2018高考高三数学3月月考模拟试题03及答案
普通高等学校2018届高三招生全国统一考试模拟(三)数学(理)试题+Word版含答案

2018年普通高等学校招生全国统一考试模拟试题理数(三)本试卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证号条形码粘贴在答题卡上的指定位置。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合(){}2ln 330A x x x =-->,集合{}231,B x x U R =->=,则()U C A B ⋂=A. ()2,+∞B. []2,4C. (]1,3D. (]2,42.设i 为虚数单位,给出下面四个命题:1:342p i i +>+;()()22:42p a a i a R -++∈为纯虚数的充要条件为2a =;()()23:112p z i i =++共轭复数对应的点为第三象限内的点;41:2i p z i +=+的虚部为15i . 其中真命题的个数为A .1B .2C .3D .43.某同学从家到学校途经两个红绿灯,从家到学校预计走到第一个红绿灯路口遇到红灯的概率为0.75,两个红绿灯路口都遇到红灯的概率为0.60,则在第一个路口遇到红灯的前提下,第二个路口也遇到红灯的概率为A .0.85B .0.80C .0.60D .0.564.已知函数()fx x =的值域为A ,且,a b A∈,直线()()2212x y x a y b +=-+-=与圆有交点的概率为A .18B .38 C. 78 D. 145.一条渐近线的方程为43y x =的双曲线与抛物线2:8C y x =的一个交点为A ,已知AF =(F为抛物线C 的焦点),则双曲线的标准方程为A .2211832x y -=B .2213218y x -= C .221916x y -=D .2291805y x -= 6.如图,弧田由圆弧和其所对弦围成,《九章算术》中《方田》章给出计算弧田面积所用的经验公式为:以弦乘矢,矢又自乘,并之,二而一”,即弧田面积12=(弦×矢+矢2).公式中“弦”指圆弧所对的线段,“矢”等于半径长与圆心到弦的距离之差,按照上述的经验公式计算弧田面积与实际面积存在误差,则圆心角为3π,弦长为1的弧田的实际面积与经验公式算得的面积的差为A .18- B .1168πC .1623π+- D .525-7.已知()()322101210223nn x d x x x a ax a x a=+-=+++⋅⋅⋅+⎰,且,则12310012102310a a a a a a a a +++⋅⋅⋅++++⋅⋅⋅+的值为 A .823B .845C .965-D .8778.已知函数()()s i n 2c o s 2,0,66f x x x x f x k ππ⎛⎫⎡⎤=++∈= ⎪⎢⎥⎝⎭⎣⎦当时,有两个不同的根12,x x ,则()12f x x k ++的取值范围为A.⎡⎣ B. C.⎭ D.)9.运行如图所示的程序框图,输出的S 值为 A .2018201722⨯- B .2018201822⨯+ C. 2019201822⨯-D .2019201722⨯+10.已知直线()()21350m x m y m +++--=过定点A ,该点也在抛物线()220x py p =>上,若抛物线与圆()()()222:120C x y rr -+-=>有公共点P ,且抛物线在P 点处的切线与圆C 也相切,则圆C 上的点到抛物线的准线的距离的最小值为 A.3B. 3C .3D.311.已知几何体的三视图如图所示,则该几何体的外接球的表面积为A .2143π B .1273π C.1153π D .1243π12.已知函数()f x 的导函数为()'f x ,且满足()32123f x x ax bx =+++,()()''24f x f x +=-,若函数()6ln 2f x x x ≥+恒成立,则实数b 的取值范围为A .[)64ln3,++∞B .[)5ln5,++∞ C.[)66ln6,++∞ D .[)4ln 2,++∞第Ⅱ卷本卷包括必考题和选考题两部分。
全国高考2018届高三模拟试卷(三)理数试题

