动量守恒定律中的典型模型
动量守恒定律几个模型
第16章 动量守恒定律的几个典型模型(一)一、碰撞类。
1.弹性碰撞:碰撞前后,系统的动量守恒、动能守恒。
2.非弹性碰撞:碰撞前后,系统的动量守恒、动能不守恒。
3.完全非弹性碰撞:碰后粘在一起,系统的动量守恒,动能损失最大,损失的动能转化为热。
(1)一般的弹性碰撞:当m 1=m 2时,v 1′ = v 2,v 2′ = v 1 (速度交换)(2)以质量为m 1速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例结论:①当两球质量相等时,V 1’=0,V 2’=V 1。
两球碰撞后交换了速度、动量、动能.②当质量大的球碰质量小的球时,碰撞后两球都向前运动.m 1≫m 2,v 1’=v 1,v 2’=2v 1. ③当质量小的球碰质量大的球时,碰撞后质量小的球被反弹回来.m 1≪m 2,v l ’=一v 1,v 2’=0.(3)碰撞问题须同时遵守的三个原则:①系统动量守恒原则。
②系统动能不增加原则。
③合理性原则。
例如:追赶碰撞中,碰撞后,前面物体的速度一定不小于后面物体的速度。
例1. A 、B 两球在光滑水平面上沿同一直线,向同一方向运动,A 球动量为p A =5 kg ·m/s ,B 球动量为p B =7 kg ·m/s ,两球碰后B 球动量变为p B ′=10 kg ·m/s ,则两球质量关系可能是( ) A .m A =m B B .m A =2m B C .m B =4m A D .m B =6m A二、人船模型类。
(适用条件是:两个物体组成的系统动量守恒,系统的合动量为零。
)例2.静止在水面上的小船长为L ,质量为M ,在船的最右端站有一质量为m 的人,不计水的阻力,当人从最右 端走到最左端的过程中,小船移动的距离是多大?三、当堂检测1.在一个足够大的光滑平面内,有两质量相同的木块A 、B,中间用一轻质弹簧相连.如图所示.用一水平恒力F 拉B,A 、B 一起经过一定时间的匀加速直线运动后撤去力F.撤去力F 后,A 、B 两物体的情况是( ).(A)在任意时刻,A 、B 两物体的加速度大小相等 (B)弹簧伸长到最长时,A 、B 的动量相等 (C)弹簧恢复原长时,A 、B 的动量相等 (D)弹簧压缩到最短时,系统的总动能最小2.动量分别为5kg ∙m/s 和6kg ∙m/s 的小球A 、B 沿光滑平面上的同一条直线同向运动,A 追上B 并发生碰撞后。
高三总复习物理课件 动量守恒中的三类典型模型
01
着眼“四翼” 探考点
题型·规律·方法
பைடு நூலகம்
02
聚焦“素养” 提能力
巧学·妙解·应用
01
着眼“四翼” 探考点
题型·规律·方法
模型一 “滑块—弹簧”模型
模型 图示
模型 特点
(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的 矢量和为零,则系统动量守恒。 (2)在能量方面,若系统所受的外力和除弹簧弹力以外的内力不做功,系 统机械能守恒。 (3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动 能通常最小(完全非弹性碰撞拓展模型)。 (4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模 型,相当于碰撞结束时)
[例 1] 如图甲所示,物块 A、B 的质量分别是 mA=4.0 kg 和 mB=3.0 kg。用轻弹 簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触。另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4 s 时与物块 A 相碰,并立即与 A 粘在一起不再分开, 物块 C 的 v-t 图像如图乙所示。求:
()
A.13mv02 C.112mv02
B.15mv02 D.145mv02
解析:当 C 与 A 发生弹性正碰时,根据动量守恒定律和能量守恒定律有 mv0=mv1+ 2mv2,12mv02=12mv12+12(2m)v22,联立解得 v2=23v0,当 A、B 速度相等时,弹簧的弹 性势能最大,设共同速度为 v,以 A 的初速度方向为正方向,则由动量守恒定律得 2mv2 =(2m+3m)v,由机械能守恒定律可知,Ep+12(5m)v2=12(2m)v22,解得 Ep=145mv02; 当 C 与 A 发生完全非弹性正碰时,根据动量守恒定律有 mv0=3mv1′,当 A、B、C 速度相等时弹簧的弹性势能最大,设共同速度为 v′,则由动量守恒定律得 3mv1′= 6mv′,由机械能守恒定律可知,Ep′=12(3m)v1′2-12(6m)v′2,解得 Ep′=112mv02,由 此可知,碰后弹簧的最大弹性势能范围是112mv02≤Ep≤145mv02,故选 A。 答案:A
动量守恒中几种常见的模型
1、动力学规律:子弹和木块构成旳系统受到大小相等方 向相反旳一对相互作用力,故加速度旳大小和质量成反比, 方向相反。
2、运动学及热量计算:子弹穿过木块旳过程能够看作是 两个做匀变速直线运动旳物体间旳追及问题,在一段时间 内子弹射入木块旳深度,就是两者相对位移旳大小。而整 个过程产生旳热量等于滑动摩擦力和相对位移旳乘积。即 Q=Ff*s
代 根而入据f=数能μm据量g得守代:恒入定V=数律2m据得/解s:得fL: 12Lm=1v002m .12 M mv2
模型四:
带弹簧旳木板与滑块模型
如图所示,坡道顶端距水平面高度为h,质量为m1旳小物块 A从坡道顶端由静止滑下,进入水平面上旳滑道时无机械能 损失,为使A制动,将轻弹簧旳一端固定在水平滑道延长线 M处旳墙上,另一端与质量为m2旳档板B相连,弹簧处于原 长时,B恰位于滑道旳末端O点.A与B碰撞时间极短,碰后 结合在一起共同压缩弹簧,已知在OM段A、B与水平面间旳 动摩擦因数均为μ,其他各处旳摩擦不计,重力加速度为g, 求: (1)物块A在与挡板B碰撞前瞬间速度v旳大小; (2)弹簧最大压缩量为d时旳弹性势能Ep(设弹簧处于原长 时弹性势能为零).
μ
mgL
1 2
m0
m
v2 1
1 2
Mv 2
1 2
m0
m
M
v 2 2
③
由①②③解得v0=149.6m/s为最大值, 所以v0≤149.6m/s
解:(1)物块A从坡道顶端由静止滑至O点旳过程,
由机械能守恒定律,得:m1gh 1 m1v2
代入数据得:v 2gh
2
(2)A、B在碰撞过程中内力远不小于外力,系统动
量守恒,以向左为正方向,由动量守恒定律得:
高中物理第08章动量守恒 动量守恒定律应用(四种模型)
08、(2013·高考新课标全国卷Ⅱ,35 题)如图所示,光滑水平直轨道上有三个质量均为 m 的物 块 A、B、C.B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设 A 以速度 v0 朝 B 运动,压缩 弹簧;当 A、 B 速度相等时,B 与 C 恰好相碰并粘接在一起,然后继续运动.假设 B 和 C 碰撞过 程时间极短,求从 A 开始压缩弹簧直至与弹黄分离的过程中, (1)整个系统损失的机械能; (2)弹簧被压缩到最短时的1、如图所示,一排人站在沿 x 轴的水平轨道旁,原点 O 两侧的人的序号都记为 n(n=1,2, 3……) .每人只有一个沙袋,x>0 一侧的每个沙袋质量为 m=14 kg,x<0 一侧的每个沙袋质量为 m′=10 kg.一质量为 M=48 kg 的小车以某初速度从原点出发向正 x 方向滑行.不计轨道阻力, 当车每经过一人身旁时,此人就把沙袋以水平速度 v 朝与车速相反的方向沿车面扔到车上,v 的 大小等于扔此袋之前的瞬间车速大小的 2n 倍(n 是此人的序号数) . (1)空车出发后,车上堆积了几个沙袋时车就反向滑行? (2)车上最终有大小沙袋共多少个?
ECNU
LEX
高中物理第 08 章动量守恒 动量守恒定律应用(四种模型)
Lex Li
一、子弹木块模型 01、 如图所示, 一根质量不计、 长为 1 m, 能承受最大拉力为 14 N 的绳子, 一端固定在天花板上, 另一端系一质量为 1 kg 的小球,整个装置处于静止状态,一颗质量为 10 g、水平速度为 500 m/s 的子弹水平击穿小球后刚好将将绳子拉断, (g 取 10 m/s ) 。求: (1)小球此时的速度大小; (2)子弹此时的速度大小。
2
02、一颗质量为 m,速度为 v0 的子弹竖直向上射穿质量为 M 的木块后继续上升,子弹从射穿木块 到再回到原木块处所经过的时间为 T,那么当子弹射出木块后,求: (1)子弹身穿木块时的速度大小; (2)木块上升的最大高度为多少?
