:连接OA ,根据题意以及双曲线的几何性质,|FO |=c ,|OA |=a ,而∠ACB =120°,∴∠AOC =60°,又F A 是圆O 的切线,故OA ⊥F A ,在Rt △F AO 中,容易得到|OF |=2a ,∴e =ca=2. 答案:2B 组 能力提速练1.(2016·高考天津卷)已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 24-y 24=1 D.x 24-y 212=1解析:利用双曲线方程写出圆和渐近线的方程,利用交点求出四边形边长即可表示出面积,解方程求b 即可.由题意知双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,联立⎩⎪⎨⎪⎧x 2+y 2=4,y =b 2x ,解得⎩⎪⎨⎪⎧x =44+b 2,y =2b4+b 2,或⎩⎪⎨⎪⎧x =-44+b 2,y =-2b 4+b2,即第一象限的交点为⎝⎛⎭⎪⎫44+b 2,2b 4+b 2. 由双曲线和圆的对称性得四边形ABCD 为矩形,其相邻两边长为84+b 2,4b4+b 2,故8×4b 4+b2=2b ,得b 2=12. 故双曲线的方程为x 24-y 212=1.故选D.答案:D2.(2016·高考浙江卷)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1解析:先利用两圆锥曲线的焦点相同,求出字母之间的关系,再求解离心率之积的取值范围.C 1的焦点为(±m 2-1,0),C 2的焦点为(±n 2+1,0), ∵C 1与C 2的焦点重合,∴m 2-1=n 2+1,∴m 2=n 2+2,∴m 2>n 2. ∵m >1,n >0,∴m >n .∵C 1的离心率e 1=m 2-1m ,C 2的离心率e 2=n 2+1n ,∴e 1e 2=m 2-1m ·n 2+1n=(m 2-1)(n 2+1)mn =(m 2-1)(n 2+1)m 2n 2=(n 2+1)2(n 2+2)n 2=n 4+2n 2+1n 4+2n 2>1=1.答案:A3.(2017·江西联考)已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,若在双曲线的右支上存在一点M ,使得(OM →+OF 2→)·F 2M →=0(其中O 为坐标原点),且|MF 1→|=3|MF 2→|,则双曲线的离心率为( )A.5-1B.3+12C.5+12D.3+1解析:∵F 2M →=OM →-OF 2→,∴(OM →+OF 2→)·F 2M →=(OM →+OF 2→)·(OM →-OF 2→)=0,即OM →2-OF 22→=0,∴|OF 2→|=|OM →|=c ,在△MF 1F 2中,边F 1F 2上的中线等于|F 1F 2|的一半,可得MF 1→⊥MF 2→.∵|MF 1|→=3|MF 2→|,∴可设|MF 1→|=3λ,|MF 2→|=λ(λ>0),得(3λ)2+λ2=4c 2,解得λ=c ,∴|MF 1→|=3c ,|MF 2→|=c ,∴根据双曲线定义得2a =|MF 1→|-|MF 2→|=(3-1)c ,∴双曲线的离心率e =2c2a=3+1.答案:D4.(2016·高考北京卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =________.解析:不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线如图所示. ∵四边形OABC 为正方形,|OA |=2, ∴c =|OB |=22,∠AOB =π4.∵直线OA 是渐近线,方程为y =ba x ,∴ba =tan ∠AOB =1,即a =b . 又∵a 2+b 2=c 2=8,∴a =2. 答案:25.(2016·高考浙江卷改编)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,求|PF 1|+|PF 2|的取值范围.解析:∵双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,∴|F 1F 2|=4,||PF 1|-|PF 2||=2.若△F 1PF 2为锐角三角形,则由余弦定理知|PF 1|2+|PF 2|2-16>0,可化为(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|>16①.由||PF 1|-|PF 2||=2,得(|PF 1|+|PF 2|)2-4|PF 1||PF 2|=4.故2|PF1||PF2|=(|PF1|+|PF2|)2-42,代入不等式①可得(|PF1|+|PF2|)2>28,解得|PF1|+|PF2|>27.不妨设P在左支上,∵|PF1|2+16-|PF2|2>0,即(|PF1|+|PF2|)·(|PF1|-|PF2|)>-16,又|PF1|-|PF2|=-2,∴|PF1|+|PF2|<8.故27<|PF1|+|PF2|<8.。
高二数学双曲线练习题及答案
高二数学双曲线练习题及答案下面是一份高二数学双曲线练习题及答案的文章,请你仔细阅读:高二数学双曲线练习题及答案双曲线是数学中重要的曲线之一,在高二数学学习中也占有重要地位。
为了帮助同学们更好地掌握双曲线知识,我们提供一些练习题以及答案,供同学们进行巩固和练习。
题目一:已知双曲线C的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,焦点F在y轴上,顶点坐标为(0, a),离心率为 $\frac{1}{\sqrt{2}}$,求双曲线C的方程。
答案一:由双曲线的性质可知,焦点到顶点的距离与焦点到曲线上一点的距离之比等于离心率。
设F的坐标为(0, c),则离心率为:$\frac{CF}{Ca}=\frac{1}{\sqrt{2}}$由焦点的坐标可得c=a(1/√2)由离心率的定义可得:$\sqrt{a^2-c^2}=\frac{a}{\sqrt{2}}$解得a^2=4c^2。
将焦点的坐标带入,得到方程:$\frac{x^2}{a^2}-\frac{y^2}{4c^2}=1$题目二:已知双曲线C的一支渐近线方程为y=3x-2,焦点的坐标为(1,0),求双曲线C的方程。
答案二:由双曲线的性质可得,双曲线的渐近线的斜率为圆心到焦点连线的斜率。
设焦点坐标为(F, 0),则斜率为:k = tanα,其中α为双曲线的倾斜角又由渐近线y=3x-2可得,圆心到焦点连线的斜率为3因此,k=3=tanα,则α为60度,倾斜角为60度。
由焦点坐标可知,焦点在(x1, y1)上,即(1,0)由双曲线的方程性质可得,双曲线的公式为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$根据双曲线标准方程,我们可以将双曲线方程改写为:$\frac{(y-y1)^2}{a^2}-\frac{(x-x1)^2}{b^2}=1$代入焦点坐标(1,0)得到:$\frac{y^2}{a^2}-\frac{(x-1)^2}{b^2}=1$将双曲线的倾斜角代入,可得:$\frac{y^2}{a^2}-\frac{(x-1)^2}{b^2}-\frac{(y-x)^2}{a^2}=1$化简得:$\frac{2x^2+2xy+2x+2y^2-4y}{a^2}=0$这样得到了双曲线C的方程。
双曲线练习题及答案
运用双曲线的定义
例 1.若方程 x2 sin y 2 cos 1表示焦点在 y 轴上的双曲线,则角 所在象限是( )
A、第一象限
B、第二象限 C、第三象限 D、第四象限
练习 1.设双曲线 x2 y 2 1 上的点 P 到点 (5,0) 的距离为 15,则 P 点到 (5,0) 的距离是( ) 16 9
双曲线相关知识
双曲线的焦半径公式: 1:定义:双曲线上任意一点 P 与双曲线焦点的连线段,叫做双曲线的焦半径。 2.已知双曲线标准方程 x^2/a^2-y^2/b^2=1 点 P(x,y)在左支上 │PF1│=-(ex+a) ;│PF2│=-(ex-a) 点 P(x,y)在右支上 │PF1│=ex+a ;│PF2│=ex-a
A.7
B.23
C.5 或 23
D.7 或 23奎奎 奎奎奎 奎奎
例 2. 已知双曲线的两个焦点是椭圆 x 2 + 5y2 =1 的两个顶点,双曲线的两条准线分别通过椭圆的两个
10 32
焦点,则此双曲线的方程是( )。
(A) x 2 - y2 =1 (B) x 2 - y2 =1 (C) x 2 - y2 =1 (D) x 2 - y2 =1
课 1、[解析]设双曲线方程为 x2 4 y2 ,
当
0 时,化为
x2
y2
1, 2
5 10 20 , 4
4
当
0
时,化为
y2
y2
1 , 2
5 10 20 , 4
4
综上,双曲线方程为 x2 y2 1 或 y2 x2 1
ππ 3 3
π
双曲线习题及答案
双曲线习题及答案双曲线习题及答案双曲线是高中数学中一个重要的概念,它在数学和物理学中都有广泛的应用。
掌握双曲线的性质和解题技巧对于学生来说是非常重要的。
在本文中,我们将介绍一些典型的双曲线习题,并给出详细的解答。
1. 问题:给定双曲线的标准方程为$\displaystyle \frac{x^{2}}{a^{2}} -\frac{y^{2}}{b^{2}} =1$,求其焦点坐标和准线方程。
解答:由双曲线的标准方程可知,$\displaystyle a^{2} >b^{2}$,因此双曲线的焦点在$x$轴上。
根据焦点与准线的定义,焦点坐标为$(\displaystyle \pm c,0)$,其中$\displaystyle c=\sqrt{a^{2} +b^{2}}$。
准线方程为$\displaystyle x=\pm a$。
2. 问题:已知双曲线的焦点坐标为$(2,0)$和$(-2,0)$,离心率为$\displaystyle\sqrt{2}$,求其标准方程。
解答:根据双曲线的离心率定义,$\displaystyle e=\sqrt{1+\frac{b^{2}}{a^{2}}}$。
由题目可知,焦点坐标为$(2,0)$和$(-2,0)$,因此$\displaystyle c=2$。
又由离心率的定义可得$\displaystyle e=\frac{c}{a}$。
将这些信息代入双曲线的标准方程$\displaystyle \frac{x^{2}}{a^{2}} -\frac{y^{2}}{b^{2}} =1$中,整理得到$\displaystyle \frac{x^{2}}{4} -\frac{y^{2}}{2} =1$。
3. 问题:已知双曲线的焦点坐标为$(3,0)$和$(-3,0)$,离心率为$\displaystyle\frac{3}{2}$,求其标准方程。
解答:根据双曲线的离心率定义,$\displaystyle e=\sqrt{1+\frac{b^{2}}{a^{2}}}$。
《双曲线》练习题经典(含答案)
《双曲线》练习题一. 选择题:1. 已知焦点在x 轴上的双曲线的渐近线方程是y=±4<则该双曲线的离心率是(A )2. 中心在原点,焦点在x 轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为近,则双曲线方 程为(B )D."-讨1),且其两条渐近线的方程分别为2x+y=0和2x ・y=0,则双曲c-¥4=^<=i D •学辱十 224.已知椭圆2/ + 2沪=1 (a>b>0)与双曲线/ 一方2 =1有相同的焦点.则椭圆的离心率为(A )丄 鱼 心B.㊁C.飞一D. 丁2=一二1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A ) 卅_ nB ・(-1, VI ) C. (0> 3) D ・(0, V3) 6•设双曲线笃-牛1 (0<a<b )的半焦距为c,直线1过(/ 0) (0, b )两点,已知原点到直线1的距2b 2禽为乎U 则双曲线的离心率为(A )A. 2B. V3C. V2D.色空37. 已知双曲线4~4=1的两条渐近线与以椭圆£+各=1的左焦点为圆心、半径为竽 的圆相切,则双曲 线的离心率为(A )A- i B - I c- J D . ?8. 双曲线虚轴的一个端点为",两个焦点为为、E, Z 斤莎=120° ,则双曲线的离心率为(B )f V"9. 已知双曲线一一 一 =1(加>0/>0)的一个焦点到一条渐近线的距离是2, 一个顶点到它的一条渐近线的m n距离为则m 等于(D )V13A. 9 B ・ 4 C ・ 2 D ・,310. 已知双曲线的两个焦点为尺(_ 顾,0)、E (何 0) , M 是此双曲线上的一点,且满足x" - y"=l B ・ x" - y"=2 C ・ x" - y"=V23.在平而直角坐标系中,双曲线C 过点P (b 线C 的标准方程为(42A. 225.已知方程今一 rn'+n A. ( - 1, 3)= OJ MF X N MF, \= 2,则该双曲线的方程是(A )■ ■ ■ ■ y yy—y = 1 B ・ x-—=l ——=1—y=l■11 •设凡 尺是双曲线/一計=1的两个焦点,尸是双曲线上的一点,且3 〃 =4|啟"则△彤E 的而枳等于 (c )A ・ 4、也B ・ 8、/5C. 24D ・ 4812.过双曲线y-/=8的左焦点片有一条弦尸0在左支上,若1PQ =7,匹是双曲线的右焦点,则△啟。
2021年高考数学一轮复习 8.6双曲线课时作业 理 湘教版