全国高考2018届高三模拟试卷(三)理数试题本试题卷共14页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数,则=()A. B. C. D.【答案】C【解析】由题意可得:,则= .本题选择C选项.2. 集合,,则=()A. B.C. D.【答案】A【解析】由题意可得:,则= . 本题选择A选项.3. 已知函数的最小正周期为,则函数的图象()A. 可由函数的图象向左平移个单位而得B. 可由函数的图象向右平移个单位而得C. 可由函数的图象向左平移个单位而得D. 可由函数的图象向右平移个单位而得【答案】D【解析】由已知得,则的图象可由函数的图象向右平移个单位而得,故选D.4. 已知实数,满足约束条件则的最大值为()A. 2B. 3C. 4D. 5【答案】B【解析】绘制目标函数表示的可行域,结合目标函数可得,目标函数在点处取得最大值 .本题选择B选项.5. 一直线与平行四边形中的两边,分别交于、,且交其对角线于,若,,,则=()A. B. 1 C. D. -3【答案】A【解析】由几何关系可得:,则:,即:,则= .本题选择A选项.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.6. 在如图所示的正方向中随机投掷10000个点,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为(附:若,则,.()A. 906B. 1359C. 2718D. 3413【答案】B【解析】由正态分布的性质可得,图中阴影部分的面积,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为.本题选择B选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.7. 某几何体的三视图如图所示,其中俯视图下半部分是半径为2的半圆,则该几何体的表面积是()A. B. C. D.【答案】B【解析】根据三视图可知几何体是棱长为4的正方体挖掉半个圆柱所得的组合体,且圆柱底面圆的半径是2、母线长是4,∴该几何体的表面积,本题选择B选项.8. 已知数列中,,.若如图所示的程序框图是用来计算该数列的第2018项,则判断框内的条件是()A. B. C. D.【答案】B【解析】阅读流程图结合题意可得,该流程图逐项计算数列各项值,当时推出循环,则判断框内的条件是.本题选择B选项.9. 已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为,则=()A. 3B.C.D. 4【答案】B【解析】由题意知,的可能取值为2,3,4,其概率分别为,,,所以,故选B.10. 已知抛物线:的焦点为,点是抛物线上一点,圆与线段相交于点,且被直线截得的弦长为,若=2,则=()A. B. 1 C. 2 D. 3【答案】B【解析】由题意:M(x0,2√2)在抛物线上,则8=2px0,则px0=4,①由抛物线的性质可知,,,则,∵被直线截得的弦长为√3|MA|,则,由,在Rt△MDE中,丨DE丨2+丨DM丨2=丨ME丨2,即,代入整理得:②,由①②,解得:x0=2,p=2,∴,故选:B.【点睛】本题考查抛物线的简单几何性质,考查了抛物线的定义,考查勾股定理在抛物线的中的应用,考查数形结合思想,转化思想,属于中档题,将点A到焦点的距离转化为点A到其准线的距离是关键.11. 若定义在上的可导函数满足,且,则当时,不等式的解集为()A. B. C. D.【答案】D【解析】不妨令,该函数满足题中的条件,则不等式转化为:,整理可得:,结合函数的定义域可得不等式的解集为.本题选择D选项.12. 已知是方程的实根,则关于实数的判断正确的是()A. B. C. D.【答案】C【解析】令,则,函数在定义域内单调递增,方程即:,即,结合函数的单调性有: .本题选择C选项.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13. 若的展开式中项的系数为20,则的最小值为_________.【答案】2【解析】试题分析:展开后第项为,其中项为,即第项,系数为,即,,当且仅当时取得最小值.考点:二项式公式,重要不等式.14. 已知中,内角,,的对边分别为,,,若,,则的面积为__________.【答案】【解析】由题意有:,则的面积为 .【答案】【解析】由题意可得,为正三角形,则,所以双曲线的离心率.16. 已知下列命题:①命题“,”的否定是“,”;②已知,为两个命题,若“”为假命题,则“为真命题”;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题其中,所有真命题的序号是__________.【答案】②【解析】逐一考查所给的命题:①命题“,”的否定是“,”;②已知,为两个命题,若“”为假命题,则“为真命题”;③“”是“”的必要不充分条件;④“若,则且”是假命题,则它的逆否命题为假命题其中,所有真命题的序号是②.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 设为数列的前项和,且,,. (1)证明:数列为等比数列;(2)求.【答案】(1)见解析;(2).【解析】试题分析:(1)利用题意结合等比数列的定义可得数列为首先为2,公比为2的等比数列;(2)利用(1)的结论首先求得数列的通项公式,然后错位相减可得.