2017-2018学年北京市朝阳区九年级二模数学试卷(含答案)

合集下载

2017中考-朝阳二模数学答案

2017中考-朝阳二模数学答案

17. 【答案】3
18. 【答案】1
19. 【答案】x < 2 .
21. 【答案】(1)m <
5 2

(2)m = 2 .
22. 【答案】小明的调查方案能较好地获得该校学生本学期社会实践活动的情况. 小亮的调查方案的不足之处:抽样调查所抽取的样本的代表性不够好. 小天的调查方案的不足之处:抽样调查所抽取的学生数量太少.
23. 【答案】(1)证明见解析. (2)OC = 2 √7 .
24. 【答案】(1)折线图见解析. (2)1.5276.0 2.2011 − 2016 平均每年增加333.96 亿元
25. 【答案】(1)证明见解析. (2)思路见解析.
26. 【答案】(1) 1
3 4
2 函数图象见解析.



20. 【答案】证明见解析.
29. 【答案】(1)B ,C (2) (3)
10 3 2 √3 ⩽ b ⩽ 2 √3 3 ⩽ r ⩽ 5


或−2 √3 ⩽ b ⩽ −
2 √3 3



2017年北京朝阳区初三二模数学试卷
一、选择题(本题共30分,每小题3分)
1. 【答案】A
2. 【答案】B
3. 【答案】C
4. 【答案】C
5. 【答案】B
6. 【答案】D
7. 【答案】D
8. 【答案】A
9. 【答案】B
10. 【答案】D
二、填空题(本题共18分,每小题3分)
11. பைடு நூலகம்答案】x ⩾ 2
3 当x < 0 时,y 随x 的增大而增大
(2)函数图象的最高点坐标为(1, 2) .

北京市朝阳区九年级数学6月综合练习(二模)试题(扫描版)

北京市朝阳区九年级数学6月综合练习(二模)试题(扫描版)

北京市朝阳区2017届九年级数学6月综合练习(二模)试题北京市朝阳区九年级综合练习(二)数学试卷评分标准及参考答案 2017.6一、选择题(本题共30分,每小题3分) 题 号 1 2 3 4 5 6 7 8 9 10 答 案ABCCBDDABD二、填空题(本题共18分,每小题3分) 11. x ≥2.12. (2)(2)a x y x y +-. 13. 答案不惟一 ,如:y =x . 14. 18. 15.①②③.16. 同圆半径相等;线段垂直平分线的定义;三角形的中位线平行于第三边.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式=241224-+-⨯ =3. 18.解:()239x x x--÷=(3)(3)3xx x x +-⋅- =23x x +. 2310,x x +-=Q∴原式=1.19.解: 去分母,得 2193x x --<. 移项,得 2391x x ++<. 合并,得 510x <. 系数化1,得 2x <. 不等式的解集是在数轴上表示如下 :20.证明:∵,AB AC AD BC =是边上的高,∴∠BAE =∠CAE . ∵CE ∥AB , ∴∠E =∠BAE . ∴∠E =∠CAE .∴CE =AC .∵AB =AC , ∴CE =AB .21.解:(1)依题意,得∆=16-4(2m -1)>0.∴ m <52. (2)∵m 为正整数, ∴m =1或2.当m=1时,方程为2410x x -+=的根23x =±不是整数; 当m=2时,方程为2430x x -+=的根121,3x x ==,都是整数.综上所述,m =2.22.答:小明的调查方案能较好地获得该校学生本学期社会实践活动的情况.小亮的调查方案的不足之处:抽样调查所抽取的样本的代表性不够好. 小天的调查方案的不足之处:抽样调查所抽取的学生数量太少.23. (1) 证明:∵四边形ABCD 是平行四边形,∴BC ∥AD ,BC =AD . ∵E ,F 分别是BC ,AD 的中点, ∴11,22BE BC AF AD ==.∴BE =AF .∴四边形ABEF 是平行四边形. ∵BC =2AB , ∴AB =BE .∴Y ABEF 是菱形. (2)解:过点O 作OG ⊥BC 于点G .∵E是BC的中点,BC=8,∴BE=CE=4.∵四边形ABEF是菱形,∠ABC=60°,∴∠OBE=30,∠BOE=90°.∴OE=2,∠OEB=60°.∴GE=1,OG=3.∴GC=5.∴OC=27.24.解: (1) 2011—2016年朝阳区生产总值折现统计图(2)预估理由须包含折线图中提供的信息,且支撑预估的数据.25.(1)证明:连接OB.∵∠A=45°,∴∠DOB=90°.∵OD∥BC,∴∠DOB+∠CBO =180°.∴∠CBO=90°.∴直线BC是⊙O的切线.(2)求解思路如下:如图,延长BO 交⊙O 于点F ,连接AF .①由AB =AC ,∠BAC =45°,可得∠ABC =67.5°,∠ABF =22.5°;②在Rt △EOB 中,由OB =r ,可求BE 的长;③由BF 是直径,可得∠FAB =90°,在Rt △FAB 中,由BF =2r ,可求AB 的长,进而可求AE 的长.26.解: (1)①当x =12时,y =34.∴34m =.②该函数的图象如下图所示:③答案不惟一,如:当x <0时,y 随x 的增大而增大.(2)答案不惟一,如:函数图象的最高点坐标为(1,2).27.解:(1)由题意,当x =0时,y =2.∴A (0,2).∵2222(1)2y mx mx m x m =-+=-+-,∴对称轴为直线x =1.∴B (1,0).(2)由题意,C (-1,0),D (3,0).①当m >0时,结合函数图象可知,满足题意的抛物线的顶点须在x 轴下方,即2-m <0.∴m >2.②当m<0时,过C(-1,0)的抛物线的顶点为E(1,83).结合函数图象可知,满足条件的抛物线的顶点须在点E上方或与点E重合,即2-m≥83.∴m≤23 -.综上所述,m的取值范围为m>2或m≤23-.28.解:(1)105°.(2)①补全图形,如图所示.②想法1:如图,∵∠ACB=∠ADB =90°,∴∠CAD+∠CBD==180°.∵∠DBE+∠CBD==180°,∴∠CAD=∠DBE.∵DA=DB,AC=BE,∴△ACD≌△BED.∴DC=DE,∠ADC=∠BDE.∴∠CDE =90°.∴△CDE为等腰直角三角形.∵AC=1,BC=3,∴CE=4.∴CD=22想法2:如图,∵∠ACB=∠ADB =90°,∴∠CAD+∠CBD==180°.∵∠DAG+∠CAD==180°,∴∠CBD=∠DAG.∵DA=DB,∠DGA=∠DHB=90°,∴△BDH≌△ADG.∴DH=DG,BH=AG.∴∠DCH=∠DCG=45°.∴△CHD为等腰直角三角形.∵AC=1,BC=3,∴CH=2.∴CD=22(3)2AC BC CD+=.29.解:(1)B,C.(2)∵E(3,4)∴EO=5.∴5, 35. 2rr≤⎧⎪⎨≥⎪⎩∴1053r≤≤.(3232323-23b b≤≤≤≤或.说明:各解答题的其他正确解法请参照以上标准给分.。

北京市朝阳区2017届九年级数学6月综合练习(二模)试题(扫描版)

北京市朝阳区2017届九年级数学6月综合练习(二模)试题(扫描版)

北京市朝阳区2017届九年级数学6月综合练习(二模)试题北京市朝阳区九年级综合练习(二)数学试卷评分标准及参考答案 2017.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11. x ≥2.12. (2)(2)a x y x y +-. 13. 答案不惟一 ,如:y =x . 14. 18. 15.①②③.16. 同圆半径相等;线段垂直平分线的定义;三角形的中位线平行于第三边.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=414-+ =3. 18.解:()239x x x--÷=(3)(3)3xx x x +-⋅- =23x x +.2310,x x +-=∴原式=1.19.解: 去分母,得 2193x x --<. 移项,得 2391x x ++<. 合并,得 510x <. 系数化1,得 2x <. 不等式的解集是在数轴上表示如下 :20.证明:∵,AB AC AD BC =是边上的高,∴∠BAE =∠CAE . ∵CE ∥AB , ∴∠E =∠BAE . ∴∠E =∠CAE .∴CE =AC .∵AB =AC , ∴CE =AB .21.解:(1)依题意,得∆=16-4(2m -1)>0.∴ m <52. (2)∵m∴m =1或2.当m=1时,方程为2410x x -+=的根2x =± 当m=2时,方程为2430x x -+=的根121,3x x ==,都是整数.综上所述,m =2.22.答:小明的调查方案能较好地获得该校学生本学期社会实践活动的情况.小亮的调查方案的不足之处:抽样调查所抽取的样本的代表性不够好. 小天的调查方案的不足之处:抽样调查所抽取的学生数量太少.23. (1) 证明:∵四边形ABCD 是平行四边形,∴BC ∥AD ,BC =AD . ∵E ,F 分别是BC ,AD 的中点, ∴11,22BE BC AF AD ==.∴BE =AF .∴四边形ABEF 是平行四边形. ∵BC =2AB , ∴AB =BE .∴ABEF 是菱形.(2)解:过点O 作OG ⊥BC 于点G .∵E是BC的中点,BC=8,∴BE=CE=4.∵四边形ABEF是菱形,∠ABC=60°,∴∠OBE=30,∠BOE=90°.∴OE=2,∠OEB=60°.∴GE=1,∴GC=5.∴OC=24.解: (1) 2011—2016年朝阳区生产总值折现统计图(2)预估理由须包含折线图中提供的信息,且支撑预估的数据.25.(1)证明:连接OB.∵∠A=45°,∴∠DOB=90°.∵OD∥BC,∴∠DOB+∠CBO =180°.∴∠CBO=90°.∴直线BC是⊙O的切线.(2)求解思路如下:如图,延长BO 交⊙O 于点F ,连接AF .①由AB =AC ,∠BAC =45°,可得∠ABC =67.5°,∠ABF =22.5°;②在Rt △EOB 中,由OB =r ,可求BE 的长;③由BF 是直径,可得∠FAB =90°,在Rt △FAB 中,由BF =2r ,可求AB 的长,进而可求AE 的长.26.解: (1)①当x =12时,y =34. ∴34m =.②该函数的图象如下图所示:③答案不惟一,如:当x <0时,y 随x 的增大而增大.(2)答案不惟一,如:函数图象的最高点坐标为(1,2).27.解:(1)由题意,当x =0时,y =2.∴A (0,2).∵2222(1)2y mx mx m x m =-+=-+-,∴对称轴为直线x =1.∴B (1,0).(2)由题意,C (-1,0),D (3,0).①当m >0时, 结合函数图象可知,满足题意的抛物线的顶点须在x 轴下方,即2-m <0.∴m >2.②当m<0时,过C(-1,0)的抛物线的顶点为E(1,83).结合函数图象可知,满足条件的抛物线的顶点须在点E上方或与点E重合,即2-m≥83.∴m≤23 -.综上所述,m的取值范围为m>2或m≤23-.28.解:(1)105°.(2)①补全图形,如图所示.②想法1:如图,∵∠ACB=∠ADB =90°,∴∠CAD+∠CBD==180°.∵∠DBE+∠CBD==180°,∴∠CAD=∠DBE.∵DA=DB,AC=BE,∴△ACD≌△BED.∴DC=DE,∠ADC=∠BDE.∴∠CDE =90°.∴△CDE为等腰直角三角形.∵AC=1,BC=3,∴CE=4.∴CD=想法2:如图,∵∠ACB =∠ADB =90°,∴∠CAD +∠CBD ==180°.∵∠DAG +∠CAD ==180°,∴∠CBD =∠DAG .∵DA =DB ,∠DGA =∠DHB =90°,∴△BDH ≌△ADG .∴DH =DG ,BH =AG .∴∠DCH =∠DCG =45°.∴△CHD 为等腰直角三角形.∵AC =1,BC =3,∴CH =2.∴CD=(3)AC BC +=.29.解:(1)B ,C .(2)∵E (3,4)∴EO =5.∴5,35.2r r ≤⎧⎪⎨≥⎪⎩ ∴1053r ≤≤.(3b b ≤≤≤≤.说明:各解答题的其他正确解法请参照以上标准给分.。

北京市朝阳区2017届九年级数学6月综合练习二模试题扫描版

北京市朝阳区2017届九年级数学6月综合练习二模试题扫描版
结合函数图象可知,满足题意的抛物线的顶点须在x轴下方,
即2-m<0.
∴m>2.
②当m<0时,
过C(-1,0)的抛物线的顶点为E(1, ).
结合函数图象可知,满足条件的抛物线的顶点须在点E上方或与点E重合,
即2-m≥ .
∴m≤ .
综上所述,m的取值范围为m>2或m≤ .
28.解:(1)105°.
(2)①补全图形,如图所示.
∴ .
∴BE=AF.
∴四边形ABEF是平行四边形.
∵BC=2AB,
∴AB=BE.
∴ABEF是菱形.
(2)解:过点O作OG⊥BC于点G.
∵E是BC的中点,BC=8,
∴BE=CE=4.
∵四边形ABEF是菱形,∠ABC=60°,
∴∠OBE=30,∠BOE=90°.
∴OE=2,∠OEB=60°.
∴GE=1,OG=.
如图,延长BO交⊙于点F,连接AF.
①由AB=AC,∠BAC=45°,可得∠ABC=67.5°,∠ABF=22.5°;
②在Rt△EOB中,由OB=r,可求BE的长;
③由BF是直径,可得∠FAB=90°,在Rt△FAB中,由BF=2r,
可求AB的长,进而可求AE的长.
26.解:(1)①当x= 时,y= .
∴CD= .
想法2:
如图,
∵∠ACB=∠ADB=90°,
∴∠CAD+∠CBD==180°.
∵∠DAG+∠CAD==180°,
∴∠CBD=∠DAG.
∵DA=DB,∠DGA=∠DHB=90°,
∴△BDH≌△ADG.
∴DH=DG,BH=AG.
∴∠DCH=∠DCG=45°.
∴△CHD为等腰直角三角形.

