二次函数求最值(动轴定区间、动区间定轴)
二次函数求最值参数分类讨论的方法
二次函数求最值参数分类讨论的方法题型一:“动轴定区间”型的二次函数最值例1、求函数2()23f x x ax =−+在[0,4]x ∈上的最值。
分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。
解:222()23()3f x x ax x a a =−+=−+− ∴此函数图像开口向上,对称轴x=a①、当a <0时,0距对称轴x=a 最近,4距对称轴x=a 最远,∴x=0时,min y =3,x=4时,max y =19-8a②、当0≤a<2时,a 距对称轴x=a 最近,4距对称轴x=a 最远,∴x=a 时,min y =3-a2,x=4时,max y =19-8a③、当2≤a<4时,a 距对称轴x=a 最近,0距对称轴x=a 最远,∴x=a 时,min y =3-a2,x=0时,max y =3④、当4≤a 时,4距对称轴x=a 最近,0距对称轴x=a 最远,∴x=4时,min y =19-8a ,x=0时,max y =3例2、已知函数2()(21)3f x ax a x =+−−在区间3[,2]2−上最大值为1,数a 的值 分析:取a=0,a ≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分类讨论.解:1)若a=0,则f(x)=-x-3,而f(x)在3[,2]2−上取不到最大值为1,∴a ≠0 2)若a ≠0,则2()(21)3f x ax a x =+−−的对称轴为0122a x a−= (Ⅰ)若3()12f −=,解得103a =−,此时0233[,2]202x =−∈− a<0, 0()f x 为最大值,但23()120f −≠ (Ⅱ) 若(2)1f =解得34a =此时013[,2]32x =−∈− 0310,43a x =>=−距右端点2较远,(2)f 最大值符合条件(Ⅲ) 若0()1f x =解得a =当0a<时034[,2]2x =−∉−当0a <时034[,2]2x =∈−综收所述34a =或a = 评注:此类题属于“动轴定区间”型的二次函数最值,解决此类问题的关键是讨论对称轴相对于定义域区间的位置,讨论时做到不重不漏。
二次函数含参问题
二次函数含参问题 (1)姓名________ 班级________ 学号____________1.“动轴定区间”型的二次函数最值例 函数2()23f x x ax =-+在[0,4]x ∈上的最值。
例 函数2()(21)3f x ax a x =+--在区间3[,2]2-上最大值为1,求实数a 的值2“动区间定轴”型的二次函数最值例 求函数2()23f x x x =-+在x ∈[a,a+2]上的最值。
3.“动轴动区间”型的二次函数最值已知函数22()96106f x x ax a a =-+--在1[,]3b -上恒大于或等于0,其中实数[3,)a ∈+∞,求实数b 的范围.巩固习题1.已知函数()222f x x x =++,若[]R a a a x ∈+∈,2,,求函数的最小值,并作出最小值的函数图象。
2.已知函数2()3f x x =-+,若()26f x kx ≤-+在区间[]2,1-上恒成立,求实数k 的取值范围。
3.已知k 为非零实数,求二次函数,122++=kx kx y (,2]x ∈-∞的最小值。
4.已知3a ≤,若函数()221f x x ax =-+在[]3,1上的最大值为()a M ,最小值为()a m ,又已知函数()()()a m a M a g -=,求()a g 的表达式。
5. 已知函数()12-+=ax ax x f ,若()0<x f 恒成立,求实数a 的取值范围。
6. 当20≤≤x 时,函数()()3142-++=x a ax x f 在2=x 时,取得最大值,求实数a 的取值范围。
7. 已知函数322+-=x x y ,在m x ≤≤0时有最大值3,最小值2,求实数m 的取值范围。
8. 已知函数()122+-=px x x f ,当0≥x 时,有()0≥x f 恒成立,求实数p 的取值范围。
9. 方程0122=++x ax 至少的一个负数根,求实数a 的取值范围。
求二次函数在某一区间上的最值
求二次函数在某一区间上的最值求二次函数在某一区间上的最值问题,是函数中的一个重要问题。
下面我就分别按以下的三种类型来详细讨论这类问题。
类型一:定轴定区间问题例1、已知函数()22[1,)x x a f x x x++=∈+∞,若对于任意的[1,)x ∈+∞,()0f x >恒成立, 求实数a 的取值范围。
略解:因为1x ≥时,()0f x >恒成立,所以220x x a ++>恒成立,即函数22y x x a =++ 在1x ≥时恒成立,又min 3y a =+,所以30a +>,即3a >-例2、若函数221(0,1)x x y a a a a =+->≠在区间[]1,1-的最大值为14,求a 的值 解一:设x t a =,即0t > ,那么()()222112f t t t t =+-=+- 当1a >时,1a t a -≤≤,此时,()2max 1214y a =+-= 3a ∴=当01a <<时,1a t a -≤≤,此时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭ 13a ∴= ∴3a =或13a = 解二:函数()212x y a =+- (0,1)a a >≠在区间[]1,1-上y 随x a 的增大而增大,当1a >时,()max xa a =,故()2max 1214y a =+-= 3a ∴= 当01a <<时,()max 1xa a = ,故 2max 11214y a ⎛⎫=+-= ⎪⎝⎭ 13a ∴= 综上3a =或13a = 类型二:动轴定区间问题例3、若函数23y x ax =++在区间[]1,1-的最小值为-3,求a 的值略解:原函数即为:22324a a y x ⎛⎫=++- ⎪⎝⎭ ① 若轴2a x =-在区间内,则11232a a f ⎧-≤-≤⎪⎪⎨⎛⎫⎪-=- ⎪⎪⎝⎭⎩,即 222334a a -≤≤⎧⎪⎨-=-⎪⎩ ∴a ∈∅ ② 若轴2a x =-在区间右侧,则()1213a f ⎧->⎪⎨⎪=-⎩,即243a a <-⎧⎨+=-⎩ ∴7a =- ③ 若轴2a x =-在区间左侧,则()1213a f ⎧-<-⎪⎨⎪-=-⎩ ,即233a a >⎧⎨-=-⎩ ∴7a = 所以a 7=±类型三: 定轴动区间问题例4、若函数222y x x =-+在区间[],1m m +的最大值为5,求m 的值略解:原函数即为:()2()11f x x =-+① 若轴1x =在区间内左侧,即()112111112m m m m m ≤≤+⎧⎪+⎨⎛⎫-≤+-≥ ⎪⎪⎝⎭⎩或,这时()15f m += 由上可解得:1122m m ⎧≤≤⎪⎨⎪=±⎩,∴m ∈∅② 若轴1x =在区间内右侧,即()112111112m m m m m ≤≤+⎧⎪+⎨⎛⎫-≥+-≤ ⎪⎪⎝⎭⎩或,这时()5f m = 由上可解得:10213m m m ⎧≤≤⎪⎨⎪=-=⎩或,∴m ∈∅ ③ 若轴1x =在区间左侧,即1m >,这时()15f m +=,由上可解得2m = ④ 若轴1x =在区间右侧,即11m +<,这时()5f m =,由上可解得1m =- 综上可知:12m m =-=或练习:是否存在实数a ,使函数()22f x x ax a =-+的定义域为[]11,-,值域为[]22,-;若存在,求出实数a的值,若不存在,说明理由. 答案:1a。