试题解析:(1)因为,所以,即,则,所以,又,故数列为等比数列.(2)由(1)知,所以,故.设,则,所以,所以,所以.点睛:证明数列{a n}是等比数列常用的方法:一是定义法,证明=q(n≥2,q为常数);二是等比中项法,证明=a n-1·a n+1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.18. 如图所示,四棱锥,已知平面平面,,,,.(1)求证:;(2)若二面角为,求直线与平面所成角的正弦值.【答案】(1)见解析;(2).【解析】试题分析:(1)利用题意首先证得平面,结合线面垂直的定义有.(2)结合(1)的结论首先找到二面角的平面角,然后可求得直线与平面所成角的正弦值为.试题解析:(1)中,应用余弦定理得,解得,所以,所以.因为平面平面,平面平面,,所以平面,又因为平面,所以.(2)由(1)平面,平面,所以.又因为,平面平面,所以是平面与平面所成的二面角的平面角,即.因为,,所以平面.所以是与平面所成的角.因为在中,,所以在中,.19. 某中学为了解高一年级学生身高发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位:)频数分布表如表1、表2.表1:男生身高频数分布表表2:女生身高频数分布表(1)求该校高一女生的人数;(2)估计该校学生身高在的概率;(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设表示身高在学生的人数,求的分布列及数学期望.【答案】(1)300;(2);(3)见解析.【解析】试题分析:(1)利用题意得到关于人数的方程,解方程可得该校高一女生的人数为300;(2)用频率近似概率值可得该校学生身高在的概率为.(3) 由题意可得的可能取值为0,1,2.据此写出分布列,计算可得数学期望为 .试题解析:(1)设高一女学生人数为,由表1和表2可得样本中男、女生人数分别为40,30,则,解得.即高一女学生人数为300.(2)由表1和表2可得样本中男女生身高在的人数为,样本容量为70.所以样本中该校学生身高在的概率为.因此,可估计该校学生身高在的概率为.(3)由题意可得的可能取值为0,1,2.由表格可知,女生身高在的概率为,男生身高在的概率为.所以,,.所以的分布列为:所以.20. 中,是的中点,,其周长为,若点在线段上,且.(1)建立合适的平面直角坐标系,求点的轨迹的方程;(2)若,是射线上不同的两点,,过点的直线与交于,,直线与交于另一点,证明:是等腰三角形.【答案】(1);(2)见解析.【解析】试题分析:(1)由题意得,以为坐标原点,以的方向为轴的正方向,建立平面直角坐标系,得的轨迹方程为,再将相应的点代入即可得到点的轨迹的方程;(2)由(1)中的轨迹方程得到轴,从而得到,即可证明是等腰三角形.试题解析:解法一:(1)以为坐标原点,以的方向为轴的正方向,建立平面直角坐标系.依题意得.由,得,因为故,所以点的轨迹是以为焦点,长轴长为6的椭圆(除去长轴端点),所以的轨迹方程为.设,依题意,所以,即,代入的轨迹方程得,,所以点的轨迹的方程为.(2)设.由题意得直线不与坐标轴平行,因为,所以直线为,与联立得,,由韦达定理,同理,所以或,当时,轴,当时,由,得,同理,轴.因此,故是等腰三角形.解法二:(1)以为坐标原点,以的方向为轴的正方向,建立平面直角坐标系. 依题意得.在轴上取,因为点在线段上,且,所以,则,故的轨迹是以为焦点,长轴长为2的椭圆(除去长轴端点),所以点的轨迹的方程为.(2)设,,由题意得,直线斜率不为0,且,故设直线的方程为:,其中,与椭圆方程联立得,,由韦达定理可知,,其中,因为满足椭圆方程,故有,所以.设直线的方程为:,其中,同理,故,所以,即轴,因此,故是等腰三角形.21. 已知函数,,曲线的图象在点处的切线方程为.(1)求函数的解析式;(2)当时,求证:;(3)若对任意的恒成立,求实数的取值范围.【答案】(1);(2)见解析;(3).【解析】试题分析:(1)利用导函数研究函数切线的方法可得函数的解析式为.(2)构造新函数.结合函数的最值和单调性可得.(3)分离系数,构造新函数,,结合新函数的性质可得实数的取值范围为.试题解析:(1)根据题意,得,则.由切线方程可得切点坐标为,将其代入,得,故.(2)令.由,得,当,,单调递减;当,,单调递增.所以,所以.(3)对任意的恒成立等价于对任意的恒成立.令,,得.由(2)可知,当时,恒成立,令,得;令,得.所以的单调增区间为,单调减区间为,故,所以.所以实数的取值范围为.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22. 选修4-4:坐标系与参数方程在极坐标系中,曲线:,曲线:.