2021年高考数学一轮复习 8.6双曲线课时作业 理 湘教版一、选择题1.(xx·浙江温州适应性测试)已知F 1,F 2为双曲线Ax 2-By 2=1的焦点,其顶点是线段F 1F 2的三等分点,则其渐近线的方程为( )A .y =±22xB .y =±24xC .y =±xD .y =±22x 或y =±24x 【解析】 依题意c =3a ,∴c 2=9a 2.又c 2=a 2+b 2,∴b 2a 2=8,b a =22,a b =24.故选D.【答案】 D2.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2=( )A.14B.35C.34D.45【解析】 双曲线的方程为x 22-y 22=1,所以a =b =2,c =2,因为|PF 1|=2|PF 2|,所以点P 在双曲线的右支上,则有|PF 1|-|PF 2|=2a =22,所以解得|PF 2|=22,|PF 1|=42,所以根据余弦定理得cos ∠F 1PF 2=(22)2+(42)2-162×22×42=34,选C.【答案】 C3.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-153,153B.⎝ ⎛⎭⎪⎫0,153C.⎝ ⎛⎭⎪⎫-153,0 D.⎝ ⎛⎭⎪⎫-153,-1 【解析】 直线与双曲线右支相切时,k =-153,直线y =kx +2过定点(0,2),当k =-1时,直线与双曲线渐近线平行,顺时针旋转直线y =-x +2时,直线与双曲线右支有两个交点,∴-153<k <-1.【答案】 D4.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的两焦点为F 1、F 2,点Q 为双曲线左支上除顶点外的任一点,过F 1作∠F 1QF 2的角平分线的垂线,垂足为P ,则点P 的轨迹是( )A .椭圆的一部分B .双曲线的一部分C .抛物线的一部分D .圆的一部分【解析】 延长F 1P 交QF 2于R , 则|QF 1|=|QR |.∵|QF 2|-|QF 1|=2a ,∴|QF 2|-|QR |=2a =|RF 2|,又|OP |=12|RF 2|,∴|OP |=a .【答案】 D5.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c ,0)(c >0),作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交曲线右支于点P ,若OE →=12(OF →+OP →),则双曲线的离心率为( )A.10B.105 C.102D. 2 【解析】圆x 2+y 2=a 24的半径为a 2,由OE →=12(OF →+OP →)知,E 是FP 的中点,如图,设F ′(c ,0),由于O 是FF ′的中点,所以OE ∥PF ′,OE =12PF ′⇒PF ′=2OE =a ,由双曲线定义,FP =3a ,因为FP 是圆的切线,切点为E ,所以FP ⊥OE ,从而∠FPF ′=90°,由勾股定理FP 2+F ′P 2=FF ′2⇒9a 2+a2=4c 2⇒e =102.【答案】 C6.(xx·银川联考)已知A ,B ,P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上不同的三个点,且A ,B 的连线经过坐标原点,若直线PA 、PB 的斜率的乘积k PA ·k PB =23,则该双曲线的离心率为( )A.52 B.62 C. 2 D.153【解析】 因为A ,B 的连线经过坐标原点, 所以A 、B 关于原点对称,设P (x 0,y 0),A (x 1,y 1),B (-x 1,-y 1),由A ,B ,P 在双曲线上得x 20a 2-y 20b 2=1,x 21a 2-y 21b 2=1,两式相减并且变形得y 20-y 21x 20-x 21=b2a 2.又k PA ·k PB =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21=b 2a 2=23,即c 2-a 2a 2=e 2-1=23,故双曲线的离心率e =153.【答案】 D 二、填空题7.已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|FP 2|的值为________.【解析】 设|PF 1|=m ,|PF 2|=n ,根据双曲线的定义及已知条件可得|m -n |=2a =2,m 2+n 2=4c 2=8,∴2mn =4.∴(|PF 1|+|PF 2|)2=(m +n )2=(m -n )2+4mn =12. ∴|PF 1|+|PF 2|=2 3. 【答案】 2 38.(xx·临沂联考)已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围为________.【解析】 由题意知,△ABE 为等腰三角形. 若△ABE 是锐角三角形,则只需要∠AEB 为锐角.根据对称性,只要∠AEF <π4即可.直线AB 的方程为x =-c ,代入双曲线方程得y 2=b 4a 2,取点A ⎝⎛⎭⎪⎫-c ,b 2a , 则|AF |=b2a,|EF |=a +c ,只要|AF |<|EF |就能使∠AEF <π4,即b 2a<a +c ,即b 2<a 2+ac ,即c 2-ac -2a 2<0,即e 2-e -2<0,即-1<e <2.又e >1,故1<e <2.【答案】 (1,2)9.(xx·南昌模拟)已知双曲线C :x 24-y 25=1的右焦点为F ,过F 的直线l 与C 交于两点A 、B ,|AB |=5,则满足条件的直线l 的条数为________.【解析】 (1)若A 、B 两点都在右支上,当AB 垂直于x 轴时,∵a 2=4,b 2=5,c 2=9,∴F (3,0),∴直线AB 的方程为x =3.由⎩⎪⎨⎪⎧x =3,x 24-y 25=1得y =±52.∴|AB |=5,满足题意.(2)若A 、B 两点分别在两支上,∵a =2,∴两顶点间的距离为2a =4<5.∴满足|AB |=5的直线有两条,且关于x 轴对称. 综上,满足题意的直线有3条.【答案】 310.P 为双曲线x 2-y 215=1右支上一点,M 、N 分别是圆(x +4)2+y 2=4和(x -4)2+y2=1上的点,则|PM |-|PN |的最大值为________.【解析】 已知两圆圆心(-4,0)和(4,0)(记为F 1和F 2)恰为双曲线x 2-y 215=1的两焦点.当|PM |最大,|PN |最小时,|PM |-|PN |最大,|PM |最大值为P 到圆心F 1的距离|PF 1|与圆F 1半径之和,同样|PN |min =|PF 2|-1,从而|PM |max -|PN |min=|PF 1|+2-(|PF 2|-1)=|PF 1|-|PF 2|+3=2a +3=5. 【答案】 5 三、解答题11.(xx·湛江二模)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (c ,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,斜率为-3,求双曲线的离心率.【解析】 (1)∵双曲线的渐近线为y =±b ax ,∴a =b , ∴c 2=a 2+b 2=2a 2=4,∴a 2=b 2=2, ∴双曲线方程为x 22-y 22=1.(2)设点A 的坐标为(x 0,y 0),∴直线AO 的斜率满足y 0x 0·(-3)=-1, ∴x 0=3y 0,①依题意,圆的方程为x 2+y 2=c 2,将①代入圆的方程,得3y 20+y 20=c 2,即y 0=12c ,∴x 0=32c ,∴点A 的坐标为⎝ ⎛⎭⎪⎫32c ,c 2,代入双曲线方程, 得34c 2a 2-14c 2b 2=1,即34b 2c 2-14a 2c 2=a 2b 2,② 又∵a 2+b 2=c 2,∴将b 2=c 2-a 2代入②式,整理得 34c 4-2a 2c 2+a 4=0, ∴3⎝ ⎛⎭⎪⎫c a 4-8⎝ ⎛⎭⎪⎫c a 2+4=0,∴(3e 2-2)(e 2-2)=0, ∵e >1,∴e = 2.∴双曲线的离心率为 2.12.如图,动点M 与两定点A (-1,0),B (1,0)构成△MAB ,且直线MA ,MB 的斜率之积为4.设动点M 的轨迹为C .(1)求轨迹C 的方程;(2)设直线y =x +m (m >0)与y 轴相交于点P ,与轨迹C 相交于点Q 、R ,且|PQ |<|PR |,求|PR ||PQ |的取值范围.【解析】 (1)设M 的坐标为(x ,y ), 当x =-1时,直线MA 的斜率不存在; 当x =1时,直线MB 的斜率不存在. 于是x ≠1且x ≠-1. 此时,直线MA 的斜率为yx +1,直线MB 的斜率为yx -1.由题意,有y x +1·yx -1=4,化简可得4x 2-y 2-4=0.故动点M 的轨迹C 的方程为4x 2-y 2-4=0(x ≠1且x ≠-1).(2)由⎩⎪⎨⎪⎧y =x +m ,4x 2-y 2-4=0,消去y ,可得3x 2-2mx -m 2-4=0.(*) 对于方程(*),其判别式Δ=(-2m )2-4×3(-m 2-4)=16m 2+48>0, 而当1或-1为方程(*)的根时,m 的值为-1或1. 结合题设(m >0)可知,m >0,且m ≠1. 设Q ,R 的坐标分别为(x Q ,y Q ),(x R ,y R ), 则x Q ,x R 为方程(*)的两根.因为|PQ |<|PR |,所以|x Q |<|x R |,x Q =m -2m 2+33,x R =m +2m 2+33.所以|PR ||PQ |=⎪⎪⎪⎪⎪⎪x R x Q =21+3m2+121+3m 2-1=1+221+3m2-1.此时1+3m2>1,且1+3m2≠2,所以1<1+221+3m 2-1<3,且1+221+3m2-1≠53, 所以1<|PR ||PQ |=⎪⎪⎪⎪⎪⎪x R x Q <3,且|PR ||PQ |=⎪⎪⎪⎪⎪⎪x R x Q ≠53.综上所述,|PR ||PQ |的取值范围是⎝ ⎛⎭⎪⎫1,53∪⎝ ⎛⎭⎪⎫53,3. 13.已知离心率为45的椭圆的中心在原点,焦点在x 轴上,双曲线以椭圆的长轴为实轴,短轴为虚轴,且焦距为234.(1)求椭圆及双曲线的方程;(2)设椭圆的左、右顶点分别为A 、B ,在第二象限内取双曲线上一点P ,连结BP 交椭圆于点M ,连结PA 并延长交椭圆于点N ,若BM =MP ,求四边形ANBM 的面积.【解析】 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则根据题意知双曲线的方程为x 2a 2-y 2b2=1且满足⎩⎪⎨⎪⎧a 2-b 2a=45,2a 2+b 2=234,解方程组得⎩⎪⎨⎪⎧a 2=25,b 2=9.∴椭圆的方程为x 225+y 29=1,双曲线的方程为x 225-y 29=1.(2)由(1)得A (-5,0),B (5,0),AB =10, 设M (x 0,y 0),则由BM =MP 得M 为BP 的中点, 所以P 点坐标为(2x 0-5,2y 0).将M 、P 坐标代入椭圆和双曲线方程,得⎩⎪⎨⎪⎧x 2025+y 209=1,(2x 0-5)225-4y 29=1,消去y 0,得2x 20-5x 0-25=0.解之,得x 0=-52或x 0=5(舍去).∴y 0=332.由此可得M ⎝ ⎛⎭⎪⎫-52,332,∴P (-10,33).当P 为(-10,33)时,直线PA 的方程是y =33-10+5(x +5),即y =-335(x +5),代入x 225+y29=1,得2x 2+15x +25=0,所以x =-52或-5(舍去),∴x N =-52,∴x N =x M ,则MN ⊥x 轴.∴S 四边形ANBM =2S △AMB =2×12×10×332=15 3.•,39681 9B01 鬁29049 7179 煹28072 6DA8 涨38872 97D8 韘38426 961A 阚34407 8667虧p 21821 553D 唽25562 63DA 揚io。
双曲线解答题练习含答案
双曲线解答题练习1.如图,在以点O 为圆心,||4AB =为直径的半圆ADB 中,OD AB ⊥,P 是半圆弧上一点,30POB ∠=︒,曲线C 是满足||||||MA MB -为定值的动点M 的轨迹,且曲线C 过点P .(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程; (Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F . 若△OEF 的面积不小于...l 斜率的取值范围.2.双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率; (Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.3.已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.(I )若动点M 满足1111FM F A F B FO =++(其中O 为坐标原点),求点M 的轨迹方程;(II )在x 轴上是否存在定点C ,使CA ·CB 为常数?若存在,求出点C 的坐标;若不存在,请说明理由.4.已知双曲线C 的方程为,离心率(1)求双曲线C 的方程;(2)如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分别位于第一、二象限,若,求面积的取值范围5.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.(12分)22221(0,0)y x a b a b-=>>e =1,[,2]3AP PB λλ=∈AOB ∆6.双曲线()0222>=-a a y x 的两个焦点分别为21,F F ,P 为双曲线上任意一点,求证:21PF PO PF 、、成等比数列(O 为坐标原点).(12分)7.已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-13.(1)求动点P 的轨迹方程;(2)设M (0,-1),若斜率为k (k ≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,若要使|MA |=|MB |,试求k 的取值范围.(12分)8.已知不论b 取何实数,直线y=k x +b 与双曲线1222=-y x 总有公共点,试求实数k 的取值范围.(12分)9.设双曲线C 1的方程为)0,0(12222>>=-b a by a x ,A 、B 为其左、右两个顶点,P 是双曲线C 1上的任意一点,引QB ⊥PB ,QA ⊥PA ,AQ 与BQ 交于点Q. (1)求Q 点的轨迹方程;(2)设(1)中所求轨迹为C 2,C 1、C 2的离心率分别为e 1、e 2,当21≥e 时,e 2的取值范围(14分)10.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上).(14分)双曲线练习题答案1.如图,在以点O 为圆心,||4AB =为直径的半圆ADB中,OD AB ⊥,P 是半圆弧上一点,30POB ∠=︒,曲线C是满足||||||MA MB -为定值的动点M 的轨迹,且曲线C 过点P .(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程; (Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F .若△OEF 的面积不小于...l 斜率的取值范围.解:(Ⅰ)以O 为原点,AB 、OD 所在直线分别为x 轴、y 轴,建立平面直角坐标系,则A (-2,0),B (2,0),D (0,2),P (1,3),依题意得|MA |-|MB |=|PA |-|PB |=221321)32(2222=)(+--++<|AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线. 设实半轴长为a ,虚半轴长为b ,半焦距为c ,则c =2,2a =22,∴a 2=2,b 2=c 2-a 2=2.∴曲线C 的方程为12222=-y x . 解法2:同解法1建立平面直角坐标系,则依题意可得|MA |-|MB |=|PA |-|PB |< |AB |=4.∴曲线C 是以原点为中心,A 、B 为焦点的双曲线.设双曲线的方程为a by a x (12222=->0,b >0).则由 ⎪⎩⎪⎨⎧=+=-411322222b a ba )(解得a 2=b 2=2, ∴曲线C 的方程为.12222=-y x (Ⅱ)解法1:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理得(1-K 2)x 2-4kx-6=0. ∵直线l 与双曲线C 相交于不同的两点E 、F ,∴ ⎪⎩⎪⎨⎧-⨯+-=∆≠0)1(64)4(01222k k k -⇔1k k ≠±⎧⎪⎨<<⎪⎩ ∴k ∈(-3,-1)∪(-1,1)∪(1,3).