2018年北京市朝阳区中考数学二模试卷-含详细解析

2018年北京市朝阳区中考数学二模试卷-含详细解析

2018年北京市朝阳区中考数学二模试卷副标题一、选择题(本大题共8小题,共16.0分)1.若代数式的值为零,则实数x的值为()A. B. C. D.2.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.3.中国传统扇文化有着深厚的底蕴,下列扇面图形既是轴对称图形又是中心对称图形的是()A. B.C. D.4.如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO=2,OB=1,BC=2,则下列结论正确的是()A. B. C. D.5.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为()A. 3B. 4C. 5D. 66.已知a2-5=2a,代数式(a-2)2+2(a+1)的值为()A. B. C. 1 D. 117.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多③有的人每周使用手机支付的次数在35~42次④每周使用手机支付不超过21次的有15人其中正确的是()A. ①②B. ②③C. ③④D. ④8.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为()A. B. C. D. 6二、填空题(本大题共8小题,共16.0分)9.写出一个比大且比小的有理数:______.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有______(只填写序号).11.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为______.12.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=____.13.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.14.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:______.15.下列对于随机事件的概率的描述:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85其中合理的有______(只填写序号).16.下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.三、计算题(本大题共2小题,共10.0分)17.解不等式-3>2x-1,并把解集在数轴上表示出来.18.已知关于x的一元二次方程x2+2(m-1)x+m2-3=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值.四、解答题(本大题共10小题,共58.0分)19.计算:-3tan30°+(2018-π)0-()-1.20.如图,△ABC中,∠C=90°,AC=BC,∠ABC的平分线BD交AC于点D,DE⊥AB于点E.(1)依题意补全图形;(2)猜想AE与CD的数量关系,并证明.21.如图,在平面直角坐标系xOy中,直线y=k1x+6与函数y=(x>0)的图象的两个交点分别为A(1,5),B.(1)求k1,k2的值;(2)过点P(n,0)作x轴的垂线,与直线y=k1x+6和函数y=(x>0)的图象的交点分别为点M,N,当点M在点N下方时,写出n的取值范围.22.如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.23.AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是中点,连接CE,BE,若BE=2,求CE的长.24.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.25.在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC 于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.2x y(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.26.已知二次函数y=ax2-2ax-2(a≠0).(1)该二次函数图象的对称轴是直线;(2)若该二次函数的图象开口向上,当-1≤x≤5时,函数图象的最高点为M,最低点为N,点M的纵坐标为,求点M和点N的坐标;(3)对于该二次函数图象上的两点A(x1,y1),B(x2,y2),设t≤x1≤t+1,当x2≥3时,均有y1≥y2,请结合图象,直接写出t的取值范围.27.如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD=______度;(2)求∠CDF的度数;(3)用等式表示线段CD和CE之间的数量关系,并证明.28.对于平面直角坐标系xOy中的点P和直线m,给出如下定义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点.(1)当直线m的表达式为y=x时,①在点P1(1,1),P2(0,),P3(,)中,直线m的平行点是______;②⊙O的半径为,点Q在⊙O上,若点Q为直线m的平行点,求点Q的坐标.(2)点A的坐标为(n,0),⊙A半径等于1,若⊙A上存在直线的平行点,直接写出n的取值范围.答案和解析1.【答案】A【解析】解:∵代数式的值为零,∴x=0,故选:A.根据分式值为0的条件:分子=0且分母≠0,求解即可.本题考查了分式值为0的条件,掌握分式值为0的条件:分子=0且分母≠0是解题的关键.2.【答案】B【解析】解:如图,一个长方形绕轴l旋转一周得到的立体图形是圆柱.故选:B.一个矩形绕着它的一边旋转一周,根据面动成体的原理即可解.本题主要考查点、线、面、体,圆柱的定义,根据圆柱体的形成可作出判断.3.【答案】C【解析】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】C【解析】解:∵AO=2,OB=1,BC=2,∴a=-2,b=1,c=3,∴|a|≠|c|,ab<0,a+c=1,b-a=1-(-2)=3,故选:C.根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b,c的值.5.【答案】D【解析】解:∵⊙O的半径与这个正n边形的边长相等,∴这个多边形的中心角=60°,∴=60°,∴n=6,故选:D.因为⊙O的半径与这个正n边形的边长相等,推出这个多边形的中心角=60°,构建方程即可解决问题;本题考查正多边形与圆,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.6.【答案】D【解析】解:由题意可知:a2-2a=5,原式=a2-4a+4+2a+2=a2-2a+6=5+6=11故选:D.根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.7.【答案】B【解析】解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;②每周使用手机支付次数为28~35次的人数最多,此结论正确;③每周使用手机支付的次数在35~42次所占比例为=,此结论正确;④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:B.根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8.【答案】A【解析】解:∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD -S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=12-,故选:A.根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.【答案】答案不唯一,如:2【解析】解:到之间可以为:2(答案不唯一),故答案为:2(答案不唯一).直接利用接近与的数据得出符合题意的答案.此题主要考查了估算无理数的大小,正确得出比大且比小的无理数是解题关键.10.【答案】③【解析】解:①点A在直线BC上是错误的;②直线AB经过点C是错误的;③直线AB,BC,CA两两相交是正确的;④点B是直线AB,BC,CA的公共点是错误的.故答案为:③.根据直线与点的位置关系即可求解.考查了直线、射线、线段,关键是熟练掌握直线、射线、线段的定义,是基础题型.11.【答案】m+n-n【解析】解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.在Rt△BDF中,BF=n,∠DBF=30°,∴DF=BF•tan∠DBF=n.在Rt△ACE中,∠AEC=90°,∠ACE=45°,∴AE=CE=BF=n,∴AB=BE-AE=CD+DF-AE=m+n-n.故答案为:m+n-n.延长BA交CE于点E,设CF⊥BF于点F,通过解直角三角形可求出DF、AE 的长度,再利用AB=CD+DF-AE即可求出结论.本题考查了解直角三角形的应用,通过解直角三角形求出DF、AE的长度是解题的关键.12.【答案】2【解析】解:∵BD=CD,∴=,∴OD⊥BC,∴BE=CE,而OA=OB,∴OE为△ABC的中位线,∴OE=AC=×6=3,∴DE=OD-OE=5-3=2.故答案为2.先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到OE=AC=3,入境计算OD-OE即可.本题考查了三角形的外接圆与外心:熟练掌握三角形外心的定义和外心的性质.也考查了垂径定理.13.【答案】113407;北京市近两年的专利授权量平均每年增加6458.5件【解析】解:∵北京市近两年的专利授权量平均每年增加:=6458.5(件),∴预估2018年北京市专利授权量约为106948+6458.5≈113407(件),故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.(理由须支撑推断的合理性)依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.本题考查用样本估计总体、折线统计图,解题的关键是明确题意,找出所求问题需要的条件.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.14.【答案】(4,2)【解析】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为:(4,2).根据题意和旋转变换的性质、平移的性质画出图形,根据坐标与图形的变化中的旋转和平移性质解答.本题考查的是正方形的性质、旋转变换的性质、平移的性质,掌握坐标与图形的变化中的旋转和平移性质是解题的关键.15.【答案】②③【解析】解:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,大约有50次“正面朝上”,此结论错误;②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是=0.2,此结论正确;③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85,此结论正确;故答案为:②③.根据事件的类型及概率的意义找到正确选项即可.本题考查了概率的意义,大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.16.【答案】到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线【解析】解:由作法得BC垂直平分AE,所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).17.【答案】解:去分母,得 3x+1-6>4x-2,移项,得 3x-4x>-2+5,合并同类项,得-x>3,系数化为1,得x<-3,不等式的解集在数轴上表示如下:【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.【答案】解:(1)△=[2(m-1)]2-4(m2-3)=-8m+16.∵方程有两个不相等的实数根,∴△>0.即-8m+16>0.解得m<2;(2)∵m<2,且m为非负整数,∴m=0或m=1,当m=0时,原方程为x2-2x-3=0,解得x1=3,x2=-1,不符合题意舍去,当m=1时,原方程为x2-2=0,解得x1=,x2=-,综上所述,m=1.【解析】(1)利用根与系数的关系得到△=[2(m-1)]2-4(m2-3)=-8m+16>0,然后解不等式即可;(2)先利用m的范围得到m=0或m=1,再分别求出m=0和m=1时方程的根,然后根据根的情况确定满足条件的m的值.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.19.【答案】解:原式=2-3×+1-2=-1.【解析】直接利用零指数幂的性质以及负整数指数幂的性质、特殊角的三角函数值、二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:(1)如图:(2)AE与CD的数量关系为AE=CD.证明:∵∠C=90°,AC=BC,∴∠A=45°.∵DE⊥AB,∴∠ADE=∠A=45°.∴AE=DE,∵BD平分∠ABC,∴CD=DE,∴AE=CD.【解析】(1)利用题中几何语言画图;(2)利用等腰三角形的性质得∠A=45°.则∠ADE=∠A=45°,所以AE=DE,再根据角平分线性质得CD=DE,从而得到AE=CD.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰直角三角形和角平分线的性质.21.【答案】解:(1)∵A(1,5)在直线y=k1x+6上,∴k1=-1,∵A(1,5)在>的图象上,∴k2=5.(2)观察图象可知,满足条件的n的值为:0<n<1或者n>5.【解析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用图象法解决问题.22.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵DE=CD,∴AB=DE.∴四边形ABDE是平行四边形;(2)∵AD=DE=4,∴AD=AB=4.∴▱ABCD是菱形,∴AB=BC,AC⊥BD,BO=,∠ABO=.又∵∠ABC=60°,∴∠ABO=30°.在Rt△ABO中,AO=AB•sin∠ABO=2,.∴BD=.∵四边形ABDE是平行四边形,∴AE∥BD,.又∵AC⊥BD,∴AC⊥AE.在Rt△AOE中,.【解析】(1)根据平行四边形的性质和判定证明即可;(2)根据菱形的判定和三角函数解答即可.本题考查了平行四边形的判定与性质以及菱形的判定,有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.23.【答案】(1)证明:连接OC.∵AB为⊙O直径,∴∠ACB=90°,∵CD为⊙O切线∴∠OCD=90°,∴∠ACO=∠DCB=90°-∠OCB,∵CA=CD,∴∠CAD=∠D.∴∠COB=∠CBO.∴OC=BC.∴OB=BC;(2)解:连接AE,过点B作BF⊥CE于点F.∵E是AB中点,∴=,∴AE=BE=2.∵AB为⊙O直径,∴∠AEB=90°.∴∠ECB=∠BAE=45°,.∴.∴CF=BF=1.∵∠CEB=∠CAB=30°,∴.∴.【解析】(1)连接OC,根据圆周角定理、切线的性质得到∠ACO=∠DCB,根据CA=CD 得到∠CAD=∠D,证明∠COB=∠CBO,根据等角对等边证明;(2)连接AE,过点B作BF⊥CE于点F,根据勾股定理计算即可.本题考查的是切线的性质、圆周角定理、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.24.【答案】(1)①②3.4;3棵;(2)70.【解析】【分析】本题主要考查频数分布直方图,解题的关键是掌握众数、平均数的定义及样本估计总体思想的运用.(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【解答】解:(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是=3.4,众数为3,故答案为:3.4;3;(2)估计该小区采用这种形式的家庭有300×=70户,故答案为:70.25.【答案】3.5【解析】解:(1)60(2)取点、画图、测量,得到数据为3.5故答案为:3.5(3)由数据得(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x所以,当(2)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.2.根据题意作图测量即可.本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.26.【答案】解:(1)该二次函数图象的对称轴是直线x==1;(2)∵该二次函数的图象开口向上,对称轴为直线x=1,-1≤x≤5,∴当x=5时,y的值最大,即M(5,).把M(5,)代入y=ax2-2ax-2,解得a=.∴该二次函数的表达式为y=.当x=1时,y=,∴N(1,).(3)t的取值范围-1≤t≤2.【解析】(1)利用对称轴公式计算即可;(2)构建方程求出a的值即可解决问题;(3)当t≤x1≤t+1,x2≥3时,均满足y1≥y2,推出当抛物线开口向下,点P在点Q 左边或重合时,满足条件,可得t+1≤3或-1≤t,由此即可解决问题;本题考查二次函数的性质,函数的最值问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.【答案】45【解析】(1)解:∵AB=AC,M是BC的中点,∴AM⊥BC,∠BAD=∠CAD,∵∠BAC=90°,∴∠CAD=45°,故答案为:45…………………………………………(1分)(2)解:如图,连接DB.∵AB=AC,∠BAC=90°,M是BC的中点,∴∠BAD=∠CAD=45°.∴△BAD≌△CAD.………………………………(2分)∴∠DBA=∠DCA,BD=CD.∵CD=DF,∴BD=DF.………………………………………(3分)∴∠DBA=∠DFB=∠DCA.∵∠DFB+∠DFA=180°,∴∠DCA+∠DFA=180°.∴∠BAC+∠CDF=180°.∴∠CDF=90°.…………………………………………………………………………(4分)(3)CE= CD.………………………………………………………………………(5分)证明:∵∠EAD=90°,∴∠EAF=∠DAF=45°.∵AD=AE,∴△EAF≌△DAF.……………………………………………………………………(6分)∴DF=EF.由②可知,CF=.………………………………………………………………(7分)∴CE=EF+CF=DF+CF=CD+CF=CD.(1)根据等腰三角形三线合一可得结论;(2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;(3)证明△EAF≌△DAF,得DF=EF,由②可知,CF=可得结论.本题考查了三角形全等的性质和判定、等腰直角三角形的判定与性质、四边形的内角和定理、等腰三角形三线合一的性质等知识,属于基础题,但本题已知相等线段较多,要认真识别.28.【答案】P2,P3【解析】解:(1)①因为P2、P3到直线y=x的距离为1,所以根据平行点的定义可知,直线m的平行点是P2,P3,故答案为P2,P3.②解:由题意可知,直线m的所有平行点组成平行于直线m,且到直线m的距离为1的直线.设该直线与x轴交于点A,与y轴交于点B.如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.由直线m的表达式为y=x,可知∠OAB=∠OBA=45°.所以OB=.直线AB与⊙O的交点即为满足条件的点Q.连接OQ1,作Q1N⊥y轴于点N,可知OQ1=.在Rt△OHQ1中,可求HQ1=3.所以BQ1=2.在Rt△BHQ1中,可求NQ1=NB=.所以ON=.所以点Q1的坐标为(,).同理可求点Q2的坐标为(,).如图2,当点B在原点下方时,可求点Q3的坐标为(,)点Q4的坐标为(,),综上所述,点Q的坐标为(,),(,),(,),(,).(2)如图,直线OE的解析式为y=x,设直线BC∥OE交x轴于C,作CD⊥OE 于D.当CD=1时,在Rt△COD中,∠COD=60°,∴OC==,设⊙A与直线BC相切于点F,在Rt△ACE中,同法可得AC=,∴OA=,∴n=,根据对称性可知,当⊙A在y轴左侧时,n=-,观察图象可知满足条件的N的值为:≤n≤.(1)①根据平行点的定义即可判断;②分两种情形:如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.如图2,当点B在原点下方时,同法可求;(2)如图,直线OE的解析式为y=x,设直线BC∥OE交x轴于C,作CD⊥OE 于D.设⊙A与直线BC相切于点F,想办法求出点A的坐标,再根据对称性求出左侧点A的坐标即可解决问题;本题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.。