以极点为坐标原点,极轴为轴正半轴建立直角坐标系,曲线的参数方程为(为参数). (1)求,的直角坐标方程;(2)与,交于不同四点,这四点在上的排列顺次为,,,,求的值. 【答案】(1);(2).【解析】(1)因为,由,得,所以曲线的直角坐标方程为;由,得,所以曲线的极坐标方程为.(2) 不妨设四点在上的排列顺次至上而下为,它们对应的参数分别为,如图,连接,则为正三角形,所以,,把代入,得:,即,故,所以. 【点睛】本题为极坐标与参数方程,是选修内容,把极坐标方程化为直角坐标方程,需要利用公式,第二步利用直线的参数方程的几何意义,联立方程组求出,利用直线的参数方程的几何意义,进而求值.23. 选修4-5:不等式选讲.已知,为任意实数.(1)求证:;(2)求函数的最小值.【答案】(1)见解析;(2).【解析】试题分析:(1)利用不等式的性质两边做差即可证得结论;(2)利用题意结合不等式的性质可得.试题解析:(1),因为,所以.(2). 即.点睛:本题难以想到利用绝对值三角不等式进行放缩是失分的主要原因;对于需求最值的情况,可利用绝对值三角不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项来放缩求解.。
普通高等学校2018届高三招生全国统一考试模拟试题(三)数学(理)试题+Word版含答案

普通高等学校招生全国统一考试模拟试题理科数学(三)本试卷满分150分,考试时间。
120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上.2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题纸上,写在本试卷上无效.3.考试结束后,将本试卷和答题纸一并交回.一、选择题:本题共12小题。
每小题5分。
共60分.在每小题给出的四个选项中。
只有一项是符合题目要求的.1.已知i 为虚数单位,则下列运算结果为纯虚数是A .()1i i i +-B .()1i i i --C .()11i i i i +++D .()11i i i i+-+ 2.已知集合A=31x x x ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭,B={}10x ax -=,若B A ⊆,则实数a 的取值集合为 A .{}0,1 B .{}1,0- C .{}1,1- D .{}1,0,1-3.已知某科研小组的技术人员由7名男性和4名女性组成,其中3名年龄在50岁以上且均为男性.现从中选出两人完成一项工作,记事件A 为选出的两人均为男性,记事件B 为选出的两人的年龄都在50岁以上,则()P B A 的值为A .17B .37C .47D .574.运行如图所示的程序框图,当输入的m=1时,输出的m 的结果为16,则判断框中可以填入A .15?m <B .16?m <C .15?m >D .16?m >5.已知双曲线()222210,0x y a b a b-=>>,F 1,F 2是双曲线的左、右焦点,A(a ,0),P 为双曲线上的任意一点,若122PF A PF A S S = ,则该双曲线的离心率为A B .2 C D .36.若a >1>b >0,-1<c <0,则下列不等式成立的是A .22b a -<B .()log log a b b c <-C .22a b <D .2log b c a <7.已知等差数列{}n a 的前n 项和为n S ,且24a a +=10,若点P ()35,a S 在函数2y mx =的图像上。
2018届普通高等学校招生全国统一考试高三数学仿真卷(三)理

理科数学(三)
本试题卷共 2 页,23 题(含选考题)。全卷满分 150 分。考试用时 120 分钟。
注意事项:
★祝考试顺利★
1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形 码粘贴在答题卡上的指定位置。用 2B 铅笔将答题卡上试卷类型 A 后的方框涂黑。
A.x | 1 x 1
B.x | 1 x 2
C.x | 0 x 2
D.x | 0 x 1
2.设复数 z 1 2i (是虚数单位),则在复平面内,复数 z2 对应的点的坐标为( )
A. 3, 4
B. 5, 4
C. 3, 2
D. 3, 4
3. 2 x2x 16 的展开式中 x4 的系数为( )
的体积的最大值为 4 ,则球 O 的表面积为__________. 3
三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.已知数列an 是等差数列, a1 t 2 t , a2 4 , a3 t2 t . (1)求数列an 的通项公式;
(2)若数列an 为递增数列,数列bn 满足 log2bn an ,求数列 an 1 bn 的前项和 Sn .