设E (x ,y ),F (x 2,y 2),则由①式得x 1+x 2=k x x kk --=-16,14212,于是 |EF |=2212221221))(1()()(x x k x y x x -+=++-=.132214)(1222212212kk k x x x x k --⋅+=-+⋅+而原点O 到直线l 的距离d =212k+,∴S △DEF =.132213221122121222222kk k k k k EF d --=--⋅+⋅+⋅=⋅ 若△OEF 面积不小于22,即S △OEF 22≥,则有 解得.22,022********2≤≤-≤--⇔≥--k k k k k ③综合②、③知,直线l 的斜率的取值范围为[-2,-1]∪(1-,1) ∪(1, 2).解法2:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理, 得(1-K 2)x 2-4kx -6=0.∵直线l 与双曲线C 相交于不同的两点E 、F ,∴ 22210(4)46(1)0k k k ⎧≠⎪⎨∆=-+⨯->⎪⎩-⇔1k k ≠±⎧⎪⎨<<⎪⎩ .∴k ∈(-3,-1)∪(-1,1)∪(1,3). 设E (x 1,y 1),F (x 2,y 2),则由①式得|x 1-x 2|=.132214)(22221221kk kx x x x --=-∆=-+ ③当E 、F 在同一去上时(如图1所示),S △OEF =;21212121x x OD x x OD S S ODE ODF -⋅=-⋅=-∆∆ 当E 、F 在不同支上时(如图2所示).+=∆∆ODF OEF S S S △ODE =.21)(212121x x OD x x OD -⋅=+⋅ 综上得S △OEF =,2121x x OD -⋅于是 由|OD |=2及③式,得S △OEF =.132222kk --若△OEF 面积不小于2则有即,22,2≥∆OEF S.22,022*******2≤≤-≤-⇔≥--k k k k k 解得 ④综合②、④知,直线l 的斜率的取值范围为[-2,-1]∪(-1,1)∪(1,2).2. (Ⅰ)设OA m d =-,AB m =,OB m d =+由勾股定理可得:222()()m d m m d -+=+得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠== 由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率2e =.(Ⅱ)过F 直线方程为()ay x c b=--,与双曲线方程22221x y a b -=联立将2a b =,c =代入,化简有22152104x x b b-+=将数值代入,有4=解得3b = 故所求的双曲线方程为221369x y -=。
《双曲线》练习试题经典(含答案解析)
《双曲线》练习题一、选择题:1.已知焦点在x轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是(A)A.17B.15C.174 D.1542.中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为(B)A.x2﹣y2=1 B.x2﹣y2=2 C.x2﹣y2=D.x2﹣y2=3.在平面直角坐标系中,双曲线C过点P(1,1),且其两条渐近线的方程分别为2x+y=0和2x﹣y=0,则双曲线C的标准方程为(B)A.B.C.或D.4.1(a>b>01有相同的焦点,则椭圆的离心率为( A )A B C D5.已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为(A)A.2 B.C.D.7的圆相切,则双曲线的离心率为( A )A B C D8.双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为(B)A.3B.62 C.63D.339.已知双曲线221(0,0)x ym nm n-=>>的一个焦点到一条渐近线的距离是2,一个顶点到它的一条渐近线的,则m等于( D )A .9B .4C .2D .,310.已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且满足12120,||||2,MF MF MF MF ==则该双曲线的方程是( A )A.x 29-y 2=1 B .x 2-y 29=1 C.x 23-y 27=1D.x 27-y 23=1 11.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( C )A .4 2B .83C .24D .4812.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是( C ) A .28 B .14-82 C .14+8 2D .8 213.已知双曲线﹣=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( D ) A .﹣=1B .﹣=1 C .﹣=1 D .﹣=114.设双曲线﹣=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 2为圆心,|F 1F 2|为半径的圆与双曲线在第一、二象限内依次交于A ,B 两点,若3|F 1B |=|F 2A |,则该双曲线的离心率是( C ) A . B .C .D .215.过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若|AB|=4,则这样的直线共有( C )条。
2021年高考数学一轮复习 8.6 双曲线课时作业 理(含解析)新人教A版
2021年高考数学一轮复习 8.6 双曲线课时作业 理(含解析)新人教A版一、选择题1.(xx·吉林市期中复习检测)设双曲线y 29-x 2a 2=1(a >0)的渐近线方程为3x ±4y =0,则双曲线的离心率为( )A.54B.53C.74D.7解析:由双曲线的渐近线方程为3x ±4y =0知a 2=16,双曲线的离心率为e =9+163=53,故选B. 答案:B2.(xx·北京朝阳期末考试)已知双曲线的中心在原点,一个焦点为F 1(-5,0),点P 在双曲线上,且线段PF 1的中点坐标为(0,2),则此双曲线的方程是( )A.x 24-y 2=1 B .x 2-y 24=1C.x 22-y 23=1 D.x 23-y 22=1 解析:由题可知c =5,线段PF 1的中点坐标为(0,2),画图可得P (5,4),故可得双曲线方程为x 2-y 24=1.答案:B3.(xx·湖北武汉高三调研测试)已知椭圆x 2m +y 2=1(m >1)和双曲线x 2n-y 2=1(n >0)有相同的焦点F 1、F 2,P 是它们的一个交点,则△F 1PF 2的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .随m 、n 变化而变化解析:如图,对椭圆x 2m +y 2=1(m >1),c 2=m -1,|PF 1|+|PF 2|=2m ,对双曲线x 2n-y 2=1,c 2=n +1,|PF 1|-|PF 2|=2n ,∴|PF 1|=m +n ,|PF 2|=m -n ,(2c )2=2(m +n ), 而|PF 1|2+|PF 2|2=2(m +n )=(2c )2, ∴△F 1PF 2是直角三角形.选B. 答案:B4.(xx·山东滨州模拟)圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率为( )A.23或32B.23或2 C.12或2 D.12或32解析:不妨设|PF 1|=4x ,|F 1F 2|=3x ,|PF 2|=2x ,若此曲线为椭圆,则有|PF 1|+|PF 2|=6x =2a ,|F 1F 2|=3x =2c ,所以离心率为e =2c 2a =3x 6x =12,若此曲线为双曲线,则有|PF 1|-|PF 2|=2x =2a ,此时离心率e =2c 2a =3x 2x =32,故选D. 答案:D5.(xx·马鞍山第一次质检)斜率为3的直线与双曲线x 2a 2-y 2b2=1(a >0,b >0)恒有两个公共点,则双曲线离心率的取值范围是( )A .[2,+∞)B .(3,+∞)C .(1,3)D .(2,+∞)解析:由双曲线的性质知b a>3,即得c 2-a 2>3a 2,e >2. 答案:D6.(xx·河北沧州质量监测)已知双曲线的方程为x 2m -y 24=1,且右顶点到直线y =x -4的距离为22,则双曲线的离心率等于( ) A.133B.295C.53或215D.133或295解析:双曲线的右顶点为(m ,0),它到y =x -4的距离为d =|m -0-4|2=22,解得m =25或9.∴a =5或3,∴e =ca =133或295. 答案:D7.(xx·郑州第二次质量预测)如图所示,F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,以坐标原点O 为圆心,|OF 1|为半径的圆与该双曲线的左支的两个交点分别为A ,B ,且△F 2AB 是等边三角形,则双曲线的离心率为( )A.2+1B.3+1C.2+12 D.3+12解析:连接OA ,AF 1,|OA |=|OF 2|=c ,因△AF 2B 为等边三角形,∴∠AF 2O =∠F 2AO =30°,∠AOF 2=120°,|AF 2|=3c ,△AF 1O 为等边三角形,∴|AF 1|=c ,|AF 2|-|AF 1|=3c -c =2a ,∴e =c a=23-1=3+1,选B.答案:B8.(xx·重庆市模拟)已知A 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,F 1、F 2分别为双曲线的左、右焦点,P 为双曲线上一点,G 是△PF 1F 2的重心,若GA →=λPF 1→,则双曲线的离心率为( )A .2B .3C .4D .与λ的取值有关解析:由已知GA →=λPF 1→知GA ∥PF 1,即△OAG ∽△OF 1P ,得OG OP =OA OF 1=a c =13得e =ca =3,故选B.答案:B 二、填空题9.(xx·茂名市第一次模拟)已知双曲线x 2-ky 2=1的一个焦点是(5,0),则其渐近线方程为________.解析:由方程知a 2=1,b 2=1k ,∴c 2=5=1+1k ,∴k =14,即b 2=4,∴渐近线方程为y=±bax =±2x .答案:y =±2x10.(xx·浙江五校第二次联考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2+y2-4x +2=0有交点,则该双曲线的离心率的取值范围是________.解析:渐近线与圆有交点,即圆心(2,0)到直线y =bax 的距离小于等于半径r ,则d =2ba 2+b2≤2⇒c 2≤2a 2⇒1<e ≤ 2. 答案:(]1,211.(xx·温州市高三第二次适应性测试)已知F 1,F 2分别是双曲线x 2-y 2b2=1的左、右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°.延长AF 2交双曲线右支于点B ,则△F 1AB 的面积等于________.解析:由题知a =1,根据双曲线定义|AF 1|-|AF 2|=2a 所以|AF 1|=4,|BF 1|-|BF 2|=2,∴|BF 1|=2+|BF 2|由图知|AB |=|AF 2|+|BF 2|=2+|BF 2|∴|BA |=|BF 1|,△ABF 1为等腰三角形,又因∠F 1AF 2=45°,所以∠ABF 1=90°,则△ABF 1为等腰直角三角形,所以|AB |=|BF 1|=2 2.所以S △F 1AB =12×22×22=4.答案:4 三、解答题12.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).点M (3,m )在双曲线上. (1)求双曲线方程;(2)求证:MF 1→·MF 2→=0; (3)求△F 1MF 2面积.解:(1)∵e =2,∴可设双曲线方程为x 2-y 2=λ. ∵过点(4,-10),∴16-10=λ,即λ=6. ∴双曲线方程为x 2-y 2=6.(2)证明:由(1)可知,双曲线中a =b =6, ∴c =23,∴F 1(-23,0),F 2(23,0), ∵MF 1→=(-3-23,-m ),MF 2→=(23-3,-m ), ∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2,∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0, ∴MF 1→·MF 2→=0.(3)△F 1MF 2的底|F 1F 2|=43,由(2)知m =± 3. ∴△F 1MF 2的高h =|m |=3,∴S △F 1MF 2=6.13.(xx·江西红色六校高三第二次联考)如图,直角坐标系xOy 中,一直角三角形ABC ,∠C =90°,B 、C 在x 轴上且关于原点O 对称,D 在边BC 上,BD =3DC ,△ABC 的周长为12.若一双曲线E 以B 、C 为焦点,且经过A 、D 两点.(1) 求双曲线E 的方程;(2) 若一过点P (m,0)(m 为非零常数)的直线l 与双曲线E 相交于不同于双曲线顶点的两点M 、N ,且MP →=λPN →,问在x 轴上是否存在定点G ,使BC →⊥(GM →-λGN →)?若存在,求出所有这样定点G 的坐标;若不存在,请说明理由.解:(1)设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则B (-c,0),D (a,0),C (c,0).由BD =3DC ,得c +a =3(c -a ),得c =2a . ∴⎩⎪⎨⎪⎧|AB |2-|AC |2=16a 2,|AB |+|AC |=12-4a ,|AB |-|AC |=2a .解之得a =1,∴c =2,b = 3. ∴双曲线E 的方程为x 2-y 23=1.(2)设在x 轴上存在定点G (t,0),使BC →⊥(GM →-λGN →). 设直线l 的方程为x -m =ky ,M (x 1,y 1),N (x 2,y 2).由MP →=λPN →,得y 1+λy 2=0. 即λ=-y 1y 2①∵BC →=(4,0),GM →-λGN →=(x 1-t -λx 2+λt ,y 1-λy 2), ∴BC →⊥(GM →-λGN →)⇔x 1-t =λ(x 2-t ). 即ky 1+m -t =λ(ky 2+m -t ).②把①代入②,得2ky 1y 2+(m -t )(y 1+y 2)=0③把x -m =ky 代入x 2-y 23=1并整理得(3k 2-1)y 2+6kmy +3(m 2-1)=0其中3k 2-1≠0且Δ>0,即k 2≠13且3k 2+m 2>1.y 1+y 2=-6km 3k 2-1,y 1y 2=3m 2-13k 2-1. 代入③,得6km 2-13k 2-1-6km m -t3k 2-1=0, 化简得kmt =k ,当t =1m时,上式恒成立.因此,在x 轴上存在定点G ⎝ ⎛⎭⎪⎫1m ,0,使BC →⊥(GM →-λGN →). [热点预测]14.(1)(xx·南平质检)已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过双曲线Γ的左焦点F 作圆O :x 2+y 2=a 2的两条切线,切点分别为A 、B ,则∠AFB =( )A .45° B.60° C.90° D.120°(2)(xx·石家庄质检(二))F 1,F 2分别是双曲线x 2a 2-y 2b2=1的左、右焦点,过F 1的直线l与双曲线的左、右两支分别交于A 、B 两点.若△ABF 2是等边三角形,则该双曲线的离心率为( )A .2 B.7 C.13 D.15解析:(1)双曲线的离心率为2,所以c =2a ,由题可得如图,所以∠AFB =60°.(2)画出图形,由双曲线的定义得|BF 1|-|BF 2|=2a ,|AF 2|-|AF 1|=2a ,又∵△ABF 2为等边三角形,∴|AF 1|=2a ,|AF 2|=4a ,|BF 2|=|BA |=4a ,|BF 1|=6a ,△BF 1F 2中|F 1F 2|=2c ,∠F 1BF 2=60°.∴由余弦定理可得4c 2=36a 2+16a 2-2×6a ×4a ×12,离心率e =c a=7,故选B.答案:(1)B (2)B 23103 5A3F 娿F31863 7C77 籷O!20339 4F73 佳-Y 121679 54AF 咯28376 6ED8 滘31502 7B0E 笎38730 974A 靊。
