高三数学概率统计知识点归纳
高三数学选修2-3(B版)_专题提升:概率与统计
概率与统计高考对本内容的考查主要有:(1)抽样方法的选择、与样本容量相关的计算,尤其是分层抽样中的相关计算,A 级要求.(2)图表中的直方图、茎叶图都可以作为考查点,尤其是直方图更是考查的热点,A级要求.(3)特征数中的方差、标准差计算都是考查的热点,B级要求.(4)随机事件的概率计算,通常以古典概型、几何概型的形式出现,B级要求.重难点:1.概率问题(1)求某些较复杂的概率问题时,通常有两种方法:一是将其分解为若干个彼此互斥的事件的和,然后利用概率加法公式求其值;二是求此事件A的对立事件A 的概率,然后利用P(A)=1-P(A)可得解;(2)用列举法把古典概型试验的基本事件一一列出来,然后再求出事件A中的基本事件,利用公式P(A)=mn求出事件A的概率,这是一个形象、直观的好办法,但列举时必须按照某一顺序做到不重复,不遗漏;(3)求几何概型的概率,最关键的一步是求事件A所包含的基本事件所占据区域的测度,这里需要解析几何的知识,而最困难的地方是找出基本事件的约束条件.2.统计问题(1)统计主要是对数据的处理,为了保证统计的客观和公正,抽样是统计的必要和重要环节,抽样的方法有三:简单随机抽样、系统抽样和分层抽样;(2)用样本频率分布来估计总体分布一节的重点是:频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布,难点是:频率分布表和频率分布直方图的理解及应用;(3)用茎叶图优点是原有信息不会抹掉,能够展开数据发布情况,但当样本数据较多或数据位数较多时,茎叶图就显得不太方便了;(4)两个变量的相关关系中,主要能作出散点图,了解最小二乘法的思想,能根据给出的线性或归方程系数或公式建立线性回归方程.考点1、抽样方法【例1】某学院的A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本. 已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取________名学生.【方法技巧】分层抽样适用于总体由差异明显的几部分组成的情况,按各部分在总体中所占的比实施抽样,据“每层样本数量与每层个体数量的比与所有样本数量与总体容量的比相等”列式计算;在实际中这种有差异的抽样比其他两类抽样要多的多,所以分层抽样有较大的应用空间,应引起我们的高度重视.【变式探究】某校高三年级学生年龄分布在17岁、18岁、19岁的人数分别为500、400、200,现通过分层抽样从上述学生中抽取一个样本容量为m的样本,已知每位学生被抽到的概率都为0.2,则m=________.【解析】(500+400+200)×0.2=220.【答案】220考点2、用样本估计总体【例2】(2013·重庆卷改编)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为________.【解析】由茎叶图及已知得x=5,又因9+15+10+y+18+245=16.8,所以y=8.【答案】5,8【方法技巧】由于数据过大,直接计算会引起计算错误,故要学会像解析中介绍的两种方法那样尽量简化计算;同时要理解茎叶图的特点,能够从茎叶图获取原始数据.【变式探究】某校共有400名学生参加了一次数学竞赛,竞赛成绩的频率分布直方图如图所示(成绩分组为[0,10),[10,20),…,[80,90),[90,100]).则在本次竞赛中,得分不低于80分以上的人数为______ .【例3】袋中有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求:(1)3只全是红球的概率;(2)3只颜色全相同的概率;(3)3只颜色不全相同的概率.解(1)记“3只全是红球”为事件A.从袋中有放回地抽取3次,每次取1只,共会出现3×3×3=27种等可能的结果,其中3只全是红球的结果只有一种,故事件A的概率为P(A)=1 27.(2)“3只颜色全相同”只可能是这样三种情况:“3只全是红球”(事件A);“3只全是黄球”(设为事件B);“3只全是白球”(设为事件C).故“3只颜色全相同”这个事件为A+B+C,由于事件A、B、C不可能同时发生,因此它们是互斥事件.再由红、黄、白球个数一样,故不难得P(B)=P(C)=P(A)=127,所以P(A+B+C)=P(A)+P(B)+P(C)=1 9.(3) 3只颜色不全相同的情况较多,如是两只球同色而另一只球不同色,可以两只同红色或同黄色或同白色等等;或三只球颜色全不相同等.考虑起来比较麻烦,现在记“3只颜色不全相同”为事件D,则事件D为“3只颜色全相同”,显然事件D与D是对立事件.∴P(D)=1-P(D)=1-19=89.【方法技巧】在求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥事件的概率的和;二是先去求此事件的对立事件的概率.一个复杂事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解;对于“至少”,“至多”等问题往往用这种方法求解.【训练3】(2013·陕西卷改编)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是________.考点预测:1.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为________.2.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为________.3.某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为________.【解析】分层抽样应按各层所占的比例从总体中抽取.4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为________.5.一个袋中有3个黑球,2个白球共5个大小相同的球,每次摸出一球,放进袋里再摸第二次,则两次摸出的球都是白球的概率为________.6.从甲、乙、丙等5名候选学生中选2名作为青年志愿者,则甲、乙、丙中有2个被选中的概率为________.7.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为________.【解析】平均数x =14+17+18+18+20+216=18,故方差s 2=16[(-4)2+(-1)2+02+02+22+32)]=5.【答案】58.袋中装有大小相同且形状一样的四个球,四个球上分别标有“2”、“3”、“4”、“6”这四个数.现从中随机选取三个球,则所选的三个球上的数恰好能构成一个等差数列的概率是________.【解析】总的取法是4组,能构成等差数列的有{2,3,4},{2,4,6} 2组;故所求概率为P =24=12.【答案】129.设f (x )=x 2-2x -3(x ∈R ),则在区间[-π,π]上随机取一个数x ,使f (x )<0的概率为________.10.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.11.利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为________.12.从一副没有大小王的52张扑克牌中随机抽取1张,事件A 为“抽得红桃8”,事件B 为“抽得为黑桃”,则事件“A +B ”的概率值是________(结果用最简分数表示).13.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________.【解析】由题意得到的P (m ,n )有:(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共计6个;在圆x 2+y 2=9的内部的点有(2,1),(2,2),所以概率为26=13.【答案】13 14.抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x ,y ,则x y 为整数的概率是________.。
高三文科数学概率知识点
高三文科数学概率知识点概率是数学中一个重要的分支,也是高中数学中的一门重要课程,它研究的是不确定事件发生的可能性。
在高三文科数学中,概率作为其中的一部分内容,涵盖了很多重要的知识点。
本文将针对高三文科数学中的概率知识点进行详细论述。
一、基本概率规则在概率的计算中,我们首先要掌握的是基本概率规则。