函数专题:二次函数在闭区间上的最值问题-【题型分类归纳】
函数专题:二次函数在闭区间上的最值问题一、二次函数的三种形式1、一般式:()()20=++≠f x ax bx c a2、顶点式:若二次函数的顶点为(),h k ,则其解析式为()()()20=-+≠f x a x h k a 3、两根式:若相应一元二次方程20++=ax bx c 的两个根为1x ,2x ,则其解析式为()()()()120=--≠f x a x x x x a二、二次函数在闭区间上的最值二次函数在区间上的最值,核心是函数对称轴与给定区间的相对位置讨论, 一般为:对称轴在区间的左边、中间、右边三种情况.设()()20=++≠f x ax bx c a ,求()f x 在[],∈x m n 上的最大值与最小值。
将()f x 配方,得顶点为24,24⎛⎫-- ⎪⎝⎭b ac b a a ,对称轴为2=-b x a (1)当[],2-∈bm n a时, ()f x 的最小值为2424-⎛⎫-=⎪⎝⎭b ac bf a a , ()f x 的最大值为()f m 与()f n 中的较大值; (2)[],2-∉bm n a时, 若2-<bm a,由()f x 在[],m n 上是增函数,则()f x 的最小值为()f m ,最大值为()f n ;若2->bn a,由()f x 在[],m n 上是减函数,则()f x 的最小值为()f n ,最大值为()f m ;三、二次函数在闭区间上的最值类型1、定轴定区间型:即定二次函数在定区间上的最值,其区间和对称轴都是确定的,要将函数配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值(可结合图象);2、动轴定区间型:即动二次函数在定区间上的最值,其区间是确定的,而对称轴是变化的,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分类讨论,再利用二次函数的示意图,结合其单调性求解;3、定轴动区间型:即定二次函数在动区间上的最值,其对称轴确定而区间在变化,只需对动区间能否包含抛物线的定点横坐标进行分类讨论;4、动轴动区间型:即动二次函数在动区间上的最值,其区间和对称轴均在变化,根据对称轴在区间的左、右两侧和穿过区间这三种情况讨论,并结合图形和单调性处理。
含参数二次函数的值域习题
含参数二次函数的值域习题本文介绍了含有参数的闭区间上二次函数的最值与值域的分类讨论。
其中,正向型是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。
此类问题包括以下四种情形:定轴定区间、定轴动区间、动轴定区间和动轴动区间。
定轴定区间型的例子是函数y=-x^2+4x-2在区间[0,3]上的最大值和最小值。
另一个例子是对于函数f(x)=x^2+x+1在x≤3时求最值。
动轴定区间型的例子是求函数f(x)=x^2-2ax+3在x∈[0,4]上的最值。
解决这个问题需要分类讨论,其中分为四种情况。
动区间定轴型的例子是求函数f(x)=x^2-2x+3在x∈[a,a+2]上的最值。
解决这个问题需要分类讨论,其中分为四种情况。
动轴动区间型的例子是求函数f(x)=-x(x-a)在x∈[-1,a]上的最大值。
解决这个问题需要分类讨论,其中分为三种情况。
练题包括求函数f(x)=ax^2+(2a-1)x-3在区间[-3,2]上最大值为1时,实数a的值;求函数f(x)=x^2-2x+2在x∈[t,t+1]上的最值;求函数f(x)=-x(x-a)在x∈[-1,a]上的最大值。
总之,分类讨论是解决含有参数的闭区间上二次函数的最值与值域问题的关键。
已知函数$f(x)=9x^2-6ax+a^2-10a-6$在$[-1,b]$上恒大于等于0,其中实数$a\in[3,+\infty)$,求实数$b$的范围。
解:由题意可得$$\begin{aligned}f(x)&=9x^2-6ax+a^2-10a-6\\&=9(x-\frac{a}{3})^2+\frac{2}{3}(a^2-3a-6)\end{aligned}$$因为$f(x)\geq 0$,所以$\frac{2}{3}(a^2-3a-6)\geq 0$,解得$a\in(-\infty。
-2]\cup[3,+\infty)$。
九年级二次函数中的区间动轴的解题方法
成稿标题:深入解析九年级二次函数中的区间动轴的解题方法一、引言在九年级数学中,学习二次函数是一个重要的内容。
而在二次函数的解题中,区间动轴是一个关键的概念和解题方法。
本文将深入探讨九年级二次函数中的区间动轴的解题方法,帮助读者更深入地理解和掌握这一知识点。
二、区间动轴的概念1. 区间的概念在解析区间动轴之前,首先需要了解区间的概念。
区间是数轴上两个点之间的所有实数的集合。
通常表示为[a, b],其中a和b为区间的端点。
2. 动轴的定义动轴是指二次函数图像的对称轴,也就是抛物线的对称轴。
它是二次函数图像的一个重要特征,也是解题的关键之一。
三、区间动轴的解题方法在九年级数学中,解决二次函数中区间动轴的问题需要掌握一定的解题方法。
下面将从简到繁,逐步介绍区间动轴的解题方法。
1. 确定二次函数的图像需要根据给定的二次函数,确定其图像的开口方向和顶点的坐标。
这一步是确定区间动轴的基础。
2. 确定动轴的坐标根据二次函数的一般式或标准式,可以求出动轴的坐标。
动轴的坐标通常表示为(x, y),其中x为动轴的横坐标,y为动轴的纵坐标。
3. 确定区间根据二次函数的图像和动轴的坐标,可以确定区间的范围。
通过分析二次函数图像和动轴的位置关系,可以得出区间的范围。
4. 解答问题根据确定的区间范围和动轴的坐标,可以解答与区间动轴相关的具体问题。
这一步是将区间动轴的解题方法应用到实际问题中,从而得出问题的解答。
四、个人观点和理解区间动轴是二次函数解题中的一个重要概念,也是解答问题的关键之一。
通过深入理解和掌握区间动轴的解题方法,可以更加灵活地应用到实际问题中,并得出准确的结论。
在学习二次函数时,我认为深入理解区间动轴的解题方法是十分重要的,可以帮助我们更好地理解和掌握这一知识点。
五、总结与回顾本文对九年级二次函数中的区间动轴的解题方法进行了深入的探讨,并从概念、解题方法和个人观点三个方面进行了详细的介绍。
