立体几何与空间向量
高中数学立体几何与空间向量知识点归纳总结
高中数学立体几何与空间向量知识点归纳总结立体几何与空间向量知识点归纳总结一、立体几何知识点1、柱、锥、台、球的结构特征1) 棱柱的定义:有两个面是对应边平行的全等多边形,其余各面都是四边形,且相邻四边形的公共边都平行,由这些面围成的几何体叫棱柱。
棱柱的侧面都是平行四边形,侧棱平行且长度相等。
若侧棱垂直于底面,则为直棱柱;若底面是正多边形,则为正棱柱。
2) 棱锥的定义:有一个面是多边形,其余各面都是三角形,由这些面围成的几何体叫棱锥。
平行于底面的截面与底面相似,其相似比等于顶点到截面的距离与高的比。
3) 棱台的定义:用平行于底面的平面截棱锥,截面与底面的部分叫棱台。
上下底面平行且是相似的多边形,侧面是梯形,侧棱交于原棱锥的顶点。
4) 圆柱的定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所围成的几何体叫圆柱。
底面是全等的圆,母线与轴平行,轴与底面圆的半径垂直,侧面展开图是一个矩形。
5) 圆锥的定义:以直角三角形的一条直角边为旋转轴,旋转一周所围成的几何体叫圆锥。
底面是一个圆,母线交于圆锥的顶点,侧面展开图是一个扇形。
6) 圆台的定义:以直角梯形的垂直于底边的腰为旋转轴,旋转一周所围成的几何体叫圆台。
上下底面是两个圆,侧面母线交于原圆锥的顶点,侧面展开图是一个扇环形。
7) 球体的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形围成的几何体叫球。
球的截面是圆,球面上任意一点到球心的距离等于半径。
2、柱体、锥体、台体的表面积与体积1) 几何体的表面积为各个面的面积之和。
2) 特殊几何体表面积公式:直棱柱侧面积=底面周长×高圆锥侧面积=π×底面半径×母线正棱台侧面积=(上底+下底+侧棱)×高/2圆柱侧面积=2π×底面半径×高正棱锥侧面积=(底面周长1+底面周长2+侧棱)×高/2圆台侧面积=(上底半径+下底半径)×母线×π/2圆柱表面积=2π×底面半径×(底面半径+高)圆锥表面积=π×底面半径×(底面半径+母线)圆台表面积=π×(上底半径²+下底半径²+上底半径×下底半径×(上底半径-下底半径)/母线)3) 柱体、锥体、台体的体积公式:直棱柱体积=底面积×高圆柱体积=底面积×高=π×底面半径²×高圆锥体积=底面积×高/3=π×底面半径²×高/3圆台体积=底面积×高/3=(上底半径²+下底半径²+上底半径×下底半径)×高/3圆台的体积公式为V=(S+S'+√(SS'))h/3,其中S和S'分别为圆台的上下底面积,h为圆台的高。
2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算
2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。
学空间向量与立体几何空间向量的正交分解及其坐标表示
合成与分解、波动传播的方向和速度等。
空间向量在计算机图形学中的应用
图形变换
空间向量在计算机图形学中广泛应用于图形的变换,例如平移 、旋转和缩放等操作。
光照与阴影
空间向量在光照与阴影的计算中也起着关键作用,例如计算光 线方向、反射和折射等。
动画与游戏
空间向量在动画和游戏开发中也经常被使用,例如物体移动、 视角转换和角色控制等。
THANK YOU.
2023
《学空间向量与立体几何 空间向量的正交分解及其
坐标表示》
目录
• 空间向量与立体几何概述 • 空间向量的正交分解 • 空间向量的坐标表示 • 空间向量与立体几何的应用 • 总结与展望
01
空间向量与立体几何概述
空间向量的定义与性质
空间向量的定义
空间向量是一种具有大小和方向的量,通常用一条有向线段表示,其大小由线段的长度表示,方向由 线段的方向表示。
03
空间向量的坐标表示
坐标系的建立
01
建立空间直角坐标系
通过原点和三个互相垂直的单位向量 确定空间直角坐标系。
02
坐标系的特点
03
坐标系的单位向量
坐标系具有三个互相垂直的轴,分别 为x轴、y轴、z轴,每个轴上的单位长 度为1。
x轴上的单位向量为i,y轴上的单位向 量为j,z轴上的单位向量为k。
空间向量的坐标表示
空间向量的定义
空间向量是一个有方向和大小的 量,可以用一个有序实数组表示 。
空间向量的表示方法
在空间直角坐标系中,空间向量 可以用三个分量来表示,即 (x,y,z)。
空间向量的模
空间向量的模等于其分量平方和 的平方根。
空间向量坐标的运算
空间向量与立体几何公式
空间向量与立体几何公式一、空间向量1、空间向量是一种简单的数学表达形式,表示一组相同类型数据成员之间的关系。
它可以描述空间中的每个点与另一个点之间的连接情况,而连接情况是由三个不同的坐标表示的。
换言之,空间向量就是描述空间中一个点到另一个点的方向及距离,作为一种数学实体而存在的。
2、空间向量可以用一个有向箭头来表示,并用数学记号标注出来。
通常来说,它的数学记号是表示坐标系中的另一个点在第一个点的坐标上的偏移量,如a→b表示b点在a点上的偏移量。
3、空间向量形式可以表示一条从原点到某个点的路径,通过它可以确定在x、y和z轴上的平移量,即偏移量,从而避免了我们有时在空间中运行物体时会误解运动方向的困难。
从更宏观的角度来说,空间向量可以用来表示以位置、速度和加速度等。
二、立体几何公式1、立体几何是几何学分支之一,它学习的内容是空间中的点、线、面和体的特性、关系及其变化规律,其中关于立体图形的内容被称为立体几何。
立体几何的定义是关于空间中的点、线、面和体的研究,以及它们之间的关系,其中主要考虑的就是位置、形状、大小以及一般的空间概念。
2、立体几何公式包括:立体几何定义、立体几何变换、立体几何性质、其他立体几何相关概念以及三角几何相关公式。
例如,立体几何定义涉及的公式有:空间中的点的位置关系(a-b=c),线的距离关系(L=1/2×Z1×Z2),面的面积关系(S=1/2×Z1×Z2×cosX),以及球体表面积(S=4×π×R2)等公式。
3、另外,立体几何公式还包括三角几何公式,它主要涉及到角度、正弦、余弦、正切、反正切等相关公式。
这些公式用来解决各种形状三角形以及其他更复杂的立体图形以及相关空间距离关系的问题。
空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。
