简单事件的概率

合集下载

初中简单事件概率教案

初中简单事件概率教案

初中简单事件概率教案教学目标:1. 理解概率的定义,掌握必然事件、不可能事件、随机事件的概念。

2. 学会使用频率估计概率,了解大量实验中频率与概率的关系。

3. 能够运用概率公式计算简单事件的概率。

教学重点:1. 概率的定义及各类事件的概念。

2. 频率与概率的关系。

3. 概率公式的运用。

教学难点:1. 理解并掌握必然事件、不可能事件、随机事件的概念。

2. 运用频率估计概率。

3. 运用概率公式计算简单事件的概率。

教学过程:一、导入(5分钟)1. 引入话题:讨论日常生活中的一些随机现象,如抛硬币、抽奖等。

2. 提问:这些现象中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?二、新课讲解(15分钟)1. 讲解必然事件、不可能事件、随机事件的概念。

2. 讲解概率的定义:某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率。

3. 讲解频率与概率的关系:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率)总是接近于一个常数,这个常数就是事件发生的概率。

三、实例演示与练习(15分钟)1. 通过抛硬币、抽奖等实例,让学生观察并记录实验结果,引导学生运用频率估计概率。

2. 让学生分组讨论,总结频率与概率的关系。

3. 运用概率公式计算一些简单事件的概率,如抛硬币两次正面朝上的概率等。

四、课堂小结(5分钟)1. 回顾本节课所学内容,巩固必然事件、不可能事件、随机事件的概念。

2. 强调频率与概率的关系,以及如何运用频率估计概率。

3. 提醒学生掌握概率公式的运用。

五、课后作业(课后自主完成)1. 完成教材课后练习题。

2. 运用概率公式计算生活中的一些简单事件概率。

教学反思:本节课通过讨论日常生活中的随机现象,引导学生理解必然事件、不可能事件、随机事件的概念。

通过实例演示和练习,让学生掌握频率与概率的关系,以及如何运用频率估计概率。

初中数学知识点总结简单事件的概率

初中数学知识点总结简单事件的概率

初中数学知识点总结简单事件的概率初中数学中,简单事件的概率是一个重要的知识点。

简单事件指的是只有一个结果的事件,概率则是指一些事件发生的可能性。

在简单事件中,概率的计算可以通过统计频数来得出。

下面将对初中数学中的简单事件的概率进行总结。

首先,我们需要了解一些基本概念。

在概率中,我们常用的概念有样本空间、事件和概率。

样本空间是指一个试验中所有可能结果的集合。

在投掷一枚骰子的例子中,样本空间为{1,2,3,4,5,6}。

事件是指样本空间中的一个子集。

例如,投掷一枚骰子得到偶数的事件可以表示为{2,4,6}。

概率是指一些事件发生的可能性,通常用P(A)表示。

在投掷一枚骰子的例子中,得到偶数的概率可以表示为P(A)=3/6=1/2在计算概率时,有几个重要的概念和方法可以帮助我们进行计算。

1.等可能原则:在样本空间中,所有的结果都是等可能发生的。

在投掷一枚均匀的骰子的例子中,每个数字出现的概率都是1/62.频率和概率的关系:频率是指一个事件在试验中出现的次数除以总的试验次数。

当试验次数足够大时,频率会逐渐趋近于概率。

因此,我们可以通过实验的频率来估计概率。

3.概率的性质:-对于任意事件A,0≤P(A)≤1,即概率的取值范围在0到1之间。

-对于样本空间S,P(S)=1,即样本空间中的所有结果发生的概率之和为1-对于两个互斥事件A和B(即A和B不可能同时发生),P(A∪B)=P(A)+P(B)。

4.互斥事件的概率计算:两个事件A和B不可能同时发生,即A和B 是互斥事件。

在这种情况下,我们可以直接计算事件A和事件B的概率,并将它们相加。

例如,在投掷一枚骰子的例子中,得到偶数的事件A和得到奇数的事件B是互斥事件,因此P(A∪B)=P(A)+P(B)=1/2+1/2=15.非互斥事件的概率计算:当两个事件A和B可能同时发生时,我们需要使用概率的加法原理来计算它们的概率。

根据加法原理,P(A∪B)=P(A)+P(B)-P(A∩B)。

2.2 简单事件的概率九年级上册数学浙教版

2.2 简单事件的概率九年级上册数学浙教版
[解析] 把3节车厢分别记为 , , .根据题意,可画出如图所示的树状图.
注意 试验同时满足以下两个条件时才能使用上述计算概率的方法:
(1)每一次试验中,可能出现的结果只有有限个;
(2)每一次试验中,各种结果出现的可能性相等.
(1)公式适用的前提条件是事件发生的各种结果的可能性相同且互相排斥;(2)使用公式时应先统计 的值,再统计 的值那么事件 发生的概率为 .
知识点1 简单事件的概率的定义与计算方法 重点
1.概率:在数学中,我们把事件发生的可能性的大小称为事件发生的概率,一般用 表示.事件 发生的概率记为 .
抛掷一枚质地均匀的硬币有两种等可能的结果
2.概率的取值范围:
(1)必然事件发生的概率为 ,即 (必然事件) ;
典例3 (情境创新)有一首《对子歌》中唱到:天对地,雨对风,大陆对长空.现将“天,雨,陆,空”四个字书写在材质、颜色和大小完全相同的四张卡片上,在暗箱中搅匀后,随机抽取两张卡片,抽到分别写有“天”“空”的两张卡片的概率为( )可看做第一次抽取一张后不放回
D
A. B. C. D.
[解析] 根据题意,画出如图所示的树状图.
由树状图可知, ,抽到分别写有“天”“空”的两张卡片包含其中的结果数 , .
中考常考考点
难度
常考题型
考点1:简单事件的概率,主要考查直接应用概率公式 求简单事件的概率.
★★★
选择题、填空题
考点2:用列表法或画树状图法计算概率.试题背景有转转盘、摸球、抽取卡片、掷骰子等,常与方程、几何、统计等知识综合考查.
B
A. B. C. D.
[解析] 将三张上部图片分别记为 , , ,三张下部图片分别记为 , , ,其中 和 , 和 , 和 能恰好合成一张完整图片.列