基本概率规则包括等可能概型、互斥事件与对立事件等概念。
等可能概型指的是实验中每个基本结果发生的概率相等的情况。
例如,掷一个均匀的六面骰子,每个面出现的概率都是1/6。
互斥事件指的是两个事件不能同时发生的情况。
例如,投篮比赛中不同队员投进的概率是互斥事件。
对立事件指的是两个事件至少有一个发生的情况。
例如,掷一个均匀的六面骰子,出现奇数点数和出现偶数点数是对立事件。
二、概率计算方法在计算概率时,我们有多种方法可供选择,如频率法、古典概型法、几何概型法等。
频率法是通过重复实验的统计结果来估计概率。
例如,我们可以通过掷一枚硬币多次,统计正面朝上的次数来估计正反面朝上的概率。
古典概型法适用于每个基本结果发生的概率相等的情况。
例如,两个均匀的骰子同时掷出,计算两个骰子之和为7的概率。
几何概型法适用于几何空间问题。
例如,在一个圆盘内随机放置一个点,计算该点落在一个扇形区域内的概率。
三、条件概率条件概率是指在某个条件下事件发生的概率。
例如,某次抽奖中,已知甲中奖的概率为1/10,已知乙中奖的概率为1/5,求在乙中奖的条件下,甲中奖的概率。
条件概率的计算方法可以通过乘法定理来实现。
乘法定理指出,如果事件A和事件B相互独立,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B在事件A发生条件下发生的概率。
四、独立事件独立事件是指两个事件的发生与否相互独立,即一个事件的发生不会影响到另一个事件的发生。
例如,掷一颗骰子,第一次掷得6点,第二次掷得1点的概率。
独立事件的概率计算方法可以通过乘法定理来实现。
乘法定理指出,如果事件A和事件B相互独立,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
统计与概率知识点
统计与概率知识点部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑统计与概率知识点一:统计1:简单随机抽样<1)总体和样本①在统计学中 , 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.b5E2RGbCAP④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.p1EanqFDPw<2)简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同<概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
DXDiTa9E3d<3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。
RTCrpUDGiT在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
<4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;5PCzVD7HxA③对样本中的每一个个体进行测量或调查<5)随机数表法:2:系统抽样<1)系统抽样<等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K<抽样距离)=N<总体规模)/n<样本规模)jLBHrnAILg前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
xHAQX74J0X<2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
(完整版)高三数学概率统计知识点归纳
概率统计知识点归纳平均数、众数和中位数平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明.一、正确理解平均数、众数和中位数的概念平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.2.众数在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势.3.中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的.二、注意区别平均数、众数和中位数三者之间的关系平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题.三、能正确选用平均数、众数和中位数来解决实际问题由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.极差、方差、标准差极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.二、方差方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x1、x2、x3、…、xn 的平均数为x ,则该组数据方差的计算公式为:])()()[(1222212x x x x x x n S n -++-+-=Λ.三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.即标准差=方差.四、极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.一、 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。
高考概率统计9个考点解析
例 11 (2002 年天津高考题) 甲、乙两种冬小麦试验品种连续 5 年的平均单位面积产量 如下(单位:t/hm2) :
其中产量比较稳定的小麦品种是_____.
5
考点 8 样本抽样识别与计算 简单随机抽样,系统抽样,分层抽样得共同特点是不放回抽样,且各个体被抽取得概率相 等,均为(N 为总体个体数,n 为样本容量).系统抽样,分层抽样的实质分别是等距抽样与按比 例抽样,只需按照定义,适用范围和抽样步骤进行 ,就可得到符合条件的样本 .高考常结合应 用问题,考查构照抽样模型,识别图形,搜集数据,处理材料等研究性学习的能力. 例 12 (2005 年湖北湖北高考题) 某初级中学有学生 270 人, 其中一年级 108 人, 二、 三年级各 81 人,现要利用抽样方法抽取 10 人参加某项调查,考虑选用简单随机抽样、分 层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级 依次统一编号为 1,2,…,270;使用系统抽样时,将学生统一随机编号 1,2,…,270, 并将整个编号依次分为 10 段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是( ) A.②、③都不能为系统抽样 B.②、④都不能为分层抽样 C.①、④都可能为系统抽样 D.①、③都可能为分层抽样
(2)若第 n 次由甲射击的概率为 a n ,求数列 a n 的通项公式;求 lim a n ,并说明极
人教版高中数学高三复习《概率与统计专题》
2 x 27,s 35.
s表示10株甲树苗高度的方差,是描述树苗高度 离散程度的量. s越小,表示长得越整齐, s越大,表示长得越参差不齐.
17
考点3 线性相关分析
例3 某农科所对冬季昼夜温差大小与某反季节大豆新品 种发芽量之间的关系进行分析研究,他们分别记录了12 月1日至12月5日的每天昼夜温差与实验室每天每100颗种 子中的发芽数,得到如下资料:
作出散点图后,发现散点在一条直线附近,经计算得到 一些数据:
26
10
x 24.5,y 171.5, (xi x)( yi y) 557.5, i 1 10
(xi x )2 82.5.
i 1
刑侦人员在某案发现场发现一对裸脚印,量得每 个脚印长是26.5 cm,请你估计案发嫌疑人的身高
专题 概率与 统计
考点1 三种抽样方法与概率分布直方图
例1 1有一个容量为200的样本,其频率分
布直方图如图所示,根据样本的频率分布直方图估计,
样本数据落在区间10,12内的频数为( )
A.18
B.36
C.54
D.72
2
2 某高校甲、乙、丙、丁四个专业分别有
150、150、400、300名学生,为了解学生的就业倾向,用分 层抽样的方法从该校这四个专业共抽取40名学生进行调 查,应在丙专业抽取的学生人数为 ________.
600
7
解析 :成绩小于60分的频率为0.002 0.006 0.01210
0.2,所以30000.2 600.