设向量为a=(a1,a2,a3)则其在x轴、y轴、z轴上的投影分别为a1、a2、a3即a=(a1,a2,a3)2)空间向量的模长:向量的模长是指其长度,即a|=√(a1²+a2²+a3²)3)向量的单位向量:一个向量的单位向量是指其方向相同、模长为1的向量。
设向量a的模长为a|则其单位向量为a/|a|4)向量的方向角:向量在空间直角坐标系中与三个坐标轴的夹角分别称为其方向角。
设向量a=(a1,a2,a3)则其方向角为α=cos⁻¹(a1/|a|)、β=cos⁻¹(a2/|a|)、γ=cos⁻¹(a3/|a|)5)向量的方向余弦:向量在空间直角坐标系中与三个坐标轴的夹角的余弦值分别称为其方向余弦。
设向量a=(a1,a2,a3)则其方向余弦为cosα=a1/|a|、cosβ=a2/|a|、cosγ=a3/|a|一、知识要点1.空间向量的概念:在空间中,向量是具有大小和方向的量。
向量通常用有向线段表示,同向等长的有向线段表示同一或相等的向量。
向量具有平移不变性。
2.空间向量的运算:空间向量的加法、减法和数乘运算与平面向量运算相同。
运算法则包括三角形法则、平行四边形法则和平行六面体法则。
3.共线向量:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量。
共线向量定理指出,空间任意两个向量a、b(b≠0),a//b存在实数λ,使a=λb。
4.共面向量:能平移到同一平面内的向量叫做共面向量。
5.空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p有唯一的有序实数组x、y、z,使p=xa+yb+zc。
若三向量a、b、c不共面,则{a,b,c}叫做空间的一个基底,a、b、c叫做基向量。
6.空间向量的直角坐标系:在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。
高中数学必背公式——立体几何与空间向量
高中数学必背公式——立体几何与空间向量知识点复习:1. 空间几何体的三视图“长对正、高平齐、宽相等”的规律。
2. 在计算空间几何体体积时注意割补法的应用。
3. 空间平行与垂直关系的关系的证明要注意转化: 线线平行线面平行面面平行,线线垂直线面垂直面面垂直。
4.求角:(1)异面直线所成的角:可平移至同一平面;也可利用空间向量:cos |cos ,|a b θ=<>r r=||||||a b a b ⋅=⋅r r r r(其中θ(090θ<≤oo)为异面直线a b ,所成角,,a b r r分别表示异面直线a b ,的方向向量)。
(2)直线与平面所成的角:在斜线上找到任意一点,过该点向平面作垂线,找到斜线在该平面上的射影,则斜线和射影所成的角便是直线与平面所成的角;也可利用空间向量,直线AB 与平面所成角sin ||||AB m AB m β⋅=(m 为平面α的法向量). (3)二面角:方法一:常见的方法有三垂线定理法和垂面法;方法二:向量法:二面角l αβ--的平面角cos ||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β 的法向量). 5. 求空间距离:(1)点与点的距离、点到直线的距离,一般用三垂线定理“定性”; (2)两条异面直线的距离:||||AB n d n ⋅=(n 同时垂直于两直线,A 、B 分别在两直线上); (3)求点面距: ||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈); (3)线面距、面面距都转化为点面距。
题型一:空间几何体的三视图、体积与表面积 例1:已知一个几何体是由上下两部分构成的组合体, 其三视图如右,若图中圆的半径为1,等腰三角形的腰) A.43π B.2π C.83π D.103π 例2:某几何体的三视图如右图所示,则该几何体的表面积 为( )A.180B.200C.220D.240例3:右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .10πB .11πC .12πD .π13题型二:空间点、线、面位置关系的判断例4:已知m 、n 是不重合的直线,α和β是不重合的平面,有下列命题: (1)若α⊂m ,n ∥α,则m ∥n ;(2)若m ∥α,m ∥β,则α∥β; (3)若n =⋂βα,m ∥n ,则m ∥α且m ∥β; (4)若m ⊥α,m ⊥β,则α∥β. 其中真命题的个数是( ) A .0 B .1C .2D .3例5:给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直;其中真命题的个数是( ). A .4 B .3 C .2 D .1例6:给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直;②过直线外一点有且仅有一个平面与已知直线平行;③过直线外一点有且仅有一条直线与已知直线垂直;④过平面外一点有且仅有一条直线与已知平面垂直;其中正确命题的个数为( ). A .0个 B .1个 C .2个 D .3个☆题型三:空间线面位置关系的证明和角的计算例7:空间四边形ABCD 中,CD AB =且成060的角,点M 、N 分别为BC 、AD 的中点,求异面直线AB 和MN 成的角.例8:已知三棱锥ABCP -中,⊥PA 平面ABC,ACAB ⊥,AB AC PA 21==,N为AB上一点,AN AB 4=,M,S分别为PB,BC的中点.(1)证明:SNCM ⊥;(2)求SN与平面CMN所成角的大小.例9:如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,PC ⊥AD . 底面ABCD 为梯形,//AB DC ,AB BC ⊥.PA AB BC ==, 点E 在棱PB 上,且2PE EB =. (1)求证:平面PAB ⊥平面PCB ; (2)求证:PD ∥平面EAC ;(3)求平面AEC 和平面PBC 所成锐二面角的余弦值.例10:已知四棱锥ABCD P -的底面为直角梯形,DC AB //,⊥=∠PA DAB ,90底面ABCD , 且121====AB DC AD PA ,M 是PB 的中点。
空间向量与立体几何复习课ppt课件
一、空间向量及其运算
(一)基本概念 1. 空间向量:空间中具有大小和方向的量 叫做向量. 2. 空间向量也用有向线段表示,并且同向且 等长的有向线段表示同一向量或相等的向量.