A.-160
B.320
C.480
4.某几何体的三视图如图所示,则该几何体的表面积为(
D.640 )
A. 5 2
B. 4 2
C. 4 4
D. 5 4
5.过双曲线
x2 9
y2 16
1的右支上一点
P
,分别向圆 C1 : x
52
y2
4 和圆C2 : x
52
y2
r2
( r 0 )作切线,切点分别为 M , N ,若 PM 2 PN 2 的最小值为 58 ,则 r ( )欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,
广东省深圳市普通高中学校2018届高考高三数学3月月考

2018高考高三数学3月月考模拟试题03第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,选出符合题目要求的一项。
1、()()=+--321i i i ( )A. i +3B. i --3C. i +-3D. i -32、862lim 22+--→x x x x 的值为 ( )A .0B .1C .21- D .313、有以下四个命题:其中真命题的序号是 ( )①若//,//m n αβ且//αβ,则//m n ; ②若,m n αβ⊥⊥且αβ⊥,则m n ⊥; ③若,//m n αβ⊥且//αβ,则m n ⊥; ④若//,m n αβ⊥且αβ⊥,则//m n .、A ①② 、B ③④ 、C ① ④ 、D ②③4、设,x y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则231x y x +++取值范围是 ( ).A [3,11] .B [2,6].C [3,10] .D [1,5] 5、某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:如果A 、B 两个节目要相邻,且都不排在第3号位置,则节目单上不同的排序方式有( ) A .192种 B .144种 C .96种 D .72种6、已知→→b a ,为非零向量,命题0:>∙→→b a p ,命题→→b 、a q :的夹角为锐角,则命题p 是命题q 的( )A.充分不必要的条件B. 既不充分也不必要的条件C.充要条件D. 必要不充分的条件7、已知圆xx g x x f y x y x C 2)(,log )()0,0(4:222==≥≥=+与函数的图象分别交于22212211),,(),,(x x y x B y x A +则的值为 ( )ABMC D A 1B 1C 1D 1 16、A 、B 8、B 4、C 2、D 8、在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数()f x 的图象恰好通过()n n N +∈个整点,则称函数()f x 为n 阶整点函数。
【高三数学试题精选】2018届高三数学下册3月月考检测试题及参考答案

2018届高三数学下册3月月考检测试题及参考答案
5
河南省卫辉市第一中学2018届高三3月考试题
科数学
一、选择题本大题共12小题,每小题5分,共60分,在每小题给出代号为A、B、c、D四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x>1},B={x|x≤5},则A∩B=
A. B.{x|1<x≤5} c.{x|x<1或x≥5} D.{x|1≤x<5} 2.复数(i是虚数单位)的虚部是
A. B.3 c. D.1
3.下列四个函数中,在区间(0,1)上是减函数的是
A.= B.= c.=- D.=
4.已知直线ax-b-2=0与曲线=在点P(1,1)处的切线互相垂直,则为
A. B. c.- D.-
5.给出计算+++…+的值的一个程序框图
如右图,其中判断框内应填入的条是
A.i>10 B.i<10
c.i>20 D.i<20
6.一名同学先后投掷一枚骰子两次,第一次向上的点数
记为x,第二次向上的点数记为,在直角坐标系x
中,以(x,)为坐标的点落在直线2x+=8上的
概率为
A. B.
c. D.