8
考点2 茎叶图与特征数
例2某赛季,甲、乙两名篮球运动员都 参加了7场比赛,他们所有比赛得分的情况用如图所示 的茎叶图表示:
1 求甲、乙两名运动员得分的中位数; 2 你认为哪位运动员的成绩更稳定? 3 如果从甲、乙两位运动员的7场得
高三数学(概率统计部分)整理
高三数学(概率统计部分)整理 概率统计是历年高考的热点内容之一,考查方式多样,难度中等,主要考查概率与统计的基本概念、公式以及基本技能、方法,以及分析问题、解决问题的能力.通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。
以排列和概率统计知识为工具,考查概率的计算、随机变量的概率分布、均值、方差、抽样方法、样本频率估计、线性回归方程、独立性检验、随机变量的分布列、期望、方差等内容.考点1. 求等可能性事件、互斥事件和相互独立事件的概率(1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ; (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B );特例:对立事件的概率:P (A )+P (A )=P (A +A )=1.(3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B );特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.(4)解决概率问题的一般步骤:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件n 次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 注意:(1)注意判断是古典概型还是几何概型,基本事件前者是有限的,后者是无限的,两者都是等可能性.(2)在几何概型中注意区域是线段,平面图形,立体图形.(3)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;(4)当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举,当基本事件总数较多时,注意去分排列与组合;(5)辨别清楚条件概率问题,两种计算方法,合理选用。
概率统计(文科)
文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率P(A)e(0,1)(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1•某校高一年级有900名学生,其中女生400名•按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.2•某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取名学生.3.某校老年、中年和青年教师的人数见右表,米用分层抽样的方法调查教类另U人数师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年老年教师900教师人数为中年教师1800 4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是青年教师1600 5•若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为•合计4300 6•重庆市2013年各月的平均气温(°C)数据的茎叶图如右图:o吕9则这组数据的中位数是•1252003127•某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国豕,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图的频率分布直方图.(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(III)估计居民月均用水量的中位数.0Q.511622.533.544.6月满意度评分低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意A 地区用户满意度评分的频率分布直方司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.(II) 根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(I) 应收集多少位女生的样本数据?(II) 根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(&10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;满意度评分分组 [50,60) [60,70) [70,80) [80,90) [90,100] 频数 2 8 14 10 6B 地区用户满意度评分的频数分布表 (I)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分 的平均值及分散程度(不要求计算出具 体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(III)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体 育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间 与性别有关”.n (ad 一bc\附:尺2步畝+d 儿+枫+d )P (2>k)0.10 0.05 0.01 0.005 k2.7063.8416.6357.8799.(2015全国II 文)某公03511.(2014全国I文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(I)在下表中作出这些数据的频率分布直方图: 12.(2014广东文)某车间20名工人年龄数据如下表: 年皤7舁工人執7人1912日329330531斗323401昔讦20(I)求这20名工人年龄的众数与极差;(II)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(III)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.14.___________________________________________________ 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(II)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是.(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95 16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是.的产品至少要占全部产品80%”的规定?17. (2016天津文)甲、乙两人下棋,两人下成和棋的概率为1,甲获胜的概率是-,则甲不23输的概率为.18. 已知5件产品中有2件次品,其余为合格品•现从这5件产品中任选2件,恰有一件次品 的概率为.24. 如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴19.某单位N 名员工参加“社区低碳你我他”活动•他们的年龄在25岁至50岁之间.按年龄分组并得到的频率分布直方图如图所示.下表是年龄的频数分布表.区间 [25,30) [30,35) [35,40) [40,45) [45,50] 人数25 ab5丰25. 为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174 176 176 176 178 儿子身高y (cm )17517517617717722. ____________________________________________ 在区间[-2,3]上随机选取一个数x ,则x <1的概率为23. ___________________________________ 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是.(I )求y 关于t 的回归方程y =bt+a ;(II )利用(I )中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情4550年龄/驴(I )求正整数a ,b ,N 的值;(II )现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(III )在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率. 20.(2016全国丨文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( A.1B.1C.-D.- 21.(2016全国II 文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒•若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()10 B.5D.—10 则y 对X 的线性回归方程为()A .y =x 一1B .y =x +1C .y =88+-x广告费用x (万元)4 2 35 销售额y (万元)4926395426.