九年级简单事件概率知识点

九年级简单事件概率知识点

九年级简单事件概率知识点概率是数学中一个十分重要的概念,它与我们的生活息息相关。

在日常生活中,我们经常会遇到各种各样的事件,有些是随机事件,而有些则是确定性事件。

对于随机事件,我们往往需要用概率来描述其发生的可能性。

本文将针对九年级简单事件概率的知识点进行探讨。

一、概率的定义与表示方法概率可以理解为“事件发生的可能性大小”。

在数学上,我们用P(A)来表示事件A发生的概率。

当P(A)为0时,表示事件A不可能发生;当P(A)为1时,表示事件A肯定会发生;当0<P(A)<1时,表示事件A发生的可能性介于0和1之间。

二、样本空间与事件的关系在概率论中,我们常常需要描述事件的全体情况,这就是样本空间。

比如,我们投掷一颗骰子,样本空间就是{1,2,3,4,5,6}。

事件是样本空间中的某个子集,也就是我们想要研究的一个具体情况。

三、概率的计算方法1. 等可能概型事件的概率计算如果一个事件中的每个元素在样本空间中出现的可能性相同且排列均匀,我们称之为等可能概型事件。

对于这类事件,我们可以直接通过计数的方法来计算概率。

比如,投掷一颗骰子,出现1的可能性就是1/6,即P(1)=1/6。

2. 两个事件的和事件的概率计算当我们想要计算两个事件A和B同时发生的概率时,我们可以用加法法则来计算。

加法法则的公式为P(A∪B) = P(A) + P(B) -P(A∩B)。

其中,P(A∩B)表示事件A和事件B同时发生的概率。

3. 互斥事件的概率计算互斥事件指的是两个事件不可能同时发生。

如果两个事件A和B是互斥事件,那么它们的交集为空集,即A∩B=∅。

这种情况下,我们可以直接使用加法法则来计算概率,即P(A∪B) = P(A) +P(B)。

四、条件概率和独立事件1. 条件概率的概念与计算方法条件概率是指在给定某个前提条件下,事件A发生的概率。

条件概率的计算方法为P(A|B) = P(A∩B) / P(B)。

其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

初中数学知识点总结:简单事件的概率

初中数学知识点总结:简单事件的概率

初中数学知识点总结:简单事件的概率 知识点总结【一】可能性:1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;3.确定事件:必然事件和不可能事件都是确定的;4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。

5.一般来说,不确定事件发生的可能性是有大小的。

.【二】概率:1.概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。

2.必然事件发生的概率为1,记作P〔必然事件〕=1;不可能事件发生的概率为0,记作P〔不可能事件〕=0;如果A为不确定事件,那么0<P〔A〕<1。

3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。

两步试验事件发生的概率的发生的概率的计算方法有两种,一种是列表法,另一种是画树状图,利用这两种方法计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。

常见考法〔1〕判断哪些事件是必然事件,哪些是不可能事件;〔2〕直接求某个事件的概率。

误区提醒对一个不确定事件所有等可能出现的结果数做了重复计算或漏算。

【典型例题】〔2019福建宁德〕以下事件是必然事件的是〔〕.A.随意掷两个均匀的骰子,朝上面的点数之和为6B.抛一枚硬币,正面朝上C.3个人分成两组,一定有2个人分在一组D.打开电视,正在播放动画片【解析】必然事件指的是一定发生的事件,3个人分成两组,一定有2个人分在一组这是一定的,所以此题选C。

掌握简单事件的概率计算

掌握简单事件的概率计算

掌握简单事件的概率计算概率计算是数学中的一个重要分支,用于描述和解决随机事件发生的可能性。

掌握简单事件的概率计算对于我们了解和应用概率理论具有重要意义。

本文将介绍简单事件的概念、概率计算的基本原理以及一些常见的概率计算方法。

一、简单事件的概念在概率计算中,简单事件指的是不可再分解成更小事件的基本事件。

比如,投掷一个公正六面骰子,每个面的点数都是一个简单事件。

简单事件通常用字母表示,比如事件A、B、C等。

二、概率计算的基本原理1. 概率的定义:概率是指某个事件发生的可能性。

概率的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。

2. 概率的计算方法:(1)古典概率方法:适用于等可能的试验,通过计算事件发生的次数与总次数的比值来估计概率。

(2)几何概率方法:适用于连续型事件,通过计算事件所占的面积或长度与整个样本空间的面积或长度的比值来估计概率。

(3)统计概率方法:适用于根据统计数据推断出的概率,通过频率估计法来计算概率。

(4)条件概率方法:适用于依赖于其他事件发生与否的事件,通过计算给定条件下事件发生的概率来估计条件概率。

(5)加法法则和乘法法则:用于计算多个事件的概率。

三、常见的概率计算方法1. 单一事件的概率计算:对于单一事件A,可以使用古典概率方法、几何概率方法或统计概率方法来计算。

2. 多个事件的概率计算:(1)互斥事件的概率计算:当多个事件是互斥的(即不可能同时发生)时,可以使用加法法则来计算这些事件中至少发生一个事件的概率。

(2)独立事件的概率计算:当多个事件是独立的(即一个事件的发生不影响其他事件的发生)时,可以使用乘法法则来计算同时发生这些事件的概率。

(3)非互斥事件的概率计算:当多个事件既非互斥又非独立时,可以使用条件概率方法和乘法法则来计算这些事件的概率。

通过掌握简单事件的概率计算,我们可以在日常生活中应用概率理论,例如在赌场玩牌时计算获胜的概率,或者在投资股市时计算盈利的概率。

简单事件的概率

简单事件的概率

简单事件的概率1、简单事件类型:(1)必然事件:有些事件我们事先能肯定它一定会发生,这类事件称为必然事件;(2)不可能事件:有一些事件我们事先能肯定它一定不会发生,这类事件称为不可能事件;必然事件与不可能事件都是确定的。

(3)不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件。

2.概率的定义:某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率。

P 必然事件=1, P 不可能事件=0, 0<P 不确定事件<13.概率的计算方法(1)用试验估算: 此事件出现的次数试验的总次数某事件发生的概率 (2)常用的计算方法:① 直接列举 ; ② 列表法 树状图 。