近年届高考数学一轮复习第八章平面解析几何第六节双曲线课时作业(2021年整理)
2019届高考数学一轮复习第八章平面解析几何第六节双曲线课时作业编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学一轮复习第八章平面解析几何第六节双曲线课时作业)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学一轮复习第八章平面解析几何第六节双曲线课时作业的全部内容。
第六节双曲线课时作业A组——基础对点练1.已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.错误!B.3C。
错误!m D.3m解析:双曲线方程为错误!-错误!=1,焦点F到一条渐近线的距离为错误!。
选A。
答案:A2.已知双曲线错误!-错误!=1(a>0)的离心率为2,则a=( )A.2 B.错误!C。
错误!D.1解析:因为双曲线的方程为错误!-错误!=1,所以e2=1+错误!=4,因此a2=1,a=1.选D。
答案:D3.双曲线x2-4y2=-1的渐近线方程为( )A.x±2y=0 B.y±2x=0C.x±4y=0 D.y±4x=0解析:依题意,题中的双曲线即错误!-x2=1,因此其渐近线方程是错误!-x2=0,即x±2y=0,选A。
答案:A4.已知双曲线错误!-y2=1的左、右焦点分别为F1,F2,点P在双曲线上,且满足|PF1|+|PF2|=2错误!,则△PF1F2的面积为()A.1 B.错误!C。
错误!D.错误!解析:在双曲线错误!-y2=1中,a=错误!,b=1,c=2。
不防设P点在双曲线的右支上,则有|PF1|-|PF2|=2a=23,又|PF1|+|PF2|=2错误!,∴|PF1|=错误!+错误!,|PF 2|=错误!-错误!.又|F 1F 2|=2c =4,而|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=错误!×|PF 1|×|PF 2|=错误!×(错误!+3)×(5-错误!)=1.故选A 。
高中数学双曲线习题及答案解析
双曲线习题练习及答案解析1、已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B 因为双曲线的一条渐近线方程为2y x =,则b a =.① 又因为椭圆221123x y +=与双曲线有公共焦点,双曲线的焦距26c =,即c =3,则a 2+b 2=c 2=9.②.由①②解得a =2,b =,则双曲线C 的方程为22145x y -=.故选:B.2已知双曲线22221x y a b-=(a 、b 均为正数)的两条渐近线与直线1x =-围成的三)A.B. C. D. 2【答案】D解:双曲线的渐近线为by x a=±,令1x =-,可得b y a=,不妨令1,b A a ⎛⎫- ⎪⎝⎭,1,b B a ⎛⎫-- ⎪⎝⎭,所以2b AB a =,所以12AOBA S AB x =⋅=AB ∴=,即2b a =b a =2c e a ===;故选:D3已知双曲线C 的中心为坐标原点,一条渐近线方程为2y x =,点()22,2P -在C 上,则C 的方程为A. 22124x y -=B. 221714x y -=C. 22142x y -=D. 221147y x -=【答案】B由于C 选项的中双曲线的渐近线方程为22y x =±,不符合题意,排除C 选项.将点()22,2P -代入A,B,D 三个选项,只有B 选项符合,故本题选B.4已知双曲线C :2218y x -=的左、右焦点分别为1F 、2F ,O 为坐标原点,点P在C 的一条渐近线上,若2OP PF =,则12PF F △的面积为 ( )A .B .C .D .【答案】C双曲线C :2218y x -=中,1(3,0)F -,2(3,0)F ,渐近线方程:y =±,因2OP PF =,则点P 在线段2OF 的中垂线:32x =上,则P 点纵坐标y 0有0||y =所以12PF F △面积121201||||2PF F SF F y =⋅=故选:C 5已知双曲线C :()22102y x m m m -=>+,则C 的离心率的取值范围为( )A .(B .()1,2C .)+∞D .()2,+∞【答案】C双曲线()22102y x m m m -=>+的离心率为e ===,因为0m >,所以e =>C的离心率的取值范围为)+∞.故选:C.6若双曲线2288ky x -=的焦距为6,则该双曲线的离心率为( )A.4B.32C. 3D.103因为2288ky x -=为双曲线,所以0k ≠,化为标准方程为:22181y x k -=. 由焦距为6可得:3c ==,解得:k =1.所以双曲线为22181y x -=.所以双曲线的离心率为4c e a ===.故选:A7已知1F ,2F 分别是双曲线22124y x -=的左,右焦点,若P 是双曲线左支上的点,且1248PF PF ⋅=.则12F PF △的面积为( ) A. 8B. 16C. 24D. 【答案】C 因为P 是双曲线左支上的点,所以2122PF PF a -==,22124100F F c ==. 在12F PF △中,()22221212121212121212cos 22cos F F PF PF PF PF F PF PF PF PF PF PF PF F PF=+-∠=-+-∠,即110049696cos F PF=+-∠,所以1cos 0F PF ∠=,12in 1s P F F =∠,故12F PF △的面积为121242PF PF ⋅=.故选:C .8已知双曲线()222:1016x y C a a -=>的一条渐近线方程为20x y -=,1F ,2F 分别是双曲线C 的左、右焦点,P 为双曲线C 上一点,若15PF =,则2PF = A.1B.9C.1或9D.3或93.B 由题意知42a=,所以2a =,所以c ==,所以152PF a c =<+=+,所以点Р在双曲线C 的左支上,所以214PF PF -=,所以29PF =.故选B9如图,F 1,F 2分别是双曲线22221x y a b-=(a >0,b >0)的两个焦点,以坐标原点O为圆心,|OF 1|为半径的圆与该双曲线左支交于A ,B 两点,若△F 2AB 是等边三角形,则双曲线的离心率为( )B. 211【答案】D 连接1AF ,依题意知:21AF =,12122c F F AF ==,所以21121)a AF AF AF =-=1c e a ===. 10已知双曲线22214x y b-=()0b >的左右焦点分别为1F 、2F ,过点2F 的直线交双曲线右支于A 、B 两点,若1ABF ∆是等腰三角形,且120A ∠=︒.则1ABF ∆的周长为( ) A.83+ B.)41C.83+ D.)22【答案】A双曲线的焦点在x 轴上,则2,24a a ==;设2||AF m =,由双曲线的定义可知:12||||24AF AF a m =+=+, 由题意可得:1222||||||||||AF AB AF BF m BF ==+=+, 据此可得:2||4BF =,又 ,∴12||2||8BF a BF =+=,1ABF 由正弦定理有:11||||sin120sin 30BF AF =︒︒,即11|||BF AF =所以8)m =+,解得:m =1ABF ∆的周长为: 11||||||AF BF AB ++=122(4)8162833m ++=+⨯=+故选:A11已知双曲线C :2218y x -=的左、右焦点分别为1F 、2F ,O 为坐标原点,点P在C 的一条渐近线上,若2OP PF =,则12PF F △的面积为 ( ) A.B.C. D.【答案】C双曲线C :2218y x -=中,1(3,0)F -,2(3,0)F,渐近线方程:y =±,因2OP PF =,则点P 在线段2OF 的中垂线:32x =上,则P 点纵坐标y 0有0||y = 所以12PF F △面积121201||||2PF F S F F y =⋅=故选:C12双曲线22221x y a b-=与22221x y a b -=-的离心率分别为12,e e ,则必有( )A. 12e e =B. 121e e ⋅=C.12111e e += D. 2212111e e += 【答案】D13多选以已知双曲线的虚轴为实轴、实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,则以下说法,正确的有( ) A. 双曲线与它的共轭双曲线有相同的准线 B. 双曲线与它的共轭双曲线的焦距相等 C. 双曲线与它的共轭双曲线的离心率相等 D. 双曲线与它的共轭双曲线有相同的渐近线 【答案】BD由双曲线对称性不妨令双曲线C 的方程为:22221(0,0)x y a b a b-=>>,则其共轭双曲线C '的方程为22221y x b a-=,对于A ,双曲线C 的准线垂直于x 轴,双曲线C '的准线垂直于y 轴,A 不正确;对于B ,双曲线C 和双曲线C '的半焦距均为:c =,所以焦距相同,B 正确;对于C ,由B 选项知,双曲线C 的离心率为1ce a=,而双曲线C '的离心率为2c e b =,而a ,b 不一定等,C 不正确;对于D ,双曲线C 和双曲线C '的渐近线均为by x a=±,D 正确. 故选:BD13多选已知双曲线C :()222104x y b b-=>的离心率为72,1F ,2F 分别为C 的左右焦点,点P 在C 上,且26PF =,则( )A .7b =B .110PF =C .OP =D .122π3F PF ∠=【答案】BCD72=,可得b =A 不正确,而7c ==,因为27||6c PF =>=,所以点P 在C 的右支上,由双曲线的定义有:121||||||624PF PF PF a -=-==,解得1||10PF =,故选项B 正确,在12PF F △中,有2222221271076cos cos 02727OP OP POF POF OP OP +-+-∠+∠=+=⨯⨯⨯⨯,解得||OP =,22212106141cos 21062F PF +-∠==-⨯⨯,所以1223F PF π∠=,故选项C ,D 正确. 故选:BCD.多选若方程22151x y t t +=--所表示的曲线为C ,则下面四个命题中正确的是A .若1<t <5,则C 为椭图B .若t <1.则C 为双曲线 C .若C 为双曲线,则焦距为4D .若C 为焦点在y 轴上的椭圆,则3<t <5 【答案】BD 14多选已知双曲线C 1:)0,0(12222>>=-b a b y a x 的实轴长是2,右焦点与抛物线C 2:y 2=8x 的焦点F 重合,双曲线C 1与抛物线C 2交于A 、B 两点,则下列结论正确的是 ( ▲ )A .双曲线C 1的离心率为2 3B .抛物线C 2的准线方程是x =-2 C .双曲线C 1的渐近线方程为y =±3x D. |AF |+|BF |=320 【答案】BC【解析】由题意可知对于C 1:()0012222>>=-b a by a x ,,实轴长为2a =2,即a =1,而C 2:y 2=8x 的焦点F 为(2,0),所以c =2,则双曲线C 1的方程为1322=-yx ,则对于选项A ,双曲线C 1的离心率为212==a c ,所以选项A 错误;对于选项B ,抛物线C 2的准线方程是x =-2,所以选项B 正确;对于选项C ,双曲线C 1的渐近线方程为y =±abx =±3x ,所以选项C 正确;对于选项D ,由y 2=8x 与1322=-y x 联立可得A (3,62),B (3,62-),所以由抛物线的定义可得 |AF |+|BF |=10433=++=++p x x B A ,所以选项D 错误,综上答案选BC.14多选12,F F 分别是双曲线2221(0)y x b b-=>的左右焦点,过2F 作x 轴的垂线与双曲线交于,A B 两点,若1ABF 为正三角形,则( )A.b = B.C. 双曲线的焦距为D.1ABF 的面积为【答案】ABD在正三角形1ABF 中,由双曲线的对称性知,12F F AB ⊥,12||2||AF AF =, 由双曲线定义有:12||||2AF AF -=,因此,1||4AF =,2||2AF =,12||F F ==即半焦距c =b =,A 正确;双曲线的离心率1ce ==B 正确;双曲线的焦距12F F =C 不正确;1ABF 的面积为21||4AF =D 正确.故选:ABD15多选已知双曲线C 的左、右焦点分别为1F 、2F ,过2F 的直线与双曲线的右支交于A 、B 两点,若122||||2||AF BF AF ==,则( )A. 11AF B F AB ∠=∠B. 双曲线的离心率e =C. 直线的AB 斜率为±D. 原点O 在以2F 为圆心,2AF 为半径的圆上 【答案】ABC 如图:设122||||2||2(0)AF BF AF m m ===>,则22||||||3AB AF BF m =+=,由双曲线的定义知,12||||22AF AF m m a -=-=,即2m a =;12||||2BF BF a -=, 即1||22BF m a -=,∴1||3||BF m AB ==,即有11AF B F AB ∠=∠,故选项A 正确;由余弦定理知,在1ABF 中,22222211111||||||4991cos 2||||2233AF BF AB m m m AF B AF BF m m +-+-∠===⋅⋅,在△12AF F 中,22222212121112||||||441cos cos 2||||223AF AF F F m m c F AB AF B AF AF m m +-+-∠===∠=⋅⋅, 化简整理得,222121144c m a ==,∴离心率ce a ==,故选项B 正确; 在△21AF F中,2222222211134443cos 224m m c m m c m AF F c m cm -+--∠===⋅⋅,21sin AF F ∠==,∴212121sin tan cos AF F AF F AF F ∠∠==∠ ∴根据双曲线的对称性可知,直线AB的斜率为±,故选项C 正确; 若原点O 在以2F 为圆心,2AF 为半径的圆上,则2c m a ==,与3c a =不符,故选项D 错误.