某产品的广告费用x 与销售额y 的统计数据如下:D .y =176根据上表可得回归方程y =bx+a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元B .65.5万元C .67.7万元D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长•设某地区城乡居民人民币储蓄存款(年 底余额)如下表:年份 2011 2012 2013 2014 2015 时间代号t1 2 3 4 5 储蓄存款y (千亿兀)567810年(1=6)的人民币储蓄存款.V--‘’ty-nty _‘附:回归方程$=几+<2中,,a=y-bt.乙/2-nt 2i=l28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:乙校:(1)计算兀y 的值;况,并 预测 该地 区 2016P^Ki>k)0.10 0.05 0.010 k2.7063.8416.635参考数据与(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2X2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.公式:由列联表中数(a+b)(?+d)C+c)a+d),临界值表:29.—次考试中,5名学生的数学、物理成绩如下表所示:学生 A B C D E 数学成绩兀(分) 89 91 93 95 97 物理成绩y (分)8789899293(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90 分的概率;(2 )性回归100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.0.08°1—r---—r方程(系数精确到0.01).''''(1)求频率分布表中a、b的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标II)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:附:回归直线的方程是:y=bx+a上年度出险次数0 1 2 3 4 >5保费0.85a a 1.25a 1.5a 1.75a2a其中b=㈠(j——,a=y-b x;设该险种一续保人一年内出险次数与相应概率如下:ii=130•为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取一年内出险次数0 1 2 3 4 >5 概率0.30 0.15 0.20 0.20 0.10 0.05(I)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答•试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.34.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(I)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);A地区B帥反4567S9。
高三数学高考专题讲座概率与统计
概率与统计概率内容的新概念较多,相近概念容易混淆,本课时就学生易犯错误作如下归纳总结: 类型一 “非等可能”与“等可能”混同例1 掷两枚骰子,求所得的点数之和为6的概率.错解 掷两枚骰子出现的点数之和2,3,4,…,12共11种基本事件,所以概率为P=111剖析 以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=536.类型二 “互斥”与“对立”混同例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .以上均不对 错解 A剖析 本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在 : (1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生. 事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C .类型三 “互斥”与“独立”混同例3 甲投篮命中率为O .8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?错解 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,则两人都恰好投中两次为事件A+B ,P(A+B)=P(A) +P(B): 2222330.80.20.70.30.825c c ⨯+⨯=剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同.解: 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,且A ,B 相互独立,则两人都恰好投中两次为事件A·B ,于是P(A·B)=P(A)×P(B)= 0.169类型四 “条件概率P(B / A)”与“积事件的概率P(A·B)”混同例4 袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.错解 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B,”第二次才取到黄球”为事件C,所以P(C)=P(B/A)=6293=.剖析 本题错误在于P(A ⋅B)与P(B/A)的含义没有弄清, P(A ⋅B)表示在样本空间S 中,A 与B 同时发生的概率;而P (B/A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率。
高三数学知识点概率和统计
高三数学知识点概率和统计概率和统计是高中数学中一门重要的知识点,它不仅在学术领域具有广泛的应用,而且在日常生活中也起着重要的作用。
本文将以深入浅出的方式,介绍概率和统计的基本概念、应用及其在现实生活中的意义。
一、概率的基本概念概率是研究随机事件发生可能性的数学工具。
在概率论中,我们通过定义事件、样本空间以及事件发生的概率来进行研究。
在一个随机试验中,样本空间是指所有可能的结果的集合。
而事件则是样本空间的一个子集,它表示我们所关心的具体结果。
通过定义样本空间和事件,我们可以计算出事件发生的概率。
概率的计算一般使用频率的概念,即某个事件发生的次数与总试验次数的比值。
二、概率的应用概率在现实生活中有着广泛的应用。
例如,在购买彩票时,我们可以利用概率的知识来判断购买中奖的可能性。
概率计算还可以应用于投资决策、风险管理等领域。
此外,概率还可以用来解决排列和组合问题。
在排列问题中,我们关注的是有顺序的一组对象的不同排列方式的数量。
而在组合问题中,我们考虑的是从一组对象中选择出一部分对象的不同组合方式的数量。
三、统计的基本概念统计是研究数据收集、分析和解释的学科。
在现实生活中,我们经常会遇到各种各样的数据,统计学可以帮助我们从数据中发现规律,做出推断和预测。
统计学中的重要概念包括样本和总体。
样本是指从总体中抽取的一部分数据,而总体是我们希望研究的对象的全体数据。
利用统计学的方法,我们可以对数据进行描述和分析。
例如,通过计算数据的平均值、标准差、方差等指标,我们可以对数据的特征进行量化描述。
同时,统计学还涉及概率分布、假设检验、回归分析等复杂的概念和方法。
四、统计的应用统计学在各个领域都有着广泛的应用。
在医学领域,统计学可以帮助医生进行临床试验和疾病预测。
在市场营销中,统计学可以帮助企业了解客户的需求、评估营销策略的效果。
除此之外,统计学还可以应用于财务分析、社会调查、教育研究等领域。
统计学的方法可以帮助我们更好地理解和解决实际问题。
(完整word版)高中数学必修3统计与概率
统计1:简单随机抽样(1)总体和样本①在统计学中, 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
(4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查(5)随机数表法:2:系统抽样(1)系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
(2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
因为它对抽样框的要求较低,实施也比较简单。
更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。
3:分层抽样(1)分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
高三数学知识点统计概率
高三数学知识点统计概率统计概率是高三数学中的重要知识点之一,它通过对统计数据进行分析和计算,帮助我们了解事件发生的概率。
下面将从基本概念、概率计算方法和应用实例三个方面进行介绍。
一、基本概念概率是指某一事件在相同条件下发生的可能性大小。
在统计学中,常用的概率计算方法包括频率概率和几何概率两种。
1.1 频率概率频率概率是通过统计大量实验结果得到的概率。
它的计算公式为:事件发生次数/总实验次数。
1.2 几何概率几何概率是通过计算事件所占的样本空间的面积或体积得到的概率。
它的计算公式为:事件发生的可能结果数/总可能结果数。
二、概率计算方法在统计概率的计算中,常用的方法有加法法则、乘法法则和条件概率。
2.1 加法法则加法法则用于计算两个事件中至少发生一个事件的概率。
当两个事件互斥时(即两个事件不可能同时发生),可以直接使用加法法则计算:P(A∪B) = P(A) + P(B)。
2.2 乘法法则乘法法则用于计算两个事件同时发生的概率。