3. 向量的模:向量的大小叫向量的长度或 模。即表示向量的有向线段的长度。 4. 单位向量:模是 1 的向量。
5. 零向量:模是 0 的向量。零向量的方向 是任意的。有向线段的起点与终点重合。
a b
2.共面向量定理:如果两个向量 a 、b 不共线,则向 量 p 与向量 a 、b 共面的充要条件是存在唯一的有 序实数对 ( x, y) 使 p xa yb .
3.空间向量基本定理:如果两个向量 a 、b、c 不共面, 则对空间中的任意向量 p ,存在唯一的有序实数对 (x, y , z) 使 p xa yb zc .
(二)、空间角的向量方法:
设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法பைடு நூலகம்量分别为 u, v ,则
两直线 l , m 所成的角为 ( 0 ≤ ≤ ), cos cosa b ;
2
直线 l 与平面 所成角 ( 0 ≤ ≤ ), sin cosa u ;
2
二面角 ─l ─ 的为 ( 0≤ ≤ ), cos cosu v.
中国历史上吸烟的历史和现状、所采 取的措 施以及 由此带 来的痛 苦和灾 难,可 以进一 步了解 吸烟对 人民健 康的危 害,提 高师生 的控烟 意识
理论知识点
一、空间向量及其运算
1、基本概念;
2、空间向量的运算;
3、三个定理;
4、坐标表示。
二、立体几何中的向量方法
1、判断直线、平面间的位置关系; 2、求解空间中的角度; 3、求解空间中的距离。
立体几何与空间向量知识梳理
立体几何与空间向量知识梳理
立体几何与空间向量是数学中的两个重要分支,它们都涉及到三维空间的计算和处理。
下面是它们的知识梳理:
一、立体几何
1. 立体几何基本概念:点、线、面、立体、平行、垂直、角度、投影等。
2. 立体图形的性质:体积、表面积、对称性、切割等。
3. 立体几何基本公式:立方体、长方体、正方体、圆柱、圆锥、球等的体积和表面积公式。
4. 立体几何运用:解决物体体积和表面积的计算问题,如容器的容积、房间的面积等。
二、空间向量
1. 空间向量定义及表示:三维空间中的有向线段,可以用起点坐标和终点坐标表示。
2. 空间向量的运算:加、减、数乘、点乘、叉乘等。
3. 空间向量的性质:模长、模长计算公式、向量方向,空间向量的平行性、垂直性等。
4. 空间向量的应用:用向量来表示物理量,如力、速度、加速
度等。
总结
立体几何和空间向量是数学中两个重要的分支,它们在三维空间中进行计算和处理。
在应用方面,立体几何可以解决物体的体积和表面积计算问题,而空间向量则可以用来表示和处理物理量。
在学习过程中,要注意掌握基本概念和公式,熟练掌握基本运算和性质,逐渐深入到应用层面。
高中数学空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
高中数学必修2--空间向量与立体几何知识点归纳总结
空间向量与立体几何知识点归纳总结一.知识要点。
1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量与立体几何的知识点总结
空间向量与立体几何空间向量及其线性运算知识点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作AB,其模记为|a|或|AB|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为 -a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量注意:空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.知识点二空间向量的线性运算空间向量的线性运算加法a+b=OA+AB=OB减法a-b=OA-OC=CA数乘当λ>0时,λa=λOA=PQ;当λ<0时,λa=λOA=MN;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.共线向量与共面向量知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:1.已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系AC y AB x OA OP ++=,则点P 与点A ,B ,C 共面。
第一章 空间向量与立体几何(公式、定理、结论图表)--2023年高考数学必背知识手册(新教材)
第一章空间向量与立体几何(公式、定理、结论图表)1.空间向量基本概念空间向量:在空间,我们把具有大小和方向的量叫作空间向量.长度(模):空间向量的大小叫作空间向量的长度或模,记为a 或AB.零向量:长度为0的向量叫作零向量,记为0 .单位向量:模为1的向量叫作单位向量.相反向量:与向量a 长度相等而方向相反的向量,叫作a 的相反向量,记为a.共线向量(平行向量):如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫作共线向量或平行向量.规定:零向量与任意向量平行.相等向量:方向相同且模相等的向量叫作相等向量.2.空间向量的线性运算空间向量的线性运算包括加法、减法和数乘,其定义、画法、运算律等均与平面向量相同.3.共线、共面向量基本定理(1)直线l 的方向向量:在直线l 上取非零向量a ,与向量a平行的非零向量称为直线l 的方向向量.(2)共线向量基本定理:对任意两个空间向量=a b λ (0b ≠ ),//a b 的充要条件是存在实数λ,使=a b λ.(3)共面向量:如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a平行于平面α.平行于同一个平面的向量,叫作共面向量.(4)共面向量基本定理:如果两个向量a ,b 不共线,那么向量p与向量a ,b 共面的充要条件是存在唯一的有序实数对(),x y ,使p xa yb =+ .4.空间向量的数量积(1)向量的夹角:已知两个非零向量a ,b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫作向量a ,b 的夹角,记作,a b <> .如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)数量积定义:已知两个非零向量,a b ,则cos ,a b a b <> 叫作,a b的数量积,记作a b ⋅ .