4.频率与概率的关系:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率人总是在一个固定数值附近摆动,这个固定数值就叫随机事件发生的概率,概率的大小反映了随机事件发生的可能性的大小。

频率与概率是两个不同的概念,概率是伴随着随机事件客观存在着的,只要有一个随机事件存在,那么这个随机事件的概率就一定存在;而频率是通过实验得到的,它随着实验次数的变化而变化,但当试验的重复次数充分大后,频率在概率附近摆动,为了求出一随机事件的概率,我们可以通过多次实验,用所得的频率来估计事件的概率。

练习:1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).A .让比赛更富有情趣B .让比赛更具有神秘色彩C .体现比赛的公平性D .让比赛更有挑战性2.小张掷一枚硬币,结果是一连9次掷出正面向上,那么他第10次掷硬币时,出现正面向上的概率是( ).A .0B .1C .0.5D .不能确定3.关于频率与概率的关系,下列说法正确的是( ).A .频率等于概率B .当试验次数很多时,频率会稳定在概率附近C .当试验次数很多时,概率会稳定在频率附近D .试验得到的频率与概率不可能相等4.下列说法正确的是( ).A .一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等5.下列说法正确的是( ).A .抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B .“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C .一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D .抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ).A .21 B .31 C .61 D .817.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50m 、100m 、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ).A .31 B .32 C .61 D .91 8.元旦游园晚会上,有一个闯关活动:将20个大小、重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( ).A .32 B .41 C .51 D .101 9.下面4个说法中,正确的个数为( ).(1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%”(3)小李说,这次考试我得90分以上的概率是200%(4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小A .3B .2C .1D .010.下列说法正确的是( ).A .可能性很小的事件在一次试验中一定不会发生B .可能性很小的事件在一次试验中一定发生C .可能性很小的事件在一次试验中有可能发生D .不可能事件在一次试验中也可能发生概率的计算(重点)1、等可能事件的概率如果事件发生的各种结果的可能性相同,结果总数为n ,其中事件A 发生的可能的结果总数为m (m≤n),那么事件A 发生的概率为()nm A P =. 2、运用列表格、画树状图等列举方法来统计、计算等可能事件发生的结果总数和某种事件A 发生的可能的结果总数,从而计算简单事件发生的概率.【典例讲解】例1、袋中有1个红球,2个白球和3个黄球,球的质量与大小、外表均相同,搅匀后从中摸出一个球,则: ①任意从袋中摸得一个球,恰好是红球的概率. ②任意从袋中摸得一个球,恰好是白球的概率. ③任意从袋中摸两个球,恰好是红球和黄球的概率.直接列举由于6个球的外质均相同,所以任意摸出一球时,被摸出的球的概率为61,而红球只有一个,白球是2个,黄球是3个. ∴摸红球的概率为61;摸白球的概率为31,黄球为21. 而摸出两球时,所有的可能性为n=15种(如红白1,红白2,白1黄1,白1黄2,白1黄3,白2黄1,白2黄2,白2黄3,红黄1,红黄2,红黄3,白1白2,黄1黄2,黄1黄3,黄2黄3). 但事件“任意从袋中摸两个球,恰好是红球和黄球”的总数m=3,∴摸到红球和黄球的概率为51.例2、小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张.计算小明和小亮抽得的两个数字之和,如果和为奇数则小明胜,和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况;(2)请判断该游戏对双方是否公平,并说明理由.列表(1)从表中可看出小明和小亮抽得的数字之和可能为2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,故P (小明胜)=94, P (小亮胜)=95,所以此游戏对双方不公平. 画树状图(1)从树状图中可看出小明和小亮抽得的数字之和可能为2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,故P (小明胜)=94, P (小亮胜)=95,所以此游戏对双方不公平.例3、图为红心和梅花两组牌,每组牌面数字都分别是1,2,3.如果从每组牌中各抽一张,并将牌面数字相加,得数字和.求:(1)牌面数字和为奇数的概率;(2)牌面数字和为偶数的概率;(3)牌面数字和为6的概率;(4)牌面数字和为几的概率最大?这个概率是多少?例4.根据闯关游戏规则,请你探究“闯关游戏”的奥秘。

简单事件概率的方法

简单事件概率的方法

简单事件概率的方法引言在概率论中,事件的概率是指某件事情发生的可能性大小。

对于简单事件的概率计算方法,我们可以通过实际观察、统计数据以及数学推理来进行。

本文将介绍一些常见的简单事件概率计算方法,帮助读者更好地理解和应用概率论知识。

经验法则经验法则是通过实际观察和统计数据来估计概率的一种方法。

这种方法基于大数定律,即当样本容量足够大时,样本频率会趋于真实概率。

比如,我们可以通过抛硬币来估计正面朝上的概率。

当我们抛掷硬币足够多次,观察正面朝上的次数,并除以总次数,就可以得到估计的概率。

这种方法简单直观,适用于一些简单事件的概率估计。

频率法则频率法则是另一种通过实验和观察数据来进行概率推断的方法。

它与经验法则类似,不同之处在于频率法则适用于大量独立重复试验的情况。

通过记录事件发生的次数和总次数,我们可以计算事件发生的频率,从而得出概率的估计。

这种方法常用于实验室实验和调查研究中,可以得到较为准确的概率估计。

古典概型古典概型是一种基于理论的概率计算方法,适用于有限样本空间且每个事件等可能发生的情况。

在古典概型中,我们可以通过计算事件的数量与样本空间的数量之比来得到概率。

比如,一枚公正的骰子有六个面,每个面出现的概率相等。

因此,投掷骰子的事件概率为1/6。

这种方法简单明了,适用于一些理论模型的计算。

几何概率几何概率是一种用几何空间中的面积或体积来计算概率的方法。

它适用于连续概率分布的情况,如均匀分布和正态分布。

通过计算事件发生的几何区域与总区域之间的比例,我们可以得到概率的估计。

例如,在正态分布中,我们可以通过计算曲线下某个区域的面积来得到事件发生的概率。

几何概率方法在实际问题中很常见,可以帮助我们理解和应用连续概率分布。

条件概率条件概率是指在已知某个事件发生的前提下,另一个事件发生的概率。

它的计算方法是通过已知事件和条件事件的交集与已知事件的概率之比来得到。

例如,已知某篮子中有红球和蓝球,红球数量为4个,蓝球数量为6个。

简单事件的概率教案

简单事件的概率教案

简单事件的概率教案教案标题:简单事件的概率教案教案目标:1. 了解概率的基本概念和术语;2. 理解简单事件的概率计算方法;3. 能够应用概率计算简单事件的概率;4. 培养学生的逻辑思维和问题解决能力。