故选:ABC .16多选已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F,一条渐近线过点(,则下列结论正确的是( )A. 双曲线CB. 双曲线C 与双曲线22124y x -=有相同的渐近线C. 若F 到渐近线的距离为2,则双曲线C 的方程为22184x y -=D. 若直线2:a l x c=与渐近线围成的三角形面积为则焦距为【答案】BCD 渐近线的方程为by x a=±,因为一条渐近线过点(,故b a ⨯=a ===,故A 错误.又渐近线的方程为2y x =±,而双曲线22124y x -=的渐近线的方程为2y x =±, 故B 正确.若F 到渐近线的距离为2,则2b =,故a =C 的方程为22184x y -=,故C 正确. 直线2:a l x c =与渐近线的两个交点的坐标分别为:2,a ab c c ⎛⎫ ⎪⎝⎭及2,a ab cc ⎛⎫- ⎪⎝⎭,故2122a ab c c =⨯⨯⨯即23a b =,而a =,故b =,a =,所以23=,所以c =,故焦距为D 正确.故选:B CD.16多选已知点P 在双曲线221169x y -=上,1F ,2F 分别是左、右焦点,若12PF F △的面积为20,则下列判断正确的有( ) A. 点P 到x 轴的距离为203B. 12503PF PF += C. 12PF F △为钝角三角形 D. 123F PF π∠=【答案】BC由双曲线方程得4a =,3b =,则5c =,由△12PF F 的面积为20,得112||10||2022P P c y y ⨯⨯=⨯=,得||4P y =,即点P 到x 轴的距离为4,故A 错误, 将||4P y =代入双曲线方程得20||3P x =,根据对称性不妨设20(3P ,4),则213||3PF =, 由双曲线的定义知12||||28PF PF a -==,则11337||833PF =+=, 则12133750||||333PF PF +=+=,故B 正确,在△12PF F 中,113713||210||33PF c PF =>=>=, 则24012020553PF k -==>-,21PF F ∠为钝角,则△12PF F 为钝角三角形,故C 正确, 2222121212121212121337641002||||||(||||)2||||10033cos 13372||||2||||233PF PF F F PF PF PF PF F PF PF PF PF PF -+⨯⨯+--+-∠===⨯⨯3618911121337133729⨯=-=-≠⨯⨯⨯,则123F PF π∠=错误,故正确的是BC ,故选16双曲线:C 2214x y -=的渐近线方程为__________,设双曲线1:C 22221(0,0)x y a b a b -=>>经过点(4,1),且与双曲线C 具有相同渐近线,则双曲线1C 的标准方程为__________.【答案】12y x =± 221123y x -=【解析】(1)双曲线:C 2214x y -=的焦点在y 轴上,且1,2a b ==,渐近线方程为ay x b=±, 故渐近线方程为12y x =±;(2)由双曲线1C 与双曲线C 具有相同渐近线,可设221:4y C x λ-=,代入(4,1)有224134λλ-=⇒=-,故212:34x C y -=-,化简得221123y x -=.17已知O 为坐标原点,抛物线C :()220y px p =>的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则PF =______. 【答案】3抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p , 因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0)2pQ +,(6,)PQ p =-,因为PQ OP ⊥,所以2602pPQ OP p ⋅=⨯-=, 0,3p p >∴=,所以PF =3故答案为△3.若双曲线1C :()2230y x λλ-=≠的右焦点与抛物线2C :28y x =的焦点重合,则实数λ=( ) A. 3±B.C. 3D. -3【答案】D双曲线1C 的右焦点与抛物线的焦点(2,0)重合,所以双曲线1C 方程化:()22103y x λλλ-=≠,再转化为:()22103x y λλλ-=<--,所以23a λ=-, 2b λ=-,所以222433c a b λλλ=+=--=-,所以c =2=平方得 3.λ=-故选:D.17设双曲线:的右焦点为,点,已知点在双曲线的左支上,若的周长的最小值是,则双曲线的标准方程是__________,此时,点的坐标为__________.【答案】【解析】如下图,设为双曲线的左焦点,连接,,则,,故的周长, 因为,所以的周长, 因为的周长的最小值是,,,所以,的方程为, 当的周长取最小值时,点在直线上,因为,,所以直线的方程为,联立,解得,或(舍去), 故的坐标为.故答案为:,.C 2221(0)y x b b-=>F ()0,Q b P CPQF △8C P 2214y x -=⎛⎫ ⎪ ⎪⎝⎭D C PD QD QD QF =2PFPD =+PQF△2l PQ PF QF PQ PD QD =++=+++PQ PD QD +≥=PQF△2l ≥PQF △82228,9c b +=+=22221cbab2b =c =C 2214y x -=PQF △P QD ()0,2Q ()D QD 25y x =+222514y x y x ⎧=+⎪⎪⎨⎪-=⎪⎩1x y ⎧=⎪⎨⎪=⎩4x y ⎧=⎪⎨=⎪⎩P 2⎛⎫- ⎪ ⎪⎝⎭2214y x -=,12⎛⎫- ⎪ ⎪⎝⎭18已知双曲线()221112211:10,0x y C a b a b -=>>与()222222222:10,0y x C a b a b -=>>有相同的渐近线,若1C 的离心率为2,则2C 的离心率为__________.双曲线()221112211:10,0x y C a b a b -=>>的渐近线方程为11b y x a =± ,()222222222:10,0y x C a b a b -=>>的渐近线方程为22a y x b =±,由题意可得1212b a a b =,由1C 的离心率为2得:22211121()b e a ==+ ,则222()3a b = , 所以设2C 的离心率为2e ,则22222141()133b e a =+=+=,故2=e ,故答案为:19知双曲线()222210,0x y a b a b-=>>,焦点()()()12,0,00F c F c c ->,,左顶点(),0A a -,若过左顶点A 的直线和圆22224a a x y ⎛⎫-+= ⎪⎝⎭相切,与双曲线在第一象限交于点P ,且2PF x ⊥轴,则直线的斜率是 _____, 双曲线的离心率是 _________. 【答案】如图,设圆22224a a x y ⎛⎫-+= ⎪⎝⎭的圆心为B ,则圆心坐标(,0)2a B ,半径为2a ,则32a AB =,设过左顶点A 的直线和圆22224a a x y ⎛⎫-+= ⎪⎝⎭相切于点C ,连接BC ,则2a BC =,所以AC ==,得tan aBC BAC AC ∠===;2PF x ⊥轴,由双曲线的通径可得,22b PF a=,又2AF a c =+,所以222tan PF AF b a BAC a c ∠===+,化简得24(40e -=,求解得e =.已知双曲线C :﹣y 2=1.(Ⅰ)求以C 的焦点为顶点、以C 的顶点为焦点的椭圆的标准方程; (Ⅱ)求与C 有公共的焦点,且过点(2,﹣)的双曲线的标准方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.解:(Ⅰ)双曲线C :﹣y 2=1的焦点为(±,0),顶点为(±2,0),设椭圆的标准方程为+=1(a >b >0),可得c =2,a =,b ==1,则椭圆的方程为+y 2=1;(Ⅱ)设所求双曲线的方程为﹣=1(m .n>0),由题意可得m 2+n 2=5,﹣=1,解得m =,n =,即所求双曲线的方程为﹣=1,则这条双曲线的实轴长为2、焦距为2、离心率为以及渐近线方程为y=±x .20已知双曲线C :﹣=1(a >0,b >0)与双曲线﹣=1有相同的渐近线,且经过点M (,﹣).(Ⅰ)求双曲线C 的方程;(Ⅱ)求双曲线C 的实轴长,离心率,焦点到渐近线的距离.:(Ⅰ)∵双曲线C 与双曲线﹣=1有相同的渐近线,∴设双曲线的方程为(λ≠0),代入M (,﹣).得λ=,故双曲线的方程为:.(Ⅱ)由方程得a =1,b =,c =,故离心率e =. 其渐近线方程为y =±x ;实轴长为2, 焦点坐标F (,0),解得到渐近线的距离为:=.21已知双曲线C :22221(0,0)x y a b a b-=>>,点)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30°的直线,直线与双曲线交于不同的两点A ,B ,求AB .(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b =,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪=-⎪⎩得256270x x +-=,设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以5AB ==. 22已知双曲线()2222:10,0x y C a b a b -=>>与双曲线22162y x -=的渐近线相同,且经过点()2,3.(1)求双曲线C 的方程;(2)已知双曲线C 的左右焦点分别为12,F F ,直线l 经过2F ,倾斜角为3,4l π与双曲线C 交于,A B 两点,求1F AB 的面积.(1)设所求双曲线C 方程为2262y x λ-=,代入点()2,3得:223262λ-=,即12λ=-, 所以双曲线C 方程为221622y x -=-,即2213y x -=.(2)由(1)知:()()122,0,2,0F F -,即直线AB 的方程为()2y x =--.设()()1122,,,A x y B x y ,联立()22213y x y x ⎧=--⎪⎨-=⎪⎩得22470x x +-=,满足>0∆且122x x +=-,1272x x =-,由弦长公式得12||AB x x =-=6==,点()12,0F -到直线:20AB x y +-=的距离d ===所以111622F ABS AB d =⋅=⋅⋅=。
双曲线(经典导学案及练习答案详解)
§8.7双曲线学习目标1.了解双曲线的定义、几何图形和标准方程.2.掌握双曲线的几何性质(范围、对称性、顶点、离心率、渐近线).3.了解双曲线的简单应用.知识梳理1.双曲线的定义把平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F 1F2|)的点的轨迹叫做双曲线.两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.2.双曲线的标准方程和简单几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b,实半轴长:a,虚半轴长:b离心率e=ca∈(1,+∞)渐近线y=±ba x y=±ab xa,b,c的关系c2=a2+b2 (c>a>0,c>b>0)常用结论(1)双曲线的焦点到其渐近线的距离为b.(2)若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c -a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于实轴的弦),其长为2b 2a.(4)若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则12PF F S △=b 2tan θ2,其中θ为∠F 1PF 2.(5)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)到两定点的距离差的绝对值等于常数的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线x 2m 2-y 2n 2=1(m >0,n >0)的渐近线方程是x m ±yn =0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ ) 教材改编题1.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A. 5 B .5 C. 2 D .2 答案 A解析 由题意知焦点到其渐近线的距离等于实轴长,即b =2a , 又a 2+b 2=c 2,∴5a 2=c 2. ∴e 2=c 2a 2=5,∴e = 5. 2.设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17D .以上均不对 答案 B解析 根据双曲线的定义得||PF 1|-|PF 2||=8⇒|PF 2|等于1或17.又|PF 2|≥c -a =2,故|PF 2|=17. 3.(2022·汕头模拟)写一个焦点在y 轴上且离心率为3的双曲线方程________. 答案y 2-x 22=1(答案不唯一,符合要求就可以) 解析 取c =3,则e =ca=3,可得a =1,∴b =c 2-a 2=2, 因此,符合条件的双曲线方程为y 2-x 22=1(答案不唯一,符合要求就可以).题型一 双曲线的定义及应用例1 (1)已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .圆答案 B解析 如图,连接ON ,由题意可得|ON |=1,且N 为MF 1的中点,又O 为F 1F 2的中点,所以|MF 2|=2.因为点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,由垂直平分线的性质可得|PM |=|PF 1|, 所以||PF 2|-|PF 1||=||PF 2|-|PM || =|MF 2|=2<|F 1F 2|,所以由双曲线的定义可得,点P 的轨迹是以F 1,F 2为焦点的双曲线.(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则△F 1PF 2的面积为______. 答案 2 3解析 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, 在△F 1PF 2中,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12, ∴|PF 1|·|PF 2|=8,∴12F PF S △=12|PF 1|·|PF 2|·sin 60°=2 3.延伸探究 在本例(2)中,若将“∠F 1PF 2=60°”改为“PF 1―→·PF 2―→=0”,则△F 1PF 2的面积为_____.