动量守恒定律的典型模型
M
m
四.子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
2.符合的规律:子弹和木块组成的系统动量守恒, 机械能不守恒。
3.共性特征:一物体在另一物体上,在恒定的阻 力作用下相对运动,系统动量守恒,机械能不守
恒,ΔE = f 滑d相对
由功能关系得
mg
(s
x)
1 2
mV
2
1 2
mv02
mgx
1 2
(m
2M
)V
2
1 2
mv
2 0
相加得 mgs 1 2MV 2
②
2
解①、②两式得 x
Mv02
③
(2M m)g
代入数值得
v0
C
B
A
x 1.6m ④
xC
S
B
VA
x 比B 板的长度l 大.这说明小物块C不会停在B板上,而要
滑到A 板上.设C 刚滑到A 板上的速度为v1,此时A、B板的
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 mv0 (m 2M )V
①
在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
M=16 kg,木块与小车间的动摩擦因数为μ=0.5,木
块没有滑离小车,地面光滑,g取10 m/s2,求: (1)木块相对小车静止时小车的速度; (2)从木块滑上小车到木块相对于小车刚静止时, 小车移动的距离. (3)要保证木块不滑下平板车,平板车至少要有多 长?
动量守恒定律常见模型归类
m l2 L M m
Байду номын сангаас
l 2 l1
动量守恒定律常见模型归类 模型二 —— 子弹打木块模型
(1)射入类 特点:在某一方向上动量守恒,如子弹有初 速度而木块无初速度,碰撞时间非常短,子弹 射入木块后二者以相同速度一起运动。 (2)射穿类 特点:在某一方向动量守恒,子弹有初速度, 木块有或无初速度,击穿时间很短,击穿后二 者分别以某一速度运动。
动量守恒定律常见模型归类 模型一 —— 人船模型
【例1】质量为m的人站在质量为M ,长 为L的静止小船的右端,小船的左端靠在 岸边。当他向左走到船的左端时,船左 端离岸多远?
动量守恒定律常见模型归类
解:先画出示意图。人、船系统动量守恒,总动量 始终为零,所以人、船动量大小始终相等。 从图中可以看出,人、船的位移大小之和等于 L 。设 人、船位移大小分别为l1、l2 ,则: mv1=Mv2 两边同乘时间t ,有 m· l1 = M· l2 ………… ① 而 l1 +l2 = L ………… ② 联立①②式,解得
动量守恒定律常见模型归类 子弹打木块模型特征
模型特征: (1)系统合力为零,因此动量守恒; ( 2 )系统初动量不为零(一般为一静一动),末动 量也不为零; (3)子弹没有穿出木块时,子弹和木块两者发生的 相对位移等于子弹射入的深度;子弹穿出木块时,子 弹和木块两者发生的相对位移为木块的宽度。 (4)系统因摩擦产生的热量等于滑动摩擦力与两种 物体相对位移的乘积,且等于损失的机械能,即:
Q f s E
动量守恒定律常见模型归类 模型二 —— 子弹打木块模型
【例 2】设质量为 m 的子弹以初速度 v0 射向 静止在光滑水平面上的质量为M的木块,并 留在木块中不再射出,子弹钻入木块深度为 d 。求木块对子弹的平均阻力的大小和该过 程中木块前进的距离。
动量守恒定律10个模型
动量守恒定律10个模型简介动量守恒定律是物理学中的一个重要定律,它描述了在一个孤立系统中,系统的总动量在时间上是守恒的。
根据动量守恒定律,我们可以推导出许多有趣的模型和应用。
本文将介绍10个与动量守恒定律相关的模型,帮助读者更好地理解和应用这一定律。
1. 碰撞模型碰撞是动量守恒定律最常见的应用之一。
当两个物体碰撞时,它们之间的动量可以发生变化,但它们的总动量必须保持不变。
根据碰撞模型,我们可以计算出碰撞前后物体的速度和动量的变化。
2. 均质质点模型在动量守恒定律中,我们通常将物体看作是均质质点,即物体的质量分布均匀。
这样做的好处是简化计算,使得动量守恒定律更易于应用。
3. 爆炸模型爆炸是动量守恒定律另一个重要的应用场景。
当一个物体爆炸成多个碎片时,每个碎片的动量之和必须等于爆炸前物体的总动量。
通过爆炸模型,我们可以计算出碎片的速度和动量。
4. 转动惯量模型动量守恒定律不仅适用于质点,还适用于旋转物体。
当一个旋转物体发生转动时,它的动量也必须守恒。
转动惯量模型帮助我们计算旋转物体的动量和角速度的变化。
5. 弹性碰撞模型弹性碰撞是碰撞模型的一个特殊情况,它要求碰撞前后物体的动能守恒。
在弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。
6. 非弹性碰撞模型非弹性碰撞是碰撞模型的另一个特殊情况,它要求碰撞过程中有能量损失。
在非弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。
7. 线性动量守恒模型线性动量守恒模型是动量守恒定律的一个基本应用。
它适用于直线运动的物体,通过计算物体的质量和速度,我们可以得到物体的动量和动量守恒的结果。
8. 角动量守恒模型角动量守恒模型是动量守恒定律在旋转物体中的应用。
通过计算物体的转动惯量和角速度,我们可以得到物体的角动量和角动量守恒的结果。
9. 动量守恒实验模型动量守恒实验模型是利用实验验证动量守恒定律的方法。
高中物理第08章动量守恒 动量守恒定律应用 四种常见模型
高中物理第08章动量守恒 动量守恒定律应用四种常见模型Lex Li01、动量守恒定律概述(1)动量守恒定律的五性:①条件性:满足系统条件或近似条件;②系统性:动量守恒是相对与系统的,对于一个物体无所谓守恒;③矢量性:表达式中涉及的都是矢量,需要首先选取正方向,分清各物体初、末动量的正、负。
④相对性:方程中的所有动量必须相对于同一参考系;⑤同时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等。
不同时刻的动量不能相加。
(2)应用动量守恒定律解题的步骤①对象(系统性):分析题意,明确研究对象;②受力(条件性):对各阶段所选系统内物体进行受力分析,判定能否应用动量守恒; ③过程(矢量性、相对性、同时性):确定过程的始、末状态,写出初动量和末动量表达式;④方程:建立动量守恒方程求解。
02、常见模型(1)碰撞、爆炸:作用时间极短,内力远大于外力,系统动量守恒①弹性碰撞:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则: 动量守恒:221101v m v m v m += 动能不变:222211111011v m v m v m +=解得:121012m m v v m m −=+ 120122m v v m m =+②非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能损失:22'2'21111112211222222()()E m v m v m v m v ∆=+−+ ③完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v机械能损失:222111112212()()E m v m v m m v ∆=+−+④爆炸:系统动量守恒,机械能增加例01 如图所示,光滑水平面上有A、B、C三个物块,其质量分别为m A=2.0 kg,m B=m C =1.0 kg,现用一轻弹簧将A、B两物块连接,并用力缓慢压缩弹簧使A、B两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C恰好以4 m/s的速度迎面与B发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B与C碰撞前),A和B物块速度的大小;(2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.针对训练01 如图所示,总质量为M的大小两物体,静止在光滑水平面上,质量为m的小物体和大物体间有压缩着的弹簧,另有质量为2m的物体以v0速度向右冲来,为了防止冲撞,大物体将小物体发射出去,小物体和冲来的物体碰撞后粘合在一起.小物体发射的速度至少应多大,才能使它们不再碰撞?(2)人船模型(平均动量守恒问题):特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).例02 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。
动量守恒定律中几种常见模型的讨论
(二)、人船模型
例5:静止在水面上的小船长为L,质 量为M,在船的最右端站有一质量为 m的人,不计水的阻力,当人从最右 端走到最左端的过程中,小船移动的 距离是多大?
S
L-S
0=MS – m(L-S)
v0
动量守恒定律中几种常见模型的讨论
(一)碰撞模型
1、“碰撞”模型——两个运动物体发生短暂的相互作
用 “正碰”模型——碰撞前后物体的速度在同一直线
上例1:如图,A、B两小球质量分别为2kg和1kg,
它们在光滑的水平面上沿同一直线相向运动,速
率分别为6m/s和3m/s,发生碰撞后粘在一起以共
同的速度运动,求碰撞后两球的共同速度。
(2)质量相等两物体发生弹性正碰
互换速度 例如: v1=5m/s v2=0
v1’=0 v2’=5m/s
例如: v1=5m/s v2= - 2m/s v1’= - 2m/s v2’=5m/s
例3:质量为2kg的小球A以6m/s的速度与 质量为1kg的小球B发生正碰,求:碰撞 后两球速度的最大值和最小值。
例6:静止在水面上的小船长为L,质 量为M,在船的两端分别站有质量为 m1、m2的两人,不计水的阻力,当两 人在船上交换位置的过程中,小船移 动的距离是多大?
m1
m2
S
L-S
L+S
例7:载人气球原静止在高度为H的高空,气 球的质量为M,人的质量为m,现人要沿气球 上的软绳梯滑至地面,则绳梯至少要多长?