7.已知双曲线的一个焦点与抛物线2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为。
辽宁省2018届高三3月高考模拟考试数学(理)试题+Word版含答案

P E D C B
A
19. (本小题满分 12 分) 也称为可入肺颗 PM 2.5 是指大气中空气动力学当量直径小于或等于 2.5 微米的颗粒物, 粒物.我国 PM 2.5 标准采用世界卫生组织设定的最宽限值,即 PM 2.5 日均值在 35 微克/立 方米以下空气质量为一级;在 35 微克/立方米~75 微克/立方米之间空气质量为二级;在 75 微 克/立方米以上空气质量为超标.某城市环保局从该市 市区 2017 年上半年每天的 PM 2.5 监测数据中随机抽 取 18 天的数据作为样本, 将监测值绘制成茎叶图如下 图所示(十位为茎,个位为叶) . (Ⅰ) 在这 18 个数据中随机抽取 3 个数据, 求其 中恰有 2 个数据为空气质量达到一级的概率; (Ⅱ)在这 18 个数据中随机抽取 3 个数据,用 表示 其中不 超标数据的个数,求 的分布列及数学期望; . (Ⅲ)以这 18 天的 PM 2.5 日均值来估计一年的空气质量情况,则一年(按 360 天计算) 中约有多少天的空气质量为二级.
ቤተ መጻሕፍቲ ባይዱ
10.在三棱锥 D ABC 中,已知 AD 平面ABC ,且 ABC为正三角形, AD AB 则三棱锥 D ABC 的外接球的表面积为 A. 10 B. 9 C. 8 D. 7
3,
11.已知 F1 , F2 分别是双曲线
x2 y2 1 ( a 0 , b 0) 的左、右焦点,以线段 F1F2 为斜 a 2 b2
f ( p 1) f (q 1) 1 恒成立,则实数 a 的取值范围是 pq
B.[15, ) C. ( ,6) (非选择题 共 90 分) D. ( ,6 ]
深圳市2018届高三高考数学模拟试题(3)及答案

2018高考高三数学3月月考模拟试题3第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集}{1,2,3,4U =,集合{}{}1,2,2,4A B ==,则()U A B =ð(A){}1,2(B){}2,3,4(C){}3,4(D){}1,2,3,4(2)2i 1-i =为虚数单位,则(A)1+i (B)-1+i (C)1-i(D)-1-i(3)一个几何体的三视图如图所示,则该几何体的体积为(A)1(B)13(C)12(D)32(4)右图是2013年在某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶图,则去年一个最高分和一个最低分后,所剩数据的平均数和方差分别为(A)84,4.84(B)84,1.6(C)85,1.6(D)85,4(5)已知向量(1,2)=a ,(,6)x =b ,且a ∥b ,则x 的值为(A)1(B)2(C)3(D)4(6)执行如图所示的程序框图,若输出结果为3,则可输入的实数x值的个数为(A)1(B)2(C)3(D)4(7)已知不等式2x x ++≤a 的解集不是空集,则实数a 的取值范围是(A)a <2(B)a ≤2(C)a >2(D)a ≥2(8)已知{}n a 为等差数列,若34899,a a a S ++==则(A)24(B)27(C)15(D)54(9)函数()sin()f x A x ωϕ=+(其中A >0,ϕ<π2的图象如图所示,为了得到()sin 3g x x =的图象,只需将()f x 的图象(A)向右平移π4个单位长度(B)向左平移π4个单位长度(C)向右平移π12个单位长度(D)向左平移π12个单位长度(10)圆锥曲线C 的两个焦点分别为12,F F ,若曲线C 上存在点P 满足1PF ∶12F F ∶2PF =4∶3∶2,则曲线C 的离心率为(A)2332或(B)223或(C)122或(D)1322或(11)2013年第12届全国运动会将在沈阳举行,某校4名大学生申请当A,B,C 三个比赛项目的志愿者,组委会接受了他们的申请,每个比赛项目至少分配一人,每人只能服务一个比赛项目,若甲要求不去服务A 比赛项目,则不同的安排方案共有(A)20种(B)24种(C)30种(D)36种(12)定义在R 上的奇函数()f x ,当x ≥0时,))12log (1),0,1,()1|3|,1,,x x f x x x ⎧+∈⎡⎣⎪=⎨⎪--∈+∞⎡⎣⎩则关于x 的函数()()F x f x a =-(0<a <1)的所有零点之和为(A)1-2a (B)21a -(C)12a --(D)21a --第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元)3456根据上表可得回归方程y bx a =+ ∧∧∧中的b ∧为7.