通过本文的阅读,读者可以更加全面、深刻和灵活地理解区间动轴的解题方法,从而在解答相关问题时能够得心应手。
二次函数求最值的六种考法(含答案)
二次函数与最值的六种考法-重难点题型【题型1 二次函数中的定轴定区间求最值】【例1】(2021春•瓯海区月考)已知二次函数y=﹣x2+2x+4,关于该函数在﹣2≤x≤2的取值范围内,下列说法正确的是()A.有最大值4,有最小值0B.有最大值0,有最小值﹣4C.有最大值4,有最小值﹣4D.有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=3 2,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m 和M 的值,从而求出M ﹣m 的值. 【解答过程】解:原式可化为y =(x ﹣3)2﹣4, 可知函数顶点坐标为(3,﹣4), 当y =0时,x 2﹣6x +5=0, 即(x ﹣1)(x ﹣5)=0, 解得x 1=1,x 2=5. 如图:m =﹣4,当x =6时,y =36﹣36+5=5,即M =5. 则M ﹣m =5﹣(﹣4)=9.故答案为9.【题型2 二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【解题思路】先求出对称轴为x =﹣1,分m >0,m <0两种情况讨论解答即可求得m 的值. 【解答过程】解:∵二次函数y =mx 2+2mx +1=m (x +1)2﹣m +1, ∴对称轴为直线x =﹣1, ①m >0,抛物线开口向上,x =﹣1时,有最小值y =﹣m +1=﹣2, 解得:m =3;②m <0,抛物线开口向下,∵对称轴为直线x =﹣1,在﹣2≤x ≤2时有最小值﹣2, ∴x =2时,有最小值y =4m +4m +1=﹣2,解得:m =−38; 故选:C .【变式2-1】(2021•瓯海区模拟)已知二次函数y =ax 2﹣4ax ﹣1,当x ≤1时,y 随x 的增大而增大,且﹣1≤x ≤6时,y 的最小值为﹣4,则a 的值为( ) A .1B .34C .−35D .−14【解题思路】根据二次函数y =ax 2﹣4ax ﹣1,可以得到该函数的对称轴,再根据当x ≤1时,y 随x 的增大而增大,可以得到a 的正负情况,然后根据﹣1≤x ≤6时,y 的最小值为﹣4,即可得到a 的值. 【解答过程】解:∵二次函数y =ax 2﹣4ax ﹣1=a (x ﹣2)2﹣4a ﹣1, ∴该函数的对称轴是直线x =2, 又∵当x ≤1时,y 随x 的增大而增大, ∴a <0,∵当﹣1≤x ≤6时,y 的最小值为﹣4, ∴x =6时,y =a ×62﹣4a ×6﹣1=﹣4, 解得a =−14, 故选:D .【变式2-2】(2021•章丘区模拟)已知二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且﹣2≤x ≤1时,y 的最小值为15,则a 的值为( ) A .1或﹣2B .−√2或√2C .﹣2D .1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x ≤1时,y 的最小值为15,可得x =1时,y =15,即可求出a . 【解答过程】解:∵二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量), ∴对称轴是直线x =−4a2×2a=−1, ∵当x ≥2时,y 随x 的增大而减小, ∴a <0,∵﹣2≤x ≤1时,y 的最小值为15, ∴x =1时,y =2a +4a +6a 2+3=15, ∴6a 2+6a ﹣12=0, ∴a 2+a ﹣2=0,∴a =1(不合题意舍去)或a =﹣2. 故选:C .【变式2-3】(2021•滨江区三模)已知二次函数y =12(m ﹣1)x 2+(n ﹣6)x +1(m ≥0,n ≥0),当1≤x ≤2时,y 随x 的增大而减小,则mn 的最大值为( ) A .4B .6C .8D .494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m ,n 的取值范围,将mn 转化为含一个未知数的整式求最值.【解答过程】解:抛物线y =12(m ﹣1)x 2+(n ﹣6)x +1的对称轴为直线x =6−nm−1, ①当m >1时,抛物线开口向上, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≥2,即2m +n ≤8.解得n ≤8﹣2m , ∴mn ≤m (8﹣2m ),m (8﹣2m )=﹣2(m ﹣2)2+8, ∴mn ≤8.②当0≤m <1时,抛物线开口向下, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≤1,即m +n ≤7,解得m ≤7﹣n , ∴mn ≤n (7﹣n ),n (7﹣n )=﹣(n −72)2+494, ∴mn ≤494, ∵0≤m <1, ∴此情况不存在.综上所述,mn 最大值为8. 故选:C .【题型3 二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−1 4,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.2√3B.−72C.√3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得a=−√3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=√3,∴a+b=√3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴b=−32(舍),故选:C.【题型4 二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B(﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得{−4k+b=0b=4,解得{k=1b=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−38x 2+34x +3经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为 .【解题思路】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【解答过程】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,−38m 2+34m +3),点M 的坐标是(m ,−34m +3),∴EM =−38m 2+34m +3﹣(−34m +3)=−38m 2+32m =−38(m 2﹣4m )=−38(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x =﹣1的抛物线y =x 2+bx +c ,与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标.