当两个事件独立时(即一个事件的发生不影响另一个事件的发生),可以直接使用乘法法则计算:P(A∩B) = P(A) × P(B)。
2.3 条件概率条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。
条件概率的计算公式为:P(A|B) = P(A∩B) / P(B)。
三、应用实例统计概率在实际生活中有广泛的应用,下面以两个常见的例子介绍其应用。
3.1 投掷骰子假设我们有一枚均匀的六面骰子,每个面上的点数为1~6。
现在我们想知道投掷一次骰子后,点数为偶数的概率是多少。
根据频率概率,我们可以进行一系列实验,统计出点数为偶数的次数,再除以总实验次数,就可以得到概率。
根据几何概率,点数为偶数的可能结果数为3,总可能结果数为6,因此概率为1/2。
3.2 抽奖活动某个电商平台举办了一个抽奖活动,奖品包括一等奖、二等奖和三等奖。
现在我们想知道抽奖时至少抽到二等奖的概率是多少。
34:概率高三复习数学知识点总结(全)
概率1.随机事件的概率(1)必然事件:在一定条件下,必然会发生的事件;(2)不可能事件:在一定条件下,肯定不会发生的事件;(3)随机事件:在一定条件下,可能发生也可能不发生的事件.(4)随机事件的概率:对于给定的随机事件,A 在大量重复进行同一试验时,事件A 发生的频率n m会在某个常数附近摆动并趋于稳定,我们把这个常数常数称为随机事件A 的概率,记作).(A P 注:由定义可知,1)(0≤≤A P 必然事件的概率是1,不可能事件的概率是0.2.事件的关系与运算定义符号表示包含关系如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B )相等关系若A ⊆B 且B ⊆A A =B并事件(和事件)若某事件发生当且仅当事件A 发生或事件B 发生,称此事件为事件A 与事件B 的并事件(或和事件)A ∪B (或A +B )交事件(积事件)若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件)A ∩B (或AB )互斥事件若A ∩B 为不可能事件(A ∩B =∅),则称事件A 与事件B 互斥A ∩B =∅对立事件若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件A ∩B =∅,P(A)+P(B)=13.古典概型(列举法)(1)古典概型的两大特点:①所有的基本事件只有有限个;②每个基本事件的发生都是等可能的.(2)古典概型的概率计算公式:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是.1n 如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为.)(nmA P =例1-1【2020全国I 文】设O 为正方形ABCD 的中心,在D CB A O ,,,,中任选三点,则取到三点共线的概率为()A.51B.52 C.21 D.54例1-2【2016全国I 文】为美化环境,从红、黄、白、紫4种颜色的花中任取2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.31 B.21 C.32 D.65例1-3【2016江苏高考】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.答:1-1:A ;1-2:C;1-3:65.4.互斥事件和对立事件(1)互斥事件:不能同时发生的两个事件叫做互斥事件.一般地,如果事件n A A A ,,,21 中的任意两个都是互斥事件,则称事件n A A A ,,,21 彼此互斥.(2)互斥事件概率公式:如果事件B A ,互斥,那么事件B A +发生(注:B A +表示事件B A ,至少有一个发生)的概率,等于事件B A ,分别发生的概率的和,即).()()(B P A P B A P +=+推广:一般地,若n A A A ,,,21 彼此互斥,那么).()()()(2121n n A P A P A P A A A P +++=+++ 注:若A,B 不互斥,则).()()()(B A P B P A P B A P -+=(3)对立事件:如果两个互斥事件必有一个发生,那么称这两个事件为对立事件.事件A 的对立事件记为.A (4)对立事件的概率公式:).(1)(A P A P -=注:“至多”,“至少”的问题考虑反面(对立事件)往往比较简单.例2-1:某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56% C.46% D.42%例2-2:将一枚骰子连续抛掷两次,至少有一次向上的点数为1的概率是.答:2-1:C;2-2:.36115.事件的独立性(1)条件概率:一般地,对于两个事件A 和,B 在已知事件B 发生的条件下事件A 发生的概率,称为事件B 发生的条件下事件A 的条件概率,记为).|(B A P 概率的乘法公式:).()|()(B P B A P AB P =注:事件AB 表示事件A 和事件B 同时发生.(2)事件的独立性①定义:一般地,若事件B A ,满足)()|(A P B A P =(即事件B 发生不影响事件A 发生的概率),则称事件B A ,独立.②性质:若事件B A ,相互独立,则事件A 与B ,A 与,B A 与B 都相互独立.③公式:事件B A ,相互独立的充要条件是).()()(B P A P AB P =④推广:若n A A A ,,,21 相互独立,则这n 个事件同时发生的概率为).()()()(2121n n A P A P A P A A A P =⑤区别:独立事件与互斥事件的根本区别在于是否能同时发生,如果不能那是互斥事件,如果能再满足)()()(B P A P AB P =则为独立事件.注:求条件概率的两个思路:思路一:缩减样本空间法计算条件概率,如求P (A |B ),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P (A |B )=n (AB )n (B )计算;思路二:直接利用公式计算条件概率,即先分别计算出P (AB ),P (B ),再利用公式P (A |B )=P (AB )P (B )计算.(3)全概率公式设n A A A ,,,21 是一组两两互斥的事件,,21Ω=n A A A 且,0)(>i A P ,,,2,1n i =则对任意的事件,Ω⊆B 有∑==ni i i A B P A P B P 1).|()()(我们称上面的公式为全概率公式.全概率公式是概率论中最基本的公式之一.6.离散型随机变量及其概率分布(1)随机变量:一般地,如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,通常用大写拉丁字母Z Y X ,,(或小写的希腊字母ξ,η,ζ)等表示,而用小写拉丁字母z y x ,,(加上适当下标)等表示随机变量可能的取值.(2)离散型随机变量的概率分布:一般地,假定随机变量X 有n 个不同的取值,它们分别是1x ,2x ,…,n x ,且()i i P X x p ==,1,2,,i n =⋅⋅⋅,①则称①为随机变量X 的概率分布列,简称为X 的分布列.也可以将①用表的形式来表示.X 1x 2x …nx P1p 2p …np 我们将表称为随机变量X 的概率分布表.它和①都叫做随机变量X 的概率分布.注:①),,2,1(0n i p i =≥;②121=+++n p p p ;③求随机变量的概率分布的步骤:1.确定X 的可能取值(1,2,)i x i =…;2.求出相应的概率()i i P X x p ==;3.列成表格的形式.7.常见离散型随机变量的概率分布(1)两点分布(0-1分布)若随机变量X 服从两点分布,即其分布列为X01P p-1p 则,)(p X E =).1()(p p X D -=(2)超几何分布一批产品共N 件,其中有M 件次品,任取n 件,其中恰有X 件次品,则事件}{r X=发生的概率为()r n r M N MnN C C P X r C --==,0,1,2,,r m = ,其中{}min ,m n M =,称X 服从超几何分布,记为),,,(~N M n H X 并将()r n r M N MnNC C P X r C --==记为).,,;(N M n r H X 01…mP00n M N Mn NC C C --11n M N Mn NC C C --…m n m M N Mn NC C C --则N nM X E =)(;)1())(()(2---=N N n N M N nM X D (了解).8.二项分布(1)n 次独立重复试验(伯努利试验)一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 和,A 每次试验中.0)(>=p A P 我们将这样的试验称为n 次独立重复试验,也称为伯努利试验.(2)二项分布一般地,在n 次独立重复试验中,设事件A 发生的次数为,X 在每次试验事件A 发生的概率均为,p 那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为),2,1,0()1()(n k p p C k X P k n kk n =-==-.此时称随机变量X 服从参数为p n ,的二项分布,记作).,(~p n B X(3)均值与方差若),,(~p n B X 则np x E =)(,).1()(p np x V -=注:超几何分布与二项分布的区别与联系(1)区别:是否有放回是两个的本质区别,有放回是二项分布,无放回是超几何分布;(2)联系:当总体容量较大时如流水线上,也可以用二项分布近似超几何分布.9.离散型随机变量的均值与方差(1)一般地,若离散型随机变量X 的概率分布为X 1x 2x…nx P1p 2p …np 其中,1,,,2,1,021=+++=≥n i p p p n i p 则有如下公式1.均值(数学期望):.)