据此模型预报广告费用为10万元时销售额为(万元).(14)设60sin (a xdx,π=⎰则二项式的展开式中的常数项等于.(15)设实数x ,y 满足约束条件2220,20,220,x y x y x y x y ⎧-≤⎪-≥⎨⎪+--≤⎩,则目标函数z x y =+的最大值为.(16)定义平面向量的一种运算:||||sin ,⊗=⋅a b a b a b ,则下列命题:①⊗=⊗a b b a ;②()()λλ⊗=⊗a b a b ;③()()()+⊗=⊗+⊗a b c a c b c ;④若a =11221221(,),(,),||x y x y x y x y =⊗=-则b a b .其中真命题是(写出所有真命题的序号).三、解答题:本大题共6小题,共74分.(17)(本小题满分12分)已知向量,cos (sin ,cos ),4444x x x x ==m n 函数()f x =⋅m n .(Ⅰ)求函数()f x 的最小正周期及单调递减区间;(Ⅱ)在锐角ABC 中,,,A B C 的对边分别是,,a b c ,且满足1cos ,2a C cb +=求(2)f B 的取值范围.(18)(本小题满分12分)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回...的随机抽取两张卡片,记第一次抽取卡片的标号为x ,第二次抽取卡片的标号为y .设O为坐标原点,点P 的坐标为(2,),x x y --记2||OP ξ= .(Ⅰ)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率;(Ⅱ)求随机变量ξ的分布列和数学期望.(19)(本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,DAB ∠为直角,AB ∥CD ,2,,AD CD AB E F ==分别为,PC CD 的中点.(Ⅰ)求证:CD ⊥平面BEF ;(Ⅱ)设(PA kAB k =>0,且二面角E BD C --的大小为30 ,求此时k 的值.(20)(本小题满分12分)某产品在不做广告宣传且每千克获利a 元的前提下,可卖出b 千克.若做广告宣传,广告费为n (*N n ∈)千元时比广告费为(1n -)千元时多卖出2n b 千克.(Ⅰ)当广告费分别为1千元和2千元时,用b 表示销售量s ;(Ⅱ)试写出销售量s 与n 的函数关系式;(Ⅲ)当50,200a b ==时,要使厂家获利最大,销售量s 和广告费n 分别应为多少?(21)(本小题满分13分)已知椭圆C 的离心率32e =,长轴的左、右端点分别为12(2,0),(2,0)A A -.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线1x my =+与椭圆C 交于R ,Q 两点,直线1A R 与2A Q 交于点S .试问:当m 变化时,点S 是否恒在一条直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.(22)(本小题满分13分)已知函数()ln(1)(1)1()f x x k x k=---+∈R,(Ⅰ)求函数()f x的单调区间;(Ⅱ)若()0f x≤恒成立,试确定实数k的取值范围;(Ⅲ)证明:ln2ln334++…ln1nn++<(1)4n n-(,n N n∈>1).参考答案深圳市2018届高三高考数学模拟试题(3)及答案11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、解答题:本大题共 6 小题,共 80 分。解答应写出文字说明,证明过程或演算步骤。 15. (本小题满分 13 分)
(1)、已知函数 f ( x )
1 2 cos( 2 x sin( x
) 2
) 4 .
3 , 求f ( ). 5
若角 在第一象限且 cos
2
(2)函数 f ( x ) 2 cos x 2 3 sin x cos x 的图象按向量 m ( g(x)的解析式. 16、 (小题满分 13 分)
2 x ) n 展开式中
D1 B1 D A
10、若 n 为等差数列 4,2,0, 中的第 8 项,则二项式 ( x 2 第 项
常数项是
C
11、如图,棱长为 a 的正方体 ABCD
A1 B1C1 D1 中, M 为 BC 中点, A1
;
则直线 D1 M 与平面 ABCD 所成角的正切值为 若正方体的八个顶点都在同一球面上,则此球的表面积 为 .