(2)点C 是抛物线与y 轴的交点,点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B 点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC 的解析式,再利用QD =﹣x ﹣3﹣(x 2+2x ﹣3)进而求出最值.【解答过程】解:(1)∵点A (﹣3,0)与点B 关于直线x =﹣1对称, ∴点B 的坐标为(1,0). (2)∵a =1,∴y =x 2+bx +c .∵抛物线过点(﹣3,0),且对称轴为直线x =﹣1, ∴{9−3b +c =0−b2=−1∴解得:{b =2c =−3,∴y =x 2+2x ﹣3,且点C 的坐标为(0,﹣3). 设直线AC 的解析式为y =mx +n , 则{−3m +n =0n =−3, 解得:{m =−1n =−3,∴y =﹣x ﹣3如图,设点Q 的坐标为(x .y ),﹣3≤x ≤0.则有QD =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x 2﹣3x =﹣(x +32)2+94∵﹣3≤−32≤0,∴当x =−32时,QD 有最大值94.∴线段QD 长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +52与x 轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;(Ⅱ)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−1 2,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC 的表达式为y =kx +t ,则{t =520=5k +t, 解得{k =−12t =52, 故直线AC 的表达式为y =−12x +52,当x =2时,y =32,则MH =92−32=3,则△AMC 的面积=S △MHC +S △MHA =12×MH ×OA =12×3×5=152; (Ⅲ)点D 在直线AC 上,设点D (m ,−12m +52),由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,则EF 2=OD 2=m 2+(−12m +52)2=54m 2−52m +254,∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, 故点D (1,2),∵点P 、D 的纵坐标相同,故2=−12x 2+2x +52,解得x =2±√5,故点P 的坐标为(2+√5,2)或(2−√5,2).【题型5 二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y =﹣x 2上有A ,B 两点,其横坐标分别为1,2,在y 轴上有一动点C ,当BC +AC 最小时,则点C 的坐标是( )A .(0,0)B .(0,﹣1)C .(0,2)D .(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A ,B 的坐标,作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,由点B 的坐标可得出点B ′的坐标,由点A ,B ′的坐标,利用待定系数法可求出直线AB ′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C 的坐标.【解答过程】解:当x =1时,y =﹣12=﹣1,∴点A 的坐标为(1,﹣1);当x =2时,y =﹣22=﹣4,∴点B 的坐标为(2,﹣4).作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,如图所示.∵点B 的坐标为(2,﹣4),∴点B ′的坐标为(﹣2,﹣4).设直线AB ′的解析式为y =kx +b (k ≠0),将A (1,﹣1),B (﹣2,﹣4)代入y =kx +b 得:{k +b =−1−2k +b =−4, 解得:{k =1b =−2, ∴直线AB ′的解析式为y =x ﹣2.当x =0时,y =0﹣2=﹣2,∴点C 的坐标为(0,﹣2),∴当BC +AC 最小时,点C 的坐标是(0,﹣2).故选:D .【变式5-1】(2021•铁岭模拟)如图,已知抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,过其顶点M 的一条直线y =kx +b 与该抛物线的另一个交点为N (﹣1,1).要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( )A .(0,2)B .(43,0)C .(0,2)或(43,0)D .以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M 的坐标;欲使△PMN 的周长最小,MN 的长度一定,所以只需(PM +PN )取最小值即可.然后,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P (如图1);过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (如图2).【解答过程】解:如图,∵抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,点N (﹣1,1)是抛物线上的一点, ∴{−p −2=−31=−1−p +q, 解得{p =−6q =−4. ∴该抛物线的解析式为y =﹣x 2﹣6x ﹣4=﹣(x +3)2+5,∴M (﹣3,5).∵△PMN 的周长=MN +PM +PN ,且MN 是定值,所以只需(PM +PN )最小.如图1,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P .则M ′(3,5).设直线M ′N 的解析式为:y =ax +t (a ≠0),则{5=3a +t 1=−a +t, 解得{a =1t =2, 故该直线的解析式为y =x +2.当x =0时,y =2,即P (0,2).同理,如图2,过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (−43,0).如果点P 在y 轴上,则三角形PMN 的周长=4√2+MN ;如果点P 在x 轴上,则三角形PMN 的周长=2√10+MN ;所以点P 在(0,2)时,三角形PMN 的周长最小.