2018年北京市朝阳区初三二模数学

2018年北京市朝阳区初三二模数学

北京市朝阳区九年级综合练习(二)数学试卷 2018.6学校 班级 姓名 考号 考 生须 知 1.本试卷共8页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个. 1.若代数式3-x x 的值为零,则实数x 的值为 (A ) x =0 (B )x ≠0 (C )x =3 (D )x ≠3 2.如图,左面的平面图形绕直线l 旋转一周,可以得到的立体图形是3.中国传统扇文化有着深厚的底蕴,下列扇面图形既是轴对称图形又是中心对称图形的是4.如图,在数轴上有点O ,A ,B ,C 对应的数分别是0,a ,b ,c ,AO =2,OB =1,BC =2,则下列结论正确的是(A )a c = (B )ab >0 (C )a +c =1 (D )b -a=15.⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为(A )3 (B )4 (C )5 (D )66.已知a a 252=-,代数式)1(2)2(2++-a a 的值为(A )-11 (B )-1 (C ) 1 (D )117.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多 51的人每周使用手机支付的次数在35~42次 ④每周使用手机支付不超过21次的有15人其中正确的是(A )①② (B )②③(C )③④ (D )④8.如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1-S 2为(A )41312π- (B )4912π-(C )4136π+(D )6二、填空题(本题共16分,每小题2分)9. 写出一个比2大且比5小的有理数: .10.直线AB ,BC ,CA 的位置关系如图所示,则下列语句:①点A 在直线上BC ;②直线AB 经过点C ;③直线AB ,BC ,CA 两两相交;④点B 是直线AB ,BC ,CA 的公共点,正确的有 (只填写序号).第10题图 第11题图 第12题图11. 2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m 、n 的式子表示AB 的长为 .12.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE= .13.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示. 根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是_______.第13题图第14题图14.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.15.下列对于随机事件的概率的描述:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85 其中合理的有(只填写序号).16.下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题7分,第28题8分)17.011123tan 30(2018)()2π-︒+-- .18. 解不等式3213-+x >2x -1,并把解集在数轴上表示出来.19. 如图,△ABC 中,∠C =90°,AC =BC ,∠ABC 的平分线BD 交AC 于点D ,DE ⊥AB 于点E .(1)依题意补全图形;(2)猜想 AE 与 CD 的数量关系,并证明.20. 已知关于x 的一元二次方程03)1(222=-+-+m x m x 有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为非负整数,且该方程的根都是无理数,求m 的值.21. 如图,在平面直角坐标系xOy 中,直线61+=x k y 与函数)0(2>=x x k y 的图象的两个交点分别为A (1,5),B .(1)求21,k k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线61+=x k y 和函数)0(2>=x xk y 的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.22. 如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.23. AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是AB中点,连接CE,BE,若BE=2,求CE的长.24.“绿水青山就是金山银山”,北京市民积极参与义务植树活动. 小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整②这30户家庭2018年4月份义务植树数量的平均数是,众数是;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有户.25. 在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF= °,射线DF与射线AC交于点F.设B,E两点间的距离为x cm,E,F两点间的距离为y cm.图1图2x/cm0123456y/cm 6.9 5.3 4.0 3.3 4.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF 为等边三角形时,BE 的长度约为 cm.26.已知二次函数)0(222≠--=a ax ax y .(1)该二次函数图象的对称轴是直线 ;(2)若该二次函数的图象开口向上,当-1≤x ≤5时,函数图象的最高点为M ,最低点为N ,点M 的纵坐标为211,求点M 和点N 的坐标;(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤ x 1 ≤ t +1,当x 2≥3时,均有y 1 ≥y 2,请结合图象,直接写出t 的取值范围.27.如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE= AD,∠EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD= 度;(2)求∠CDF的度数;(3)用等式表示线段CD和CE之间的数量关系,并证明.28. 对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点. (1)当直线m 的表达式为y =x 时,①在点P 1(1,1),P 2(0,2),P 3(22-,22)中,直线m 的平行点是 ; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线x y 3=的平行点,直接写出n 的取值范围.北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考 2018.6一、选择题(本题共16分,每小题2分) 题号 1 2 3 4 5 6 7 8 答案 ABCCDDBA二、填空题 (本题共16分,每小题2分)9. 答案不唯一,如: 2 10. ③ 11. n n m -+3312. 2 13. 答案不唯一,理由须支撑推断的合理性. 14. (4,2) 15. ②③ 16. 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义 . 三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题7分,第28题8分) 17. 解:原式 2133332-+⨯-= ……………………………………………………………4分 13-=. ……………………………………………………………………………5分18. 解:去分母,得 3x +1-6> 4x -2, ………………………………………………………………1分移项,得 3x -4x >-2+ 5,………………………………………………………………2分 合并同类项,得 -x > 3,……………………………………………………………………3分 系数化为1,得 x <-3. …………………………………………………………………4分 不等式的解集在数轴上表示如下:…………………………………………………………………………………………5分19. (1)如图:………………………………………………………………………………………………2分(2)AE 与 CD 的数量关系为AE=CD .……………………………………………………………3分证明: ∵∠C =90°,AC =BC , ∴∠A =45°. ∵DE ⊥AB ,∴∠ADE =∠A =45°.∴AE=DE . ……………………………………………………………………………………4分 ∵BD 平分∠ABC ,∴CD=DE . ……………………………………………………………………………………5分 ∴AE=CD .20. 解:(1)[])3(4)1(222---=∆m m 168+-=m .∵方程有两个不相等的实数根, ∴0>∆.即 0168>+-m .解得 2<m . ……………………………………………………………………………2分(2)∵2<m ,且m 为非负整数,∴0=m 或1=m . ………………………………………………………………………3分 ① 当0=m 时,原方程为0322=--x x , 解得 31=x ,12-=x ,不符合题意. ② 当1=m 时,原方程为022=-x , 解得 21=x ,22-=x ,符合题意.综上所述,1=m . ……………………………………………………………………5分 21. 解:(1)∵A (1,5)在直线61+=x k y 上,∴11-=k . ………………………………………………………………………………1分 ∵A (1,5)在)0(2>=x xk y 的图象上, ∴52=k . ………………………………………………………………………………2分 (2)0< n <1或者n > 5. ……………………………………………………………………5分22. (1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD . ∵DE =CD , ∴AB =DE .∴四边形ABDE 是平行四边形. ………………………………………………2分(2)解:∵AD =DE =4,∴AD =AB =4.∴□ABCD 是菱形. ………………………………………………………………………3分∴AB =BC ,AC ⊥BD ,BO =BD 21,∠ABO =ABC ∠21.又∵∠ABC =60°,∴∠ABO =30°. 在Rt △ABO 中,2sin =∠⋅=ABO AB AO ,32cos =∠⋅=ABO AB BO .∴BD =34.∵四边形ABDE 是平行四边形, ∴AE ∥BD ,34==BD AE . 又∵AC ⊥BD , ∴AC ⊥AE .在Rt △AOE 中,13222=+=AO AE OE . ……………………………………………5分23. (1)证明:连接OC .∵AB 为⊙O 直径,∴∠ACB =90°. ………………1分∵CD 为⊙O 切线∴∠OCD =90°. ………………2分 ∴∠ACO =∠DCB =90°-∠OCB ∵CA=CD , ∴∠CAD =∠D . ∴∠COB =∠CBO . ∴OC= BC .∴OB= BC . ………………………………………………………………………………3分(2)解:连接AE ,过点B 作BF ⊥CE 于点F .∵E 是AB 中点 ∴AE=BE=2. ∵AB 为⊙O 直径, ∴∠AEB =90°.∴∠ECB =∠BAE= 45°,22=AB . ∴221==AB CB .∴1==BF CF . ∴3=EF .∴3=CE.…………………………………………………………………………5分1+24. 解:(1)①…………………………………2分②3.4, 3 ………………………………………………………………………………………4分(2)70 …………………………………………………………………………………………5分25. 解:(1)60 …………………………………………………………………………………………1分答案不唯一,如:x/cm0123456y/cm 6.9 5.3 4.0 3.3 3.5 4.56………………………………………………………………………………………………………2分……………5分(3)(4)3.22 ……………………………………………………………………………………6分26.(1)x =1 ……………………………………………………………………………………1分(2)解:∵该二次函数的图象开口向上,对称轴为直线x =1,-1≤x ≤5,∴当x =5时,y 的值最大,即M (5,211). …………………………………3分把M (5,211)代入y =ax 2-2ax -2,解得a =21. ………………………………4分∴该二次函数的表达式为y =2212--x x .当x =1时,y =25-,∴N (1,25-). ………………………………………………………………5分(3)-1≤t ≤2. …………………………………………………………………………7分27. 解:(1)45 ……………………………………………………………………………………1分(2)解:如图,连接DB.∵90 AB AC BAC =∠=,°,M 是BC 的中点,∴∠BAD=∠CAD=45°.∴△BAD ≌△CAD . ………………………………2分 ∴∠DBA =∠DCA ,BD = CD . ∵CD =DF ,∴B D =DF . ………………………………………3分 ∴∠DBA =∠DFB =∠DCA . ∵∠DFB +∠DFA =180°, ∴∠DCA +∠DFA =180°. ∴∠BAC +∠CDF =180°.∴∠CDF =90°. …………………………………………………………………………4分 (3)CE =)21CD . ………………………………………………………………………5分证明:∵90 EAD ∠=°,∴∠EAF =∠DAF =45°. ∵AD =AE ,∴△EAF ≌△DAF . ……………………………………………………………………6分 ∴DF =EF .由②可知,CF 2CD . ………………………………………………………………7分 ∴CE =()21C D .28.(1)①P 2,P 3 ……………………………………………………………………………………2分② 解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线.设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1. 由直线m 的表达式为y =x ,可知∠OAB=∠OBA =45°.所以OB=2.直线AB 与⊙O 的交点即为满足条件的点Q . 连接OQ 1,作Q 1N ⊥y 轴于点N ,可知OQ 1=10. 在Rt △OHQ 1中,可求HQ 1=3. 所以BQ 1=2.在Rt △BHQ 1中,可求NQ 1=NB=2. 所以ON=22.所以点Q 1的坐标为(2,22).同理可求点Q 2的坐标为(22-,2-).……………………………………4分如图2,当点B 在原点下方时,可求点Q 3的坐标为(22,2)点Q 4的坐标为 (2-,22-). …………………………………………………………………6分综上所述,点Q 的坐标为(2,22),(22-,2-),(22,2),(2-,22-).(2)334-≤n ≤334. ……………………………………………………………………8分。