即a b ⋅= cos ,a b a b <> .(3)数量积的性质:0a b a b ⊥⇔⋅= 2cos ,a a a a a a a ⋅=⋅<>= .(4)空间向量的数量积满足如下的运算律:()()a b a bλλ⋅=⋅ a b b a⋅=⋅ (交换律):()a b c a c b c +⋅=⋅+⋅(分配律).推论:()2222a ba ab b +=+⋅+,()()22a b a b a b+⋅-=- .(5)向量的投影向量:向量a 在向量b 上的投影向量c :cos ,b c a a b b=<>向量a 在平面α内的投影向量与向量a 的夹角就是向量a所在直线与平面α所成的角.5.空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任意一个空间向量p.存在唯一的有序实数组(),,x y z .使得p xa yb zc =++ .6.基底与正交分解(1)基底:如果三个向量,,a b c 不共面,那么我们把{},,a b c 叫作空间的一个基底,,,a b c都叫作基向量.(2)正交分解:如果空间的一个基底中的三个基向量两两垂直.且长度都为1.那么这个基底叫作单位正交基底,常用{},,i j k表示.把一个空间向量分解为三个两两垂直的向量,叫作把空间向量进行正交分解.7.空间直角坐标系在空间选定点O 和一个单位正交基底{},,i j k.以点O 为原点,分别以,,i j k的方向为正方向、以它们的长为单位长度建立三条数轴:x 轴.y 轴、z 轴,它们都叫作坐标轴.这时我们就建立了一个空间直角坐标系Oxyz ,O 叫作原点,,,i j k都叫作坐标向量,通过每两个坐标轴的平面叫作坐标平面.空间直角坐标系通常使用的都是右手直角坐标系.8.空间向量的坐标在空间直角坐标系Oxyz 中,,i j k为坐标向量.给定任一向量OA ,存在唯一的有序实数组(),,x y z ,使OA xa yb zc =++.有序实数组(),,x y z 叫作向量OA 在空间直角坐标系Oxyz 中的坐标.记作(),,OA x y z =.(),,x y z 也叫点A 在空间直角坐标系中的坐标.记作(),,A x y z .9.空间向量运算的坐标表示设()()111222,,,,,a x y z b x y z ==,则:(1)()121212,,a b x x y y z z +=+++,(2)()121212,,a b x x y y z z -=---,(3)()111,,a x y z λλλλ=.10.空间向量平行、垂直、模长、夹角的坐标表示(1)121212//,,a b a b x x y y z z λλλλ⇔=⇔===,(2)121212=0++0a b a b x x y y z z ⊥⇔⋅⇔=,(3)a == ,(4)cos ,a ba b a b ⋅== .11.空间两点间的距离公式设()()11112222,,,,,P x y z P xy z ,则12PP =.12.平面的法向量:直线l α⊥,取直线l 的方向向量a ,称a为平面的法向量.13.空间中直线、平面的平行(1)线线平行:若12,u u 分别为直线12,l l 的方向向量,则1212////,l l u u R λ⇔⇔∃∈ 使得12u u λ=.(2)线面平行:设u 直线l 的方向向量,n 是平面α的法向量,l α⊄,则//0l u n u n α⇔⊥⇔⋅=.法2:在平面α内取一个非零向量a ,若存在实数x ,使得u xa =,且l α⊄,则//l α.法3:在平面α内取两个不共线向量,a b ,若存在实数,x y ,使得u xa yb =+,且l α⊄,则//l α(3)面面平行:设12,n n 分别是平面,αβ的法向量,则12////n n R αβλ⇔⇔∃∈ ,使得12n n λ=.14.空间中直线、平面的垂直(1)线线垂直:若12,u u 分别为直线12,l l 的方向向量,则1212120l l u u u u ⊥⇔⊥⇔⋅=.(2)线面垂直:设u 直线l 的方向向量,n 是平面α的法向量,则//l u n R αλ⊥⇔⇔∃∈ ,使得u n λ=.法2:在平面α内取两个不共线向量,a b,若0a u b u ⋅=⋅= .则l α⊥.(3)面面垂直:设12,n n 分别是平面,αβ的法向量,则12120n n n n αβ⊥⇔⊥⇔⋅=.15.用空间向量研究距离、夹角问题(1)点到直线的距离:已知,A B 是直线l 上任意两点,P 是l 外一点,PQ l ⊥,则点P 到直线l 的距离为PQ =(2)求点到平面的距离已知平面α的法向量为n,A 是平面α内的任一点,P 是平面α外一点,过点P 作则平面α的垂线l ,交平面α于点Q ,则点P 到平面α的距离为AP nPQ n⋅= .(3)直线与直线的夹角若12,n n 分别为直线12,l l 的方向向量,θ为直线12,l l 的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.(4)直线与平面的夹角设1n 是直线l 的方向向量,2n是平面α的法向量,直线与平面的夹角为θ.则121212sin cos ,n n n n n n θ⋅=<>=.(5)平面与平面的夹角平面与平面的夹角:两个平面相交形成四个二面角,我们把这四个二面角中不大于90 的二面角称为这两个平面的夹角.若12,n n 分别为平面,αβ的法向量,θ为平面,αβ的夹角,则121212cos cos ,n n n n n n θ⋅=<>=.<解题方法与技巧>1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.3.在几何体中求空间向量的数量积的步骤1首先将各向量分解成已知模和夹角的向量的组合形式.2利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积.3根据向量的方向,正确求出向量的夹角及向量的模.4代入公式a·b =|a ||b |cos〈a ,b 〉求解.4.利用空间向量证明或求解立体几何问题时,首先要选择基底或建立空间直角坐标系转化为其坐标运算,再借助于向量的有关性质求解(证).5.求点到平面的距离的四步骤6.用坐标法求异面直线所成角的一般步骤(1)建立空间直角坐标系;(2)分别求出两条异面直线的方向向量的坐标;(3)利用向量的夹角公式计算两条直线的方向向量的夹角;7.