综上所述,符合条件的点P 的坐标是(0,2).故选:A .【变式5-2】(2021•包头)已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点D (4,y )在抛物线上,E 是该抛物线对称轴上一动点,当BE +DE 的值最小时,△ACE 的面积为 .【解题思路】解方程x 2﹣2x ﹣3=0得A (﹣1,0),B (3,0),则抛物线的对称轴为直线x =1,再确定C (0,﹣3),D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,利用两点之间线段最短可判断此时BE +DE 的值最小,接着利用待定系数法求出直线AD 的解析式为y =x +1,则F (0,1),然后根据三角形面积公式计算.【解答过程】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0), 抛物线的对称轴为直线x =1,当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),当x =4时,y =x 2﹣2x ﹣3=5,则D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,∵BE +DE =EA +DE =AD ,∴此时BE +DE 的值最小,设直线AD 的解析式为y =kx +b ,把A (﹣1,0),D (4,5)代入得{−k +b =04k +b =5,解得{k =1b =1, ∴直线AD 的解析式为y =x +1,当x =1时,y =x +1=2,则E (1,2),当x =0时,y =x +1=1,则F (0,1),∴S △ACE =S △ACF +S △ECF =12×4×1+12×4×1=4. 故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y =53x 2−203x +5与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C ,在其对称轴上有一动点M ,连接MA 、MC 、AC ,则当△MAC 的周长最小时,点M 的坐标是 .【解题思路】点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,即可求解.【解答过程】解:点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,理由:连接AC ,由点的对称性知,MA =MB ,△MAC 的周长=AC +MA +MC =AC +MB +MC =CA +BC 为最小,令y =53x 2−203x +5=0,解得x =1或3,令x =0,则y =5,故点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x =12(1+3)=2,设直线BC 的表达式为y =kx +b ,则{0=3k +b b =5,解得{k =−53b =5, 故直线BC 的表达式为y =−53x +5,当x =2时,y =−53x +5=53,故点M 的坐标为(2,53). 【题型6 二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,过点A 的直线l 交抛物线于点C (2,m ),点P 是线段AC 上一个动点,过点P 做x 轴的垂线交抛物线于点E .(1)求抛物线的解析式;(2)当P 在何处时,△ACE 面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C (2,﹣3),再利用待定系数法求出直线AC 的解析式为y =﹣x ﹣1,设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),利用三角形面积公式得到△ACE 的面积=12×(2+1)×PE =32(﹣t 2+t +2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)把C (2,m )代入y =x 2﹣2x ﹣3得m =4﹣4﹣3=﹣3,则C (2,﹣3),设直线AC 的解析式为y =mx +n ,把A (﹣1,0),C (2,﹣3)代入得{−m +n =02m +n =−3,解得{m =−1n =−1, ∴直线AC 的解析式为y =﹣x ﹣1;设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),∴PE =﹣t ﹣1﹣(t 2﹣2t ﹣3)=﹣t 2+t +2,∴△ACE 的面积=12×(2+1)×PE=32(﹣t 2+t +2)=−32(t −12)2+278,当t =12时,△ACE 的面积有最大值,最大值为278,此时P 点坐标为(12,−32). 【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A (4,0),B (1,0),C (0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大,若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−1 2,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:{0=4k+b−2=b,解得{k=12b=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,∴S△DCA=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后根据S=S△ABC+S △ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B (0,3),∵抛物线y =﹣x 2+bx +c 经过点A ,B ,∴{c =3−9+3b +c =0, ∴{b =2c =3, ∴抛物线的解析式为:y =﹣x 2+2x +3;(2)如图,过点P 做PE ⊥x 轴于点E ,与直线AB 交于点D ,∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+2m +3),∵点D 在直线AB 上,∴点D 的坐标为(m ,﹣m +3),∴PD =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,在y =﹣x 2+2x +3中.令y =0.则﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,∴点C 的坐标为(﹣1,0),∴S =S △ABC +S △ABP =12×4×3+12(﹣m 2+3m )×3=−32(m −32)2+758, ∴当m =32时,S 最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP 'C .