答案 2解析 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, ∵PF 1―→·PF 2―→=0,∴PF 1―→⊥PF 2―→,∴在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16, ∴|PF 1|·|PF 2|=4,∴12F PF S △=12|PF 1|·|PF 2|=2.教师备选1.已知圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2相外切,则动圆圆心M 的轨迹方程为( ) A .x 2-y 28=1B.x 28-y 2=1 C .x 2-y 28=1(x ≤-1) D .x 2-y 28=1(x ≥1) 答案 C解析 设圆M 的半径为r ,由动圆M 同时与圆C 1和圆C 2相外切, 得|MC 1|=1+r ,|MC 2|=3+r , |MC 2|-|MC 1|=2<6,所以点M 的轨迹是以点C 1(-3,0)和C 2(3,0)为焦点的双曲线的左支, 且2a =2,a =1,又c =3, 则b 2=c 2-a 2=8, 所以点M 的轨迹方程为x 2-y 28=1(x ≤-1). 2.(2022·长春模拟)双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( ) A .8 B .10 C .4+37 D .3+317答案 B解析 由已知得双曲线方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△P AF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,当F ′,P ,A 三点共线时, |PF ′|+|P A |有最小值,为|AF ′|=3, 故△P AF 的周长的最小值为10.思维升华 在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.跟踪训练1 (1)(2022·扬州、盐城、南通联考)已知双曲线C 的离心率为3,F 1,F 2是C 的两个焦点,P 为C 上一点,|PF 1|=3|PF 2|,若△PF 1F 2的面积为2,则双曲线C 的实轴长为( ) A .1 B .2 C .3 D .6 答案 B解析 由题意知,|PF 1|-|PF 2|=2a , 所以|PF 2|=a ,|PF 1|=3a , 又离心率e =ca =3,|F 1F 2|=2c =23a ,所以cos ∠F 1PF 2=9a 2+a 2-12a 22·3a ·a=-2a 26a 2=-13, sin ∠F 1PF 2=223,所以12PF F S △=12·a ·3a ·223=2a 2=2,所以a =1,实轴长2a =2.(2)已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________. 答案 9解析 设双曲线的右焦点为F 1,则由双曲线的定义,可知|PF |=4+|PF 1|, 所以当|PF 1|+|P A |最小时满足|PF |+|P A |最小. 由双曲线的图象,可知当点A ,P ,F 1共线时, 满足|PF 1|+|P A |最小,|AF 1|+4即|PF |+|P A |的最小值. 又|AF 1|=5,故所求的最小值为9. 题型二 双曲线的标准方程例2 (1)(2021·北京)双曲线C :x 2a 2-y 2b 2=1过点(2,3),且离心率为2,则该双曲线的标准方程为( )A .x 2-y 23=1B.x 23-y 2=1 C .x 2-3y 23=1D.3x 23-y 2=1答案 A解析 ∵e =ca=2,则c =2a ,b =c 2-a 2=3a , 则双曲线的方程为x 2a 2-y 23a2=1,将点(2,3)的坐标代入双曲线的方程可得2a 2-33a 2=1a 2=1,解得a =1,故b =3,因此,双曲线的方程为x 2-y 23=1. (2)若双曲线经过点(3,2),且渐近线方程是y =±13x ,则双曲线的标准方程是________.答案y 2-x 29=1 解析 设双曲线的方程是y 2-x 29=λ(λ≠0). 因为双曲线过点(3,2), 所以λ=2-99=1,故双曲线的标准方程为y 2-x 29=1. 教师备选1.过双曲线C :x 2a 2-y 2b 2=1(a >b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点F 为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的标准方程为( ) A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 答案 A解析 因为渐近线y =ba x 与直线x =a 交于点A (a ,b ),c =4且(4-a )2+b 2=4,解得a 2=4,b 2=12,因此双曲线的标准方程为x 24-y 212=1. 2.经过点P (3,27),Q (-62,7)的双曲线的标准方程为________.答案 y 225-x 275=1解析 设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1, 解得⎩⎨⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.思维升华 求双曲线的标准方程的方法(1)定义法:由题目条件判断出动点轨迹是双曲线,确定2a ,2b 或2c ,从而求出a 2,b 2. (2)待定系数法:“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为x 2m 2-y 2n 2=λ(λ≠0),再根据条件求λ的值.跟踪训练2 (1)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是( ) A.7x 216-y 212=1 B.y 23-x 22=1 C .x 2-y 23=1 D.3y 223-x 223=1 答案 C解析 因为双曲线的渐近线方程为y =±3x ,所以可设双曲线的方程为x 2-y 23=λ(λ≠0),将点(2,3)代入其中,得λ=1,所以该双曲线的标准方程为x 2-y 23=1. (2)(2022·佛山调研)已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上一点,PF 2与x 轴垂直,∠PF 1F 2=30°,且虚轴长为22,则双曲线的标准方程为( ) A.x 24-y 22=1 B.x 23-y 22=1 C.x 24-y 28=1 D .x 2-y 22=1 答案 D解析 由题意可知|PF 1|=43c3, |PF 2|=23c3, 2b =22,由双曲线的定义可得43c 3-23c3=2a ,即c =3a .又b =2,c 2=a 2+b 2,∴a =1,∴双曲线的标准方程为x 2-y 22=1.题型三 双曲线的几何性质 命题点1 渐近线例3 (1)由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品.若将如图所示的大教堂外形弧线的一段近似看成双曲线y 2a 2-x 2b 2=1(a >0,b >0)下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A.y 212-x 24=1 B.3y 24-x 24=1 C.x 24-y 24=1 D.y 216-x 24=1 答案 B解析 由题意知,b =2, 又因为e =ca =1+⎝⎛⎭⎫b a 2=2,解得a 2=43,所以双曲线的方程为3y 24-x 24=1.(2)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点,若△ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32 答案 B解析 由题意知双曲线的渐近线方程为y =±bax .因为D ,E 分别为直线x =a 与双曲线C 的两条渐近线的交点, 所以不妨设D (a ,b ),E (a ,-b ),所以S △ODE =12×a ×|DE |=12×a ×2b =ab =8,所以c 2=a 2+b 2≥2ab =16(当且仅当a =b 时等号成立), 所以c ≥4,所以2c ≥8, 所以C 的焦距的最小值为8.思维升华 (1)渐近线的求法:求双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线的方法是令x 2a 2-y 2b 2=0,即得两渐近线方程x a ±yb =0⎝⎛⎭⎫y =±b a x . (2)在双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b 2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±ba ,满足关系式e 2=1+k 2.命题点2 离心率例4 (1)(2021·全国甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为( ) A.72 B.132C.7D.13 答案 A解析 设|PF 2|=m ,则|PF 1|=3m , 在△F 1PF 2中,|F 1F 2|=m 2+9m 2-2×3m ×m ×cos 60° =7m ,所以C 的离心率e =c a =2c 2a =|F 1F 2||PF 1|-|PF 2|=7m 2m =72. 高考改编已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点A 在双曲线E 的左支上,且∠F 1AF 2=120°,|AF 2|=2|AF 1|,则双曲线E 的离心率为( ) A. 3 B. 5 C.7 D .7答案 C解析 点A 在双曲线E 的左支上,左、右焦点分别为F 1,F 2, 设|AF 1|=m ,由|AF 2|=2|AF 1|知|AF 2|=2m ,由双曲线定义得|AF 2|-|AF 1|=2m -m =m =2a , 在△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,∠F 1AF 2=120°, 由余弦定理知,|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1||AF 2|cos 120° =4a 2+16a 2+8a 2=28a 2, ∴|F 1F 2|=27a , 又|F 1F 2|=2c ,∴27a =2c ,e =ca=7.(2)(2022·滨州模拟)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P是双曲线C 上在第一象限内的一点,若sin ∠PF 2F 1=3sin ∠PF 1F 2,则双曲线C 的离心率的取值范围为( ) A .(1,2) B .(1,3) C .(3,+∞) D .(2,3)答案 A解析 在△PF 1F 2中, sin ∠PF 2F 1=3sin ∠PF 1F 2, 由正弦定理得,|PF 1|=3|PF 2|,又点P 是双曲线C 上在第一象限内的一点, 所以|PF 1|-|PF 2|=2a , 所以|PF 1|=3a ,|PF 2|=a ,在△PF 1F 2中,由|PF 1|+|PF 2|>|F 1F 2|, 得3a +a >2c ,即2a >c , 所以e =ca <2,又e >1,所以1<e <2. 教师备选1.(2022·济南模拟)已知双曲线x 2m +1-y 2m =1(m >0)的渐近线方程为x ±3y =0,则m 等于( )A.12B.3-1C.3+12D .2答案 A解析 由渐近线方程y =±b a x =±33x , 所以b a =33, 则b 2a 2=13, 即m m +1=13,m =12. 2.设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B. 3 C .2D. 5答案 A解析 令双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 的坐标为(c ,0),则c =a 2+b 2. 如图所示,由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设垂足为M ,连接OP ,则|OP |=a ,|OM |=|MP |=c 2, 由|OM |2+|MP |2=|OP |2,得⎝⎛⎭⎫c 22+⎝⎛⎭⎫c 22=a 2,∴c a=2,即离心率e = 2. 思维升华 求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式,利用c 2=a 2+b 2和e =c a转化为关于e 的方程(或不等式),通过解方程(或不等式)求得离心率的值(或范围).跟踪训练3 (1)(多选)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率e =2,C 上的点到其焦点的最短距离为1,则( )A .双曲线C 的焦点坐标为(0,±2)B .双曲线C 的渐近线方程为y =±3xC .点(2,3)在双曲线C 上D .直线mx -y -m =0(m ∈R )与双曲线C 恒有两个交点答案 BC解析 双曲线C 上的点到其焦点的最短距离为c -a =1,离心率e =c a =2,所以a =1,c =2,所以b 2=3,所以双曲线C 的方程为x 2-y 23=1,所以C 的焦点坐标为(±2,0),A 错误; 双曲线C 的渐近线方程为y =±b ax =±3x ,B 正确; 因为22-323=1,所以点(2,3)在双曲线C 上,C 正确; 直线mx -y -m =0即y =m (x -1),恒过点(1,0),当m =±3时,直线与双曲线C 的一条渐近线平行,此时直线与双曲线只有一个交点,D 错误.(2)(2022·威海模拟)若双曲线C 1:y 24-x 29=1与双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)有公共点,则双曲线C 2的离心率的取值范围是( )A.⎝⎛⎭⎫1,132B.⎝⎛⎭⎫1,133 C.⎝⎛⎭⎫132,+∞ D.⎝⎛⎭⎫133,+∞ 答案 D解析 因为双曲线C 1:y 24-x 29=1的渐近线方程为y =±23x , 双曲线C 2:x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b ax , 为使双曲线C 1:y 24-x 29=1与双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)有公共点, 只需b a >23, 则离心率为e =c a =a 2+b 2a 2=1+⎝⎛⎭⎫b a 2>1+49=133. 课时精练1.双曲线9x 2-16y 2=1的焦点坐标为( )A.⎝⎛⎭⎫±512,0 B.⎝⎛⎭⎫0,±512 C .(±5,0) D .(0,±5)答案 A解析 将双曲线的方程化为标准形式为x 219-y 2116=1, 所以c 2=19+116=25144, 所以c =512, 所以焦点坐标为⎝⎛⎭⎫±512,0. 2.