2017年北京市朝阳区中考二模数学试题含答案

2017年北京市朝阳区中考二模数学试题含答案

北京市朝阳区九年级综合练习(二)数学试卷 2017.6考生 须 知1.本试卷共8页,共三道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和准考证号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,请将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.中国海军第一艘国产航母001A 型航母在2017年4月26日下水,该航母的飞行甲板长约300米,宽约70米,总面积约21000平方米.将21000用科学记数法表示应为 A .42.110⨯B .50.2110⨯C .32110⨯D .52.110⨯2. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是A .a <-2B .b >-1C .-a <-bD .a > b 3. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为 A .45° B .55° C .135° D .145°4.内角和与外角和相等的多边形是A B C D5.在一个不透明的袋子里装有2个红球、3个黄球和5个蓝球,这些球除颜色外,没有任何区别. 现从这个袋子中随机摸出一个球,摸到红球的概率是A.1 10B.15C.310D.126. 下列图标中,是轴对称的是A B C D7.中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,○炮所在位置的坐标为(-3, 1),○相所在位置的坐标为(2,-1), 那么,○帅所在位置的坐标为A.(0,1) B.(4,0) C.(-1,0) D.(0,-1)8.抛物线263y x x=-+的顶点坐标为A.(3,–6) B.(3,12) C.(–3,-9) D.(–3,–6)9.如图,⊙O的半径OC垂直于弦AB,垂足为D,OA=22∠B=22.5°,AB的长为A.2 B.4C.22 D.4210. 甲、乙、丙三名射箭运动员在某次测试中各射箭8次,三人的测试成绩如下表:s甲乙丙A.s 2甲>s 2乙>s 2丙 B.s 2乙>s 2甲>s 2丙C.s 2丙>s 2甲>s 2乙 D.s 2丙>s 2乙>s 2甲二、填空题(本题共18分,每小题3分)11.在函数2y x=-中,自变量x的取值范围是.12. 分解因式:ax2-4ay2= .甲的成绩乙的成绩丙的成绩环数78910环数78910环数78910频数1331频数2222频数3113帅士相炮13. 写出一个图象经过点(1,1)的函数的表达式,所写的函数的表达式为 .14.在某一时刻,测得一根高为1.2m 的竹竿的影长为3m ,同时测得一栋楼的影长为45m ,那么这栋楼的高度为 m .15.在一段时间内,小军骑自行车上学和乘坐公共汽车上学的次数基本相同,他随机记录了其中某些天上学所用的时间,整理如下表:交通工具 所需时间(单位:min )自行车 14,14,14,15,15,15,15,15,15,15,15,15,15,15,15 公共汽车10,10,11,11,11,12,12,12,12,13,15,16,17,17,19①平均来说,乘坐公共汽车上学所需的时间较短 ②骑自行车上学所需的时间比较容易预计③如果小军想在上学路上花的时间更少,他应该更多地乘坐公共汽车 ④如果小军一定要在16 min 内到达学校,他应该乘坐公共汽车 其中合理的是 (填序号). 16.阅读下面材料:数学课上,老师提出如下问题:小强的作法如下:老师表扬了小强的作法是对的.请回答:小强这样作图的主要依据是 .尺规作图:经过直线外一点作这条直线的平行线.已知:直线l 和直线l 外一点A . 求作:直线l 的平行线,使它经过点A . 如图,(1)过点A 作直线m 交直线l 于点B ; (2)以点A 为圆心,AB 长为半径作弧,交直线m 于点C ; (3)在直线l 上取点D (不与点B 重合),连接CD ; (4)作线段CD 的垂直平分线n ,交线段CD 于点E ; (5)作直线AE . 所以直线AE 即为所求.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:201()(+3)84cos 452π--+-︒.18. 已知2310x x +-=,求代数式()239x x x--÷的值. 19. 解不等式2133x x --<,并把它的解集在数轴上表示出来.20.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高, 过点C 作CE ∥AB 交AD 的延长线于点E. 求证:CE =AB 21.已知关于x 的一元二次方程24210x x m -+-=有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为正整数,且该方程的根都是整数,求m 的值. 22.调查作业:了解你所在学校学生本学期社会实践活动的情况.小明、小亮和小天三位同学在同一所学校上学.该学校共有三个年级,每个年级都有6个班,每个班的人数在30~40之间.为了了解该校学生本学期社会实践活动的情况,他们各自设计了如下的调查方案: 小明:我给每个班学号分别为1、2、11、12、21、22的同学各发一份问卷,一两天就可以得到结果.小亮:我把要调查的问题放在某两个班的微信群里,这样群里的大部分人就可以完成调 查的问题,并很快就可以反馈给我.小天:我给每个班发一份问卷,一两天也就可以得到结果了. 根据以上材料回答问题:小明、小亮和小天三人中,哪一位同学的调查方案能较好地获得该校学生本学期社会实践活动的情况,并简要说明其他两位同学调查方案的不足之处.23. 如图,在ABCD中,BC=2AB,E,F分别是BC,AD的中点,AE,BF交于点O,连接EF,OC.(1)求证:四边形ABEF是菱形;(2)若BC=8,60∠=︒,求OC的长.ABC24.阅读下列材料:自2011年以来,朝阳区统筹推进稳增长、调结构、促改革、惠民生等各项工作,经济转型发展不断加快,全区经济实力不断迈上新台阶.2011年,朝阳区生产总值3272.2 亿元. 2012年,朝阳区生产总值3632.1 亿元,比上年增长359.9亿元. 2013年,朝阳区生产总值4030.6 亿元,比上年增长398.5亿元.2014年,朝阳区生产总值4337.3 亿元,比上年增长7.6%.2015年,朝阳区生产总值4640.2 亿元,比上年增长7.0%,其中,第一产业1.2 亿元,第二产业358.0 亿元,第三产业4281.0 亿元.2016年,朝阳区生产总值4942.0亿元,比上年增长6.5%,居民人均可支配收入达到59886元,比上年增长8%.根据以上材料解答下列问题:(1)用折线图将2011-2016年朝阳区生产总值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2017年朝阳区生产总值约亿元,你的预估理由是.25.如图,△ABC中,∠A=45°,D是AC边上一点,⊙O过D、A、B三点,OD∥BC.(1)求证:直线BC是⊙O的切线;(2)OD, AB相交于点E,若AB=AC,OD=r,写出求AE长的思路.26. 下面是小东的探究学习过程,请补充完整:(1)探究函数22222x x y x +-=-(x <1)的图象与性质.小东根据学习函数的经验,对函数22222x x y x +-=-(x <1)的图象与性质进行了探究.①下表是y 与x 的几组对应值.②如下图,在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象; ③进一步探究发现,该函数图象的最高点的坐标是(0,1),结合函数的图象,写出该函数的其他性质(一条即可): _____;(2)小东在(1)的基础上继续探究:他将函数22222x x y x +-=-(x <1)的图象向上平移1个单位长度,再向右平移1个单位长度后得到函数22724x x y x +-=-(x <2)的图象,请写出函数22724x x y x +-=-(x <2)的一条性质:_____.x … -3 -2 -11-2 0 15 12 45 … y…1-8 13 34111213940m3-5…27.在平面直角坐标系xOy中,抛物线y=mx2-2mx+2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)点C,D在x轴上(点C在点D的左侧),且与点B的距离都为2,若该抛物线与线段CD 有两个公共点,结合函数的图象,求m的取值范围.28.在△ABC中,∠ACB=90°,以AB为斜边作等腰直角三角形ABD,且点D与点C在直线AB的两侧,连接CD.(1) 如图1,若∠ABC=30°,则∠CAD的度数为.(2)已知AC=1,BC=3.①依题意将图2补全;②求CD的长;小聪通过观察、实验、提出猜想,与同学们进行交流,通过讨论,形成了求CD长的几种想法:想法1:延长CB,在CB延长线上截取BE=AC,连接DE.要求CD的长,需证明△ACD≌△BED,△CDE为等腰直角三角形.想法2:过点D作DH⊥BC于点H,DG⊥CA,交CA的延长线于点G,要求CD的长,需证明△BDH≌△ADG,△CHD为等腰直角三角形.……请参考上面的想法,帮助小聪求出CD的长(一种方法即可).(3)用等式表示线段AC,BC,CD之间的数量关系(直接写出即可).29.在平面直角坐标系xOy 中,对于半径为r (r >0)的⊙O 和点P ,给出如下定义: 若r ≤PO ≤32r ,则称P 为⊙O 的“近外点”. (1)当⊙O 的半径为2时,点A (4,0), B (52-,0),C (0, 3),D (1,-1)中, ⊙O 的“近外点”是 ;(2)若点E (3,4)是⊙O 的“近外点”,求⊙O 的半径r 的取值范围; (3)当⊙O 的半径为2时,直线3y x b =+(b ≠0)与x 轴交于点M ,与y 轴交于 点N ,若线段MN 上存在⊙O 的“近外点”,直接写出b 的取值范围.图1图2北京市朝阳区九年级综合练习(二)数学试卷评分标准及参考答案 2017.6一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10答案 A B C C B D D A B D二、填空题(本题共18分,每小题3分)11. x≥2.12. .13. 答案不惟一 ,如:y=x.14. 18.15.①②③.16. 同圆半径相等;线段垂直平分线的定义;三角形的中位线平行于第三边.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式==3.18.解:== .∴原式=1.19.解: 去分母,得 .移项,得.合并,得.系数化1,得.不等式的解集是在数轴上表示如下 :20.证明:∵,∴∠BAE=∠CAE.∵CE∥AB,∴∠E=∠BAE.∴∠E=∠CAE.∴CE=AC.∵AB=AC,∴CE=AB.21.解:(1)依题意,得 =16-4(2m-1)>0.∴ m< .(2)∵m为正整数,∴m=1或2.当m=1时,方程为的根不是整数;当m=2时,方程为的根,都是整数.综上所述,m=2.22.答:小明的调查方案能较好地获得该校学生本学期社会实践活动的情况.小亮的调查方案的不足之处:抽样调查所抽取的样本的代表性不够好.小天的调查方案的不足之处:抽样调查所抽取的学生数量太少.23. (1) 证明:∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD .∵E,F分别是BC,AD的中点,∴ .∴BE=AF.∴四边形ABEF是平行四边形.∵BC=2AB,∴AB=BE.∴ ABEF是菱形.(2)解:过点O作OG⊥BC于点G.∵E是BC的中点,BC=8,∴BE=CE=4.∵四边形ABEF是菱形,∠ABC=60°,∴∠OBE=30,∠BOE=90°.∴OE=2,∠OEB=60°.∴GE=1,OG= .∴GC=5.∴OC= .24.解: (1) 2011—2016年朝阳区生产总值折现统计图(2)预估理由须包含折线图中提供的信息,且支撑预估的数据. 25.(1)证明:连接OB.∵∠A=45°,∴∠DOB=90°.∵OD∥BC,∴∠DOB+∠CBO =180°.∴∠CBO=90°.∴直线BC是⊙的切线.(2)求解思路如下:如图,延长BO交⊙于点F,连接AF.①由AB=AC,∠BAC=45°,可得∠ABC=67.5°,∠ABF=22.5°;②在Rt△EOB中,由OB=r,可求BE的长;③由BF是直径,可得∠FAB=90°,在Rt△FAB中,由BF=2r,可求AB的长,进而可求AE的长.26.解: (1)①当x= 时,y= .∴ .②该函数的图象如下图所示:③答案不惟一,如:当x<0时,y随x的增大而增大.(2)答案不惟一,如:函数图象的最高点坐标为(1,2). 27.解:(1)由题意,当x=0时,y=2.∴A(0,2).∵,∴对称轴为直线x=1.∴B(1,0).(2)由题意,C(-1,0),D(3,0).①当m>0时,结合函数图象可知,满足题意的抛物线的顶点须在x轴下方,即2-m<0.∴m>2.②当m<0时,过C(-1,0)的抛物线的顶点为E(1,).结合函数图象可知,满足条件的抛物线的顶点须在点E上方或与点E重合,即2-m≥ .∴m≤ .综上所述,m的取值范围为m>2或m≤ .28.解:(1)105°.(2)①补全图形,如图所示.②想法1:如图,∵∠ACB=∠ADB =90°,∴∠CAD+∠CBD==180°.∵∠DBE+∠CBD==180°,∴∠CAD=∠DBE.∵DA=DB,AC=BE,∴△ACD≌△BED.∴DC=DE,∠ADC=∠BDE.∴∠CDE =90°.∴△CDE为等腰直角三角形.∵AC=1,BC=3,∴CE=4.∴CD= .想法2:如图,∵∠ACB=∠ADB =90°,∴∠CAD+∠CBD==180°.∵∠DAG+∠CAD==180°,∴∠CBD=∠DAG.∵DA=DB,∠DGA=∠DHB=90°,∴△BDH≌△ADG.∴DH=DG,BH=AG.∴∠DCH=∠DCG=45°.∴△CHD为等腰直角三角形.∵AC=1,BC=3,∴CH=2.∴CD= .(3) .29.解:(1)B,C.(2)∵E(3,4)∴EO=5.∴∴ .(3) .说明:各解答题的其他正确解法请参照以上标准给分.[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。

朝阳区2017~2018学年度第一学期期末检测九年级数学试题及答案(WORD版)

朝阳区2017~2018学年度第一学期期末检测九年级数学试题及答案(WORD版)