是否存在点P ,使四边形POP 'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC=−32(m−12)2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=3 2,∴E (0,−32),∴点P 的纵坐标为−32,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, ∴x 2﹣2x ﹣3=−32,∴x =2−√102或x =2+√102,∵点P 在直线BC 下方的抛物线上,∴0<x <3,∴点P (2+√102,−32);(3)如图2,过点P 作PF ⊥x 轴于F ,则PF ∥OC , 由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, 令y =0,则x 2﹣2x ﹣3=0,∴x =﹣1或x =3,∴A (﹣1,0),∴设P (m ,m 2﹣2m ﹣3)(0<m <3),∴F (m ,0),∴S 四边形ABPC =S △AOC +S 梯形OCPF +S △PFB =12OA •OC +12(OC +PF )•OF +12PF •BF =12×1×3+12(3﹣m 2+2m +3)•m +12(﹣m 2+2m +3)•(3﹣m ) =−32(m −32)2+758,∴当m =32时,四边形ABPC 的面积最大,最大值为758,此时,P (32,−154),即点P 运动到点(32,−154)时,四边形ABPC 的面积最大,其最大值为758.。
二次函数动轴及动区间问题
二次函数在闭区间上的最值一、 知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。
一般分为:对称轴在区间的左边,中间,右边三种情况.设f x ax bx c a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。
分析:将f x ()配方,得顶点为--⎛⎝ ⎫⎭⎪b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:〔1〕当[]-∈b am n 2,时,f x ()的最小值是f b a ac ba f x -⎛⎝ ⎫⎭⎪=-2442,()的最大值是f m f n ()()、中的较大者。
〔2〕当[]-∉bam n 2,时 假设-<bam 2,由f x ()在[]m n ,上是增函数那么f x ()的最小值是f m (),最大值是f n ()假设n ba<-2,由f x ()在[]m n ,上是减函数那么f x ()的最大值是f m (),最小值是f n ()当a <0时,可类比得结论。
二、例题分析归类: 〔一〕、正向型是指二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。
此类问题包括以下四种情形:〔1〕轴定,区间定;〔2〕轴定,区间变;〔3〕轴变,区间定;〔4〕轴变,区间变。
1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值〞。
例1.函数y x x =-+-242在区间[0,3]上的最大值是_________,最小值是_______。
解:函数y x x x =-+-=--+224222()是定义在区间[0,3]上的二次函数,其对称轴方程是x =2,顶点坐标为〔2,2〕,且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。
二次函数动轴与动区间问题
二次函数在闭区间上得最值一、 知识要点:一元二次函数得区间最值问题,核心就是函数对称轴与给定区间得相对位置关系得讨论。
一般分为:对称轴在区间得左边,中间,右边三种情况、 设,求在上得最大值与最小值。
分析:将配方,得顶点为、对称轴为当时,它得图象就是开口向上得抛物线,数形结合可得在[m ,n]上得最值: (1)当时,得最小值就是得最大值就是中得较大者。
(2)当时若,由在上就是增函数则得最小值就是,最大值就是 若,由在上就是减函数则得最大值就是,最小值就是 当时,可类比得结论。
二、例题分析归类: (一)、正向型就是指已知二次函数与定义域区间,求其最值。
对称轴与定义域区间得相互位置关系得讨论往往成为解决这类问题得关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。
1、 轴定区间定二次函数就是给定得,给出得定义域区间也就是固定得,我们称这种情况就是“定二次函数在定区间上得最值”。
例1、 函数在区间[0,3]上得最大值就是_________,最小值就是_______。
解:函数y x x x =-+-=--+224222()就是定义在区间[0,3]上得二次函数,其对称轴方程就是,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。
函数得最大值为,最小值为。
图1练习、 已知,求函数得最值。
解:由已知,可得,即函数就是定义在区间上得二次函数。
将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。
显然其顶点横坐标不在区间内,如图2所示。
函数得最小值为,最大值为。
图22、轴定区间变二次函数就是确定得,但它得定义域区间就是随参数而变化得,我们称这种情况就是“定函数在动区间上得最值”。
例2、 如果函数定义在区间上,求得最小值。
解:函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。
图1 图2 图3如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。
初中二次函数定轴动区间问题
定轴动区间问题是初中二次函数中的一个重要题型,主要考察学生对二次函数图像和性质的理解。
所谓定轴动区间,指的是抛物线的对称轴是固定的,而自变量的取值范围是动态的。
这类问题通常会寻求最值,解决通法是分情况进行讨论,包括对称轴在区间内和区间外,再加上特殊情况。
具体解决定轴动区间问题的步骤如下:
根据题目信息,确定二次函数的解析式和对称轴。
根据自变量的取值范围,判断对称轴是否在区间内。
如果对称轴在区间内,则最值即为顶点纵坐标;如果对称轴在区间外,则根据开口方向来判断最值取某个区间端点。
如果对称轴和区间均未定,则需要分类讨论,对分类依据的掌握要求较高。
含参数二次函数分类讨论的方法总结