S 的值越高则评价效果越好.若某班在自测过程中各项指标显示出 0 c d e b a ,则下阶段要把其中一个指标的值增加 1 个单位,而使得 S 的值增加最多,那么该指
. (填入 a, b, c, d , e 中的某个字母)
标应为
14、一种计算装置,有一个数据入口 A 和一个运算出口 B ,执行某种运算程序. (1)当从 A 口输入自然数 1时,从 B 口得到实数
的 图 象 分 别 交 于
(
)
A、 16
B、 8
C、 4
D、 2
8、在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数 f ( x ) 的图象恰好通过 n( n N ) 个 整点,则称函数 f ( x ) 为 n 阶整点函数。有下列函数:
1
f ( x) sin 2 x ;
② g ( x) x )
D. [1,5]
4 5 6 )
5、某次文艺汇演,要将 A、B、C、D、E、F 这六个不同节目编排成节目单,如下表:
如果 A、B 两个节目要相邻,且都不排在第 3 号位置,则节目单上不同的排序方式有( A.192 种
B.144 种
C.96 种
D.72 种
6、已知
a , b 为非零向量,命题 p : a b 0 ,命题 q : a、 b 的夹角为锐角,则命题 p 是命题 q 的(
C M B
12、在 ABC 中, a, b, c 分别为三个内角 A、B、C 所对的边,设向量 m
b c, c a ,
n b, c a ,若向量 m n ,则角 A 的大小为 a c 1 来 b d e
13、 顺义二中对文明班的评选设计了 a, b, c, d , e 五个方面的多元评价指标, 并通过经验公式 S 计算各班的综合得分,
A .0 B.1
1 i 2 i
C.
3i
1 2
D.
3i
( )
C.
D.
1 3
( ) ,则 m n ; ,则 m // n .
3、有以下四个命题:
其中真命题的序号是
①若 m // , n // 且 // ,则 m // n ; ②若 m , n ③若 m , n // 且 // ,则 m n ; ④若 m // , n
3
③ h( x ) ( ) ;
1 3
x
④ ( x ) ln x ,
其中是一阶整点函数的是(
A.①②③④ B.①③④ C.①④ D.④ 二、填空题:本大题共 6 小题,每小题 5 分,共 30 分。把答案填在题中横线上。
9、双曲线
x2 y2 1 的一个焦点到一条渐近线的距离为______________ 9 16
(Ⅲ)若动圆 N 过点 P 且与圆 M 内切,求动圆 N 的圆心 N 的轨迹方程.
y
A
P
O
C
x
B
17、 (本小题 13 分)
如图,四棱锥 P
ABCD 中,底面 ABCD 是边长为 2 的正方形, PB BC , PD CD ,且 PA 2 , E 为
P
(Ⅰ)求证: PA 平面 ABCD ; (Ⅱ)求二面角 E
1 1 ,记为 f (1) ; 3 3
(2)当从 A 口输入自然数 n( n 2) 时,在 B 口得到的结果 f ( n) 是前一结果 f ( n 1)的 从 A 口输入 3 时,从 B 口得到 数 . ;要想从 B 口得到
2( n 1) 1 倍.当 2( n 1) 3
1 ,则应从 A 口输入自然 2303
且 且
A、 ①②
B、③④
C、 ① ④
D、 ②③
( )
x 0 x 2y 3 4、设 x, y 满足约束条件 y x ,则 取值范围是 x 1 4 x 3 y 12
A. [3,11]
序号 节目
B. [2, 6]
1
C. [3,10]
2 3
B. 既不充分也不必要的条件 D. 必要不充分的条件
2 2 x
)
A.充分不必要的条件 C.充要条件
7 、 已 知 圆 C : x y 4( x 0, y 0)与函数f ( x ) log 2 x, g ( x ) 2
2 的值为 A( x1 , y1 ), B ( x 2 , y 2 ), 则x12 x 2
2018 高考高三数学 3 月月考模拟试题 03
第Ⅰ卷(选择题
1、
共 40 分)
( )
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,选出符合题目要求的一项。
i3 A. 3 i B. 3 i x2 2、 lim 2 的值为 x2 x 6 x 8
, 1) 平移后,得到一个函数 g(x)的图象,求 6
0) ,直角顶点 B (0, 2 2) ,顶点 C 在 x 轴上,点 P 为线段 OA 的中 如图,直角三角形 ABC 的顶点坐标 A( 2,
点 (Ⅰ)求 BC 边所在直线方程; (Ⅱ) M 为直角三角形 ABC 外接圆的圆心,求圆 M 的方程;