北京市朝阳区2017~2018学年度第一学期期末检测九年级数学试卷(试用)2018.1(考试时间120分钟满分100分)一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有..一个.1. 如图,利用刻度尺和三角尺测得圆的直径是(A) 3cm(B) 3.5cm(C) 4cm(D) 7.5cm2. 下列事件中,随机事件是(A)任意画一个圆的内接四边形,其对角互补(B)现阶段人们乘高铁出行在购买车票时,采用网络购票方式(C)从分别写有数字1,2,3的三个纸团中随机抽取一个,抽到的数字是0(D)通常情况下,北京在大寒这一天的最低气温会在0℃以下3. 下列图形中,既是轴对称图形又是中心对称图形的是(A)(B)(C)(D)4.小楠参观中国国家博物馆时看到两件“王字铜衡”,这是我国古代测量器物重量的一种比较准确的衡器,体现了杠杆原理. 小楠决定自己也尝试一下,她找了一根长100cm的匀质木杆,用细绳绑在木杆的中点O并将其吊起来,在中点的左侧距离中点25cm处挂了一个重1.6N的物体,在中点的右侧挂了一个苹果,当苹果距离中点20cm时木杆平衡了,可以估计这个苹果的重大约是(A) 1.28N (B) 1.6N(C) 2N (D) 2.5N5. 如图,△ABC ∽△A ’B ’C ’,AD 和A ’D ’分别是△ABC 和△A ’B ’C ’的高,若AD =2,A ’D ’=3,则△ABC 与△A ’B ’C ’的面积的比为(A) 4:9 (B) 9:4 (C) 2:3 (D) 3:26. 如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =7.则∠BDC 的度数是 (A) 15° (B) 30° (C) 45° (D) 60°第6题图 第7题图7. 如图,在△ABC中,∠BAC =90°,AB =AC =445°,得到△A’B’C ,则图中阴影部分的面积为(A) 2 (B) 2π8. 如图,一条抛物线与x 轴相交于M 、N 上移动.若点A 、B 的坐标分别为(﹣2,3)、 则点M 的横坐标的最小值为(A) -1 (B) -3 (C)二、填空题(本题共16分,每小题2分)9. 如图,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为3,则正六边形ABCDEF 的边长为 . 第9题图 第10题图10.如图,把△ABC 绕着点A 顺时针方向旋转,得到△A B 'C ',点C 恰好在B 'C '上,旋转角为α,则∠C '的度数为 (用含α的式子表示).11. 在反比例函数xmy 23-=的图象上有两点A (x 1,y 1),B (x 2,y 2),x 1< x 2<0,y 1> y 2,则m 的取值范围是 .AB12. 如图,P A ,PB 分别与⊙O 相切于A ,B 两点,PO 与AB 相交于点C ,P A=6,∠APB =60°,则OC 的长为 .第12题图 第13题图13. 如图,双曲线xky =与抛物线c bx ax y ++=2交于点A (x 1,y 1),B (x 2,y 2), C (x 3,y 3),由图象可得不等式组c bx ax xk ++<<20的解集为 .14. 如图,在平面直角坐标系中,△COD 可以看作 是△AOB 经过若干次图形的变化(平移、轴对称、旋转、位似)得到的,写出一种由△AOB 得到 △COD 的过程: .15. “π的估计”有很多方法,下面这个随机模拟实验就是一种,其过程如下:如图,随机撒一把米到画有正方形及其内切圆的白纸上,统计 落在圆内的米粒数m 与正方形内的米粒数n ,并计算频率nm;在相 同条件下,大量重复以上试验,当nm显现出一定稳定性时,就可以 估计出π的值为nm4. 请说出其中所蕴含的原理: .P16. 下面是“作顶角为120°的等腰三角形的外接圆”的尺规作图过程.请回答:该尺规作图的依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题7分,第28题8分)17.小明在学习了如何证明“三边成比例的两个三角形相似”后,运用类似的思路证明了“两角分别相等的两个三角形相似”,以下是具体过程.已知:如图,在△ABC 和△A'B'C'中,∠A=∠A',∠B=∠B'.求证:△ABC ∽△A'B' C'.证明:在线段A'B'上截取A'D=AB ,过点D 作DE ∥B'C',交A'C'于点E . 由此得到△A'DE ∽△A'B'C'. ∴∠A' DE=∠B'. ∵∠B=∠B',∴∠A' DE =∠B . ∵∠A'=∠A , ∴△A' DE ≌△ABC.∴△ABC ∽△A'B'C'.小明将证明的基本思路概括如下,请补充完整:(1)首先,通过作平行线,依据 ,可以判定所作△A' DE 与 ;(2) 然后,再依据相似三角形的对应角相等和已知条件可以证明所作△A' DE 与 ; (3)最后,可证得△ABC ∽△A'B' C'.CA18. 如图,四边形ABCD 是⊙O 的内接四边形,对角线AC 是⊙O 的直径,AB=2,∠ADB =45°. 求⊙O 半径的长.19. 如图,在平面直角坐标系xOy 中,点A (3,3),点B (4,0),点C (0,﹣1).(1)以点C 为中心,把△ABC 逆时针旋转90°,画出旋转后的图形△A′B′C ; (2)在(1)中的条件下,① 点A 经过的路径的长为 (结果保留π② 写出点B ′的坐标为 .20. 图中所示的抛物线形拱桥,当拱顶离水面4m 时, 水面宽8m. 水面上升3米,水面宽度减少多少?下面给出了解决这个问题的两种方法.方法一 如图1,以上升前的水面所在直线与抛物线左侧交点为原点,以上升前的水面所在直线为x 轴,建立 平面直角坐标系xOy ,这时这条抛物线所表示的二次函数 的表达式为 ;当y =3时,求出此时自变量x 的取值,即可解决这个问题. 图1方法二 如图2,以抛物线顶点为原点,以抛物线的 对称轴为y 轴,建立平面直角坐标系xOy ,这时这条抛物线所表示的二次函数的表达式为 ;当y = 时, 求出此时自变量x 的取值,即可解决这个问题.图2AA'21. 有两盏节能灯,每一盏能通电发亮的概率都是50%,按照图中所示的并联方式连接电路,观察这两盏灯发亮的情况. (1)列举出所有可能的情况;(2)求出至少有一盏灯可以发亮的概率.22. 如图,在平面直角坐标系xOy 中,直线32--=x y 与双曲线xky =交于M (a ,2),N (1,b )两点. (1)求k ,a ,b 的值;(2)若P 是y 轴上一点,且△MPN 的面积是7,直接写出点P 的坐标 . 23. 如图,正方形ABCD 的边长为2,E 是CD 中点,点P 在射线AB上,过点P 作线段AE 的垂线段,垂足为F . (1)求证:△P AF ∽△AED ; (2)连接PE ,若存在点P 使△PEF 与△AED 相似,直接写出P A 的长 24. 如图,在△ABC 中,∠C =90°,以BC 为直径的⊙O 交AB 于点D ,⊙O 的切线DE 交AC 于点E . (1)求证:E 是AC 中点; (2)若AB =10,BC =6,连接CD ,OE ,交点为F ,求OF 的长.25. △ACB 中,∠C =90°,以点A 为中心,分别将线段AB ,AC 逆时针旋转60°得到线段AD ,AE ,连接DE ,延长DE 交CB 于点F . (1)如图1,若∠B =30°,∠CFE 的度数为 ; (2)如图2,当30°<∠B <60°时,①依题意补全图2;②猜想CF 与AC 的数量关系,并加以证明.EB C图1 图226.如图,直线AM和AN相交于点A,∠MAN=30°,在射线AN上取一点B,使AB=6cm,过点B作BC⊥AM于点C,D是线段AB上的一个动点(不与点B重合),过点D作CD 的垂线交射线CA于点E.(1)确定点B的位置,在线段AB上任取一点D,根据题意,补全图形;(2)设AD=x cm,CE=y cm,探究函数y随自变量x的变化而变化的规律.①通过取点、画图、测量,得到了x与y的几组对应值,如下表:(要求:补全表格,相关数值保留一位小数)②建立平面直角坐标系xOy,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;③结合画出的函数图象,解决问题:当AD为Rt△CDE斜边CE上的中线时,AD的长度约为cm(结果保留一位小数).27. 已知抛物线l 1与l 2形状相同,开口方向不同,其中抛物线l 1:2782--=ax ax y 交x 轴于A ,B 两点(点A 在点B 的左侧),且AB =6;抛物线l 2与l 1交于点A 和点C (5,n ). (1)求抛物线l 1,l 2的表达式;(2)当x 的取值范围是 时,抛物线l 1与l 2上的点的纵坐标同时随横坐标的增大而增大;(3)直线MN ∥y 轴,交x 轴,l 1,l 2分别相交于点P (m ,0),M ,N ,当1≤m ≤7时,求线段MN 的最大值.28. 在平面直角坐标系xOy 中,点A (0, 6),点B 在x 轴的正半轴上. 若点P ,Q 在线段AB上,且PQ 为某个一边与x 轴平行的矩形的对角线,则称这个矩形为点P ,Q 的“X 矩形”. 下图为点P ,Q 的“X 矩形”的示意图. (1)若点B (4,0),点C 的横坐标为2,则点B ,C 的“X 矩形”的面积为 . (2)点M ,N 的“X 矩形”是正方形,① 当此正方形面积为4,且点M 到y 轴的距离为3时,写出点B 的坐标,点N的坐标及经过点N 的反比例函数的表达式;② 当此正方形的对角线长度为3,且半径为r 的⊙O 与它没有交点,直接写出r 的取值范围 .。

2018年朝阳区初三数学二模试题答案

2018年朝阳区初三数学二模试题答案

北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考 2018.6一、选择题(本题共16分,每小题2分)二、填空题 (本题共16分,每小题2分)9. 答案不唯一,如: 2 10. ③ 11. n n m -+3312. 2 13. 答案不唯一,理由须支撑推断的合理性. 14. (4,2) 15. ②③ 16. 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义 . 三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题7分,第28题8分) 17. 解:原式 2133332-+⨯-= ……………………………………………………………4分 13-=. ……………………………………………………………………………5分18. 解:去分母,得 3x +1-6> 4x -2, ………………………………………………………………1分移项,得 3x -4x >-2+ 5,………………………………………………………………2分 合并同类项,得 -x > 3,……………………………………………………………………3分 系数化为1,得 x <-3. …………………………………………………………………4分 不等式的解集在数轴上表示如下:…………………………………………………………………………………………5分19. (1)如图:………………………………………………………………………………………………2分(2)AE 与 CD 的数量关系为AE=CD .……………………………………………………………3分证明: ∵∠C =90°,AC =BC , ∴∠A =45°. ∵DE ⊥AB ,∴∠ADE =∠A =45°.∴AE=DE . ……………………………………………………………………………………4分 ∵BD 平分∠ABC ,∴CD=DE . ……………………………………………………………………………………5分 ∴AE=CD . 20. 解:(1)[])3(4)1(222---=∆m m 168+-=m .∵方程有两个不相等的实数根, ∴0>∆.即 0168>+-m .解得 2<m . ……………………………………………………………………………2分(2)∵2<m ,且m 为非负整数,∴0=m 或1=m . ………………………………………………………………………3分 ① 当0=m 时,原方程为0322=--x x , 解得 31=x ,12-=x ,不符合题意. ② 当1=m 时,原方程为022=-x , 解得 21=x ,22-=x ,符合题意.综上所述,1=m . ……………………………………………………………………5分 21. 解:(1)∵A (1,5)在直线61+=x k y 上,∴11-=k . ………………………………………………………………………………1分 ∵A (1,5)在)0(2>=x xk y 的图象上, ∴52=k . ………………………………………………………………………………2分 (2)0< n <1或者n > 5. ……………………………………………………………………5分22. (1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD . ∵DE =CD , ∴AB =DE .∴四边形ABDE 是平行四边形. ………………………………………………2分(2)解:∵AD =DE =4,∴AD =AB =4.∴□ABCD 是菱形. ………………………………………………………………………3分 ∴AB =BC ,AC ⊥BD ,BO =BD 21,∠ABO =ABC ∠21.又∵∠ABC =60°, ∴∠ABO =30°. 在Rt △ABO 中,2sin =∠⋅=ABO AB AO ,32cos =∠⋅=ABO AB BO .∴BD =34.∵四边形ABDE 是平行四边形, ∴AE ∥BD ,34==BD AE . 又∵AC ⊥BD , ∴AC ⊥AE .在Rt △AOE 中,13222=+=AO AE OE . ……………………………………………5分23. (1)证明:连接OC .∵AB 为⊙O 直径,∴∠ACB =90°. ………………1分∵CD 为⊙O 切线∴∠OCD =90°. ………………2分 ∴∠ACO =∠DCB =90°-∠OCB ∵CA=CD , ∴∠CAD =∠D . ∴∠COB =∠CBO . ∴OC= BC .∴OB= BC . ………………………………………………………………………………3分(2)解:连接AE ,过点B 作BF ⊥CE 于点F .∵E 是AB 中点 ∴AE=BE=2. ∵AB 为⊙O 直径, ∴∠AEB =90°.∴∠ECB =∠BAE= 45°,22=AB . ∴221==AB CB .∴1==BF CF . ∴3=EF .∴31+=CE .…………………………………………………………………………5分24. 解:(1)①…………………………………2分② 3.4, 3 ………………………………………………………………………………………4分(2)70 …………………………………………………………………………………………5分25. 解:(1)60 …………………………………………………………………………………………1分答案不唯一,如:(2)………………………………………………………………………………………………………2分……………5分(3)(4)3.22 ……………………………………………………………………………………6分26.(1)x =1 ……………………………………………………………………………………1分(2)解:∵该二次函数的图象开口向上,对称轴为直线x =1,-1≤x ≤5,∴当x =5时,y 的值最大,即M (5,211). …………………………………3分把M (5,211)代入y =ax 2-2ax -2,解得a =21. ………………………………4分∴该二次函数的表达式为y =2212--x x .当x =1时,y =25-,∴N (1,25-). ………………………………………………………………5分(3)-1≤t ≤2. …………………………………………………………………………7分27. 解:(1)45 ……………………………………………………………………………………1分(2)解:如图,连接DB.∵90 AB AC BAC =∠=,°,M 是BC 的中点,∴∠BAD=∠CAD=45°.∴△BAD ≌△CAD . ………………………………2分 ∴∠DBA =∠DCA ,BD = CD . ∵CD =DF ,∴B D =DF . ………………………………………3分 ∴∠DBA =∠DFB =∠DCA . ∵∠DFB +∠DF A =180°, ∴∠DCA +∠DF A =180°. ∴∠BAC +∠CDF =180°. ∴∠CDF =90°. …………………………………………………………………………4分(3)CE =)1CD . ………………………………………………………………………5分证明:∵90 EAD ∠=°,∴∠EAF =∠DAF =45°. ∵AD =AE ,∴△EAF ≌△DAF . ……………………………………………………………………6分 ∴DF =EF .由②可知,CF . ………………………………………………………………7分∴CE =)1C D .28.(1)①P 2,P 3 ……………………………………………………………………………………2分 ② 解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线.设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1. 由直线m 的表达式为y =x ,可知∠OAB=∠OBA =45°.所以OB=2.直线AB 与⊙O 的交点即为满足条件的点Q . 连接OQ 1,作Q 1N ⊥y 轴于点N ,可知OQ 1=10. 在Rt △OHQ 1中,可求HQ 1=3. 所以BQ 1=2.在Rt △BHQ 1中,可求NQ 1=NB=2. 所以ON=22.所以点Q 1的坐标为(2,22).同理可求点Q 2的坐标为(22-,2-).……………………………………4分如图2,当点B 在原点下方时,可求点Q 3的坐标为(22,2)点Q 4的坐标为 (2-,22-). …………………………………………………………………6分 综上所述,点Q 的坐标为(2,22),(22-,2-),(22,2),(2-,22-).(2)334-≤n ≤334. ……………………………………………………………………8分。