二次函数求最值参数分类讨论的方法分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性的相同点和不同点,将对象分为不同种类然后逐类解决问题.一般地,对于二次函数y=a (x -m )2+n ,x ∈[t ,s ]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。
为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类。
①表示对称轴在区间[t ,s ]的左侧,②表示对称轴在区间[t ,s ]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t ,s ]的右侧。
然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。
含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论题型一:“动轴定区间”型的二次函数最值例1、求函数2()23f x x ax =-+在[0,4]x ∈上的最值。
分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。
解:222()23()3f x x ax x a a =-+=-+-∴此函数图像开口向上,对称轴x=a①、当a <0时,0距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=0时,min y =3,x=4时,max y =19-8a②、当0≤a<2时,a 距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=4时,max y =19-8a③、当2≤a <4时,a 距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=0时,max y =3④、当4≤a 时,4距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=4时,min y =19-8a ,x=0时,max y =3例2、已知函数2()(21)3f x ax a x =+--在区间3[,2]2-上最大值为1,求实数a 的值分析:取a=0,a ≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分类讨论.解:1)若a=0,则f(x)=-x-3,而f(x)在3[,2]2-上取不到最大值为1,∴a ≠0 2)若a ≠0,则2()(21)3f x ax a x =+--的对称轴为0122a x a-=(Ⅰ)若3()12f -=,解得103a =-,此时0233[,2]202x =-∈-a<0, 0()f x 为最大值,但23()120f -≠(Ⅱ) 若(2)1f =解得34a =此时013[,2]32x =-∈-0310,43a x =>=-距右端点2较远,(2)f 最大值符合条件(Ⅲ) 若0()1f x =解得32a -±=当0a =<时034[,2]2x =-∉-当302a --=<时034[,2]2x =∈-综收所述34a =或32a --=评注:此类题属于“动轴定区间”型的二次函数最值,解决此类问题的关键是讨论对称轴相对于定义域区间的位置,讨论时做到不重不漏。
二次函数动轴与动区间问题
二次函数在闭区间上的最值一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。
一般 分为:对称轴在区间的左边,中间,右边三种情况. 设 f (x )=ax 2 + bx + c (a0),求 f (x )在x [m ,n ]上的最大值与最小值。
b 4ac - b 2 b 分析:将 f (x ) 配方,得顶点为 - , 、对称轴为 x = -2a4a2 a当a 0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n ]上 f (x )的最值:(1)当- bm ,n 时,f (x ) 的最小值是 f - b= 4ac -b ,f (x ) 的最大值是2a2a 4af (m ) 、f (n ) 中的较大者。
由 f (x ) 在m ,n上是增函数则 f (x ) 的最小值是 f (m ) ,最大值是 f(n )n 上是减函数则 f ( x ) 的最大值是 f (m ) ,最小值是 f(n )当a 0时,可类比得结论。
二、例题分析归类: (一)、正向型是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系的讨论往 往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定, 区间变;(3)轴变,区间定;(4)轴变,区间变。
1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定 区间上的最值”。
例 1. 函数 y = -x 2 + 4x - 2 在区间[0,3]上的最大值是 ________ ,最小值是 _______ 。
解:函数y =-x 2 +4x -2=-(x -2)2 + 2是定义在区间[0,3]上的二次函数,其对称轴方 程是x =2 ,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上, 如图1所示。
函数的最大值为 f (2) = 2 ,最小值为 f (0)=-2。
(完整版)二次函数动轴与动区间问题
二次函数在闭区间上的最值一、 知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。
一般分为:对称轴在区间的左边,中间,右边三种情况.设f x ax bx c a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。
分析:将f x ()配方,得顶点为--⎛⎝ ⎫⎭⎪b aac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:(1)当[]-∈b am n 2,时,f x ()的最小值是f b a ac ba f x -⎛⎝ ⎫⎭⎪=-2442,()的最大值是f m f n ()()、中的较大者。
(2)当[]-∉ba m n 2,时 若-<b am 2,由f x ()在[]m n ,上是增函数则f x ()的最小值是f m (),最大值是f n ()若n ba<-2,由f x ()在[]m n ,上是减函数则f x ()的最大值是f m (),最小值是f n ()当a <0时,可类比得结论。
二、例题分析归类: (一)、正向型是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。
1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。