已知双曲线x 2m -y 2m +6=1(m >0)的虚轴长是实轴长的2倍,则双曲线的标准方程为( ) A.x 22-y 24=1 B.x 24-y 28=1 C .x 2-y 28=1 D.x 22-y 28=1 答案 D解析 由题意,得2m =m +6,解得m =2,所以双曲线的标准方程为x 22-y 28=1. 3.若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .3答案 B解析 方法一 依题意知,点P 在双曲线的左支上,根据双曲线的定义,得|PF 2|-|PF 1|=2×3=6,所以|PF 2|=6+3=9.方法二 根据双曲线的定义,得||PF 2|-|PF 1||=2×3=6,所以||PF 2|-3|=6,所以|PF 2|=9或|PF 2|=-3(舍去).4.(2022·大连模拟)若双曲线C :x 29-y 2b 2=1的右焦点到它的一条渐近线的距离是33,则C 的离心率为( )A .2 B. 3 C.43 D.233答案 A解析 双曲线C :x 29-y 2b 2=1的右焦点坐标为(9+b 2,0),渐近线方程为y =±b 3x ,即bx ±3y =0, ∵双曲线C :x 29-y 2b 2=1的右焦点到它的一条渐近线的距离是33, ∴b 9+b 2b 2+9=33, 解得b =33,∴c =9+b 2=9+(33)2=6,∴离心率e =c a =63=2. 5.(多选)已知双曲线C 的方程为x 216-y 29=1,则下列说法正确的是( ) A .双曲线C 的实轴长为8B .双曲线C 的渐近线方程为y =±34x C .双曲线C 的焦点到渐近线的距离为3D .双曲线C 上的点到焦点距离的最小值为94答案 ABC解析 因为a 2=16,所以a =4,2a =8,故A 正确;因为a =4,b =3,所以双曲线C 的渐近线方程为y =±b a x =±34x ,故B 正确; 因为c =a 2+b 2=16+9=5,所以焦点坐标为(-5,0),(5,0),焦点(5,0)到渐近线3x -4y =0的距离为|15|32+(-4)2=3,故C 正确;双曲线C 上的点到焦点距离的最小值为c -a =1,故D 错误. 6.(多选)(2022·潍坊模拟)已知双曲线C :x 2a 2-y 29=1(a >0)的左、右焦点分别为F 1,F 2,一条渐近线方程为y =34x ,P 为C 上一点,则以下说法正确的是( ) A .C 的实轴长为8B .C 的离心率为53 C .|PF 1|-|PF 2|=8D .C 的焦距为10 答案 AD解析 由双曲线方程知,渐近线方程为y =±3a x ,而一条渐近线方程为y =34x , ∴a =4,故C :x 216-y 29=1, ∴双曲线实轴长为2a =8,离心率e =c a =16+94=54, 由于P 可能在C 不同分支上,则有||PF 1|-|PF 2||=8,焦距为2c =2a 2+b 2=10.∴A ,D 正确,B ,C 错误.7.(2021·新高考全国Ⅱ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率e =2,则该双曲线C 的渐近线方程为________.答案 y =±3x解析 因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2, 所以e =c 2a 2=a 2+b 2a 2=2,所以b 2a2=3, 所以该双曲线的渐近线方程为y =±b ax =±3x . 8.设双曲线x 29-y 216=1的右顶点为A ,右焦点为F .过点F 且平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.答案 3215解析 因为a 2=9,b 2=16,所以c =5.所以A (3,0),F (5,0),不妨设直线BF 的方程为y =43(x -5), 代入双曲线方程解得B ⎝⎛⎭⎫175,-3215. 所以S △AFB =12|AF |·|y B |=12×2×3215=3215. 9.已知双曲线x 216-y 24=1的左、右焦点分别为F 1,F 2. (1)若点M 在双曲线上,且MF 1-→·MF 2-→=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同的焦点,且过点(32,2),求双曲线C 的方程. 解 (1)不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,∵MF 1-→·MF 2-→=0,∴MF 1⊥MF 2.设|MF 1|=m ,|MF 2|=n ,由双曲线的定义知m -n =2a =8.①在Rt △F 1MF 2中,由勾股定理得m 2+n 2=(2c )2=80,②由①②得m ·n =8.∵12MF F S △=12mn =4=12×2ch , ∴h =255. 即M 点到x 轴的距离为255. (2)设双曲线C 的方程为x 216-λ-y 24+λ=1(-4<λ<16). ∵双曲线C 过点(32,2),∴1816-λ-44+λ=1, 解得λ=4或λ=-14(舍去),∴双曲线C 的方程为x 212-y 28=1. 10.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,渐近线方程是y =±255x ,点A (0,b ),且△AF 1F 2的面积为6.(1)求双曲线C 的标准方程;(2)直线l :y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点P ,Q ,若|AP |=|AQ |,求实数m 的取值范围. 解 (1)由题意得b a =255,① 12AF F S △=12×2c ·b =6,②a 2+b 2=c 2,③由①②③可得a 2=5,b 2=4,∴双曲线C 的标准方程是x 25-y 24=1. (2)由题意知直线l 不过点A .设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点为D (x 0,y 0),连接AD (图略).将y =kx +m 与x 25-y 24=1联立,消去y , 整理得(4-5k 2)x 2-10kmx -5m 2-20=0,由4-5k 2≠0且Δ>0,得⎩⎪⎨⎪⎧4-5k 2≠0,80(m 2-5k 2+4)>0,④ ∴x 1+x 2=10km 4-5k 2,x 1x 2=-5m 2+204-5k 2, ∴x 0=x 1+x 22=5km 4-5k 2, y 0=kx 0+m =4m 4-5k 2. 由|AP |=|AQ |知,AD ⊥PQ ,又A (0,2),∴k AD =y 0-2x 0=4m 4-5k 2-25km 4-5k 2=-1k, 化简得10k 2=8-9m ,⑤由④⑤,得m <-92或m >0. 由10k 2=8-9m >0,得m <89. 综上,实数m 的取值范围是m <-92或0<m <89.11.(多选)双曲线C :x 24-y 22=1的右焦点为F ,点P 在双曲线C 的一条渐近线上,O 为坐标原点,则下列说法正确的是( )A .双曲线C 的离心率为62B .双曲线y 24-x 28=1与双曲线C 的渐近线相同 C .若PO ⊥PF ,则△PFO 的面积为 2D .|PF |的最小值为2答案 ABC解析 因为a =2,b =2,所以c =a 2+b 2=6,所以e =c a =62, 故A 正确;双曲线y 24-x 28=1的渐近线方程为y =±22x ,双曲线C 的渐近线方程为y =±22x ,故B 正确; 因为PO ⊥PF ,点F (6,0)到渐近线2x -2y =0的距离d =|2×6|6=2, 所以|PF |=2,所以|PO |=(6)2-(2)2=2,所以△PFO 的面积为12×2×2=2, 故C 正确;|PF |的最小值即为点F 到渐近线的距离,即|PF |=2,故D 不正确.12.(2022·湖南师大附中模拟)已知双曲线C: x 24-y 2b2=1(b >0),以C 的焦点为圆心,3为半径的圆与C 的渐近线相交,则双曲线C 的离心率的取值范围是( )A.⎝⎛⎭⎫1,32 B.⎝⎛⎭⎫1,132 C.⎝⎛⎭⎫ 32,132 D .(1,13) 答案 B解析 由题意可知双曲线的其中一条渐近线为y =b 2x ,即bx -2y =0, 又该圆的圆心为(c ,0),故圆心到渐近线的距离为bc b 2+4, 则由题意可得bc b 2+4<3,即b 2c 2<9(b 2+4), 又b 2=c 2-a 2=c 2-4,则(c 2-4)c 2<9c 2,解得c 2<13,即c <13,则e =c a =c 2<132,又e >1, 故离心率的取值范围是⎝⎛⎭⎫1,132. 13.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程为x -2y =0,双曲线的左焦点在直线x +y +5=0上,A ,B 分别是双曲线的左、右顶点,点P 为双曲线右支上位于第一象限的动点,直线P A ,PB 的斜率分别为k 1,k 2,则k 1+k 2的取值范围为( )A .(1,+∞)B .(2,+∞)C .(2,+∞)D .[2,+∞)答案 A 解析 由双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为x -2y =0,可得a =2b ,由双曲线的左焦点在直线x +y +5=0上,可得c =5,则由a 2+b 2=c 2,得a =2,b =1,双曲线的方程为x 24-y 2=1, 由题意可得A (-2,0),B (2,0),设P (m ,n )(m >2,n >0),则m 24-n 2=1,即n 2m 2-4=14, k 1k 2=n m +2·n m -2=n 2m 2-4=14, 易知k 1,k 2>0,则k 1+k 2≥2k 1k 2=1,由A ,B 分别为双曲线的左、右顶点,可得k 1≠k 2,则k 1+k 2>1.14.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为原点,若以F 1F 2为直径的圆与C 的渐近线的一个交点为P ,且|F 1P |=3|OP |,则C 的渐近线方程为________. 答案 y =±3x解析 根据双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点为F 1,F 2,O 为原点,以F 1F 2为直径的圆与C 的渐近线的一个交点为P ,如图所示,则|F 1O |=|OP |=c ,|F 1P |=3|OP |=3c ,所以在△POF 1中,由余弦定理可得cos ∠POF 1=|OP |2+|OF 1|2-|PF 1|22|OP |·|OF 1|=c 2+c 2-()3c 22×c ×c=-12. 所以∠POF 1=2π3,则∠POF 2=π3,所以tan ∠POF 2=tan π3=3, 则渐近线方程为y =±3x .15.(多选)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦点在圆O :x 2+y 2=13上,圆O 与双曲线C 的渐近线在第一、二象限分别交于点M ,N ,点E (0,a )满足EO →+EM →+EN →=0(其中O 为坐标原点),则( )A .双曲线C 的一条渐近线方程为3x -2y =0B .双曲线C 的离心率为132C .|OE →|=1D .△OMN 的面积为6答案 ABD解析 如图,设双曲线C 的焦距为2c =213,MN 与y 轴交于点P ,由题意可知|OM |=c =13,则P (0,b ),由EO →+EM →+EN →=0得点E 为△OMN 的重心,可得|OE |=23|OP |, 即a =23b ,b 2a 2=c 2-a 2a 2=94, 所以a =2,b =3,e =132. 双曲线C 的渐近线方程为3x ±2y =0,|OE →|=2,M 的坐标为(2,3),S △OMN =6.16.双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,右焦点为F ,动点B 在C 上.当BF ⊥AF 时,|AF |=|BF |.(1)求C 的离心率;(2)若B 在第一象限,证明:∠BF A =2∠BAF .(1)解 设双曲线的半焦距为c ,则F (c ,0),B ⎝⎛⎭⎫c ,±b 2a , 因为|AF |=|BF |,所以b 2a=a +c , 所以c 2-a 2a=a +c , 所以c -a =a ,即c =2a ,所以e =2.(2)证明 设B (x 0,y 0),其中x 0>a ,y 0>0. 因为e =2,故c =2a ,b =3a , 故双曲线的渐近线方程为y =±3x ,所以∠BAF ∈⎝⎛⎭⎫0,π3,∠BF A ∈⎝⎛⎭⎫0,2π3. 当∠BF A =π2时, 由题意易得∠BAF =π4, 此时∠BF A =2∠BAF .当∠BF A ≠π2时, 因为tan ∠BF A =-y 0x 0-c =-y 0x 0-2a, tan ∠BAF =y 0x 0+a, 所以tan 2∠BAF =2y 0x 0+a 1-⎝⎛⎭⎫y 0x 0+a 2=2y 0(x 0+a )(x 0+a )2-y 20 =2y 0(x 0+a )(x 0+a )2-b 2⎝⎛⎭⎫x 20a 2-1 =2y 0(x 0+a )(x 0+a )2-3a 2⎝⎛⎭⎫x 20a 2-1 =2y 0(x 0+a )(x 0+a )2-3(x 20-a 2) =2y 0(x 0+a )-3(x 0-a ) =-y 0x 0-2a=tan ∠BF A ,因为2∠BAF ∈⎝⎛⎭⎫0,2π3,故∠BF A =2∠BAF . 综上,∠BF A =2∠BAF .。
高考理科数学总复习第八章 第六节 双曲线 (2)
1.双曲线的定义中易忽视 2a<|F1F2|这一条件.若 2a=|F1F2|, 则轨迹是以 F1,F2 为端点的两条射线,若 2a>|F1F2|,则轨迹 不存在. 2.注意区分双曲线中的 a,b,c 大小关系与椭圆中的 a,b,c 关系,在椭圆中 a2=b2+c2,而在双曲线中 c2=a2+b2. 3.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在 x 轴上,渐近线斜率为±ba,当焦点在 y 轴上,渐近线斜率为±ab.
2.双曲线的标准方程和几何性质
标准方程
xa22-by22=1(a>0,b>0)
ay22-xb22=1(a>0,b>0)
图形
标准方程
xa22-by22=1(a>0,b>0) ay22-xb22=1(a>0,b>0)
范围 x≤-a 或 x≥a,y∈R y≤-a 或 y≥a,x∈R
对称轴: 坐标轴 性 对称性 对称中心: 原点
第八章 平面解析几何 第六节 双曲线
C目录 ONTENTS
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
高考·导航
1.了解双曲线的定义、几何图形和标准方程. 2.知道双曲线的简单几何性质.
主干知识 自主排查
1.双曲线的定义 满足以下三个条件的点的轨迹是双曲线: (1)在平面内; (2)与两定点 F1,F2 的距离的差的绝对值 等于非零常数; (3)非零常数 小于 |F1F2|.
mn
m1 ,n1异号,所以 mn<0.综上,“mn<0”是“方程 mx2+ny2=1 表示双曲线”的充要条件.