利用向量法求两平面夹角的步骤(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量;(3)求两个法向量的夹角;(4)法向量夹角或其补角就是两平面的夹角(不大于90°的角)典例1:多选题(2023·全国·高三专题练习)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C.当12λ=时,有且仅有一个点P,使得1A P BP⊥D.当12μ=时,有且仅有一个点P,使得1A B⊥平面1AB P【详解】P在矩形11BCC B内部(含边界)典例2:如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以AC 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c = ,则n BD n BC ⎧⋅⎨⋅⎩可取()0,1,1n =-r,则11cos ,222m n m n m n⋅===⨯⋅,所以二面角A BD C --的正弦值为213122⎛⎫-= ⎪⎝⎭.典例3:已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,()()(0,0,0,2,0,0,0,2,0B A C ∴由题设(),0,2D a (02a ≤≤因为()(0,2,1,1BF DE ==- 所以()012BF DE a ⋅=⨯-+ [方法三]:因为1BF A B ⊥(1BF ED BF EB BB B ⋅=⋅++ 1122BF BA BC BF ⎛⎫=--+ ⎪⎝⎭1cos 2BF BC FBC =-⋅∠+作1BH F T ⊥,垂足为H ,因为面角的平面角.设1,B D t =[0,2],t ∈1B T =典例4:如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.。
空间向量与立体几何公式大全
以下是部分空间向量与立体几何的公式:1. 向量的模:向量的长,可参考点点距离求模。
2. 向量的加法:三角形法则或平行四边形法则。
3. 向量的减法:三角形法则。
4. 向量的数乘:m*(x,y,z)=(mx,my,mz)。
5. 向量的积:向量m*向量n=m模*n模*cos<m,n>。
6. 向量的数乘:a=(x1,y1,z1),b=(x2,y2,z2) a+b=(x1+x2,y1+y2,z1+z2) a-b=(x1-x2,y1-y2,z1-z2) λa=(λx1,λy1,λz1) a·b=x1x2+y1y2+z1z2 a∥b:x1=λx2,y1=λy2,z1=λz2 a⊥b:x1x2+y1y2+z1z2=0。
7. 法向量与方向向量解答如下关系:线线平行:线L1方向向量为m,线L2方向向量为n,m=y*n;线面平行:法向量与方向向量垂直;面面平行:法向量平行;线线垂直:线L1方向向量为m,线L2方向向量为n,m*n=0;线面垂直:法向量与方向向量平行;面面垂直:法向量垂直;线线夹角:方向向量乘积公式求角;线面夹角:方向向量与法向量乘积公式求角;面面夹角:法向量乘积求角。
8. 点点距离:向量模长公式;点面距离:设点为o,取平面内点p,向量op*法向量n;线线距离:直线a,b,E、F为线a,b上点;直线ab距离d为=向量EF*公垂线方向向量n/向量n模;直线方向向量求法:(1)直线l:ax+by+c=0,则直线l的方向向量为=(-b,a)或(b,-a)。
(2)若直线l的斜率为k,则l的一个方向向量为=(1,k)。
(3)若A(x1,y1),B(x2,y2),则AB所在直线的一个方向向量为=(x2-x1,y2-y1)。
9. 法向量求法:法向量(a,b,c)与面内向量乘积为零,带入求解方程。
如需更多公式和信息,建议查阅数学书籍或相关网站获取。
空间向量与立体几何知识点汇总
空间向量与立体几何知识点汇总知识点一 空间向量及其运算(一)、空间向量在空间,我们把具有大小和方向的量叫做向量。
1. 空间的一个平移就是一个向量。
2. 向量一般用有向线段表示,同向等长的有向线段表示同一或相等的向量。
相等向量只考虑其定义要素:方向,大小。
3. 空间的两个向量可用同一平面内的两条有向线段来表示。
(二)、共线向量1.定义:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a //.当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一直线,也可能是平行直线.2.共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,使a =λb 。
(三)、两个向量的数量积1.定义:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>。
2.空间向量数量积的性质① ||cos ,a e a a e ⋅=<>; ② 0a b a b ⊥⇔⋅=; ③ 2||a a a =⋅.3.空间向量数量积运算律:①()()()a b a b a b λλλ⋅=⋅=⋅;②a b b a ⋅=⋅(交换律);③()a b c a b a c ⋅+=⋅+⋅(分配律)。
(四)、空间向量基本定理如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
(五)、空间直角坐标系:1.若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示。
高中数学知识点总结大全空间向量与立体几何
高中数学知识点总结空间向量与立体几何一、考点概要:1、空间向量及其运算〔1〕空间向量的根本知识:①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。
②空间向量根本定理:ⅰ定理:如果三个向量不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。
且把叫做空间的一个基底,都叫基向量。
ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。
ⅲ单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用表示。
ⅳ空间四点共面:设O、A、B、C是不共面的四点,那么对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。
③共线向量〔平行向量〕:ⅰ定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量,记作。
ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数λ,使。
④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。
ⅱ向量与平面平行:如果直线OA平行于平面或在α内,那么说向量平行于平面α,记作。
平行于同一平面的向量,也是共面向量。
ⅲ共面向量定理:如果两个向量、不共线,那么向量与向量、共面的充要条件是:存在实数对x、y,使。
ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理实际上也是、、所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。
ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意一定点O,有。
⑤空间两向量的夹角:两个非零向量、,在空间任取一点O,作,〔两个向量的起点一定要相同〕,那么叫做向量与的夹角,记作,且。
⑥两个向量的数量积:ⅰ定义:空间两个非零向量、,那么叫做向量、的数量积,记作,即:。
空间向量与立体几何知识点
空间向量与立体几何知识点TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-立体几何空间向量知识点总结知识网络:知识点拨:1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广.2、当a 、b 为非零向量时.0a b a b ⋅=⇔⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题.3、公式cos ,a ba b a b⋅<>=⋅是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等.4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题.5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行证明两条直线平行,只需证明两条直线的方向向量是共线向量.(2)线线垂直证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ⋅=⇔⊥. (3)线面平行用向量证明线面平行的方法主要有:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线方向向量是共线向量;③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量.(4)线面垂直用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.(5)面面平行①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题.(6)面面垂直①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题.6、运用空间向量求空间角(1)求两异面直线所成角利用公式cos,a ba ba b⋅<>=⋅,但务必注意两异面直线所成角θ的范围是0,2π⎛⎤⎥⎝⎦,故实质上应有:cos cos,a bθ=<>.(2)求线面角求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.(3)求二面角用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离.(1)点与点的距离点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模.(2)点与面的距离点面距离的求解步骤是:①求出该平面的一个法向量;②求出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离.备考建议:1、空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,应体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力.2、灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.3、在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的法向量有着举足轻重的地位和作用,它的特点是用代数方法解决立体几何问题,无需进行繁、难的几何作图和推理论证,起着从抽象到具体、化难为易的作用.因此,应熟练掌握平面法向量的求法和用法.4、加强运算能力的培养,提高运算的速度和准确性.第一讲空间向量及运算一、空间向量的有关概念1、空间向量的定义在空间中,既有大小又有方向的量叫做空间向量.注意空间向量和数量的区别.数量是只有大小而没有方向的量.2、空间向量的表示方法空间向量与平面向量一样,也可以用有向线段来表示,用有向线段的长度表示向量的大小,用有向线段的方向表示向量的方向.若向量a 对应的有向线段的起点是A ,终点是B ,则向量a 可以记为AB ,其模长为a或AB.3、零向量长度为零的向量称为零向量,记为0.零向量的方向不确定,是任意的.由于零向量的这一特殊性,在解题中一定要看清题目中所指向量是“零向量”还是“非零向量”.4、单位向量模长为1的向量叫做单位向量.单位向量是一种常用的、重要的空间向量,在以后的学习中还要经常用到. 5、相等向量 长度相等且方向相同的空间向量叫做相等向量.若向量a 与向量b 相等,记为a =b .零向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示,并且与有向线段的起点无关. 6、相反向量长度相等但方向相反的两个向量叫做相反向量.a 的相反向量记为-a 二、共面向量 1、定义平行于同一平面的向量叫做共面向量. 2、共面向量定理若两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对x 、y,使得p =xa yb +。
空间向量与立体几何(整章教案
空间向量与立体几何第一章:空间向量基础1.1 向量的定义与表示了解向量的概念,掌握向量的几何表示和代数表示。