形变 完全恢复
形变 不完全恢复
动能 不损失 (动能守恒)
有动能损失
专题十一 动量守恒中的四类典型模型-2025届高中物理
第七章动量守恒定律专题十一动量守恒中的四类典型模型核心考点五年考情命题分析预测子弹打木块模型本专题是本章的难点,滑块+弹簧模型和滑块+滑板模型是高考的热点.预计2025年高考会出现考查滑块+滑板模型的选择题或滑块+弹簧模型的计算题.滑块+弹簧模型2023:辽宁T15,浙江6月T18;2022:全国乙T25;2021:天津T10;2019:全国ⅢT25滑块+斜(曲)面模型2023:湖南T15,山东T18滑块+滑板模型2023:辽宁T15;2022:山东T18,河北T13题型1子弹打木块模型1.模型图示2.模型特点(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.3.两种情境(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞)动量守恒:mv 0=(m +M )v .能量守恒:Q =F f s =12m 02-12(M +m )v 2.(2)子弹穿透木块动量守恒:mv 0=mv 1+Mv 2.能量守恒:Q=F f d=12m02-(12M22+12m12).1.[子弹未穿透木块/2024江苏淮安模拟]如图所示,质量为M=0.45kg的木块静止于光滑水平面上,一质量为m=0.05kg的子弹以水平速度v0=100m/s打入木块并停在木块中,下列说法正确的是(A)A.子弹打入木块后子弹和木块的共同速度为v=10m/sB.子弹对木块做的功W=25JC.木块对子弹做正功D.子弹打入木块过程中产生的热量Q=175J解析根据动量守恒定律可得mv0=(M+m)v,解得子弹打入木块后子弹和木块的共同速度为v=B0+=10m/s,故A正确;根据动能定理可知,子弹对木块做的功为W=12Mv2-0=22.5J,故B错误;由于子弹的动能减小,根据动能定理可知,木块对子弹做负功,故C错误;根据能量守恒定律可知,子弹打入木块过程中产生的热量为Q=12m02−12(M+m)v2=225J,故D错误.2.[子弹穿透木块]如图所示,在光滑的水平桌面上静止放置一个质量为980g的匀质木块,现有一颗质量为20g的子弹以大小为300m/s的水平速度沿木块的中心轴线射向木块,最终留在木块中没有射出,和木块一起以共同的速度运动.已知木块沿子弹运动方向的长度为10cm,子弹打进木块的深度为6cm.设木块对子弹的阻力保持不变.(1)求子弹和木块的共同速度以及它们在此过程中所产生的内能.(2)若子弹是以大小为400m/s的水平速度从同一方向水平射向该木块,则在射中木块后能否射穿该木块?答案(1)6m/s882J(2)能解析(1)设子弹射入木块后与木块的共同速度为v,对子弹和木块组成的系统,由动量守恒定律得mv0=(M+m)v解得v=6m/s此过程系统所增加的内能ΔE=12m02-12(M+m)v2=882J.(2)假设子弹以v'0=400m/s的速度入射时没有射穿木块,则对以子弹和木块组成的系统,由动量守恒定律得mv'0=(M+m)v'解得v'=8m/s此过程系统所损耗的机械能为ΔE'=12mv'20-12(M +m )v'2=1568J 由功能关系有ΔE =F 阻x 相=F 阻d ΔE'=F 阻x'相=F 阻d'则ΔΔ'=阻阻'='解得d'=1568147cm因为d'>10cm ,所以假设不成立,能射穿木块.题型2滑块+弹簧模型模型图示水平地面光滑模型特点(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的矢量和为零,则系统动量守恒;(2)在能量方面,由于弹簧形变会使弹性势能发生变化,系统的总动能将发生变化;若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒;(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动能通常最小(完全非弹性碰撞拓展模型);(4)弹簧恢复原长时,弹性势能为零,系统动能最大(弹性碰撞拓展模型,相当于碰撞结束时)3.[滑块与弹簧连接/多选]如图甲所示,一个轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接并静止在光滑的水平地面上.现使A 以3m/s 的速度向B 运动压缩弹簧,速度—时间图像如图乙,则有(CD)A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都处于压缩状态B.从t3到t4时刻弹簧由压缩状态恢复原长C.两物块的质量之比为m1:m2=1:2D.在t2时刻A与B的动能之比E k1:E k2=1:8解析由题图乙可知t1、t3时刻两物块达到共同速度1m/s,且此时系统动能最小,根据系统机械能守恒可知,此时弹性势能最大,t1时刻弹簧处于压缩状态,而t3时刻处于伸长状态,故A错误;结合图像弄清两物块的运动过程,开始时A逐渐减速,B逐渐加速,弹簧被压缩,t1时刻二者速度相同,系统动能最小,势能最大,弹簧被压缩到最短,然后弹簧逐渐恢复原长,B仍然加速,A先减速为零,然后反向加速,t2时刻,弹簧恢复原长状态,由于此时两物块速度相反,因此弹簧的长度将逐渐增大,两物块均减速,在t3时刻,两物块速度相等,系统动能最小,弹簧最长,因此从t3到t4过程中弹簧由伸长状态恢复原长,故B错误;根据动量守恒定律,可知t=0时刻和t=t1时刻系统总动量相等,有m1v1=(m1+m2)v2,其中v1=3m/s,v2=1m/s,解得m1:m2=1:2,故C正确;在t2时刻A的速度为v A=-1m/s,B的速度为v B=2m/s,根据m1:m2=1:2,求出E k1:E k2=1:8,故D正确.命题拓展命题条件不变,一题多设问下列说法不正确的是(C)A.t1~t2时间内B的加速度在减小B.t1和t3时刻弹簧的弹性势能相等C.t2时刻弹簧处于压缩状态D.t3时刻弹簧的弹性势能最大解析由v-t图像可知t1~t2时间内B的加速度在减小,A正确,不符合题意;t1和t3时刻,A和B的速度均相等,则A和B系统的总动能相等,弹簧的弹性势能相等,B正确,不符合题意;t2时刻,A和B的加速度均为零,说明弹簧弹力为零,则弹簧在t2时刻处于原长状态,C错误,符合题意;t3时刻,A和B的速度相等,弹簧的弹性势能最大,D正确,不符合题意.4.[滑块与弹簧不连接]如图所示,一木板放在光滑水平面上,木板的右端与一根沿水平方向放置的轻质弹簧相连,弹簧的自由端在Q点.木板的上表面左端点P与Q点之间是粗糙的,P、Q之间的距离为L,Q点右侧表面是光滑的.一质量为m=0.2kg的滑块(可视为质点)以水平速度v0=3m/s从木板的左端沿板面向右滑行,压缩弹簧后又被弹回.已知木板质量M=0.3kg,滑块与木板表面P、Q之间的动摩擦因数为μ=0.2,g=10m/s2.(1)若L=0.8m,求滑块滑上木板后的运动过程中弹簧的最大弹性势能;(2)要使滑块既能挤压弹簧,最终又没有滑离木板,则木板上P 、Q 之间的距离L 应在什么范围内?答案(1)0.22J(2)0.675m≤L <1.35m解析(1)滑块滑上木板后将弹簧压缩到最短时,弹簧具有最大弹性势能,此时滑块、木板共速,取向右为正方向,由动量守恒定律得mv 0=(m +M )v 共由能量守恒定律得E p =12m 02-12(m +M )共2-μmgL解得E p =0.22J(2)滑块最终没有离开木板,滑块和木板具有共同的末速度,设为u ,滑块与木板组成的系统动量守恒,有mv 0=(m +M )u设共速时滑块恰好滑到Q 点,由能量守恒定律得μmgL 1=12m 02-12(m +M )u2解得L 1=1.35m设共速时滑块恰好回到木板的左端P 点处,由能量守恒定律得2μmgL 2=12m 02-12(m +M )u 2解得L 2=0.675m所以P 、Q 之间的距离L 应满足0.675m≤L <1.35m.题型3滑块+斜(曲)面模型模型图示水平地面光滑、曲面光滑模型特点(1)最高点:m 与M 具有共同水平速度v 共,m 不会从此处或提前偏离轨道,系统水平方向动量守恒,mv 0=(M +m )v 共;系统机械能守恒,12m v 02=12(M +m )v 共2+mgh ,其中h 为滑块上升的最大高度,不一定等于圆弧轨道的高度(完全非弹性碰撞拓展模型);(2)最低点:m 与M 分离点,系统水平方向动量守恒,mv 0=mv 1+Mv 2;系统机械能守恒,12m 02=12m 12+12M 22(弹性碰撞拓展模型)5.