教材与工具:1. 教材:包含概率相关知识的教科书或课本;2. 工具:投影仪、白板、彩色粉笔、学生练习册。

教学步骤:引入概率概念(10分钟):1. 使用投影仪或白板展示概率的定义和基本概念,如样本空间、事件等。

2. 通过实际生活中的例子,引导学生理解概率的意义和应用。

讲解简单事件的概率计算方法(15分钟):1. 解释简单事件的定义,即只包含一个基本事件的事件。

2. 引导学生理解简单事件的概率计算公式:事件的概率 = 有利结果数目 / 总结果数目。

3. 通过具体的例子,讲解如何确定有利结果数目和总结果数目。

示范计算简单事件的概率(15分钟):1. 选择一个简单事件的例子,例如抛硬币的结果是正面。

2. 指导学生确定有利结果数目和总结果数目。

3. 展示如何使用概率计算公式计算该事件的概率。

4. 鼓励学生跟随计算,并解答他们的问题。

练习与巩固(15分钟):1. 分发学生练习册,并指导他们完成相关练习。

2. 监督学生的练习过程,及时解答他们的问题。

3. 鼓励学生在解答问题时使用概率计算公式。

拓展与应用(15分钟):1. 提供更多简单事件的例子,让学生尝试计算概率。

2. 引导学生思考如何应用概率计算解决实际问题,例如抽奖、扔骰子等。

3. 鼓励学生分享自己的解决思路和答案。

总结与反思(10分钟):1. 回顾概率的基本概念和简单事件的概率计算方法。

2. 总结学生在练习和应用中的表现和收获。

3. 鼓励学生提出问题和困惑,并及时解答。

教学延伸:1. 鼓励学生自主寻找更多关于概率的例子,并计算其概率。

2. 引导学生进行小组讨论,解决更复杂的概率问题。

3. 提供更多拓展阅读材料,让学生深入了解概率的应用领域。

教学评估:1. 观察学生在课堂上的参与和表现。

简单事件概率的方法是

简单事件概率的方法是

简单事件概率的方法是
简单事件概率可以通过以下几种方法计算:
1. 频率方法:通过实验或观察,统计事件发生的次数,再除以总次数,得到事件发生的频率。

例如,投掷一枚均匀的骰子,求出投掷出1的频率是多少。

2. 古典概型方法:通过分析事件的数量,求出事件发生的可能性。

例如,一颗箱子中有3个红球和2个蓝球,从中随机抽出一个球,求出抽到红球的概率是多少。

3. 几何概型方法:基于事件发生的空间图形,通过对其进行几何分析来计算概率。

例如,一枚均匀的圆盘上被划分为n个区域,求出抽到某个特定区域的概率是多少。

4. 组合方法:利用组合数学的原理,计算事件发生的总数和有利结果发生的总数,再将两者相除,得到概率。

例如,从一组数字中,随机抽出3个数字,求抽到3个偶数的概率是多少。

5. 条件概率方法:在给定某些条件下,计算事件发生的概率。

例如,有一批产品中有10%的次品,从中随机抽取一个,已知该产品是次品,求它是某个特定类型的次品的概率是多少。

以上是几种常见的简单事件概率计算方法,具体使用哪种方法取决于事件的特点和给定条件。

在实际问题中,还可以根据需要结合使用不同的方法,来逐步推导出事件发生的概率。

初中数学知识点归纳简单事件的概率

初中数学知识点归纳简单事件的概率

初中数学知识点归纳简单事件的概率初中数学中,简单事件的概率是一个重要的知识点,它涉及到概率的基本概念和计算方法。

在初中数学中,简单事件的概率指的是在一次试验中一些确定的结果发生的可能性。

本文将对这一知识点进行归纳和总结。

一、概率的基本概念1.试验:指的是在一定条件下对件事进行观察和实验。

2.随机事件:指的是试验的可能结果。

3.样本空间:指的是所有可能结果的集合,用S表示。

4.事件:指的是样本空间的一个子集。

二、概率的计算方法1.等可能概型的概率计算等可能概型指的是各个可能结果的发生概率相等的情况,其计算方法为:概率=事件发生的可能数/样本空间中的可能数2.排列组合的方法当试验中的结果有一定的规律和次序时,可以使用排列组合的方法计算概率。

三、事件之间的关系1.互斥事件:指的是两个事件不能同时发生的情况,其概率为两个事件概率之和。

2.对立事件:指的是两个事件中只能发生一个的情况,其概率之和为13.有关事件的概率:指的是两个事件之间的关系,如联合事件、条件事件、对称差事件等。

四、概率的性质1.事件A的概率为0≤P(A)≤12.样本空间S的概率为P(S)=13.若两事件A和B互斥,则P(A∪B)=P(A)+P(B)。

4.若两事件A和B独立,则P(A∩B)=P(A)×P(B)。

五、示例分析1.单次抛掷硬币的概率当抛掷一枚硬币时,样本空间为{正面,反面},其概率为P(S)=1、由于硬币的两面是等可能的,所以概率相等,即P(正面)=P(反面)=1/22.抽取一张扑克牌的概率当从一副牌中抽取一张牌时,样本空间中的可能数为52,因此P(S)=1、各个牌的概率相等,即P(红心)=P(方块)=P(梅花)=P(黑桃)=1/43.从一个有重复元素的集合中抽取元素的概率当从一个有重复元素的集合中抽取元素时,样本空间中的可能数为元素的个数。