学习向量的长度和方向,掌握向量的模和单位向量。
1.2 向量的运算学习向量的加法、减法和数乘运算。
掌握向量加法和减法的几何意义,理解数乘向量的意义。
1.3 向量的坐标表示学习空间直角坐标系,了解向量的坐标表示方法。
掌握向量坐标的加法和数乘运算,理解向量坐标的几何意义。
第二章:立体几何基础2.1 平面立体几何学习平面的基本性质,掌握平面方程和点到平面的距离公式。
学习直线与平面的位置关系,了解线面平行、线面相交和线面垂直的判定条件。
2.2 空间立体几何学习空间几何体的基本性质,包括点、线、面的位置关系。
掌握空间几何体的体积和表面积计算公式,了解空间几何体的对称性。
第三章:空间向量在立体几何中的应用3.1 空间向量与直线的位置关系学习利用空间向量判断直线与直线、直线与平面的位置关系。
掌握向量夹角的概念,学习利用向量夹角判断直线与直线的夹角。
3.2 空间向量与平面的位置关系学习利用空间向量判断平面与平面的位置关系。
掌握平面法向量的概念,学习利用平面法向量求解平面方程。
3.3 空间向量与空间几何体的位置关系学习利用空间向量判断空间几何体与空间几何体的位置关系。
掌握空间几何体的体积和表面积计算方法,学习利用空间向量求解空间几何体的体积和表面积。
第四章:空间向量的线性运算与立体几何4.1 空间向量的线性组合学习空间向量的线性组合,掌握线性组合的运算规律。
理解线性组合在立体几何中的应用,包括线性组合与空间几何体的关系。
4.2 空间向量的线性相关与线性无关学习空间向量的线性相关和线性无关的概念。
掌握判断空间向量线性相关和线性无关的方法,理解线性相关和线性无关在立体几何中的应用。
4.3 空间向量的基底与坐标表示学习空间向量的基底概念,掌握基底的选取方法。
学习空间向量的坐标表示方法,理解坐标表示在立体几何中的应用。
空间向量与立体几何
向量与坐标系
在三维坐标系中,空间向量的坐标表示 可以通过三维坐标系中的点来表示,反 之亦然。
VS
向量与几何变换
通过向量的线性组合和数乘,可以实现几 何变换,如平移、旋转和缩放等。
THANKS
感谢观看
影的模长的乘积与它们夹角的余弦值的乘积。
性质
03
混合积满足交换律、结合律和分配律。
03
向量的应用
向量在物理中的应用
力与运动
向量在描述力和运动时非常有用,例如,速度和加速度是向量, 可以用它们来描述物体的运动状态和变化。
动量与冲量
动量和冲量是向量,它们在描述物体的相互作用和运动变化时具 有重要意义。
空间向量在解决实际问题中的应用
力的合成与分解
在物理和工程领域中,力的合成与分 解是常见的应用,通过空间向量的加 法、数乘和向量的模,可以表示力的 合成与分解。
速度和加速度
在运动学中,速度和加速度是重要的 物理量,通过空间向量的加法、数乘 和向量的模,可以表示物体的速度和 加速度。
空间向量与几何体的相互转化
04
立体几何的基本概念
点、直线和平面的基本性质
点
点是空间中最基本的元素,没有大小和形状,只 有位置。
直线
直线是无限长的,它通过两点或给定方向上所有 点。
平面
平面是无限大的,由直线和不在该直线上的一个 点确定。
空间几何体的表面积和体积
表面积
几何体的表面积是指其外部各面的总 面积。
体积
几何体的体积是指其内部空间所占的 区域大小。
几何意义
性质
向量积满足交换律和结合律,但不满 足分配律。
两个向量的向量积等于它们在垂直于 它们所在平面方向上的投影的模长的 乘积与它们夹角的正弦值的乘积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中档大题规范练2 立体几何与空间向量1.如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求B 点到平面PCD 的距离;(3)线段PD 上是否存在一点Q ,使得二面角Q —AC —D 的余弦值为63?若存在,求出PQ QD 的值;若不存在,请说明理由.(1)证明 因为P A =PD =2,O 为AD 的中点,所以PO ⊥AD ,因为侧面P AD ⊥底面ABCD ,所以PO ⊥平面ABCD .(2)解 以O 为原点,OC ,OD ,OP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,则B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1).PB →=(1,-1,-1),设平面PDC 的法向量为u =(x ,y ,z ),CP →=(-1,0,1),PD →=(0,1,-1).则⎩⎪⎨⎪⎧u ·CP →=-x +z =0,u ·PD →=y -z =0,取z =1,得u =(1,1,1), B 点到平面PDC 的距离d =|BP →·u ||u |=33. (3)解 假设存在,则设PQ →=λPD → (0<λ<1),因为PD →=(0,1,-1),所以Q (0,λ,1-λ),设平面CAQ 的法向量为m =(a ,b ,c ),则⎩⎪⎨⎪⎧ m ·AC →=0,m ·AQ →=0,即⎩⎪⎨⎪⎧a +b =0,(λ+1)b +(1-λ)c =0, 所以取m =(1-λ,λ-1,λ+1),平面CAD 的法向量n =(0,0,1),因为二面角Q —AC —D 的余弦值为63, 所以|m·n||m||n |=63, 所以3λ2-10λ+3=0,所以λ=13或λ=3(舍去),所以PQ QD =12. 2.如图,在长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE .(1)证明:平面DFC ⊥平面D 1EC ;(2)求二面角A —DF —C 的大小.(1)证明 以D 为原点,分别以DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2).∵E 为AB 的中点,∴E 点坐标为(1,1,0),∵D 1F =2FE ,∴D 1F →=23D 1E →=23(1,1,-2) =(23,23,-43), DF →=DD 1→+D 1F →=(0,0,2)+(23,23,-43)=(23,23,23). 设n =(x ,y ,z )是平面DFC 的法向量,则⎩⎪⎨⎪⎧ n ·DF →=0,n ·DC →=0,∴⎩⎪⎨⎪⎧ 23x +23y +23z =0,2y =0,取x =1得平面FDC 的一个法向量n =(1,0,-1).设p =(x ,y ,z )是平面ED 1C 的法向量,则⎩⎪⎨⎪⎧ p ·D 1F →=0,p ·D 1C →=0,∴⎩⎪⎨⎪⎧ 23x +23y -43z =0,2y -2z =0,取y =1得平面D 1EC 的一个法向量p =(1,1,1).