[滑块脱离曲面]如图所示,在光滑的水平地面上,静置一质量为m的四分之一光滑圆弧滑块,圆弧半径为R,一质量也为m的小球,以水平速度v0自滑块的左端A处滑上滑块,当二者共速时,小球刚好到达圆弧上端B.若将小球的初速度增大为2v0,不计空气阻力,则小球能达到距B点的最大高度为(C)A.RB.1.5RC.3RD.4R解析若小球以水平速度v0滑上滑块,小球上升到圆弧的上端时,小球与滑块速度相同,设为v1,以小球的初速度v0的方向为正方向,在水平方向上,由动量守恒定律得mv0=2mv1,由机械能守恒定律得12m02=12×2m12+mgR,代入数据解得v0=2g,若小球以水平速度2v0冲上滑块,小球上升到圆弧的上端时,小球与滑块水平方向上速度相同,设为v2,以小球的初速度方向为正方向,在水平方向上,由动量守恒定律得2mv0=2mv2,由能量守恒定律得12m×(2v0)2=12×2m22+mgR+12m2,解得v y=6g,小球离开圆弧后做斜抛运动,竖直方向做匀减速运动,则h=22=3R,故距B点的最大高度为3R,故选C.命题拓展情境不变,一题多设问以水平速度v0自滑块的左端A处滑上滑块,小球与滑块分离时的速度是多少?答案0解析从小球滑上滑块至小球离开滑块的过程中,根据能量守恒定律得12m02=12m球2+12m块2,小球和滑块系统水平方向动量守恒,有mv0=mv球+mv块,解得v球=0.6.[滑块不脱离曲面/2024广东广州部分学校联考]如图所示,质量m0=5g的小球用长l=1m的轻绳悬挂在固定点O,质量m1=10g的物块静止在质量m2=30g的14光滑圆弧轨道的最低点,圆弧轨道静止在光滑水平面上,悬点O在物块m1的正上方,将小球拉至轻绳与竖直方向成37°角后,由静止释放小球,小球下摆至最低点时与物块发生弹性正碰,碰后物块恰能到达圆弧轨道的最上端.若小球、物块可视为质点,不计空气阻力,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8.求:(1)小球与物块碰撞前瞬间小球的速度v0;(2)小球与物块碰撞后瞬间物块的速度v1;(3)圆弧轨道的半径R.答案(1)v0=2m/s(2)v1=43m/s(3)R=115m解析(1)小球下摆至最低点,满足机械能守恒定律,有m0gl(1-cos37°)=12m002解得v0=2g(1-Hs37°)=2m/s(2)小球与物块碰撞,满足动量守恒定律、机械能守恒定律,有m0v0=m0v01+m1v1 12m002=12m0012+12m112解得v1=43m/s(3)物块滑到圆弧轨道最高点的过程,满足动量守恒定律、机械能守恒定律,则有m1v1=(m1+m2)v212m112=12(m1+m2)22+m1gR解得R=115m.7.[滑块与斜面结合]如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30kg,冰块的质量为m2=10kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10m/s2.(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?答案(1)20kg(2)不能,理由见解析解析(1)规定向左为正方向.冰块在斜面体上上升到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3.对冰块与斜面体,由水平方向动量守恒和机械能守恒定律得m2v0=(m2+m3)v①12m202=12(m2+m3)v2+m2gh②式中v0=3m/s为冰块推出时的速度,联立①②式并代入题给数据得v=1m/s,m3=20kg ③.(2)设小孩推出冰块后的速度为v1,对小孩与冰块,由动量守恒定律有m1v1+m2v0=0④代入数据得v1=-1m/s⑤设冰块与斜面体分离后的速度分别为v2和v3,对冰块与斜面体,由动量守恒定律和机械能守恒定律有m2v0=m2v2+m3v3⑥12m 202=12m 222+12m 332⑦联立③⑥⑦式并代入数据得v 2=-1m/s⑧由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且冰块处在小孩后方,故冰块不能追上小孩.题型4滑块+滑板模型示意图木板初速度为零且足够长木板有初速度且足够长,板块反向地面光滑地面光滑v -t 图像8.[滑块、滑板同向运动]如图所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(可视为质点)以一定的初速度从左端冲上木板,如果长木板是固定的,物块恰好停在木板的右端,如果长木板不固定,则物块冲上木板后在木板上滑行的距离为(C)A.LB.34C.2 D.4解析设物块受到的滑动摩擦力为F f ,物块的初速度为v 0.如果长木板是固定的,物块恰好停在长木板的右端,对物块的滑动过程运用动能定理得-F f L =0-12M 02,如果长木板不固定,物块冲上木板后,物块向右减速的同时,木板要加速,最终两者一起做匀速运动,该过程系统所受外力的合力为零,动量守恒,规定向右为正方向,根据动量守恒定律得Mv 0=(M +M )v 1,对系统运用能量守恒定律有F f L'=12M 02−12(2M )12,联立解得L'=2,C 正确,A 、B 、D 错误.9.[滑块、滑板反向运动]质量为M=1.0kg的长木板A在光滑水平面上以v1=0.5m/s的速度向左运动,某时刻质量为m=0.5kg的小木块B以v2=4m/s的速度从左端向右滑上长木板,经过时间t=0.6s小木块B相对A静止,已知重力加速度g取10m/s2,求:(1)两者相对静止时的运动速度v;(2)从木块滑上木板到相对木板静止的过程中,木板A的动量变化量的大小;(3)小木块与长木板间的动摩擦因数μ.答案(1)1m/s,方向水平向右(2)1.5kg·m/s(3)0.5解析设水平向右为正方向(1)从开始到相对静止,系统在水平方向动量守恒-Mv1+mv2=(M+m)v解得v=1m/s,方向水平向右.(2)长木板的动量变化量大小Δp=Mv-(-Mv1)=1.5kg·m/s.(3)对小木块B,根据动量定理得-μmgt=mv-mv2解得μ=0.5.10.[多个滑块综合考查/2024辽宁沈阳模拟]如图,粗糙水平地面上放着两个相同的木板B和C,可视为质点的物块A以初速度v0冲上木板B.已知A质量为2m,与B、C间动摩擦因数均为μ;B、C质量均为m,与地面间动摩擦因数均为12μ.当A运动至B最右端时,A、B速度相同且B、C恰好相撞(碰撞时间极短),撞后B、C粘在一起.重力加速度为g.求:(1)开始时B、C间的距离;(2)A最终离C右端的距离;(3)从A冲上木板B到最终C静止的整个过程系统因摩擦产生的热量.答案(1)029B(2)230272B(3)3536m02解析(1)A在B上滑动时,对A有2μmg=2ma A故a A=μg对B有2μmg-32μmg=ma B故a B=12μg设经过t1时间A、B速度相同,则有v0-a A t1=a B t1解得t1=203B由于x B=12a B12,解得x B=029B,此即B、C的初始距离(2)木板B的长度等于A、B共速时的相对位移,有L=(v0t1-12a A12)-12a B12解得L=023B由动量守恒定律可得,A滑到B最右端时,A、B共速的速度v1=13v0此时B与C发生完全非弹性碰撞,有mv1=2mv2故碰撞后瞬间B、C的速度为v2=16v0A以13v0的速度滑上C,继续以a A=μg的加速度减速,而此时B、C整体所受合力为零,做匀速直线运动,设经过时间t2后A与B、C共速,则有v1-a A t2=v2解得t2=06B此过程中A相对C的位移大小为x AC=(v1t2-12a A22)-v2t2解得x AC=0272B此后A、C相对静止,故A最终离C右端的距离为L-x AC=230272B(3)B、C碰撞过程损失的机械能为12m12-12×2m22=136m02整个过程系统的总机械能损失为12×2m02-0=m02因此整个过程系统因摩擦产生的热量Q=3536m02.1.[滑块+曲面/2023山东]如图所示,物块A和木板B置于水平地面上,固定光滑弧形轨道末端与B的上表面所在平面相切,竖直挡板P固定在地面上.作用在A上的水平外力,使A 与B以相同速度v0向右做匀速直线运动.当B的左端经过轨道末端时,从弧形轨道某处无初速度下滑的滑块C恰好到达最低点,并以水平速度v滑上B的上表面,同时撤掉外力,此时B右端与P板的距离为s.