(2211n n p x p x p x X E ++==μ它反映了离散型随机变量取值的平.均水平....注:对于连续型变量通常取“组中值”来代替i x 计算期望.2.方差:.)()()()(22221212n n p x p x p x X V μμμσ-++-+-== (方差也可以用V(x)表示),它刻画了随机变量X 与其均值E (X )的平均偏离程度........3.标准差:.)(X V =σ注:随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度.方差或标准差越小,随机变量偏离于均值的平均程度就越小,稳定性就越好.(2)均值和方差的性质若随机变量b aX Y +=(b a ,为常数),则,)()(b X aE Y E +=).()(2X V a Y V =10.正态分布(1)正态曲线函数,21)(222)(σμπσ--=x e x f 其中实数μ和σ为参数(σ>0,μ∈R).我们称函数)(x f 的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交;当x 无限增大时,曲线无限接近x 轴.②曲线是单峰的,它关于直线μ=x 对称;③曲线在μ=x 处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示①若随机变量X 的概率分布密度函数为,21)(222)(σμπσ--=x e x f 则称随机变量X 服从正态分布,则记作),(~2σμN X .其中,参数μ反映了正态分布的集中位置,σ反映了随机变量的分布相对于均值μ的离散程度,此时=)(X E μ,=)(X D 2σ.特别地,当10==σμ,时,称随机变量X 服从标准正态分布,记作X~N (0,1).②若),,(~2σμN X 则如图所示,X 取值不超过)(x X P ≤为图中区域A 的面积,而)(b X a P ≤≤为区域B的面积.(4)正态总体在三个特殊区间内取值的概率值①P(μ-σ<X ≤μ+σ)=0.6826;②P(μ-2σ<X ≤μ+2σ)=0.9544;③P(μ-3σ<X ≤μ+3σ)=0.9974.注:在实际应用中,通常认为服从正态分布),(2σμN 的随机变量X 只取]3,3[σμσμ+-之间的值,这在统计学中称为σ3原则.在次区间以外取值的概率只有0.0026,通常认为这种情况几乎不可能发生.【解题规范】【2014江苏高考】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同。
高中高三概率统计知识点
高中高三概率统计知识点概率统计是高中数学中的一门重要课程,也是高考数学中的一项必考内容。
理解和掌握概率统计的知识,不仅可以帮助我们解决实际问题,还可以提高我们的逻辑思维和数学能力。
下面将介绍高三概率统计的几个重要知识点。
一、概率的基本概念和性质概率是指某个事件发生的可能性大小。
事件的概率一般用一个介于0和1之间的数来表示,其中0表示不可能发生,1表示必然发生。
概率的性质包括非负性、规范性和可列可加性。
非负性:对于任何事件A,有0≤P(A)≤1;规范性:必然事件的概率为1,即P(S)=1,其中S表示样本空间;可列可加性:对于任意的两个或多个互不相容的事件Ai(i=1,2,...),有P(A1∪A2∪...) = P(A1) + P(A2) + ...。
二、独立事件和条件概率独立事件是指事件A和事件B的发生(或不发生)相互不影响。
设A、B是两个事件,如果P(A∩B)=P(A)P(B),则称事件A和事件B是相互独立的。
条件概率是指在事件B已发生的条件下,事件A发生的概率,用P(A|B)表示。
三、随机变量和概率分布随机变量是一个变量,其取值是根据概率分布来决定的。
离散型随机变量的概率分布可以用概率函数(或称为概率质量函数)表示,连续型随机变量的概率分布可以用概率密度函数表示。
离散型随机变量的概率函数具有以下性质:1) 非负性:对于任意的x,P(X=x)≥0;2) 规范性:对于所有可能的x,有ΣP(X=x)=1。
连续型随机变量的概率密度函数具有以下性质:1) 非负性:对于任意的x,f(x)≥0;2) 规范性:∫f(x)dx=1。
四、常见的概率分布在概率统计中,有许多常见的概率分布,例如二项分布、泊松分布、正态分布等。
1) 二项分布:适用于只有两种结果的重复试验,每次试验的结果相互独立,并且每次试验成功的概率相同。
2) 泊松分布:适用于描述单位时间(或单位面积)内某事件发生的次数,满足平均发生率稳定的条件。
高中数学概率统计
高中数学概率统计
概率统计是数学中的一个重要分支,它研究随机现象和事件发
生的可能性。
在高中阶段,学生需要通过研究概率统计来理解和应
用概率的基本概念和计算方法。
概率是指某个事件发生的可能性大小。
在数学中,概率可以通
过计算来得出。
常见的计算方法包括频率概率和几何概率。
学生需
要学会根据给定的条件计算概率,包括单个事件和多个事件的概率
计算。
在概率统计中,还有一些重要的概念需要学生掌握。
例如,样
本空间是指随机事件所有可能结果的集合;事件是样本空间的子集,表示满足特定条件的结果集合;试验是指对随机现象进行观察和记
录的过程。
高中数学概率统计还涉及到一些常见的概率分布,如二项分布、均匀分布和正态分布。
学生需要理解这些分布的特点和应用场景,
以及如何计算和图示化概率分布。
通过研究高中数学概率统计,学生可以提高他们的数据分析和问题解决能力。
他们能够在实际生活中应用概率统计的知识,例如在投资、保险和赌博等方面做出理性的决策。
总之,高中数学概率统计是一门重要的数学课程,它帮助学生理解和应用概率的基本概念和计算方法,提高他们的数学思维和问题解决能力。
文科数学高考知识点概率
文科数学高考知识点概率概率是数学中的一个重要分支,也是文科数学高考中的一个重要考点。
概率可以说是一种描述随机性的工具,它可以帮助我们分析和预测各种事件的发生可能性。
在高考中,概率常常和统计一起出现,共同构成了数学的一大门类。
一、概率的基本概念在学习概率之前,我们首先需要了解一些基本的概念。
概率的基本单位是事件,而事件是指某件事情发生或者不发生。
在概率的计算中,我们通常使用事件发生的可能性大小来描述概率的大小。
概率的取值范围是0到1之间,其中0表示不可能事件,而1表示必然事件。
二、概率的计算方法1.古典概型古典概型是最简单的概率计算方法之一。
在古典概型中,我们假设每个样本点出现的机会是相等的,然后通过计算有利事件出现的样本点数目与总样本点数目的比值来计算概率。
2.频率概率频率概率是根据事件发生的频率来计算概率。
通过大量的实验或观察,我们可以统计出事件发生的次数,然后计算事件发生的频率作为概率的近似值。
3.几何概型在几何概型中,我们通常是通过计算几何图形的面积或者长度来求解概率。
几何概型常常应用在正方形、圆形、三角形等几何图形的计算中。
4.条件概率条件概率是指在已知某个事件发生的前提下,另一个事件发生的概率。
条件概率的计算对于解决一些实际问题非常有用,它能够帮助我们预测在特定条件下事件发生的可能性。
5.全概率全概率是利用分区思想来计算概率的一种方法。
通过将一个事件分解成若干个互斥且穷尽的事件,然后计算各个事件发生的概率并相加,就可以得到整个事件发生的概率。
三、概率的应用概率在现实生活中有着广泛的应用。
在商业领域中,概率可以用于市场调研、销售预测等方面。
在医学领域中,概率可以帮助医生分析疾病的风险和预后。
在金融领域中,概率可以用于投资决策和风险控制。
在运输和物流领域中,概率可以帮助我们进行货物运输和交通流量的规划。
总之,概率在各个领域中都发挥着重要的作用。
结语概率作为一门重要的数学学科,是文科数学高考中的重要考点之一。
高三数学第十二章-概率与统计知识点归纳
高中数学知识点第十二章-概率与统计考试内容:抽样方法.总体分布的估计. 总体期望值和方差的估计. 考试要求:(1)了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样.(2)会用样本频率分布估计总体分布. (3)会用样本估计总体期望值和方差.§12. 概率与统计 知识要点一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x xξ取每一个值),2,1(1Λ=i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列.有性质①Λ,2,1,01=≥i p ; ②121=++++ΛΛi p p p .注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0Λ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B (n ·p ),其中n ,p 为参数,并记p)n b(k;qp C kn kkn⋅=-.⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A AP(k)P(ξk 1k 21-==Λ.根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-==Λ),3,2,1(1Λ==-k p q k 于是得到随机变量ξ的概率分布列.我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中Λ3,2,1.1=-=k p q5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0C C C k)P(ξnNk n MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C r m =,则k 的范围可以写为k=0,1,…,n.