∵n·p =(1,0,-1)·(1,1,1)=0,∴平面DFC ⊥平面D 1EC .(2)解 设q =(x ,y ,z )是平面ADF 的法向量,则q ·DF →=0,q ·DA →=0.∴⎩⎪⎨⎪⎧23x +23y +23z =0,x =0,取y =1得平面ADF 的一个法向量q =(0,1,-1),设二面角A —DF —C 的平面角为θ,由题中条件可知θ∈(π2,π), 则cos θ=-|n·q |n|·|q ||=-0+0+12×2=-12, ∴二面角A —DF —C 的大小为120°.3.如图所示,在直三棱柱A 1B 1C 1—ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.解 (1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010, 所以异面直线A 1B 与C 1D 所成角的余弦值为31010. (2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD →=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC 1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面AA 1B 的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23, 得sin θ=53. 因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.4.如图,在四棱锥P —ABCD 中,平面P AD ⊥底面ABCD ,其中底面ABCD 为等腰梯形,AD ∥BC ,P A =AB =BC =CD =2,PD =23,P A ⊥PD ,Q 为PD 的中点.(1)证明:CQ ∥平面P AB ;(2)求二面角D —AQ —C 的余弦值.(1)证明 如图所示,取P A 的中点N ,连结QN ,BN .在△P AD 中,PN =NA ,PQ =QD ,所以QN ∥AD ,且QN =12AD . 在△APD 中,P A =2,PD =23,P A ⊥PD ,所以AD =P A 2+PD 2=22+(23)2=4,而BC =2,所以BC =12AD . 又BC ∥AD ,所以QN ∥BC ,且QN =BC ,故四边形BCQN 为平行四边形,所以BN ∥CQ .又CQ ⊄平面P AB ,BN ⊂平面P AB ,所以CQ ∥平面P AB .(2)解 如图,在平面P AD 内,过点P 作PO ⊥AD 于点O ,连结OB .因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,所以PO ⊥平面ABCD . 又PO ⊥AD ,AP ⊥PD , 所以PO =AP ×PD AD =2×234=3, 故AO =AP 2-PO 2=22-(3)2=1.在等腰梯形ABCD 中,取AD 的中点M ,连结BM ,又BC =2,AD =4,AD ∥BC ,所以DM =BC =2,DM ∥BC ,故四边形BCDM 为平行四边形.所以BM =CD =AB =2.在△ABM 中,AB =AM =BM =2,AO =OM =1,所以BO ⊥AD .又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,所以BO ⊥平面P AD .如图,以O 为坐标原点,分别以OB ,OD ,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则O (0,0,0),D (0,3,0),A (0,-1,0),B (3,0,0),P (0,0,3),C (3,2,0),则AC→=(3,3,0).因为Q 为DP 的中点,故Q ⎝⎛⎭⎫0,32,32, 所以AQ →=⎝⎛⎭⎫0,52,32. 设平面AQC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ⊥AC →,m ⊥AQ →,可得⎩⎨⎧ m ·AC →=3x +3y =0,m ·AQ →=52y +32z =0,令y =-3,则x =3,z =5.故平面AQC 的一个法向量为m =(3,-3,5).因为BO ⊥平面P AD ,所以OB →=(3,0,0)是平面ADQ 的一个法向量.故cos 〈OB →,m 〉=OB →·m |OB →|·|m |=333·32+(-3)2+52=337=33737. 从而可知二面角D —AQ —C 的余弦值为33737. 5.在四棱锥P —ABCD 中,侧面PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =90°,AB =AD =PD =1,CD =2.(1)求证:BC ⊥平面PBD ;(2)在线段PC 上是否存在一点Q ,使得二面角Q —BD —P 为45°?若存在,求PQ PC的值;若不存在,请说明理由.(1)证明 平面PCD ⊥底面ABCD ,PD ⊥CD ,所以PD ⊥平面ABCD ,所以PD ⊥AD .如图,以D 为原点建立空间直角坐标系D -xyz ,则A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1),DB →=(1,1,0),BC →=(-1,1,0),所以BC →·DB →=0,BC ⊥DB ,又由PD ⊥平面ABCD ,可得PD ⊥BC ,因为PD ∩BD =D ,所以BC ⊥平面PBD .(2)解 平面PBD 的法向量为BC →=(-1,1,0),PC →=(0,2,-1),设PQ →=λPC →,λ∈(0,1),所以Q (0,2λ,1-λ),设平面QBD 的法向量为n =(a ,b ,c ),DB →=(1,1,0),DQ →=(0,2λ,1-λ),由n ·DB →=0,n ·DQ →=0,得⎩⎪⎨⎪⎧ a +b =0,2λb +(1-λ)c =0,令b =1,所以n =(-1,1,2λλ-1), 所以cos 45°=|n ·BC →||n ||BC →|=22 2+(2λλ-1)2=22, 注意到λ∈(0,1),得λ=2-1, 所以在线段PC 上存在一点Q ,使得二面角Q —BD —P 为45°,此时PQ PC=2-1.。