已知v0=1m/s,v=4m/s,m A=m C=1kg,m B=2kg,A与地面间无摩擦,B与地面间动摩擦因数μ1=0.1,C与B间动摩擦因数μ2=0.5,B足够长,使得C 不会从B上滑下.B与P、A的碰撞均为弹性碰撞,不计碰撞时间,取重力加速度大小g=10m/s2.(1)求C下滑的高度H;(2)与P碰撞前,若B与C能达到共速,且A、B未发生碰撞,求s的范围;(3)若s=0.48m,求B与P碰撞前,摩擦力对C做的功W;(4)若s=0.48m,自C滑上B开始至A、B、C三个物体都达到平衡状态,求这三个物体总动量的变化量Δp的大小.答案(1)0.8m(2)0.625m≤s≤2+2m(3)-6J(4)(6+322)N·s解析(1)C下滑过程,由动能定理有m C gH=12m C v2,解得H=0.8m(2)设C滑上B以后,C的加速度大小为a C,B的加速度大小为a1,B、C共速时间为t1,s的最小值为s1,B、C共同的加速度大小为a2,经过t2时间A追上B,s的最大值为s2,则由牛顿第二定律有μ2m C g=m C a C解得a C=5m/s2μ2m C g-μ1(m B+m C)g=m B a1解得a1=1m/s2又v0+a1t1=v-a C t1解得t1=0.5s由运动学规律有s1=v0t1+12a112联立解得s1=58m=0.625mB、C共速后,由牛顿第二定律得μ1(m B+m C)g=(m B+m C)a2解得a2=1m/s2由运动学公式得s2=s1+(v0+a1t1)t2-12a222s2=v0(t1+t2)联立解得s2=2+2m故s的范围为0.625m≤s≤2+2m(3)由题意知s<s1,所以B与P碰撞时,B与C未共速.设C在B板上滑动的时间为t3,B与P相碰时C的速度大小为v1,则由运动学公式得s=v0t3+12a132解得t3=0.4s(另一解舍去)v1=v-a C t3解得v1=2m/s对物体C从刚滑上B到B与P碰撞前的过程,由动能定理有W=12m C(12-v2)解得W=-6J(4)设B与P碰撞前瞬间的速度大小为v2,B与P碰撞后瞬间的速度为v3,B向左运动的加速度大小为a3,B向左运动时间t4与A相遇.设A、B碰撞前瞬间B的速度大小为v4;A、B碰撞后瞬间,A的速度为v5,B的速度为v6,C的速度大小为v7,则由运动学公式得v2=v0+a1t3解得v2=1.4m/s由于P固定在地面上,B与P的碰撞为弹性碰撞,所以有v3=v2=1.4m/sB与P碰撞后向左运动的过程中,对B由牛顿第二定律得μ2m C g+μ1(m B+m C)g=m B a3解得a3=4m/s2自B、P碰撞后至A、B发生碰撞的过程,由运动学公式得s-v0t3=v0t4+v3t4-12a342解得t4(另一解舍去)v4=v3-a3t4解得v41)m/sv7=v1-a C t4解得v7=(22-1)m/s以向右为正方向,A、B发生弹性碰撞,由动量守恒定律得m A v0-m B v4=m A v5+m B v6由机械能守恒定律得12m A02+12m B42=12m A+12m B62联立解得v5=(1m/s、v6=(1m/s(另一组解舍去)即A、B碰撞后,A以速度v5向左运动,B以初速度v6向右运动经分析可得,B、C最终静止,A最终以速度v5向左运动,故自C滑上B开始至三物体达到平衡状态,这三个物体总动量的变化量为Δp=m A v5-[(m A+m B)v0+m C v]解得Δ=(6N·s2.[滑块+弹簧/2022全国乙]如图(a),一质量为m的物块A与轻质弹簧连接,静止在光滑水平面上;物块B向A运动,t=0时与弹簧接触,到t=2t0时与弹簧分离,第一次碰撞结束,A、B的v-t图像如图(b)所示.已知从t=0到t=t0时间内,物块A运动的距离为0.36v0t0.A、B分离后,A滑上粗糙斜面,然后滑下,与一直在水平面上运动的B再次碰撞,之后A再次滑上斜面,达到的最高点与前一次相同.斜面倾角为θ(sinθ=0.6),与水平面光滑连接.碰撞过程中弹簧始终处于弹性限度内.求(1)第一次碰撞过程中,弹簧弹性势能的最大值;(2)第一次碰撞过程中,弹簧压缩量的最大值;(3)物块A与斜面间的动摩擦因数.图(a)图(b)答案(1)0.6m02(2)0.768v0t0(3)0.45解析(1)水平面光滑,故在水平面上两物块碰撞过程动量守恒,从B与弹簧接触到弹簧第一次压缩到最短过程中有m B v1=(m B+m A)v0其中v1=1.2v0可得m B=5m该过程中机械能守恒,设弹簧最大弹性势能为E p,得E p+12(m A+m B)02=12m B12由上式得E p=0.6m02(2)由图像知0~t0内物块B与物块A的位移差等于弹簧的最大压缩量,也就是题图中该段时间物块A、B图像所夹面积,物块A在0~t0时间内的位移S A=0.36v0t0,即为0~t0内,v-t图像中A线与t轴所夹面积.解法1在压缩弹簧的过程中,物块A、B所受弹簧弹力大小相等,方向相反,则物块A的加速度始终是物块B加速度的5倍,有a A=5a B若两者均做初速度为零的变速运动,则两者的位移满足S A=5S'B在图1中深灰色阴影面积为S A,浅灰色阴影面积为S'B.最大压缩量为X=1.2v0t0-S A-S'B=0.768v0t0图1图2解法20~t0过程,由动量守恒定律有mv A+5mv B=(m+5m)v0结合运动学知识有mS A+5mS B=6mv0t0解得S B=1.128v0t0(B在0~t0内的位移)最大压缩量为X=S B-S A=1.128v0t0-0.36v0t0=0.768v0t0(3)设物块A第一次从斜面滑到平面上时的速度为v x,物块A(含弹簧)回到水平面,第二次与B相互作用过程系统机械能守恒、动量守恒.则有m B v2-m A v x=m B v3+m A·2v012m B22+12m A2=12m B32+12m A(2v0)2其中v2=0.8v0可得v x=v0(另一解舍去)物块A第一次从斜面底端滑到最高点的过程,由动能定理有-mgμs cosθ-mgs sinθ=0-12m(20)2物块A第一次从最高点滑到水平面的过程,由动能定理有-mgμs cosθ+mgs sinθ=12m02-0由上式得μ=0.45.1.[多选]如图所示,在光滑的水平面上放有两个小球A和B,mA>m B,B球上固定一轻质弹簧.A球以速率v去碰撞静止的B球,则(BD)A.A球的最小速率为零B.B球的最大速率为2+vC.当弹簧压缩到最短时,B球的速率最大D.两球的动能最小值为222(+)解析A球与弹簧接触后,弹簧被压缩,弹簧对A球产生向左的弹力,对B球产生向右的弹力,故A球做减速运动,B球做加速运动,当B球的速度等于A球的速度时弹簧的压缩量最大,此后A球继续减速,B球继续加速,弹簧压缩量减小,当弹簧恢复原长时,B球速度最大,A球速度最小,此过程满足动量守恒定律和能量守恒定律,有m A v=m A v1+m B v2,12m A v2=12m A12+12m B22,解得v1=−+v,v2=2+v,因为m A>m B,可知A球的最小速率不为零,B球的最大速率为2+v,故A、C错误,B正确;两球共速时,弹簧压缩到最短,弹性势能最大,此时两球动能最小,根据动量守恒定律有m A v=(m A+m B)v共,E k=12(m A+m B)共2,联立可得E k=222(+),故D正确.2.[2024北京八一中学校考/多选]如图所示,静止在光滑水平桌面上的物块A和B用一轻质弹簧拴接在一起,弹簧处于原长.一颗子弹沿弹簧轴线方向射入物块A并留在其中,射入时间极短.下列说法中正确的是(BD)A.子弹射入物块A的过程中,子弹和物块A的机械能守恒B.子弹射入物块A的过程中,子弹对物块A的冲量大小等于物块A对子弹的冲量大小C.子弹射入物块A后,两物块与子弹的动能之和等于射入物块A前子弹的动能D.两物块运动过程中,弹簧最短时的弹性势能等于弹簧最长时的弹性势能解析子弹射入物块A的过程为完全非弹性碰撞,有动能损失,则子弹和物块A的机械能不守恒,故A错误;子弹射入物块A的过程中,子弹对物块A的作用力与物块A对子弹的作用力是一对相互作用力,等大反向,而且两个力作用时间相等,由I=Ft知,子弹对物块A的冲量大小等于物块A对子弹的冲量大小,故B正确;子弹射入物块A后,两物块与子弹的动能之和小于射入物块A前子弹的动能,因为子弹射入物块A过程中有动能转化为内能,故C错误;两物块运动过程中,弹簧最短时与弹簧最长时都是两物块具有共同速度时,有(m A+m子)v1=(m A+m子+m B)v2,ΔE p=12(m A+m子)12−12(m A+m子+m B)22,则弹簧最短时的弹性势能等于弹簧最长时的弹性势能,故D正确.3.