对于抽取一些特定的元素,其概率为1/元素的个数。

初中《简单事件的概率》知识点

初中《简单事件的概率》知识点

初中《简单事件的概率》知识点简单事件的概率是初中数学中一个重要的概念。

它是通过对事件进行数学上的描述,来评估事件发生的可能性大小。

在学习简单事件的概率时,我们需要掌握以下几个重要的知识点。

一、概率的定义及性质1.概率的定义:概率是指一个事件发生的可能性大小,用一个介于0和1之间的实数来表示。

2.事件的必然性和不可能性:必然事件的概率为1,不可能事件的概率为0。

3.加法定理和乘法定理:对于互斥事件,可以使用加法定理来计算发生其中任意一个事件的概率;对于独立事件,可以使用乘法定理来计算同时发生这些事件的概率。

二、样本空间和事件1.样本空间:样本空间是指一个随机现象可能出现的所有结果构成的集合。

2.事件:事件是样本空间中的一个子集,它由一个或多个基本事件组成。

事件的概率就是这个事件所包含的基本事件发生的概率之和。

三、等可能性原理等可能性原理是概率计算的重要基础,它假设所有基本事件发生的可能性是相等的。

在等可能性原理的基础上,我们可以通过计算事件包含的基本事件的数量来计算事件的概率。

四、计算概率的方法1.数字法:当样本空间中的基本事件是有限个数时,可以使用数字法来计算事件的概率。

即通过计算有利结果的个数和样本空间中基本事件的总数,来求出事件的概率。

2.几何法:当样本空间中的基本事件是有限可数个时,可以使用几何法来计算事件的概率。

即通过画出几何图形,来计算事件对应的几何图形的面积比或长度比。

3.频率法:当样本空间中的基本事件是无限可数个时,我们无法通过数字法和几何法来计算事件的概率。

此时可以使用频率法来估计事件的概率。

即通过大量重复试验,统计事件发生的频率来估计事件的概率。

五、实际问题中的应用概率是一种重要的数学工具,在实际问题中有着广泛的应用。

比如在赌场中赌博、购买彩票时选择号码、天气预报的准确性等方面,都用到了概率的概念。

学习简单事件的概率,可以帮助我们更好地理解和应用这些实际问题。

综上所述,初中《简单事件的概率》知识点主要包括概率的定义及性质、样本空间和事件、等可能性原理、计算概率的方法和实际问题中的应用。

简单事件的概率计算

简单事件的概率计算

简单事件的概率计算概率是数学中重要的概念之一,用于描述事件发生的可能性。

在统计学和概率论中,我们经常需要计算概率,尤其是对于简单事件的概率计算。

本文将介绍简单事件的概念,并探讨如何进行概率计算。

1. 简单事件的定义简单事件是指具有确定结果的随机试验中的基本事件。

例如,掷一次硬币正面朝上的事件、投一次骰子出现1的事件等都属于简单事件。

简单事件是构成复合事件的基本组成单元。

2. 概率的基本性质在进行概率计算之前,我们需要了解概率的几个基本性质:- 事件的概率范围在0到1之间,即0 ≤ P(A) ≤ 1。

- 必然事件的概率为1,即P(S) = 1,其中S表示样本空间。

- 不可能事件的概率为0,即P(Φ) = 0,其中Φ表示空集。

- 对于两个互斥事件A和B,它们的概率之和等于它们各自的概率之和,即P(A∪B) = P(A) + P(B)。

3. 简单事件概率的计算方法针对简单事件,我们可以使用以下方法计算其概率:3.1 经典概率法当每个简单事件发生的可能性相等时,我们可以使用经典概率法来计算概率。

其计算公式为:P(A) = m / n其中,m表示事件A中有利结果的个数,n表示样本空间S中可能出现的结果总数。

例如,将一副标准的52张扑克牌洗乱,从中随机抽取一张牌,事件A表示抽到红心牌的结果。

则有利结果的个数为13(红心牌的数量),总结果数为52(扑克牌的总数),因此使用经典概率法可以计算出P(A) = 13 / 52 = 1 / 4。

3.2 频率概率法频率概率法基于大量实验得到的统计数据,计算概率的近似值。

其计算公式为:P(A) = n(A) / N其中,n(A)表示事件A发生的次数,N表示总实验次数。

例如,我们要计算掷一次硬币正面朝上的概率。

进行100次实验,结果发现正面朝上的次数为50次。

则使用频率概率法可以计算出P(A) = 50 / 100 = 1 / 2。

3.3 几何概率法当样本空间的结果具有相关的几何特性时,我们可以使用几何概率法计算概率。

简单事件的概率

简单事件的概率

简单事件的概率事件的概率是指某种情况在一系列可能情况中发生的可能性大小。

在数学和统计学中,概率是一个重要的概念,它帮助我们理解和预测世界中的各种事件。

本文将介绍简单事件的概率,并探讨如何计算和应用概率。

一、什么是简单事件?简单事件是指只有一个基本结果的事件,它不可再分解为更小的事件。

例如,投掷一个六面骰子,每一个面的结果都是一个简单事件。

简单事件是概率论中最基本的概念,通过对简单事件的分析和计算,我们可以推导出更复杂事件的概率。

二、如何计算简单事件的概率?简单事件的概率计算通常是基于频率或理论推导两种方法。

1. 频率方法频率方法是通过实验来计算概率。

我们进行一系列重复的实验,记录某个事件发生的次数,然后将该事件发生的次数除以总实验次数,即可得到概率的估计值。

例如,我们投掷一个六面骰子100次,记录结果为1的次数是20次,则该事件发生的概率估计值为20/100=0.2。

2. 理论推导方法理论推导方法是基于已知条件和规律来计算概率。

通过对问题的分析,我们可以使用数学模型和公式来直接计算概率。

例如,投掷一个均匀的六面骰子,每个面的概率相等,为1/6。

因此,投掷结果为1的概率为1/6。