2018-2019学年北京市朝阳区九年级二模数学试卷(含答案)

2018-2019学年北京市朝阳区九年级二模数学试卷(含答案)

北京市朝阳区九年级综合练习(二)数学试卷2019.6学校班级姓名考号考生须知1.本试卷共8页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上认真填写学校名称、班级、姓名和考号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个.1.下列轴对称图形中只有一条对称轴的是(A)(B)(C)(D)2.2019年4月25-27日,第二届“一带一路”国际合作高峰论坛在北京举行,自“一带一路”倡议提出以来,五年之间,北京市对外贸易总额累计约30 000亿美元,年均增速1.5%.将30 000用科学记数法表示应为(A)3.0×103(B)0.3×104(C)3.0×104(D)0.3×1053.右图是某个几何体的展开图,该几何体是(A)圆锥(B)圆柱(C)三棱柱(D)四棱柱4.实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是(A)0ac>(B)b c<(C)a d>-(D)0b d+>5.如图,直线1l∥2l,AB=BC,CD⊥AB于点D,若∠DCA=20°,则∠1的度数为(A)80°(B)70°(C)60°(D)50°6.如果30x y-=,那么代数式22(2)()x yx x yy+-÷-的值为(A)-2 (B)2 (C)12(D)37.某公司生产的一种产品按照质量由高到低分为A ,B ,C ,D 四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:根据以上信息,下列推断合理的是(A )改进生产工艺后,A 级产品的数量没有变化 (B )改进生产工艺后,B 级产品的数量增加了不到一倍 (C )改进生产工艺后,C 级产品的数量减少 (D )改进生产工艺后,D 级产品的数量减少 8.小明使用图形计算器探究函数2()axy x b =-的图象,他输入了一组a ,b 的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的a ,b 的值满足 (A )a >0,b >0 (B )a >0,b <0 (C )a <0,b >0 (D )a <0,b <0二、填空题(本题共16分,每小题2分)9.在函数121y x =+中,自变量x 的取值范围是_____. 10.颐和园坐落在北京西郊,是第一批全国重点文物保护单位之一.小万去颐和园参加实践活动时发现有的窗户造型是正八边形,如下图所示,则∠1=_____°.11.点A (1x ,1y ),B (2x ,2y )在二次函数241y x x =--的图象上,若112x <<,234x <<,则1y _____2y .(填“>”,“=”或“<”)12.水果在物流运输过程中会产生一定的损耗,下表统计了某种水果发货时的重量和收货时的重量.发货时重量(kg)100 200 300 400 500600 1000 收货时重量(kg)94 187 282 338 435 530 901 若一家水果商店以6元/kg的价格购买了5000kg该种水果,不考虑其他因素,要想获得约15 000元的利润,销售此批水果时定价应为_____元/kg.13.如图,AB是⊙O的直径,C是⊙O上一点,将»AC沿直线AC翻折,若翻折后的图形恰好经过点O,则∠CAB=_____°.14.如图,在正方形ABCD中,对角线AC,BD相交于点O,E是OB的中点,连接AE并延长交BC于点F,若△BEF的面积为1,则△AED的面积为_____.15.世界上大部分国家都使用摄氏温度(°C),但美、英等国的天气预报仍然使用华氏温度(°F),两种计量之间有如下的对应表:摄氏温度(°C)0 10 20 30 40 50华氏温度(°F)32 50 68 86 104 122由上表可以推断出,华氏..0.度.对应的摄氏温度是_____°C,若某一温度时华氏温度的值与对应的摄氏温度的值相等,则此温度为_____°C.16.某公园门票的收费标准如下:门票类别成人票儿童票团体票(限5张及以上)价格(元/人)100 40 60 有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了_____元.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.计算:212cos303122-⎛⎫+-+-⎪⎝⎭o.第13题图第14题图第10题图18.解不等式组2(1)41,2,2x x x x -≤+⎧⎪⎨+>⎪⎩并写出它的所有整数解.19.下面是小东设计的“过直线上一点作这条直线的垂线”的尺规作图过程.已知:直线l 及直线l 上一点P .求作:直线PQ ,使得PQ ⊥l . 作法:如图,①在直线l 上取一点A (不与点P 重合),分别以点P ,A 为圆心,AP 长为半径画弧,两弧在直线l 的上方相交于点B ;②作射线AB ,以点B 为圆心,AP 长为半径画弧,交AB 的延长线于点Q ;③作直线PQ .所以直线PQ 就是所求作的直线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明. 证明:连接BP ,∵ _____=_____=_____=AP ,∴点A ,P ,Q 在以点B 为圆心,AP 长为半径的圆上. ∴∠APQ =90°(_____).(填写推理的依据) 即PQ ⊥l .20.关于x 的方程220mx mx m n -++=有两个实数根.(1)求实数m ,n 需满足的条件;(2)写出一组满足条件的m ,n 的值,并求此时方程的根.21.如图,在□ABCD中,∠ABD=90°,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是矩形;(2)连接DE交BC于点F,连接AF,若CE=2,∠DAB=30°,求AF的长.22.如图,△ABC内接于以AB为直径的⊙O,过点A作⊙O的切线,与BC的延长线相交于点D,在CB上截取CE=CD,连接AE并延长,交⊙O于点F,连接CF.(1)求证:AC=CF;(2)若AB=4,3sin5B ,求EF的长.23.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点P (3,4). (1)求k 的值; (2)求OP 的长;(3)直线(0)y mx m =≠与反比例函数的图象有两个交点A ,B ,若AB >10,直接写出m 的取值范围.24.如图,P 是»AB 所对弦AB 上一动点,过点P 作PM ⊥AB 交»AB 于点M ,作射线PN 交»AB 于点N ,使得∠NPB =45°,连接MN .已知AB =6cm ,设A ,P 两点间的距离为x cm ,M,N两点间的距离为y cm.(当点P与点A重合时,点M也与点A重合,当点P与点B重合时,y的值为0)小超根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小超的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,得到了y与x的几组对应值;x/cm 0 1 2 3 4 5 6y/cm 4.2 2.9 2.6 2.0 1.6 0(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当MN=2AP时,AP的长度约为_____cm.25.某部门为新的生产线研发了一款机器人,为了了解它的操作技能情况,在相同条件下与人工操作进行了抽样对比.过程如下,请补充完整.收集数据 对同一个生产动作,机器人和人工各操作20次,测试成绩(十分制)如下: 机器人 8.0 8.1 8.1 8.1 8.2 8.2 8.3 8.4 8.4 9.0 9.0 9.0 9.1 9.1 9.4 9.5 9.5 9.5 9.5 9.6 人工 6.1 6.2 6.6 7.2 7.2 7.5 8.0 8.2 8.3 8.59.19.69.89.99.99.910101010整理、描述数据 按如下分段整理、描述这两组样本数据:(说明:成绩在9.0分及以上为操作技能优秀,8.0~8.9分为操作技能良好,6.0~7.9分为操作技能合格,6.0分以下为操作技能不合格)分析数据 两组样本数据的平均数、中位数、众数和方差如下表所示:得出结论(1)如果生产出一个产品,需要完成同样的操作200次,估计机器人生产这个产品达到操作技能优秀的次数为_____;(2)请结合数据分析机器人和人工在操作技能方面各自的优势:_____.26.在平面直角坐标系xOy 中,抛物线222(0)y ax a x a =-≠的对称轴与x 轴交于点P .(1)求点P 的坐标(用含a 的代数式表示);(2)记函数3944y x=-+(-1≤x≤3)的图象为图形M,若抛物线与图形M恰有一个公共点,结合函数的图象,求a的取值范围.27.∠MON=45°,点P在射线OM上,点A,B在射线ON上(点B与点O在点A的两侧),且AB=1,以点P为旋转中心,将线段AB逆时针旋转90°,得到线段CD(点C与点A 对应,点D与点B对应).(1)如图,若OA=1,OP=2,依题意补全图形;(2)若OP=2,当线段AB在射线ON上运动时,线段CD与射线OM有公共点,求OA的取值范围;(3)一条线段上所有的点都在一个圆的圆内或圆上,称这个圆为这条线段的覆盖圆.若OA=1,当点P在射线OM上运动时,以射线OM上一点Q为圆心作线段CD的覆盖圆,直接写出当线段CD的覆盖圆的直径取得最小值时OP和OQ的长度.28.1(1,)2M--,1(1,)2N-是平面直角坐标系xOy中的两点,若平面内直线MN上方的点P满足:45°≤∠MPN≤90°,则称点P为线段MN的可视点.(1)在点11(0,)2A ,21(,0)2A ,3(0,2)A ,4(2,2)A 中,线段MN 的可视点为_____; (2)若点B 是直线12y x =+上线段MN 的可视点,求点B 的横坐标t 的取值范围; (3)直线(0)y x b b =+≠与x 轴交于点C ,与y 轴交于点D ,若线段CD 上存在线段MN 的可视点,直接写出b 的取值范围.北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考2019.6一、选择题(本题共16分,每小题2分)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.解:原式24=-………………………………………………………………4分 4=.…………………………………………………………………………5分18.解:原不等式组为2(1)41, 2. 2x x x x -≤+⎧⎪⎨+>⎪⎩①②解不等式①得,23-≥x . ……………………………………………………2分 解不等式②得,2<x . ……………………………………………………3分 ∴原不等式组的解集为223<≤-x .…………………………………………4分 ∴原不等式组的所有整数解为-1,0,1.………………………………………5分19.(1)图略. ………………………………………………………………………………2分 (2)BP ,BA ,BQ ,直径所对的圆周角是直角. ………………………………………5分20.解:(1)∵关于x 的方程220mx mx m n -++=有两个实数根,∴0≠m .………………………………………………………………………1分2(2)4()m m m n ∆=--+40.mn =-≥………………………………………………………………2分∴0≤mn .∴实数m ,n 需满足的条件为0≤mn 且0≠m .………………………3分(2)答案不唯一,如:1=m ,0=n .……………………………………………………4分此时方程为2210x x -+=.解得121==x x . …………………………………………………………5分21.(1)证明:∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB . ……………………………………………………1分 ∵BE =AB , ∴BE =CD .∴四边形BECD 是平行四边形. ∵∠ABD =90°, ∴∠DBE =90°.∴□BECD 是矩形. ……………………………………………………2分(2)解:如图,取BE 中点G ,连接FG .由(1)可知,FB =FC =FE , ∴FG =21CE =1,FG ⊥BE . …………………………………………………3分 ∵在□ABCD 中,AD ∥BC , ∴∠CBE =∠DAB =30°. ∴BG =3. ∴AB =BE =32.∴AG =33.………………………………………………………………4分 ∴在Rt △AGF 中,由勾股定理可求AF =27. ………………………5分22.(1)证明:∵AD 是⊙O 的切线,∴∠DAB =90°. …………………………………………………………1分 ∴∠CAD +∠CAB =90°.∵AB 是⊙O 的直径, ∴∠ACB =90°.∴∠CAB +∠B =90°. ∴∠CAD =∠B . ∵CE =CD , ∴AE =AD .∴∠CAE =∠CAD =∠B . ∵∠B =∠F , ∴∠CAE =∠F .∴AC =CF .……………………………………………………………………2分(2)解:由(1)可知,sin ∠CAE =sin ∠CAD =sin B=35. ∵AB =4,∴在Rt △ABD 中,AD =3,BD =5.……………………………………………3分 ∴在Rt △ACD 中,CD =95. ∴DE =185,BE =75. ………………………………………………………4分∵∠CEF =∠AEB ,∠B =∠F ,∴CEF AEB ∆∆:.∴35EF CE EB AE ==. ∴EF =2521. ………………………………………………………………5分23.解:(1)∵反比例函数ky x=的图象经过点P (3,4),∴12=k .……………………………………………………………………2分 (2)过点P 作PE ⊥x 轴于点E .∵点P (3,4), ∴OE =3,PE =4.∴在Rt △EOP 中,由勾股定理可求OP =5.…………………………………4分 (3)43m >或304m <<. ……………………………………………………6分24.解:(1)………………………………2分(2)…………………………4分(3)1.4. ……………………………………………………………………………………………6分 25.解:补全表格如下:6≤x <77≤x <8 8≤x <9 9≤x ≤10 机器人 0 0 9 11 人工 33 4 10 ……………3分(1)110; …………………………………………………………………………4分 (2)机器人的样本数据的平均数和中位数都明显高于人工,方差较小,可以推断其优势在于操作技能水平较高的同时还能保持稳定.人工的样本数据的众数为10,机器人的样本数据的最大值为9.6,可以推断人工的优势在于能完成一些最高水平的操作. ……6分26. 解:(1)抛物线x a ax y 222-=的对称轴是直线a aa x =--=222, ∴点P 的坐标是(a ,0). …………………………………………………2分 (2)由题意可知图形M 为线段AB ,A (-1,3),B (3,0).当抛物线经过点A 时,解得32a =-或a =1;平均数 中位数 众数 方差 机器人 8.8 9.0 9.5 0.333 人工8.68.8101.868当抛物线经过点B时,解得32a=.……………………………………3分如图1,当32a=-时,抛物线与图形M恰有一个公共点.如图2,当a=1时,抛物线与图形M恰有两个公共点.如图3,当32a=时,抛物线与图形M恰有两个公共点.结合函数的图象可知,当32a≤-或01a<<或32a>时,抛物线与图形M恰有一个公共点.…………………………………………………………6分27.解:(1)补全图形,如图1所示.图1 图2 图3图1…………………………2分(2)如图2,作PE ⊥OM 交ON于点E ,作EF ⊥ON 交OM 于点F .由题意可知,当线段AB 在射线ON 上从左向右平移时,线段CD 在射线EF 上从下向上平移,且OA =EC . ……………………………………………3分如图1,当点D 与点F 重合时,OA 取得最小值,为1. …………………4分 如图3,当点C 与点F 重合时,OA 取得最大值,为2.综上所述,OA 的取值范围是1≤OA ≤2.……………………………5分 (3)OP =324,OQ =322.…………………………………………………7分 28.解:(1)A 1,A 3;…………………………………………………………………………2分(2)如图,以(0,12-)为圆心,1为半径作圆,以(0,12)为圆心,2为半径作圆,两圆在直线MN 上方的部分与直线12y x =+分别交于点E ,F .可求E ,F 两点坐标分别为(0,12)和(1,32). 只有当点B 在线段EF 上时,满足45°≤∠MBN ≤90°,点B 是线段MN 的可视点.∴点B 的横坐标t 的取值范围是01t ≤≤.………………………………5分(3)1522b ≤≤或332b -<≤-. …………………………………………7分图2 图3。