[2024河南三门峡模拟/多选]光滑水平面上停放着质量为m、装有光滑弧形槽的小车,一质量也为m的小球以水平速度v0沿槽口向小车滑去,到达某一高度后,小球又返回右端,图甲小车放置在无阻碍的光滑水平面上,图乙小车靠墙停放,已知重力加速度为g,则(BC)A.图甲中小球返回右端将向右做平抛运动B.图乙中小球返回右端将向右做平抛运动C.图甲中小球在弧形槽内上升的最大高度为024D.图甲中全过程小球对小车压力的冲量为mv0解析题图甲中,小球离开小车时,设小球的速度为v1,小车的速度为v2,整个过程中系统在水平方向上动量守恒,以向左为正方向,由动量守恒定律得mv0=mv1+mv2,对系统由机械能守恒定律得12m02=12m12+12m22,联立解得v1=0,v2=v0,所以题图甲中小球返回右端将做自由落体运动,A错误;题图乙中小车静止不动,因此小球返回右端将向右做平抛运动,B正确;设题图甲中小球在弧形槽内上升的最大高度为h,由系统水平方向动量守恒得mv0=2mv,由能量守恒定律得12m02=12×2mv2+mgh,解得h=024,C正确;由以上分析可知,题图甲中小球返回右端将做自由落体运动,小车将向左做匀速直线运动,速度为v0,对小车水平方向,由动量定理可得I x=Δp=mv0,由于小球对小车一直有竖直向下的压力分量,故全过程小球对小车压力的冲量不等于mv0,D错误.4.[多选]如图所示,光滑水平面上有一质量为2M、半径为R(R足够大)的14光滑圆弧曲面C,质量为M的小球B置于其底端,质量为2的小球A以v0=6m/s的速度向B运动,并与B发生弹性碰撞,两小球均可视为质点,则(AD)A.B的最大速率为4m/sB.B运动到最高点时的速率为34m/sC.B能与A再次发生碰撞D.B不能与A再次发生碰撞解析A与B发生弹性碰撞,取水平向右为正方向,根据动量守恒定律和机械能守恒定律得2v0=2v A+Mv B,12·202=12·22+12M2,解得v A=-2m/s,v B=4m/s,故B的最大速率为4m/s,A正确;B冲上C并运动到最高点时二者共速,设为v,则Mv B=(M+2M)v,得v=43m/s,B错误;B冲上C然后又滑下的过程,设B、C分离时速度分别为v'B、v'C,由水平方向动量守恒有Mv B=Mv'B+2Mv'C,由机械能守恒有12M2=12Mv'2B+12·2Mv'2C,联立解得v'B=-43m/s,由于|v'B|<|v A|,所以二者不会再次发生碰撞,C错误,D正确.5.[设问创新/2024江苏盐城模拟]如图所示,一质量为M=3.0kg的长木板B放在光滑水平地面上,在其右端放一个质量为m=1.0kg的小木块A.同时给A和B大小均为v=5.0m/s、方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离B.在A做加速运动的时间内,B的速度大小可能是(C)A.1.8m/sB.2.4m/sC.2.8m/sD.3.5m/s解析以A、B组成的系统为研究对象,因为系统不受外力,则系统动量守恒,选择水平向右的方向为正方向,从A、B开始运动到A的速度为零,根据动量守恒定律可得(M-m)v=Mv B1,解得v B1=103m/s,从A、B开始运动到A、B共速,根据动量守恒定律可得(M-m)v=(M+m)v B2,解得v B2=2.5m/s,木块A加速运动的过程为其速度减为零到与B共速的过程,此过程中B始终减速,则在木块A做加速运动的时间内,B的速度范围为2.5m/s≤v B≤103m/s,故C正确,ABD错误.6.[2024湖南长沙南雅中学校考]质量为M,长度为d的木块放在光滑的水平面上,在木块的右边有一个销钉把木块挡住,使木块不能向右滑动,质量为m的子弹以水平速度v0射入静止的木块,刚好能将木块射穿.现拔去销钉,使木块能在水平面上自由滑动,而子弹仍以水平速度v0射入静止的木块,设子弹在木块中受到的阻力大小恒定,则(C)A.拔去销钉,木块和子弹组成的系统动量守恒,机械能也守恒B.子弹在木块中受到的阻力大小为B02C.拔去销钉,子弹在木块中运动的时间为2B(+)0D.拔去销钉,子弹射入木块的深度为B+解析拔去销钉,木块和子弹之间的摩擦力是系统内力,故木块和子弹组成的系统动量守恒;但因摩擦力要做功,故系统机械能不守恒,故A错误.当木块固定时,由动能定理可知-fd=0-12m02,解得f=B022,故B错误.拔去销钉,子弹与木块系统动量守恒,则根据动量守恒定律可得mv0=(m+M)v,解得v=B0+,对木块根据动量定理可得ft=Mv,子弹在木块中运动的时间为2B(+p0,故C正确.拔去销钉,由C选项分析可知最终速度,故整个过程根据动能定理有-fx=12(m+M)v2-12m02,解得x=B+,D错误.7.[2024江西南昌模拟]质量相等的A、B两球之间压缩一根轻质弹簧,静置于光滑水平桌面上,当用挡板挡住A球而只释放B球时,B球被弹出落到距桌边水平距离为x的地面上,如图所示,若再次以相同力压缩该弹簧,取走A左边的挡板,将A、B同时释放,则B球的落地点距桌边水平距离为(D)A.2 B.2x C.x解析当用挡板挡住A球而只释放B球时,B球做平抛运动,设高度为h,则有h=12gt2,x=v0t,所以弹簧的弹性势能为E p=12m02.若再次以相同力压缩该弹簧,取走A左边的挡板,将A、B同时释放,取向右为正方向,由动量守恒定律可得0=mv1-。
动量守恒定律10个模型
动量守恒定律10个模型动量守恒定律是物理学中的基本定律之一,它描述了一个封闭系统中的总动量在没有外力作用下保持不变。
下面将介绍十个模型,以帮助我们更好地理解动量守恒定律。
1. 球的碰撞模型:当两个球以不同的速度相撞时,根据动量守恒定律,可以计算出碰撞后两球的速度。
2. 火箭发射模型:在火箭发射过程中,燃料的喷射速度越大,火箭的速度越快。
这符合动量守恒定律,因为燃料的喷射速度是一个外力,所以火箭的动量会发生改变。
3. 子弹射击模型:当一颗子弹射出时,子弹会带有一定的动量。
如果子弹击中一个静止的物体,根据动量守恒定律,可以计算出物体的运动速度。
4. 滑雪模型:滑雪运动中,滑雪者会借助滑雪板上的力,通过改变自身的动量来控制速度和方向。
这里的动量守恒定律可以帮助滑雪者更好地掌握滑雪技巧。
5. 跳水模型:跳水运动员在从高台跳水时,通过调整身体的动量分布,可以实现旋转和翻转动作。
动量守恒定律可以解释为什么跳水员在旋转过程中的速度会越来越快。
6. 棒球击球模型:当棒球被击中时,棒球会改变方向和速度。
根据动量守恒定律,可以计算出击球后棒球和球棒的动量变化。
7. 跑步模型:当人在奔跑时,每一步都会产生一个向后的力,这个力的大小和方向取决于人的动量变化。
动量守恒定律可以帮助我们理解为什么人在跑步时身体会向前移动。
8. 车辆碰撞模型:当两辆车发生碰撞时,根据动量守恒定律,可以计算出碰撞后车辆的速度和方向变化。
这对于交通事故的调查和分析非常重要。
9. 轮滑模型:轮滑运动员在滑行过程中可以通过改变身体的动量来改变速度和方向。
动量守恒定律可以帮助轮滑运动员更好地掌握技巧和平衡。
10. 舞蹈模型:舞蹈中的旋转动作可以通过改变身体的动量来实现。
动量守恒定律可以解释为什么舞者在旋转过程中能够保持平衡。
通过以上十个模型,我们可以看到动量守恒定律在各种物理现象中的应用。
这些模型不仅帮助我们理解动量守恒定律的概念,还能帮助我们解决实际问题,如交通事故调查、运动技巧的改进等。
动量守恒中几种常见的模型
模型四:
带弹簧的木板与滑块模型
如图所示,坡道顶端距水平面高度为h,质量为m1的小物块 A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能 损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线 M处的墙上,另一端与质量为m2的档板B相连,弹簧处于原 长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后 结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的 动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g, 求: (1)物块A在与挡板B碰撞前瞬间速度v的大小; (2)弹簧最大压缩量为d时的弹性势能Ep(设弹簧处于原长 时弹性势能为零).