〕⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n ≤a+b ),则次品数ξ的分布列为n.,0,1,k CC C k)P(ξnba kn bk a Λ=⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有n b a )(+个可能结果,等可能:k)(η=含kn k k n ba C -个结果,故n ,0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P(ηkn k k n nkn k k n Λ=+-+=+==--,即η~)(b a a n B +⋅.[我们先为k个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样. 二、数学期望与方差.1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为则称ΛΛ++++=n n p x p x p x E 2211ξ为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平. 2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身. ②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ.⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1) ⑷二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率)3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()(Λ===k p x P k k ξ时,则称ΛΛ+-++-+-=n n p E x pE x p E x D 2222121)()()(ξξξξ为ξ的方差.显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:=ξD 其分布列为p P ==)1(ξ⑶两点分布:pq D =ξ 其分布列为:(+ q = 1)⑷二项分布:npq D =ξ ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)( ⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .三、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线b x =所围成的曲边梯形的面积图像的函数)(x f 是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:222)(21)(σμσπ--=x ex f . (σμ,,R x ∈为常数,且0φσ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E .⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近. ⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=-ππx ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤π.注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有5.0)(φx Φ.比如5.00793.0)5.0(π=-Φσμ则σμ-5.0S 阴=0.5S a =0.5+S如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.4.⑴“3σ”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).。
高三数学十五章知识点梳理
高三数学十五章知识点梳理高中数学是学生学习阶段中的重要科目之一,而高三的数学课程则尤为重要,它对考试成绩和大学录取有直接影响。
其中,数学的第十五章是一个关于概率与统计的章节,它是数学高考内容当中的重中之重。
这篇文章旨在对高三数学第十五章的知识点进行梳理,以帮助学生总结和理解这个章节的重要内容。
第一部分:概率第一部分主要涉及概率的相关知识点。
1. 随机事件与样本空间:随机事件是指在相同条件下可能发生,也可能不发生的事件。
样本空间指的是所有可能结果的集合。
2. 概率和频率:概率是某个事件发生的可能性大小,用一个介于0和1之间的数值来表示。
频率是指一个事件在多次重复试验中发生的次数与试验总次数之比。
3. 等可能概型:指的是每个样本点发生的概率相等的概型,例如掷骰子、抽扑克牌等。
4. 互斥事件与对立事件:互斥事件是指两个事件不可能同时发生,对立事件是指两个事件中必然会发生一个的事件。
5. 条件概率:指的是在另一个事件已经发生的条件下,某一个事件发生的概率。
第二部分:统计第二部分主要涉及统计的相关知识点。
1. 统计调查和抽样:在统计调查中,需要根据有限的样本数据来推断总体的特征;抽样是从总体中随机抽取一部分样本。
2. 统计量和参数:统计量是根据样本数据计算出的用于表示总体特征的量,而参数是总体的某个特征。
3. 频数与频率分布:频数是指某个数值在样本中的出现次数,频率是指某个数值的频数与样本容量之比。
4. 均值、中位数和众数:均值是指一组数据的平均值,中位数是指将一组数据按大小排序后位于中间的数值,众数是指一组数据中出现最频繁的数值。
5. 极差和标准差:极差是指一组数据中最大值与最小值之差,标准差是一组数据离均值的平均距离。
通过梳理这些知识点,我们可以更好地理解高三数学第十五章的内容,并能更加有效地完成与概率和统计相关的题目。
在备考高考过程中,学生可以通过刷题、做练习来巩固这些知识点,并通过老师的指导和同学的讨论来解决自己在学习过程中遇到的问题。
高中数学知识点总结:概率与统计
高中数学知识点总结:概率与统计【】到了高三总复习的时候发现有许多的数学知识点还没有理解,而这些知识点往往就是必考的知识点,欢迎同学们来到精品的高三数学知识点频道参考高中数学知识点总结,祝愿大家都能有个好成绩!概率与统计(文)命题趋势预测:高考对概率与统计内容的考查,往往以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向。
概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,高考概率统计应用题多数省份出现在解答题前三题的位置,可见概率统计在高考中属于中档题。
在今年的高考中,可能涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合。
概率与统计(理)命题趋势预测:我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道“是这样”,就是讲不出“为什么”。
根本原因还是无“米”下“锅”。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。
所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。
要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
高三数学概率与统计与解法知识点深入探讨
高三数学概率与统计与解法知识点深入探讨概率与统计的基本概念概率的基本概念概率是用来描述事件发生可能性的一种数学度量。
在数学中,我们通常用一个介于0和1之间的数来表示概率,其中0表示事件绝对不会发生,1表示事件必然发生。
随机试验与样本空间随机试验是指在相同的条件下,可能出现几种不同结果的试验。
样本空间是指随机试验所有可能结果的集合。
随机事件随机事件是指在样本空间中的一部分,表示某种结果的发生。
概率的定义概率是指某个随机事件发生的可能性。
在数学中,通常用符号P表示概率,概率的定义为:[ P(A) = ]概率的基本性质1.非负性:概率值总是非负的,即( P(A) 0 )。
2.归一性:所有可能事件的概率之和为1,即( _{i=1}^{n} P(A_i) = 1 )。
统计的基本概念统计学是研究如何收集、整理、分析和解释数据的科学。
在高中数学中,我们主要学习描述统计和推断统计两个方面。
描述统计描述统计是指用图表、数值等方法对数据进行总结和描述的过程。
常用的描述统计方法包括:1.频数与频率:频数是指某个数值出现的次数,频率是指某个数值出现的次数与总次数的比值。
2.众数、中位数、平均数:众数是指一组数据中出现次数最多的数值,中位数是将数据从小到大排列后位于中间的数值,平均数是指一组数据的总和除以数据个数。
3.方差与标准差:方差是衡量一组数据分散程度的指标,标准差是方差的平方根,用于衡量数据的离散程度。
推断统计推断统计是指利用样本数据来推断总体特征的方法。
推断统计主要包括两个方面:参数估计和假设检验。
1.参数估计:参数估计是指利用样本数据来估计总体参数的方法。
常用的参数估计方法包括:最大似然估计、最小二乘估计等。
2.假设检验:假设检验是指对总体参数的某个假设进行检验的方法。
常用的假设检验方法包括:卡方检验、t检验、F检验等。
概率与统计的解法知识点概率的解法知识点排列组合排列组合是计算概率的基础。
排列是指从n个不同元素中取出m(m≤n)个元素的所有可能的顺序,组合是指从n个不同元素中取出m(m≤n)个元素的所有可能的组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学概率统计知识
点归纳
内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)
概率统计知识点归纳
平均数、众数和中位数
平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明.