北京市朝阳区2018年初中毕业考试(二模)数学试卷

北京市朝阳区2018年初中毕业考试(二模)数学试卷

北京市朝阳区2018年初中毕业考试(二模)数学试卷考生须知1.考试时间为90分钟,满分100分;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(填空题、解答题)两部分,共8页;3.认真填写密封线内学校、班级、姓名.第Ⅰ卷(共30分)一、选择题(共10道小题,每小题3分,共30分)第1-10题均有四个选项,符合题意的选项只有一个.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.如图所示,数轴上表示绝对值大于3的数的点是(A)点E (B)点F (C)点M(D)点N2.若代数式32x有意义,则实数x的取值范围是(A)x=0 (B)x=3 (C)x≠0(D)x≠33.右图是某个几何体的展开图,该几何体是(A)正方体(B)圆锥(C)圆柱(D)三棱柱4.小鹏和同学相约去影院观看《厉害了,我的国》,在购票选座时,他们选定了方框所围区域内的座位(如图). 取票时,小鹏从这五张票中随机抽取一张,则恰好抽到这五个座位正中间的座位的概率是(A)21(B)54(C)53(D)515.将一副三角尺按如图的方式摆放,其中l1∥l2,则∠α的度数是(A )30° (B )45°(C )60° (D )70°6.某学校课外活动小组为了解同学们喜爱的电影类型,设计了如下的调查问卷 (不完整):准备在“①国产片,②科幻片,③动作片,④喜剧片,⑤亿元大片”中选取三个作为该问题的备选答案,选取合理的是(A )①②③ (B )①③⑤ (C )②③④ (D )②④⑤ 7.如图,在平面直角坐标系xOy 中,反比例函数xky =的图象经过点T . 下列各点 )64(,P ,)83(-,Q ,)122(--,M ,)4821(,N 中,在该函数图象上的点有(A )4个 (B )3个 (C )2个 (D )1个8.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,若∠ADE =110°,则∠AOC的度数是(A )70° (B )110° (C )140° (D )160°9.在平面直角坐标系xOy 中,二次函数172++=x x y 的图象如图所示,则方程调查问卷 年 月你平时最喜欢的一种电影类型是( )(单选) A. B. C. D.其他0172=++x x 的根的情况是(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )没有实数根 (D )无法判断10.如图,正方形ABCD 的边长为2,以BC 为直径的半圆与对角线AC 相交于点E ,则图中阴影部分的面积为(A )π4125+ (B )π4123-(C )π2125- (D )π4125-机读答题卡题号12345678910答 案〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔A 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔B 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔C 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕 〔D 〕第Ⅱ卷 (共70分)二、填空题(共6道小题,每小题3分,共18分)11.分解因式:=++222n mn m .12. 如果一个多边形是轴对称图形,那么这个多边形可以是 (写出一个即可). 13.抛物线y =x 2-6x +5的顶点坐标为 .14.一次函数y =kx +2(0≠k )的图象与x 轴交于点A (n ,0),当n >0时,k 的取值范围是 .15.如图,某数学小组要测量校园内旗杆AB 的高度,其中一名同学站在距离旗杆12米的点C 处,测得旗杆顶端A 的仰角为α,此时该同学的眼睛到地面的高CD 为1.5米, 则旗杆的高度为 (米)(用含α的式子表示). 16.如图,∠AOB =10°,点P 在OB 上.以点P 为圆心,OP 为半径画弧,交OA 于点P 1(点P 1与点O 不重合),连接PP 1;再以点P 1为圆心,OP 为半径画弧,交OB 于点P 2(点P 2与点P 不重合),连接P 1 P 2; 再以点P 2为圆心,OP 为半径画弧,交OA 于点P 3(点P 3与点P 1不重合),连接P 2 P 3; … …请按照上面的要求继续操作并探究: ∠P 3 P 2 P 4= º;按照上面的要求一直画下去,得到点P n ,若之后就不能再画出符合要求点P n+1了,则n = .三、解答题(共10道小题,17-25题每小题5分,26题7分,共52分) 17.(本小题5分)计算:1)31()10(30cos 412-︒+-+-π.18.(本小题5分)解不等式组:⎩⎨⎧-++.23,322x x x x <)(<19.(本小题5分)先化简,再求值:1111122+-+-÷--a a a a a ,其中4=a .20.(本小题5分)如图,BD 是△ABC 的角平分线,DE //BC 交AB 于点E . (1)求证:BE=DE ;(2)若AB=BC =10,求DE 的长.21.(本小题5分)在平面直角坐标系xOy 中,△ABC 的顶点分别 为A (1,1),B (2,4),C (4,2).(1)画出△ABC 关于原点O 对称的△A 1B 1C 1; (2)点 C 关于x 轴的对称点C 2的坐标为 ;(3)点C 2向左平移m 个单位后,落在△A 1B 1C 1内部,写出一个满足条件的 m 的值: .22.(本小题5分)北京市积极开展城市环境建设,其中污水治理是重点工作之一,以下是北京市2012—2017年污水处理率统计表:年份2012 2013 2014 2015 2016 2017 污水处理率(%)83.0 84.6 86.1 87.9 90.0 92.0(1)用折线图将2012—2017年北京市污水处理率表示出来,并在图中标明相应的数据;(2)根据统计图表中提供的信息,预估2018年北京市污水处理率约为%,说明你的预估理由:.北京市2012—2017年污水处理率统计图23.(本小题5分)如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD 分别相交于点E,F.(1) 求证:AE=CF;(2)若AB=2,点E是AB中点,求EF的长.24.(本小题5分)保护和管理好湿地,对于维护一个城市生态平衡具有十分重要的意义.2018年北京计划恢复湿地和计划新增湿地的面积共2200公顷,其中计划恢复湿地面积比计划新增湿地面积的2倍多400公顷.求计划恢复湿地和计划新增湿地的面积.25.(本小题5分)如图,在△ABC 中,AB =BC ,∠A =45°,以AB 为直径的⊙O 交CO 于点D . (1)求证:BC 是⊙O 的切线;(2)连接BD ,若BD =m ,tan ∠CBD =n ,写出求直径AB 的思路.26.(本小题7分)抛物线c bx x y ++=2的对称轴为直线x =1,该抛物线与x 轴的两个交点分别为 A 和B ,与 y 轴的交点为C ,其中A (-1,0). (1)写出B 点的坐标 ;(2)若抛物线上存在一点P ,使得△POC 的面积是△BOC 的面积的2倍,求点P 的坐标;(3)点M 是线段BC 上一点,过点M 作x 轴的垂线交抛物线于点D ,求线段MD 长度的最大值.北京市朝阳区2018年初中毕业考试数学试卷评分标准及参考答案 2018.4一、选择题(每小题3分,共30分)1.A 2.D 3.B 4.D 5.C 6.C 7.B 8.C 9.B 10.D二、填空题(每小题3分,共18分)11.2)(n m + 12.答案不唯一. 如:正方形. 13.(3,-4) 14. k < 0 15. 1.5+12tan α 16. 40 ;8 三、解答题(17—25题每小题5分,26题7分,共52 分) 17.解:原式=3123432++⨯-……………………………………………4分 =4. ………………………………………………………………5分18. 解:⎩⎨⎧-++.)2(3,322x x x x <<解不等式①,得 1-> x . …………………………………………2分 解不等式②,得 3<x . …………………………………………4分 ∴不等式组的解集为31<<-x . …………………………………5分19.解:1111122+-+-÷--a a a a a =11)1()1)(1(2+-+-⋅-+-a a a a a a ………………………………………2分11+=a .………………………………………………………………4分 当4=a 时,原式=51. …………………………………………………………………5分20.(1)证明:∵BD 是△ABC 的角平分线,∴∠EBD =∠CBD . ∵DE //BC ,∴∠EDB =∠CBD . ∴∠EDB =∠EBD .∴BE=DE . ……………………………………………………2分(2)解:∵AB=BC ,BD 是△ABC 的角平分线,∴AD =DC . ………………………………………………………… 3分 ∵DE //BC ,∴1==DCAD EBAE .……………………………………………………… 4分∴521==AB BE .①②∴5=DE . ………………………………………………………5分21. 解:(1)图略. …………………………………………………………3分 (2)(4,-2). …………………………………………………………4分 (3)答案不唯一.如:6. …………………………………………………5分22. 解:(1)图略. ………………………………………………………………3分 (2)预估理由须包含统计图表中提供的信息,且支撑预估的数据.……5分23.(1)证明:∵四边形ABCD 是菱形,∴AO=CO ,AB ∥CD . …………………………………………………1分 ∴∠EAO=∠FCO ,∠AEO=∠CFO .∴△AOE ≌△COF . …………………………………………………2分 ∴AE =CF . ………………………………………………………………3分 (2)解:∵E 是AB 中点,∴BE=AE=CF . ∵BE ∥CF ,∴四边形BEFC 是平行四边形. ………………………………………4分 ∵AB=2,∴EF=BC=AB=2. ……………………………………………………5分24. 解:设计划新增湿地x 公顷,则计划恢复湿地(2x+400)公顷. ……1分 依题意,得 x+ 2x+400=2200.……………………………………… 3分 解得 x =600. ……………………………………4分2x+400=1600.…………………………………………5分答:计划恢复湿地1600公顷,计划新增湿地600公顷.25.(1)证明:∵AB =BC ,∠A =45°,∴∠ACB =∠A =45°.∴∠ABC =90°. …………………………………………………………1分 ∵AB 是⊙O 的直径,∴BC 是⊙O 的切线. …………………………………………………2分 (2)求解思路如下:①连接AD ,由AB 为直径可知,∠ADB =90°,进而可知∠BAD =∠CBD ;……3分②由BD =m ,tan ∠CBD =n ,在Rt △ABD 中,可求AD =mn;………………………4分 ③在Rt △ABD 中,由勾股定理可求AB 的长. ……………………………………5分26. 解:(1)(3,0). ………………………………………………………………………1分(2)由A (-1,0),B (3,0),求得抛物线的表达式为322--=x x y .…………2分∴C (0,-3).数学试卷 第 页(共8页) 11 ∴193322BOC S =⨯⨯=△. ∴29POC BOC S S ==△△.设点P 的横坐标为P x ,求得6P x =±.代入抛物线的表达式,求得点P 的坐标为(6,21),(-6,45). ………………4分(3)由点B (3,0) ,C (0,-3),求得直线BC 的表达式为3y x =-. ……………5分设点M (a ,a -3),则点D (a ,a 2-2a -3).∴MD = a -3-( a 2-2a -3)=-a 2 +3a=239()24a --+. ……………………………………………………6分 ∴当32a =时,MD 的最大值为94. …………………………………………………7分说明:各解答题的其他正确解法请参照以上标准给分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区九年级综合练习(二)数学试卷 2017.6下面各题均有四个选项,其中只有一个是符合题意的.1.中国海军第一艘国产航母001A 型航母在2017年4月26日下水,该航母的飞行甲板长约300米,宽约70米,总面积约21000平方米.将21000用科学记数法表示应为 A .42.110⨯B .50.2110⨯C .32110⨯D .52.110⨯2. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是A .a <-2B .b >-1C .-a <-b D .a > b3. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为 A .45° B .55° C .135° D .145°4.