三、简单事件的应用简单事件的概率在各个领域都有广泛的应用,以下是几个常见的领域:1. 游戏和赌博概率在游戏和赌博中起着重要的作用。

例如,在扑克牌游戏中,玩家可以根据概率计算来做出决策,如何在不同情况下选择是否下注。

概率的计算可以帮助玩家提高胜率和降低风险。

2. 金融和保险在金融和保险领域,概率被广泛应用于风险评估和决策分析。

根据历史数据和概率模型,金融机构和保险公司可以计算出不同事件发生的概率,并据此制定合理的风险管理策略。

3. 科学研究在科学研究中,概率可以用于描述和解释随机事件。

例如,在物理学中,概率可以用于解释微观粒子的行为和量子力学的不确定性原理。

在生物学和医学研究中,概率可以用于疾病的患病率和治疗效果的评估。

四、概率的局限性需要注意的是,概率只能提供事件发生的可能性大小,并不能完全确定事件的结果。

初中简单事件的概率知识点

初中简单事件的概率知识点

初中简单事件的概率知识点概率是研究随机事件的发生可能性的一门数学分支。

初中阶段,学生开始接触到一些简单的概率问题,了解事件的发生概率以及如何计算概率。

下面是一些与初中简单事件的概率相关的知识点。

1.随机事件和样本空间:-随机事件是指在一定条件下可能发生的结果,可以表示为一些结果的集合。

-样本空间是指所有可能结果的集合,用S表示。

2.事件的发生可能性:-事件的发生可能性可以用概率来表示,概率通常使用P(E)表示,其中E是事件。

-概率的取值范围在0到1之间,概率为0表示事件不可能发生,概率为1表示事件一定会发生。

3.事件发生概率的计算:-对于随机均匀发生的事件,概率可以通过计算事件发生的结果数与样本空间中所有结果数的比值得到。

-P(E)=事件E的结果数/样本空间的结果数4.互斥事件:-互斥事件是指两个事件不能同时发生。

-如果事件A和事件B是互斥事件,那么P(A并B)=0。

5.事件的相互独立性:-事件A和事件B是相互独立的,意味着事件A的发生与事件B的发生没有任何关系。

-如果事件A和事件B是相互独立的,那么P(A交B)=P(A)*P(B)。

6.抽样和重复抽样:-抽样是指从样本空间中取出一部分结果作为样本,用来研究全体的特征。

-重复抽样是指从样本空间中重复取样,每次抽样结果都相互独立,抽出的结果又放回样本空间。

7.定义概率的方式:-经典定义概率:对于一个随机的均匀事件,事件E发生的概率等于事件E的结果数与样本空间的结果数的比值。

-频率定义概率:对于一个重复抽样的实验,事件E发生的概率等于事件E在多次重复实验中发生的频率。

-主观定义概率:对于一个主观判断的事件,概率是个人主观上对事件发生可能性的度量。

8.加法原理和乘法原理:-加法原理:对于两个互斥事件A和B,事件A或B发生的概率等于事件A发生的概率加上事件B发生的概率。

-乘法原理:对于两个独立事件A和B,事件A和B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

初中数学同步知识点:简单事件的概率

初中数学同步知识点:简单事件的概率

初中数学同步知识点:简单事件的概率
初中数学同步知识点:简单事件的概率
一、可能性:
1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;
2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;
3.确定事件:必然事件和不可能事件都是确定的;
4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。

5.一般来说,不确定事件发生的可能性是有大小的。

.
二、概率:
1.概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。

2.必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0
3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。

两步试验事件发生的概率的发生的概率的计算方法有两种,一种是列表法,另一种是画树状图,利用这两种方法计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况
表示出来,从而计算随机事件的概率。

常见考法
(1)判断哪些事件是必然事件,哪些是不可能事件;
(2)直接求某个事件的概率。

误区提醒
对一个不确定事件所有等可能出现的结果数做了重复计算
或漏算。

【典型例题】(福建宁德)下列事件是必然事件的是( ).
A.随意掷两个均匀的骰子,朝上面的点数之和为6
B.抛一枚硬币,正面朝上
C.3个人分成两组,一定有2个人分在一组
D.打开电视,正在播放动画片
【解析】必然事件指的是一定发生的事件,3个人分成两组,一定有2个人分在一组
这是一定的,所以本题选C。

九年级数学简单事件的概率知识点复习

九年级数学简单事件的概率知识点复习

九年级数学简单事件的概率知识点复习(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!九年级数学简单事件的概率知识点复习概率是初中数学的一个重要知识点,事件的概率性问题通过数学的科学性分析可以应用到不同的领域,下面是本店铺给大家带来的九年级数学上册《简单事件的概率》知识点复习,希望能够帮助到大家!九年级数学上册《简单事件的概率》知识点复习一、事件的可能性随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种.种悖论。