解:当人从船头走到船尾的过程中,人和船组成的系统都
在水平方向上不受力的作用,故系统水平方向动量守恒。
设某时刻人对地的速度为V2,船对地的速度为V1,则
mV2-MV1=0,即
V1 M V2 m
在人从船头走到船尾的过程中每一时刻系统的动量均守恒, 故mV2t-MV1t=0,即 m所s以2-Ms1 s1m=m0LM,而, ss21+msM2=LML。,
从AB碰撞到弹簧压缩最短过程:
1 2
m1
m2
v'2
Ep
W
代入数据得:Ep m12 gh μm1 m2gd
m1 m2
思考:如果题目让你求解整个系统所产生的热量和压缩 弹簧过程产生的热量,又该怎么求?
规律总结:带弹簧的木板与滑块的模型,可以分为三 个过程:A物体下滑过程,遵循的是机械能守恒定律或 动能定理; A物体碰撞B物体过程,由于内力远大于外力,遵循动 量守恒定律; A、B压缩弹簧的过程,又遵循能量守恒定律(摩擦力 做功,机械能不守恒),分清物理过程,应用物理规 律建立方程,是解决这类问题的关键。
动量守恒中的常见模型
动量守恒中的常见模型考点一、碰撞(1)定义:相对运动的物体相遇,在极短时间内,通过相互作用,运动状态发生显著变化的过程叫做碰撞。
(2)碰撞的特点①作用时间极短,内力远大于外力,总动量总是守恒的.②碰撞过程中,总动能不增.因为没有其它形式的能量转化为动能.③碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大.④碰撞过程中,两物体产生的位移可忽略.(3)碰撞的分类①弹性碰撞(或称完全弹性碰撞)如果在弹性力的作用下,只产生机械能的转移,系统内无机械能的损失,称为弹性碰撞(或称完全弹性碰撞).此类碰撞过程中,系统动量和机械能同时守恒.②非弹性碰撞如果是非弹性力作用,使部分机械能转化为物体的内能,机械能有了损失,称为非弹性碰撞.此类碰撞过程中,系统动量守恒,机械能有损失,即机械能不守恒.③完全非弹性碰撞如果相互作用力是完全非弹性力,则机械能向内能转化量最大,即机械能的损失最大,称为完全非弹性碰撞.碰撞物体粘合在一起,具有同一速度.此类碰撞过程中,系统动量守恒,机械能不守恒,且机械能的损失最大.(4)判定碰撞可能性问题的分析思路①判定系统动量是否守恒.②判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度.③判定碰撞前后动能是不增加.【例题1】如图所示,物体A静止在光滑的水平面上,A的左边固定有轻质弹簧,与A质量相同的物体B以速度v向A运动并与弹簧发生碰撞,A、B始终沿同一直线运动,则A、B组成的系统动能损失最大的时刻是()A.A开始运动时B.A的速度等于v时C.B的速度等于零时D.A和B的速度相等时【例题2】如图所示,位于光滑水平面桌面上的小滑块P和Q都视作质点,质量相等。
Q与轻质弹簧相连。
设Q静止,P以某一初速度向Q 运动并与弹簧发生碰撞。
在整个过程中,弹簧具有最大弹性势能等于()A.P的初动能B .P的初动能的1/2C.P的初动能的1/3D.P的初动能的1/4【例题3】小球A和B的质量分别为mA 和mB 且mA»mB 在某高度处将A和B先后从静止释放。
动量守恒定律的典型模型及其应用+课件
动能损失为
E=12m1v12012m2v22012 m1m2v2
m1m1
2m1 m2
v10v20 2
解决碰撞问题须同时遵守的三个原则:
一. 系统动量守恒原则
二. 能量不增加的原则
三. 物理情景可行性原则
例如: 追赶碰撞:
碰撞前: V追赶 V被追
碰撞后:
在前面运动的物体的速度一定不 小于在后面运动的物体的速度
2 特例: 质量相等的两物体发生弹性正碰
v1
m1 m2 v10 2m2v20 m1 m2
v2
m2 m1 v20 2m1v10 m1 m2
碰后实现动量和动能的全部转移 (即交换了速度) 第219页2题
完全非弹性碰撞
碰撞后系统以相同的速度运动 v1=v2=v 动量守恒:
m 1 v 1 0 m 2 v 2 0 m 1 m 2 v
ABD
• 图中,轻弹簧的一端固定,另一端与滑块B相连,B静 止在水平直导轨上,弹簧处在原长状态。另一质量与B 相同滑块A,从导轨上的P点以某一初速度向B滑行,当 A滑过距离l1时,与B相碰,碰撞时间极短,碰后A.B紧
贴在一起运动,但互不粘连。已知最后A恰好返回出发
点P并停止,滑块A和B与导轨的滑动摩擦因数都为
高三物理重点专题
动量守恒定律的典型模型 及其应用
动量守恒定律的典型应用 几个模型:
(一)碰撞中动量守恒 (二)反冲运动、爆炸模型
(三)子弹打木块类的问题:
(四)人船模型: 平均动量守恒
• (1)在弹性形变增大的过程中,系统中两物 体的总动能减小,弹性势能增大,在系统形变 量最大时,两物体速度相等. 在形变减小(恢 复)的过程中,系统的弹性势能减小,总动能 增大.
动量守恒十模型
例 2:装甲车和战舰采用多层钢板比采用同样质量的单层 钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算 可以粗略说明其原因.质量为 2m、厚度为 2d 的钢板静止 在水平光滑桌面上.质量为 m 的子弹以某一速度垂直射向 该钢板,刚好能将钢板射穿.现把钢板分成厚度均为 d、 质量均为 m 的相同两块,间隔一段距离水平放置,如图所 示.若子弹以相同的速度垂直射向第一块钢板,穿出后再 射向第二块钢板,求子弹射入第二块钢板的深度.设子弹 在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不 计重力影响.
,其中
,
,
所以
.