答案:C
3.(2017·高考全国卷Ⅲ)已知双曲线C:
x2 a2
第八章 第六节 双曲线
[主干知识•自主梳理] [考点分类•深度剖析] [创新考点•素养形成] [课时作业•巩固练习]
首页 上页 下页 尾页
[考点分类•深度剖析]
考法 1 已知离心率研究渐近线问题
(2018·高考全国卷Ⅲ)已知双曲线 C:xa22-by22=1(a>0,b>0)的离心率为 2,
则点(4,0)到 C 的渐近线的距离为( )
1.若双曲线xa22-yb22=1(a>0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲 线的离心率为( )
A. 5 C. 2
B.5 D.2
答案:A
[主干知识•自主梳理] [考点分类•深度剖析] [创新考点•素养形成] [课时作业•巩固练习]
首页 上页 下页 尾页
[主干知识•自主梳理]
2.已知 a>b>0,椭圆 C1 的方程为ax22+yb22=1,双曲线 C2 的方程为ax22-yb22=1,C1 与
A.2sin 40°
B.2cos 40°
1 C.sin 50°
1 D.cos 50°
[主干知识•自主梳理] [考点分类•深度剖析] [创新考点•素养形成] [课时作业•巩固练习]
首页 上页 下页 尾页
[考点分类•深度剖析]
[解析] 由题意可得-ba=tan 130°, 所以 e= 1+ba22= 1+tan2130°= 1+scions22113300°° =|cos 1130°|=cos150°. 故选 D. [答案] D
[主干知识•自主梳理] [考点分类•深度剖析] [创新考点•素养形成] [课时作业•巩固练习]
首页 上页 下页 尾页
[考点分类•深度剖析]
考点二 双曲线的几何性质———(核心考点——多维探究) 双曲线的渐近线与离心率问题是每年各地高考命题的热点.常见的命题角度有:1已 知离心率求渐近线方程;2已知渐近线求离心率;3由离心率或渐近线求双曲线方 程.
(word完整版)高中数学双曲线课后习题(带答案)(2021年整理)
(word完整版)高中数学双曲线课后习题(带答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中数学双曲线课后习题(带答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中数学双曲线课后习题(带答案)(word版可编辑修改)的全部内容。
双曲线课后习题一、选择题(本大题共10小题,每小题5分,共50分)1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( )A .椭圆B .线段C .双曲线D .两条射线2.方程11122=-++ky k x 表示双曲线,则k 的取值范围是( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线14122222=--+m y m x 的焦距是( ) A .4 B .22 C .8 D .与m 有关4.已知m ,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的曲线可能是A B C D 5. 双曲线的两条准线将实轴三等分,则它的离心率为 ( ) A .23B .3C .34D .36.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x7.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-by a x 有( )A .相同的虚轴B .相同的实轴C .相同的渐近线D . 相同的焦点8.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( ) A .28 B .22 C .14 D .129.已知双曲线方程为1422=-y x ,过P (1,0)的直线L 与双曲线只有一个公共点,则L 条数共有 ( ) A .4条 B .3条 C .2条 D .1条 10.给出下列曲线:①4x +2y -1=0; ②x 2+y 2=3; ③1222=+y x ④1222=-y x ,其中与直线 y=-2x -3有交点的所有曲线是( )A .①③B .②④C .①②③D .②③④ 二、填空题(本题共4小题,每小题6分,共24分)11.双曲线17922=-y x 的右焦点到右准线的距离为__________________________.12.与椭圆1251622=+y x 有相同的焦点,且两准线间的距离为310的双曲线方程为____________.13.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =__________________.4.过点)1,3(-M 且被点M 平分的双曲线1422=-y x 的弦所在直线方程为 .三、解答题(本大题共6题,共76分)15.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.(12分)16.双曲线()0222>=-a a y x 的两个焦点分别为21,F F ,P 为双曲线上任意一点,求证:21PF PO PF 、、成等比数列(O 为坐标原点).(12分)17.已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-错误!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[课时作业·巩固练习] 实战演练 夯基提能[A 组 基础保分练]1.(2020·湖南永州模拟)焦点是(0,±2),且与双曲线x 23-y 23=1有相同的渐近线的双曲线的方程是( )A .x 2-y 23=1 B .y 2-x 23=1 C .x 2-y 2=2 D .y 2-x 2=2解析:由已知,双曲线焦点在y 轴上,且为等轴双曲线,故选D. 答案:D2.双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,那么它的离心率为( )A .2B . 3 C. 2D.32解析:由渐近线互相垂直可知⎝⎛⎭⎫-b a ·ba =-1,即a 2=b 2,即c 2=2a 2,即c =2a ,所以e = 2.答案:C 3.已知双曲线x 2-y 224=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.若|PF 1|=43|PF 2|,则△F 1PF 2的面积为( )A .48B .24C .12D .6解析:由双曲线的定义可得 |PF 1|-|PF 2|=13|PF 2|=2a =2,解得|PF 2|=6,故|PF 1|=8,又|F 1F 2|=10, 由勾股定理可知三角形PF 1F 2为直角三角形, 因此S △PF 1F 2=12|PF 1|·|PF 2|=24.答案:B4.(2020·湖南师大附中模拟)已知A 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,F 1,F 2分别为双曲线的左、右焦点,P 为双曲线上一点,G 是△PF 1F 2的重心,若存在实数λ使得GA →=λPF 1→,则双曲线的离心率为( )A .3B .2C .4D .与λ的取值有关解析:由题意,可知|PG |=2|GO |,GA ∥PF 1,∴2|OA |=|AF 1|,∴2a =c -a ,∴c =3a ,∴e =3.答案:A5.(2020·惠州市高三一调)已知双曲线C 的中心在原点,焦点在x 轴上,其中一条渐近线的倾斜角为π3,则双曲线C 的离心率为( )A .2或 3B .2或233C.233D .2解析:双曲线C 的一条渐近线方程为y =b a x ,则有b a =tan π3=3,因为e 2=c 2a 2=1+b 2a 2=1+3=4,所以双曲线C 的离心率为2,故选D.答案:D6.已知点F 2为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx 交C 于A ,B两点,若∠AF 2B =2π3,S △AF 2B =23,则C 的虚轴长为________.解析:设双曲线C 的左焦点为F 1,连接AF 1,BF 1(图略),由对称性可知四边形AF 1BF 2是平行四边形,所以S △AF 1B =23,∠F 1AF 2=π3.设|AF 1|=r 1,|AF 2|=r 2,则4c 2=r 21+r 22-2r 1r 2cos π3.又|r 1-r 2|=2a ,所以r 1r 2=4b 2.又S △AF 2B =S △AF 1F 2=12r 1r 2sin π3=23,所以b 2=2,则该双曲线的虚轴长为2 2.答案:2 27.中心在原点,焦点在x 轴上的椭圆与双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求椭圆和双曲线的方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值. 解析:(1)由题知c =13,设椭圆方程为x 2a 2+y 2b2=1(a >b >0),双曲线方程为x 2m 2-y 2n2=1(m >0,n >0),则⎩⎪⎨⎪⎧a -m =4,7·13a=3·13m ,解得a =7,m =3.则b =6,n =2.故椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.(2)不妨设F 1,F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,所以|PF 1|=10,|PF 2|=4. 又|F 1F 2|=213,所以cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-(213)22×10×4=45.[B 组 能力提升练]1.(2020·河北六校联考)已知双曲线x 24-y 2b 2=1(b >0)的右焦点为(3,0),则该双曲线的焦点到其渐近线的距离等于( )A. 5 B .3 C .5D .4 2解析:由题意知a 2=4,4+b 2=32,故b =5,所以渐近线的方程为y =±52x ,则焦点到渐近线的距离d =⎪⎪⎪⎪±3521+54=5,选A.答案:A2.已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点M 在双曲线E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=14,则双曲线E 的离心率为( )A.153 B .32C.132D .2解析:由题意知F 1(-c,0),因为MF 1与x 轴垂直,且M 在双曲线上,所以|MF 1|=b 2a .在Rt △MF 2F 1中,sin ∠MF 2F 1=14,所以tan ∠MF 2F 1=|MF 1||F 1F 2|=115.即b 2a 2c =b 22ac =115.又b 2=c 2-a 2,所以15c 2-15a 2-2ac =0,两边同时除以a 2,得15e 2-2e -15=0.又e >1,所以e =153. 答案:A3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个顶点分别为A ,B ,点P 为双曲线上除A ,B外任意一点,且点P 与点A ,B 连线的斜率分别为k 1,k 2,若k 1k 2=3,则双曲线的渐近线方程为( )A .y =±xB .y =±2xC .y =±3xD .y =±2x解析:设点P (x ,y ),由题意知k 1·k 2=y x -a ·y x +a =y 2x 2-a 2=y 2a 2y 2b 2=b 2a2=3,所以双曲线的渐近线方程为y =±3x ,故选C.答案:C4.(2019·高考全国卷Ⅲ)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO |=|PF |,则△PFO 的面积为( )A.324B .322C .2 2D .3 2解析:双曲线x 24-y 22=1的右焦点坐标为(6,0),一条渐近线的方程为y =22x ,不妨设点P 在第一象限,由于|PO |=|PF |,则点P 的横坐标为62,纵坐标为22×62=32,即△PFO 的底边长为6,高为32,所以它的面积为12×6×32=324.故选A. 答案:A5.(2019·高考天津卷)已知抛物线y 2=4x 的焦点为F ,准线为l .若l 与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A 和点B ,且|AB |=4|OF |(O 为原点),则双曲线的离心率为( )A. 2 B . 3 C .2D. 5解析:∵抛物线y 2=4x 的焦点为F ,准线为l . ∴F (1,0),准线l 的方程为x =-1,∵l 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A 和点B ,且|AB |=4|OF |(O为原点),∴|AB |=2b a ,|OF |=1,∴2ba=4,∴b =2a , ∴c =a 2+b 2=5a ,∴双曲线的离心率为e =ca = 5.故选D. 答案:D6.已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 作垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2)C .(2,1+2)D .(1,1+2)解析:若△ABE 是锐角三角形,只需∠AEF <45°,在Rt △AFE 中,|AF |=b 2a ,|FE |=a +c ,则b 2a <a +c ,即b 2<a 2+ac ,即2a 2-c 2+ac >0,则e 2-e -2<0,解得-1<e <2,又e >1,则1<e <2,故选B.答案:B7.(2020·广东六校联考)已知点F 为双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx (k >0)与E 交于不同象限内的M ,N 两点,若MF ⊥NF ,设∠MNF =β,且β∈⎣⎡⎦⎤π12,π6,则该双曲线的离心率的取值范围是( )A .[2,2+6]B .[2,3+1]C .[2,2+6]D .[2,3+1]解析:如图,设左焦点为F ′,连接MF ′、NF ′,令|MF |=r 1,|MF ′|=r 2,则|NF |=|MF ′|=r 2,由双曲线定义可知r 2-r 1=2a ①,∵点M 与点N 关于原点对称,且MF ⊥NF ,∴|OM |=|ON |=|OF |=c ,∴r 21+r 22=4c 2②,由①②得r 1r 2=2(c 2-a 2),又知S △MNF =2S △MOF .∴12r 1r 2=2·12c 2·sin 2β,∴c 2-a 2=c 2·sin 2β,∴e 2=11-sin 2β,又∵β∈⎣⎡⎦⎤π12,π6,∴sin 2β∈⎣⎡⎦⎤12,32,∴e 2=11-sin 2β∈[]2,(3+1)2.又e >1,∴e ∈[2,3+1],故选D.答案:D8.已知F 1,F 2分别是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2的直线l 与E 的右支交于P ,Q 两点,若|PF 2|=3|QF 2|,且|QF 1|=2|QF 2|,则E 的离心率是________.解析:设直线l 的倾斜角为θ,|QF 2|=m (m >0),则|PF 2|=3m ,|QF 1|=2m .因为|PF 1|-|PF 2|=|QF 1|-|QF 2|,即|PF 1|-3m =2m -m ,所以|PF 1|=4m .在△QF 1F 2中,设∠QF 2F 1=θ,有cos θ=|F 1F 2|2+|QF 2|2-|QF 1|22|F 1F 2|·|QF 2|=4c 2+m 2-4m 24cm ①.在△PF 1F 2中,有cos(π-θ)=|F 1F 2|2+|PF 2|2-|PF 1|22|F 1F 2|·|PF 2|=4c 2+9m 2-16m 212cm②.①+②,得m =c .又|QF 1|-|QF 2|=2a ,所以m =2a ,所以c =2a ,即e =ca =2.答案:29.(2020·江西红色七校第一次联考)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________.解析:将双曲线的方程x 2-y 2=2化为x 22-y 22=1,则a =b =2,c =2.因为|PF 1|=2|PF 2|①,所以点P 在双曲线的右支上.由双曲线的定义知,|PF 1|-|PF 2|=2a =22 ②.由①②,解得|PF 1|=42,|PF 2|=22.在△PF 1F 2中,根据余弦定理得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(42)2+(22)2-422×42×22=34.答案:3410.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则双曲线的离心率e 的最大值为________.解析:由双曲线定义知|PF 1|-|PF 2|=2a , 又已知|PF 1|=4|PF 2|,所以|PF 1|=83a ,|PF 2|=23a .在△PF 1F 2中,由余弦定理得cos ∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2,要求e 的最大值,即求cos ∠F 1PF 2的最小值, ∵cos ∠F 1PF 2≥-1,∴cos ∠F 1PF 2=178-98e 2≥-1,解得e ≤53,即e 的最大值为53.答案:53。