一、正确理解平均数、众数和中位数的概念
平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.
2.众数在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势.
3.中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的.
二、注意区别平均数、众数和中位数三者之间的关系
平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题.
三、能正确选用平均数、众数和中位数来解决实际问题
由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.
极差、方差、标准差
极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.
极差
一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.
二、方差
方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.
求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x1、x2、x3、…、xn 的平均数为x ,则该组数据方差的计算公式为:
])()()[(1222212x x x x x x n S n -++-+-= .
三、标准差
在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差. 即标准差=方差.
四、极差、方差、标准差的关系
方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.
一、 随机事件的概率
1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。
2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。
3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。
4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。
7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.
概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。
认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。
概率的基本性质
1、事件的关系与运算
(1)包含。
对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ⊇⊆或A B)。
不可能事件记作∅。
(2)相等。
若B A A B ⊇⊇且,则称事件A 与事件B 相等,记作A=B 。
(3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。
(4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。
(5)事件A 与事件B 互斥:A B 为不可能事件,即=A B ∅,即事件A 与事件B 在任何一次试验中并不会同时发生。
(6)事件A 与事件B 互为对立事件:A B 为不可能事件,A B 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。
2、概率的几个基本性质
(1)0()1P A ≤≤.
(2)必然事件的概率为1.()1P E =.
(3)不可能事件的概率为0. ()0P F =.
(4)事件A 与事件B 互斥时,P(A B)=P(A)+P(B)——概率的加法公式。
(5)若事件B 与事件A 互为对立事件,,则A B 为必然事件,()1P A B =.
三、古典概型
1、基本事件的特点:(1)任何两个事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
2、古典概型:(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件出现的可能性相等。
具有这两个特点的概率模型称为古典概型。
3、公式:
()=A P A 包含的基本事件的个数
基本事件的总数 四、几何概型
1、几何概型:每个事件发生的概率只有与构成该事件区域的长度(面积或体积)成比例的概率模型。
2、几何概型中,事件A 发生的概率计算公式:
三类概率问题的求解策略
对于一个概率题,我们首先要弄清它属于哪一类型的概率,因为不同的类型需要采取不同类型的概率公式和求解方法;其次,要审清题意,注意问题中的关键语句,因为这些关键语句往往蕴含着解题的思路和方法。
一、可能性事件概率的求解策略
对于可能性事件的概率问题,利用概率的古典定义来求可能性事件的概率时,应注意按下列步骤进行:求出基本事件的总个数n;②求出事件A 中包含的基本事件的个数m;③求出事件A 的概率,即
n m A P =)( 二、互斥事件概率的求解策略
对于互斥事件的概率问题,通常按下列步骤进行:①确定众事件彼此互斥;②众事件中有一个发生;先求出众事件分别发生的概率,然后再求其和。
对于某些复杂的互斥事件的概率问题,一般应考虑两种方法:一是“直接法”,将所求事件的概率化成一些彼此互斥的事件的概率的和;二是用“间接法”,即先求出此事件的对立事件的概率)(A P ,再用)(1)(A P A P -=求出结果。
三、相互独立事件同时发生的概率的求解策略
对于相互独立事件同时发生的概率问题,其求解的一般步骤是:①确定众事件是相互独立的;②确定众事件会同时发生;③先求每个事件发生的概率,再求它们的积。
概率的计算方法
一、公式法 利用公式P =(随机事件)随机事件可能出现的结果数随机事件所有可能出现的结果数就可以计算随机事件的概率,这里
1=(必然事件)P ,0=(不可能事件)P ,如果A 为不确定事件,那么0<)(A P <1.
二、列表法
例.如果每组3张牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少?
解:利用列表法:
1 2 3 1 (1,1)
(2,1) (3,1) 2 (1,2)
(2,2) (3,2) 3
(1,3) (2,3) (3,3) 列表中两次出现1,2,3点的可能性相同,因而共有9中可能,而牌面数字和等于4的情况有(1,3),(2,2),(3,1),3中可能,所以牌面数字和等于
4的概率等于93,即31
.
三、树状图法
如上题的另一中解法,就利用用树状图法来解:
总共9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共
3次,因此牌面数字和等于4的概率最大,概率为等于93
,即31
.
四、面积法
几何概型的概率的求解方法往往与面积的计算相结合
例.如图,矩形花园ABCD ,AB 为4米,BC 为6米,小鸟任意落下,则小鸟落在阴影区的概率是多少? 3 1 1 1 2 2 2 3 (4) (5) (4) 开始 2
1 3 3 (2) (3) (3) (4) (5) (6) C D 第二张牌的牌面数第一张牌的牌面数
解:矩形面积为:4×6=24(米2
), 阴影部分面积为:126421=⨯⨯(米2), 212412==(小鸟落在阴影区)P .。