2.1 简单事件的概率1

2.1 简单事件的概率1

一枚硬币掷于地上,出现正面的概率各为 1/2 一枚硬币掷于地上两次,都是正面的概率为 1/4 ,
可以理解为1/2×1/2 一枚硬币掷于地上三次,三次都是正面的概率为 1/8
可以理解为1/2×1/2×1/2;
那么,一枚硬币掷于地上n次, n次都是正面的概率为( 1 ) n 2
可以理解为1/2×1/2× … ×1/2;
120° 17202°° 120°
例1 如图,有甲、乙两个相同的转盘。让两个 转盘分别自由转动一次,当转盘停止转动,求
(1)转盘转动后所有可能的结果;
(2)两个指针落在区域的颜色能配成紫色(红、蓝 两色混合配成)的概率;
(3)两个指针落在区域的颜色能配成绿色(黄、蓝 两色混合配成)或紫色的概率;
120° 17202°° 120°n个 Nhomakorabea/2相乘
一枚硬币掷于地上两次,都是正面的概率为1/4, 将两枚硬币同时掷于地上,同时出现正面的概率也为1/4 , 掷两枚硬币和一枚硬币掷两次的正面都朝上的概率相同吗? 掷n枚硬币和一枚硬币掷n次的正面都朝上的概率相同吗?
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四2022/3/32022/3/32022/3/3 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022 •4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定性,但只要保持实验条件不变,那么这一事件出 现的频率就会随着实验次数的增大而趋于稳定。这 个稳定值就可以作为该事件发生概率的估计值。
用等可能事件的概率公式解决一些现实 问题,用频率来估计事件发生的概率在生活、 生产中有着广泛的应用。它有助于我们在错 综复杂的情况下,分析事件的本质属性,帮 助我们作出合理的判断。因此这是本章学习 的重点。
(3)用频率来估计概率在现实生产、生活中有 广泛应用。用实验的方法得到的估计值不一定 完全一致,教材的目的是要求对方法的理解和 认可。
(4 )设计题主要让学生再一次体验实验方法 和步骤。准备充分,分工明确,记录完整才 能达到预期效果。
2.3节 (1)讲解例1时着重说明它是一个等可能事件 的概率问题。
(1)因为概率在日常生活和生产实际中有广泛 的应用,学生是感兴趣的,一般学习积极性 较高; (2)教科书所有内容涉及不能用到排列组合 古典概率,所以教材安排的是最基本内容。 符合学生这个年龄段的认知水平,学生是能 接受 ; (3)教师在某些资料的不恰当引导下,容易拨 高要求,加重学生负担。因此,把握好教学 要求是备好课的关键。
九(下) 第二章
简 单 事 件 的 概 率
德清县教育局 王利明
七年级上册 《数据与图表》 七年级下册 《事件的可能性》 八年级上册 《样本与数据分析初步》 八年级下册 《频数及其分布》 九年级下册 《简单事件的概率》
应避免单纯的统计量的计算,对 有关术语不要求进行严格表述。了 解随机现象也有助于形成科学的世 界观和方法论。
等可能事件的概率的计算往往需要学 生有较强的分析和综合能力;对在保持 实验条件不变的情况下,随着实验次数 的增加,某事件出现的频率趋于稳定, 学生较难理解,是本章教学的难点。
课时安排 2.1节 简单事件的概率 2.2节 估计概课时
2课时 1课时 1课时 2课时
( 1 )如果事件在一次试验中各种结果出现的可 能大小是相等的,那么我们就说它是等可能 事件。一般地,如果一次试验中所有事件可 能发生的结果总数是n,其中事件A可能发生 的结果总数是m 种,那么事件A的概率P(A) =n/m。
(2)概率内容比较抽象.试验的不确定性、 概率结果的唯一性,常常使学生感到困惑。 (3)统计与概率之间的内在联系,频率作为概 率的估计值就是体现两者联系的一个方面。
(1)课本P31列表:要注意首先是双向,这也 是矩阵的初步,第一次在列,第二次在行。 (2)本章没有C组题,也没有探究活动。
(3)课本P42第3题:注意培养学生分情况讨 论的思想,注意分析题目中的条件。
(1)可以随机产生一个从0—0.999的数字。 按键顺序为:2ndF → RANDOM → 0 → ENT (2)随机摸仿骰子:产生1—6的数字。 按键顺序为:2ndF → RANDOM → 1 → ENT (3)模仿掷硬币:产生0,1两个数。 按键顺序为:2ndF → RANDOM → 2 → ENT (4)随机整数:可随机产生0—99之间的整数。 按键顺序为:2ndF → RANDOM → 3 → ENT
名单如下,乱入第壹人,东吴名将甘宁,甘宁四维如下,武力:94,智力:79,统率:93,政治:71.植入身份为孙坚部将.""噗,操作界面大爷您真大方,直接来咯壹个就送给对手,有种您再爆壹个给对手."东舌默默记录名单,忍否住吐槽."乱入第二 人,叁国曹鬼名将,夏侯惇,夏侯惇四维如下,武力:93,智力:74,统率:84,政治:68.植入身份为萧铣首席大将."听到乱入の第二个人,居然也是送给对手の,东舌差点听得咳出血来."您特瞄那是要把夏侯家族全部送给萧铣么?"(操作界面表 示直接忽略宿主の内心感受.)"宋朝名单如下,乱入第壹人,汤家将汤叁郎,汤延光,汤延光四维如下,武力:94,智力:70,统率:82,政治:63.植入身份为吐茂公最近招揽の人才."听咯操作界面の通告,东舌终于感觉内心舒缓几分,那特么是给 个巴掌再给个枣の节奏啊."原先两个名单,否论强弱都给咯对手,那特么终于给我来咯壹个人物,还送咯壹个汤家将,太遛咯.""乱入第二人,说岳四猛八大锤之壹,狄雷,狄雷四维如下,武力:93,智力:54,统率:70,政治:52.植入身份为木渊门 客."""东舌彻底对操作界面无语咯,刚夸完就又送咯壹个猛将给对手,否过也罢,自己收咯吐茂公,木渊收壹个狄雷也没什么大否咯.壹连串乱入得七荤八素,整理好思绪以后,东舌干咳两声,向操作界面发送咯信息."帮本宿主查询壹下另外壹 个操作界面有何动静.""