内角和与外角和相等的多边形是A B C D5.在一个不透明的袋子里装有2个红球、3个黄球和5个蓝球,这些球除颜色外,没有任何区别. 现从这个袋子中随机摸出一个球,摸到红球的概率是 A .110 B .15 C .310D .126. 下列图标中,是轴对称的是A B C D7.中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,○炮所在位置的坐标为(-3, 1),○相所在位置的坐标为(2,-1), 那么, ○帅所在位置的坐标为A .(0,1)B .(4,0)C .(-1,0)D .(0,-1)8.抛物线263y x x =-+的顶点坐标为A .(3,–6)B .(3,12)C .(–3,-9)D .(–3,–6)9.如图,⊙O 的半径OC 垂直于弦AB ,垂足为D ,OA=, ∠B =22.5°,AB 的长为A .2B .4 C. D.10. 甲、乙、丙三名射箭运动员在某次测试中各射箭8次,三人的测试成绩如下表:s 2甲、s 2乙、s 2丙分别表示甲、乙、丙三名运动员这次测试成绩的方差,下面各式中正确的是A .s 2甲>s 2乙>s 2丙B .s 2乙>s 2甲>s 2丙C .s2丙>s 2甲>s 2乙 D .s 2丙>s 2乙>s 2甲二、填空题(本题共18分,每小题3分)11.在函数y =中,自变量x 的取值范围是 . 12. 分解因式:ax 2-4ay 2= .13. 写出一个图象经过点(1,1)的函数的表达式,所写的函数的表达式为 .14.在某一时刻,测得一根高为1.2m 的竹竿的影长为3m ,同时测得一栋楼的影长为45m ,那么这栋楼的高度为 m .15.在一段时间内,小军骑自行车上学和乘坐公共汽车上学的次数基本相同,他随机记录了其中某些天上学所用的时间,整理如下表:①平均来说,乘坐公共汽车上学所需的时间较短 ②骑自行车上学所需的时间比较容易预计③如果小军想在上学路上花的时间更少,他应该更多地乘坐公共汽车 ④如果小军一定要在16 min 内到达学校,他应该乘坐公共汽车 其中合理的是 (填序号).16.阅读下面材料:数学课上,老师提出如下问题:小强的作法如下:老师表扬了小强的作法是对的.请回答:小强这样作图的主要依据是 .尺规作图:经过直线外一点作这条直线的平行线.已知:直线l 和直线l 外一点A . 求作:直线l 的平行线,使它经过点A .如图,(1)过点A 作直线m 交直线l 于点B ;(2)以点A 为圆心,AB 长为半径作弧,交直线m 于点C ; (3)在直线l 上取点D (不与点B 重合),连接CD ; (4)作线段CD 的垂直平分线n ,交线段CD 于点E ; (5)作直线AE . 所以直线AE 即为所求.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:201()(4cos 452π--︒.18. 已知2310x x +-=,求代数式()239x x x--÷的值.19. 解不等式2133x x --<,并把它的解集在数轴上表示出来.20.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高, 过点C 作CE ∥AB 交AD 的延长线于点E. 求证:CE =AB21.已知关于x 的一元二次方程24210x x m -+-=有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为正整数,且该方程的根都是整数,求m 的值.22.调查作业:了解你所在学校学生本学期社会实践活动的情况.小明、小亮和小天三位同学在同一所学校上学.该学校共有三个年级,每个年级都有6个班,每个班的人数在30~40之间.为了了解该校学生本学期社会实践活动的情况,他们各自设计了如下的调查方案: 小明:我给每个班学号分别为1、2、11、12、21、22的同学各发一份问卷,一两天就可以得到结果.小亮:我把要调查的问题放在某两个班的微信群里,这样群里的大部分人就可以完成调 查的问题,并很快就可以反馈给我.小天:我给每个班发一份问卷,一两天也就可以得到结果了. 根据以上材料回答问题:小明、小亮和小天三人中,哪一位同学的调查方案能较好地获得该校学生本学期社会实践活动的情况,并简要说明其他两位同学调查方案的不足之处.23. 如图,在ABCDY中,BC=2AB,E,F分别是BC,AD的中点,AE,BF交于点O,连接EF,OC.(1)求证:四边形ABEF是菱形;(2)若BC=8,60∠=︒,求OC的长.ABC24.阅读下列材料:自2017年以来,朝阳区统筹推进稳增长、调结构、促改革、惠民生等各项工作,经济转型发展不断加快,全区经济实力不断迈上新台阶.2017年,朝阳区生产总值3272.2 亿元.2017年,朝阳区生产总值3632.1 亿元,比上年增长359.9亿元.2017年,朝阳区生产总值4030.6 亿元,比上年增长398.5亿元.2017年,朝阳区生产总值4337.3 亿元,比上年增长7.6%.2017年,朝阳区生产总值4640.2 亿元,比上年增长7.0%,其中,第一产业1.2 亿元,第二产业358.0 亿元,第三产业4281.0 亿元.2017年,朝阳区生产总值4942.0亿元,比上年增长6.5%,居民人均可支配收入达到59886元,比上年增长8%.根据以上材料解答下列问题:(1)用折线图将2017-2018年朝阳区生产总值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2017年朝阳区生产总值约亿元,你的预估理由是.25.如图,△ABC中,∠A=45°,D是AC边上一点,⊙O过D、A、B三点,OD∥BC.(1)求证:直线BC是⊙O的切线;(2)OD,AB相交于点E,若AB=AC,OD=r,写出求AE长的思路.26. 下面是小东的探究学习过程,请补充完整:(1)探究函数22222x x y x +-=-(x <1)的图象与性质.小东根据学习函数的经验,对函数22222x x y x +-=-(x <1)的图象与性质进行了探究.①下表是y 与x 的几组对应值.求m 的值;②如下图,在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;③进一步探究发现,该函数图象的最高点的坐标是(0,1),结合函数的图象,写出该函数的其他性质(一条即可): _____;(2)小东在(1)的基础上继续探究:他将函数22222x x y x +-=-(x <1)的图象向上平移1个单位长度,再向右平移1个单位长度后得到函数22724x x y x +-=-(x <2)的图象,请写出函数22724x x y x +-=-(x <2)的一条性质:_____.27.在平面直角坐标系xOy中,抛物线y=mx2-2mx+2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)点C,D在x轴上(点C在点D的左侧),且与点B的距离都为2,若该抛物线与线段CD有两个公共点,结合函数的图象,求m的取值范围.28.在△ABC中,∠ACB=90°,以AB为斜边作等腰直角三角形ABD,且点D与点C在直线AB 的两侧,连接CD.(1) 如图1,若∠ABC=30°,则∠CAD的度数为.(2)已知AC=1,BC=3.①依题意将图2补全;②求CD的长;小聪通过观察、实验、提出猜想,与同学们进行交流,通过讨论,形成了求CD长的几种想法:想法1:延长CB,在CB延长线上截取BE=AC,连接DE.要求CD的长,需证明△ACD≌△BED,△CDE为等腰直角三角形.想法2:过点D作DH⊥BC于点H,DG⊥CA,交CA的延长线于点G,要求CD的长,需证明△BDH≌△ADG,△CHD为等腰直角三角形.……请参考上面的想法,帮助小聪求出CD的长(一种方法即可).(3)用等式表示线段AC,BC,CD之间的数量关系(直接写出即可).图2图129. 在平面直角坐标系xOy中,对于半径为r(r>0)的⊙O和点P,给出如下定义:若r≤PO≤32r,则称P为⊙O的“近外点”.(1)当⊙O的半径为2时,点A(4,0),B (52-,0),C(0,3),D (1,-1) 中,⊙O的“近外点”是;(2)若点E(3,4)是⊙O的“近外点”,求⊙O的半径r的取值范围;(3)当⊙O的半径为2时,直线y x b=+(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“近外点”,直接写出b的取值范围.北京市朝阳区九年级综合练习(二)数学试卷评分标准及参考答案 2017.6一、选择题(本题共30分,每小题3分)11. x ≥2.12. (2)(2)a x y x y +-.13. 答案不惟一 ,如:y =x . 14. 18. 15.①②③.16. 同圆半径相等;线段垂直平分线的定义;三角形的中位线平行于第三边.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式=414-+ =3. 18.解:()239x x x--÷=(3)(3)3xx x x +-⋅- =23x x +. 2310,x x +-=∴原式=1.19.解: 去分母,得 2193x x --<. 移项,得 2391x x ++<. 合并,得 510x <. 系数化1,得 2x <. 不等式的解集是在数轴上表示如下 :20.证明:∵,AB AC AD BC =是边上的高, ∴∠BAE =∠CAE . ∵CE ∥AB , ∴∠E =∠BAE . ∴∠E =∠CAE .∴CE =AC . ∵AB =AC , ∴CE =AB .21.解:(1)依题意,得∆=16-4(2m -1)>0.∴ m <52. (2)∵m 为正整数, ∴m =1或2.当m=1时,方程为2410x x -+=的根2x = 当m=2时,方程为2430x x -+=的根121,3x x ==,都是整数. 综上所述,m =2.22.答:小明的调查方案能较好地获得该校学生本学期社会实践活动的情况.小亮的调查方案的不足之处:抽样调查所抽取的样本的代表性不够好. 小天的调查方案的不足之处:抽样调查所抽取的学生数量太少.23. (1) 证明:∵四边形ABCD 是平行四边形,∴BC ∥AD ,BC =AD . ∵E ,F 分别是BC ,AD 的中点, ∴11,22BE BC AF AD ==.∴BE =AF .∴四边形ABEF 是平行四边形. ∵BC =2AB , ∴AB =BE .∴ ABEF 是菱形. (2)解:过点O 作OG ⊥BC 于点G . ∵E 是BC 的中点,BC =8,∴BE =CE =4.∵四边形ABEF 是菱形,∠ABC =60°, ∴∠OBE =30,∠BOE =90°. ∴OE =2,∠OEB =60°.∴GE =1,∴GC =5.∴OC =24.解:(1) 2017—2017年朝阳区生产总值折现统计图(2)预估理由须包含折线图中提供的信息,且支撑预估的数据.25.(1)证明:连接OB.∵∠A=45°,∴∠DOB=90°.∵OD∥BC,∴∠DOB+∠CBO =180°.∴∠CBO=90°.∴直线BC是⊙O的切线.(2)求解思路如下:如图,延长BO交⊙O于点F,连接AF.①由AB=AC,∠BAC=45°,可得∠ABC=67.5°,∠ABF=22.5°;②在Rt△EOB中,由OB=r,可求BE的长;③由BF是直径,可得∠F AB=90°,在Rt△F AB中,由BF=2r,可求AB的长,进而可求AE的长.26.解: (1)①当x =12时,y =34.∴34m =.②该函数的图象如下图所示:③答案不惟一,如:当x <0时,y 随x 的增大而增大. (2)答案不惟一,如:函数图象的最高点坐标为(1,2).27.解:(1)由题意,当x =0时,y =2.∴A (0,2).∵2222(1)2y mx mx m x m =-+=-+-, ∴对称轴为直线x =1.∴B (1,0).(2)由题意,C (-1,0),D (3,0).①当m >0时,结合函数图象可知,满足题意的抛物线的顶点须在x 轴下方,即2-m <0.∴m >2.②当m <0时,过C (-1,0)的抛物线的顶点为E (1,83). 结合函数图象可知,满足条件的抛物线的顶点须在点E 上方或与点E 重合,即2-m ≥83. ∴m ≤23-. 综上所述,m 的取值范围为m >2或m ≤23-.28.解:(1)105°.(2)①补全图形,如图所示.②想法1:如图,∵∠ACB=∠ADB =90°,∴∠CAD+∠CBD==180°.∵∠DBE+∠CBD==180°,∴∠CAD=∠DBE.∵DA=DB,AC=BE,∴△ACD≌△BED.∴DC=DE,∠ADC=∠BDE.∴∠CDE =90°.∴△CDE为等腰直角三角形.∵AC=1,BC=3,∴CE=4.∴CD=想法2:如图,∵∠ACB=∠ADB =90°,∴∠CAD+∠CBD==180°.∵∠DAG+∠CAD==180°,∴∠CBD=∠DAG.∵DA=DB,∠DGA=∠DHB=90°,∴△BDH≌△ADG.∴DH=DG,BH=AG.∴∠DCH=∠DCG=45°.∴△CHD为等腰直角三角形.∵AC=1,BC=3,∴CH=2.∴CD=(3)AC BC+=.29.解:(1)B,C.(2)∵E(3,4)∴EO=5.∴5, 35. 2rr≤⎧⎪⎨≥⎪⎩∴105 3r≤≤.(3b b≤≤≤≤.说明:各解答题的其他正确解法请参照以上标准给分.。

相关文档
最新文档