例题:2:一个连同装备总质量为 M=100kg 的宇航员, 在距离飞船 x=45m 处与飞船处于相对静止状态,宇航 员背着装有质量为 m0=0.5 kg 氧气的贮气筒。筒上装有 可以使氧气以 v=50 m/s 的速度喷出的喷嘴,宇航员必
须向着返回飞船的相反方向放出氧气,才能回到飞船, 同时又必须保留一部分氧气供途中呼吸用,宇航员的
⑥
由题意,b 没有与墙发生碰撞,由功能关系可知12·34mv2′2≤μ ·34mgl
⑦
32 v20
联立③⑥⑦式,可得 μ ≥113gl
⑧
联立②⑧式,a 与 b 发生碰撞、但没有与墙发生碰撞的条件 13123vg20l≤μ <2vg20l 。
例 2.两滑块 a、b 沿水平面上同一条直线运动,并发生碰撞;碰撞后两者 粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置 x 随 时间 t 变化的图象如图 6 所示.求:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律中的典型模型1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。
一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。
例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。
设木块对子弹的阻力F恒定。
求:(1)子弹穿过木块的过程中木块的位移(2)若木块固定在传送带上,使木块随传送带始终以恒定速度u<V0水平向右运动,则子弹的最终速度是多少例2、如图所示,在光滑水平面上放有质量为2m的木板,木板左端放一质量为m的可视为质点的木块。
两者间的动摩擦因数为μ,现让两者以V0的速度一起向竖直墙向右运动,木板和墙的碰撞不损失机械能,碰后两者最终一起运动。
求碰后:(1)木块相对木板运动的距离s(2)木块相对地面向右运动的最大距离L2、人船模型例3、一条质量为M,长为L的小船静止在平静的水面上,一个质量为m的人站立在船头.如果不计水对船运动的阻力,那么当人从船头走到船尾时,船的位移多大?例4、载人气球原静止于高h的高空,气球质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?3、弹簧木块模型例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。
则( )A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒 B .当两物块相距最近时,甲物块的速率为零C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0D .甲物块的速率可能达到5m/s例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求:(1)当物体B 与C 分离时,B 对C 做的功有多少?(2)当弹簧再次恢复到原长时,A 、B 的速度各是多大?例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m.(1)求弹簧第一次最短时的弹性势能(2)何时B 的速度最大,最大速度是多少?4、碰撞、爆炸、反冲Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零)(1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为① m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ②222211222211'21'212121v m v m v m v m +=+ . (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为 ① m A v 0=m A v A +m B v B ,②2220212121BB A A A v m v m v m += 可解出碰后速度0v m m m m v B A B A A +-=,C B Amv oBAv B =02v m m m BA A+.若m A =m B ,则v A = 0 ,v B = v 0 ,即质量相等的两物体发生弹性碰撞的前后,两物体速度互相交换(这一结论也适用于B 初速度不为零时).(4)完全非弹性碰撞有两个主要特征.①碰撞过程中系统的动能损失最大.②碰后两物体速度相等. Ⅱ、形变与恢复(1)在弹性形变增大的过程中,系统中两物体的总动能减小,弹性势能增大,在形变减小(恢复)的过程中,系统的弹性势能减小,总动能增大.在系统形变量最大时,两物体速度相等.(2)若形变不能完全恢复,则相互作用过程中产生的内能增量等于系统的机械能损失. Ⅲ、反冲(1)物体向同一方向抛出(冲出)一部分时(通常一小部分),剩余部分将获得相反方向的动量增量,这一过程称为反冲.(2)若所受合外力为零或合外力的冲量可以忽略,则反冲过程动量守恒.反冲运动中,物体的动能不断增大,这是因为有其他形式能转化为动能.例如火箭运动中,是气体燃烧释放的化学能转化为火箭和喷出气体的动能.例8、一个不稳定的原子核质量为M ,处于静止状态,放出一个质量为m 的粒子后反冲。
已知 放出的粒子的动能为E 0,则原子核反冲的动能为( )A .E 0B .0E MmC .0E m M m- D .02)(E m M Mm -例9、在太空中有一支相对太空站处于状态的质量为M 的火箭,突然喷出质量为m 的气体,喷出气体的速度为v 0(相对太空站),紧接着再喷出质量也为m 的另一股气体,此后火箭获得速率V (相对太空站)。
火箭第二次喷射的气体(相对太空站)的速度为多大?例10、如图所示,在足够长的光滑水平轨道上静止三个小木块A ,B ,C ,质量分别为m A =1kg ,m B =1kg ,m C =2kg ,其中B 与C 用一个轻弹簧固定连接,开始时整个装置处于静止状态;A 和B 之间有少许塑胶炸药,A 的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失)。
现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J 转化为A 和B 沿轨道方向的动能,A 和B 分开后,A 恰好在BC 之间的弹簧第一次恢复到原长时追上B ,并且在碰撞后和B 粘到一起。
求: (1)在A 追上B 之前弹簧弹性势能的最大值; (2)A 与B 相碰以后弹簧弹性势能的最大值。
5、多个物体作用问题例11、有n个完全相同的物块放在光滑的水平面上一字儿排开,物块之间均匀距离为d,开始物块1以v0的初速度向物块2运动,碰撞后粘在一起,又向物块3运动,粘在一起后又向物块4运动……如此进行下去。
(1)物块n的速度为多少?(2)从物块1开始运动计时,到物块n开始运动所经历总时间是多少?(设每次碰撞的时间极短,忽略不计)例12、某兴趣小组设计了一种实验装置,用来研究碰撞问题,其模型如图所示,用完全相同的轻绳将N 个大小相同、质量不等的小球并列悬挂于一水平杆、球间有微小间隔,从左到右,球的编号依次为1、2、3……N,球的质量依次递减,每球质量与其相邻左球质量之比为k(k<1).将1号球向左拉起,然后由静止释放,使其与2号球碰撞,2号球再与3号球碰撞……所有碰撞皆为无机械能损失的正碰。
(不计空气阻力,忽略绳的伸长,g取10 m/s2)⑴设与n+1号球碰撞前,n号球的速度为v n,求n+1号球碰撞后的速度.⑵若N=5,在1号球向左拉高h的情况下,要使5号球碰撞后升高16k(16 h小于绳长)问k值为多少?例1:解析:(1)木块的过程中,系统动量守恒,而机械能要损失,且损失的机械能等于阻力F 和木块长L 的乘积。
设子弹穿过木块后木块获得的速度是v 由系统动量守恒得: mV 0=mV 0/2+2mv (1)由能量守恒得: FL=21m V 02-212m V 2-81m V 02 (2) 对木块有:FS=212mV 2 (3) 解以上三式得:木块的位移S=51L 木块对子弹的阻力F=L165m V 02(2)在此过程中,由于木块受到传送带的作用力,所以系统动量不守恒。
此题不能用动量守恒解。
由题的条件,我们可以用运动学来处理此题。
选木块为参照系,则:子弹的初速度为(V 0-u) 末速度为(V-u ) 位移为L 加速度a=F/m=165mV 02 对子弹有:(V 0-u)2-(V –u )2=2as 解得:V=u+202085)(v u v --当 (V 0-u)2>5/8 V 02 即u<(1-410) V 0时 V=u+202085)(v u v --当(V 0-u)2<5/8 V 02 即u>(1-410) V 0时 V=u 解法二:以子弹为研究对象由动量定理和动能定理得: mV 0-mv=Ft (1)21mV 02-21m V 2=F(ut+L) (2) 解以上两式得V ,后面的解与第一种方法相同题型变化:上题中子弹变为木块,木块变为长木板其它条件不变,求第一问。
(解法相同)例2:S=4V 02/3μg L=V 02/2μg例4:气球和人原静止于空中,说明系统所受合力为零,故人下滑过程中系统动量守恒。
人着地时,绳梯至少应触及地面,若设绳梯长为L ,人沿绳梯滑至地面的时间为t ,由动量守恒定律有:thm t h L M =-,解得h MmM L += 例5:C例6:(1)当弹簧恢复原长时,B 与C 分离,0=m A v A -(m B +m c )v C ①,E P =221A A v m +2)(21C C B v m m +②,对C 由动能定理得W =221C C v m -0③,由①②③得W =18J ,v A =v C =6m/s . (2)取A 、B 为研究系统,m A v A -m B v C = m A v A ’ +m B v C ’, 221A A v m +221C B v m =21 m A v A ’2+21 m B v C ’2,当弹簧恢复到原长时A 、B 的速度分别为:,v A =v B =6m/s 或v A =-2m/s , v B =10m/s .例7:(1)从子弹击中木块A 到弹簧第一次达到最短的过程可分为两个小过程一是子弹与木块A 的碰撞过程,动量守恒,有机械能损失;二是子弹与木块A 组成的整体与木块B 通过弹簧相互作用的过程,动量守恒,系统机械能守恒,子弹打入: mv 0=4mv 1 ① 打入后弹簧由原长到最短: 4mv 1=8mv 2 ②机械能守恒:P E mv mv +=2221821421 ③ 解①②③得 20161mv E P =(2)从弹簧原长到压缩最短再恢复原长的过程中,木块B 一直作变加速运动,木块A 一直作变减速运动,相当于弹性碰撞,因质量相等,子弹和A 组成的整体与B 木块交换速度,此时B 的速度最大,设弹簧弹开时A 、B 的速度分别为'21,v v '4mv 1=4mv 1’ +4mv 2’ ④2’22’121421421421mv mv mv += ⑤ 解得: v 1’=o ,v 2’=v 1 = 40v 例8:C例9:01)(0mv v m M --= ① v m V m M v m M '--=-)2()(1 ② 02v V V mMv --=' ③例10:(1)塑胶炸药爆炸瞬间取A 和B 为研究对象,假设爆炸后瞬间AB 的速度大小分别为v A 、v B ,取向右为正方向 由动量守恒:-m A v A +m B m B =0 ………………① 爆炸产生的热量由9J 转化为AB 的动能:222121BB A A v m v m E +=…………② 带入数据解得:v A =v B =3m/s ………………③由于A 在炸药爆炸后再次追上B 的时候弹簧恰好第一次恢复到原长,则在A 追上B 之前弹簧已经有一次被压缩到最短,(即弹性势能最大)爆炸后取BC 和弹簧为研究系统,当弹簧第一次被压缩到最短时BC 达到共速v BC ,此时弹簧的弹性势能最大,设为E p1 由动量守恒:m B v B =(m B +m C )v BC ………………④由能量定恒定定律:P Bc C B B B E v m m v m ++=22)(2121 ………………⑤带入数据得:E P1=3J ………………⑥(2)设BC 之间的弹簧第一次恢复到原长时B 、C 的速度大小分别为v B1和v C1,则由动量守恒和能量守恒: m B v B =m B v B1+m C v C1 ………………⑦21212212121C C B B B B v m v m v m += ………………⑧带入数据解得:v B1=-1m/s v C1=2m/s ..................⑨ (v B1=3m/s v C1=0m/s 不合题意,舍去。