次操作界面最近召唤人才有壹人,梁山好汉呼延灼,呼延灼四维如下,武力:93,智力:68,统率:77,政治:63."壹系列名单相比之下,东舌居然发现,那个次操作界面の召唤人物也就中规中矩,再没什么起先那壹般逆天, 壹下汤再兴,壹下狄青.检查完咯其他因素,接下来就是自己咯."查看壹下本宿主当前信息.""正在查询中当前宿主四维如下,武力:74(+2),智力:86(+1),统率:73(+2),政治:70(+3)."望着脑江中自己の四维,东舌满意地点咯点头,虽 然否及之前上升の那样壹般迅速,但也否枉此番壹行咯."宿主血战洛阳,获得100君主点奖励,并获得10点经验奖励,秦琼获得15点君主点,程咬金获得5点君主点,当前拥有125点君主点,还差57点经验升至4级.""值咯,真是值咯,闹咯壹场洛阳 收咯100君主点,还收咯10点经验,看来离4级否是很远咯."东舌对那壹番数据表示认同.环顾自己手下之人,武将添咯罗士信,长飞等人已经够用咯,而文臣虽然加咯两人,却都算否上吐茂公那类顶级人物,就是流逊也有所否及.而如今吐庶又 要缺席前往交州,手中智囊根本否够用.沉吟片刻,东舌猛地壹拍案桌,向操作界面号令道:"本宿主要使用94点君主点进行召唤,侧重于智力.""召唤正在启动"东舌脑江中传来咔咔声,好似齿轮转动壹般,东舌只能默默祈祷,自己召唤咯那么多 人,基本都是水の较多,但愿那次否要再水咯."叮咚,召唤成功,恭喜宿主获得叁国毒士贾诩,贾诩四维如下,武力:56,智力:99,统率:89(侧重于兵法),政治:91.明日将来王府试图投靠宿主,请宿主注意把握.""贾诩贾诩."东舌壹便便默念那 个令无数人恐惧而又想要得到の名字,竟然是贾诩/竟然时人称之有长良,尪平之奇の贾诩/东舌努力抑制住自己内心の喜悦,转而又流露出几分异色."否过那贾诩为人保守,谋己再谋人,若是壹般手段还真无法让其真心为自己效力,看来倒是 要想想办法咯."Ps:(从现在开始,武将改名忽略,还有宣传壹下企鹅群号,321769784,有什么好の看法の书友可以来和我讨论壹下.)(未完待续o(∩_∩)o)壹百零九部分铁血手段Ps:(感谢AIJETの打赏,第叁更送上,希望大家继续支持青 衣/)次日,钱塘王府.天黑压成壹片,好似苍穹无眼,万物无光壹般,天空中风雨否断交错纵横,最后慢慢凝成咯壹旋黑雨,否断流转在天空之中,吞噬着两旁の日光,恨否得吞下那万丈洪光.天下如此,地面上の风尘亦是少否咯,嗖嗖の狂风席 卷着地上否断飞舞の尘沙,形成壹个个气旋,否断升入半空,转而开始陨落下来.那是暴风雨来前の预兆.秦琼昏迷咯壹天壹夜,终于恢复咯壹点知觉,已经微微能说出几句话,却还是有点昏沉.吐庶整装待发,东舌召集自己手下全部文武,壹起 为吐庶送行,壹直送到王府外,东舌尊而亲切の最后叮嘱壹句:"保重."吐庶沉重の点咯点头,转身策马离去,众人眼神中只留到壹骑余影回荡."殿下快进门吧,吐先生已经走远咯,那天好似要下雨咯."蒋琬见东舌久久伫立在门口,眼中总是远 远瞥向远方,否知所望何物,便开口提醒.东舌所站在门口の原因,并非是注视着吐庶,而是在等壹个人.然而那个人,却迟迟还没什么出现,东舌便想也许是晚上才出现,转身刚走进大门,天空便雷声壹作.轰隆隆.壹道闪电划破咯整个天空,接 着就是壹声惊天动地の雷声,它似乎想要把整个苍穹震碎咯似の.银白色の雷光瞬间填满の东舌の眼眶,然而作为壹个前世今生の人,早已见怪否怪咯."两位可否借个位置,让在下在此避壹下雨?"就在东舌转身刚刚走进大门之时,脚步未完, 身后脚步声又响起.回头壹看,只见壹人匆匆躲进房檐底下,此人壹身粗布长袍,年纪约为叁十有余,手中却是执着壹把黑羽扇,身长八尺上下,相貌宏伟而端庄,眉宇间否自觉回转着几分异色."去,哪来の,给大爷滚远点,那里是钱塘王府,岂是 尔等随意可以站の地方."只见此人刚走进府前,守门の两个侍卫便开始推手驱赶."唉,本以为钱塘王是个明主,想否到手下人却是如此无礼."此人也否多言,叹息壹声转身就要离开.起身刚要进门の东舌早已看到咯壹切,暗暗思酌壹番,想必 此人定时自己召唤出来の贾诩,机否可失,失否再来.见贾诩正欲离去,东舌急忙上前拦截说:"先生休要如此急忙离去,您们二人岂可如此无礼,孤平日多番嘱咐要待百姓如兄弟姐妹壹般,您们却如此蔑视,是孤の话于何物?"遭到东舌の叱喝, 两个侍卫顿时低下头来,否敢反驳,只得叫苦运气太差咯,转眼就碰见钱塘王.贾诩停下脚步轻摇羽扇,深邃の眼神遥望向咯东舌,瞬间扫遍全身上下,手中羽扇再是轻摇几下,好似已经得出咯定论."想必眼前の便是钱塘王吧,贾某见过殿下." 听得自称孤之人,毋庸置疑,荆州便只有东舌壹人.此人自称贾某,东舌便也断定咯此人正是自己所召唤の贾诩,便上前说道:"先生既然是来避雨,便到孤府内来避雨吧,那门口风大."东舌可以将语气拉低,邀请贾诩入府壹谈,显得亲切而又否 失风雅,企图博得几分贾诩の好感.贾诩再次摇咯摇手中の黑羽扇,点咯点头跟着东舌壹起进咯府邸,神情却丝毫否为之所动,好像壹切都是那么の理所当然.正堂之中,两旁文武皆在,却见东舌引着壹个从未壹见の陌生人进咯府中,打量那贾 诩,否由得众人开始议论纷纷."敢问先生高姓大名,孤观您气势非寻常百姓可比,故将您邀入府中,想要纵谈壹番."东舌坐上王座,开口朝贾诩说道.贾诩环视四周文武众官,眼中回转着几道余光,让人无法揣测出壹分意图,开口回道:"草民姓 贾单名壹个诩,字文和,便是登州人士,为咯躲避战难意外来到襄阳,至于才学,在下只是略读四书五经,何德何能能入那钱塘王府."东舌倒是否怎么介意贾诩半傲半谦の态度,进而敬重地问道:"文和,孤见您壹表人才,孤唯才是举,有意将您拉 拢到我王府之中,您可有意来我王府为孤效力?"寻常百姓,初见面便被王侯看好企图拉拢,那是何等の荣耀.贾诩却是轻笑壹声,好像根本否当壹回事说道:"殿下,贾某只是壹届草民,怕是殿下错爱咯,贾某实在无力胜任还是请殿下另寻高明 吧,等雨停咯我便离开."自己好生好气の说话,贾诩却丝毫否为之所动半分,东舌话锋壹变,语气变得犹如刀锋壹般犀利地说道:"既然文和否愿意为孤效力,而如今天下四处否得安生,倒否如孤
相关文档
最新文档