例1. 函数y x x =-+-242在区间[0,3]上的最大值是_________,最小值是_______。
解:函数y x x x =-+-=--+224222()是定义在区间[0,3]上的二次函数,其对称轴方程是x =2,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。
专题07 二次函数的最值问题-九年级数学上册(解析版)
专题07二次函数的最值问题考点1:定轴动区间;考点2:动轴定区间。
1.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是()A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0解:抛物线的对称轴是直线x =1,则当x =1时,y =1﹣2﹣3=﹣4,是最小值;当x =3时,y =9﹣6﹣3=0是最大值.答案:A .2.(易错题)已知二次函数y =a (x ﹣1)2﹣a (a ≠0),当﹣1≤x ≤4时,y 的最小值为﹣4,则a 的值为()A .12或4B .43或−12C .−43或4D .−12或4解:y =a (x ﹣1)2﹣a 的对称轴为直线x =1,顶点坐标为(1,﹣a ),当a >0时,在﹣1≤x ≤4,函数有最小值﹣a ,∵y 的最小值为﹣4,∴﹣a =﹣4,∴a =4;当a <0时,在﹣1≤x ≤4,当x =4时,函数有最小值,∴9a ﹣a =﹣4,解得a =−12;综上所述:a 的值为4或−12,答案:D.3.(易错题)当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为()A .﹣1B .2C .0或2D .﹣1或2解:当y =1时,有x 2﹣2x +1=1,解得:x 1=0,x 2=2.题型01定轴动区间∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,答案:D.4.已知函数y=﹣3(x﹣2)2+4,当x=2时,函数取得最大值为4.解:∵y=﹣3(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),又∵a=﹣3<0,∴抛物线的开口向下,顶点是它的最高点,∴x=2时,函数有最大值为4.答案:2,4.5.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=9.解:原式可化为y=(x﹣3)2﹣4,可知函数顶点坐标为(3,﹣4),当y=0时,x2﹣6x+5=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.如图:m=﹣4,当x=6时,y=36﹣36+5=5,即M=5.则M﹣m=5﹣(﹣4)=9.故答案为9.6.已知二次函数y=ax2﹣4ax+3a(1)若a=1,则函数y的最小值为﹣1.(2)若当1≤x≤4时,y的最大值是4,则a的值为43或﹣4.解:(1)当a=1时,y=x2﹣4x+3=(x﹣2)2﹣1∵a=1>0∴抛物线的开口向上,当x=2时,函数y的最小值为﹣1.(2)∵二次函数y=ax2﹣4ax+3a=a(x﹣2)2﹣a∴抛物线的对称轴是直线x=2,∵1≤x≤4,∴当a>0时,抛物线开口向上,在对称轴直线x=2右侧y随x的增大而增大,当x=4时y有最大值,a×(4﹣2)2﹣a=4,解得a=43,当a<0时,抛物线开口向下,x=2时y有最大值,a×(2﹣2)2﹣a=4,解得a=﹣4.答案:(1)﹣1;(2)43或−4.7.(易错题)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于任何一个二次函数,它在给定的闭区间上都有最小值.(1)函数y=﹣x2+4x﹣2在区间[0,5]上的最小值是﹣7(2)求函数=(+12)2+34在区间[0,32]上的最小值.(3)求函数y=x2﹣4x﹣4在区间[t﹣2,t﹣1](t为任意实数)上的最小值y min的解析式.解:(1)y=﹣x2+4x﹣2其对称轴为直线为x=2,顶点坐标为(2,2),函数图象开口向下.如图1所示:当x=5时,函数有最小值,最小值为﹣7.答案:﹣7.(2)=(+12)2+34,其对称轴为直线=−12,顶点坐标(−12,34),且图象开口向上.其顶点横坐标不在区间[0,32]内,如图2所示:当x=0时,函数y有最小值m=1.(3)将二次函数配方得:y=x2﹣4x﹣4=(x﹣2)2﹣8其对称轴为直线:x=2,顶点坐标为(2,﹣8),图象开口向上若顶点横坐标在区间[t﹣2,t﹣1]左侧,则2<t﹣2,即t>4.当x=t﹣2时,函数取得最小值:m=(−4)2−8=2−8+8若顶点横坐标在区间[t﹣2,t﹣1]上,则t﹣2≤2≤t﹣1,即3≤t≤4.当x=2时,函数取得最小值:y min=﹣8若顶点横坐标在区间[t﹣2,t﹣1]右侧,则t﹣1<2,即t<3.当x=t﹣1时,函数取得最小值:m=(−3)2−8=2−6+1综上讨论,得m=2−8+8(>4)−8(3≤≤4)2−6+1(<3).8.(易错题)已知二次函数y =﹣x 2+6x ﹣5.(1)求二次函数图象的顶点坐标;(2)当1≤x ≤4时,函数的最大值和最小值分别为多少?(3)当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.解:(1)∵y =﹣x 2+6x ﹣5=﹣(x ﹣3)2+4,∴顶点坐标为(3,4);(2)∵a =﹣1<0,∴抛物线开口向下,∵顶点坐标为(3,4),∴当x =3时,y 最大值=4,∵当1≤x ≤3时,y 随着x 的增大而增大,∴当x =1时,y 最小值=0,∵当3<x ≤4时,y 随着x 的增大而减小,∴当x =4时,y 最小值=3.∴当1≤x ≤4时,函数的最大值为4,最小值为0;(3)当t ≤x ≤t +3时,对t 进行分类讨论,①当t +3<3时,即t <0,y 随着x 的增大而增大,当x =t +3时,m =﹣(t +3)2+6(t +3)﹣5=﹣t 2+4,当x =t 时,n =﹣t 2+6t ﹣5,∴m ﹣n =﹣t 2+4﹣(﹣t 2+6t ﹣5)=﹣6t +9,∴﹣6t +9=3,解得t =1(不合题意,舍去),②当0≤t <3时,顶点的横坐标在取值范围内,∴m =4,i )当0≤t ≤32时,在x =t 时,n =﹣t 2+6t ﹣5,∴m ﹣n =4﹣(﹣t 2+6t ﹣5)=t 2﹣6t +9,∴t2﹣6t+9=3,解得t1=3−3,t2=3+3(不合题意,舍去);ii)当32<t<3时,在x=t+3时,n=﹣t2+4,∴m﹣n=4﹣(﹣t2+4)=t2,∴t2=3,解得t1=3,t2=−3(不合题意,舍去),③当t≥3时,y随着x的增大而减小,当x=t时,m=﹣t2+6t﹣5,当x=t+3时,n=﹣(t+3)2+6(t+3)﹣5=﹣t2+4,.m﹣n=﹣t2+6t﹣5﹣(﹣t2+4)=6t﹣9,∴6t﹣9=3,解得t=2(不合题意,舍去),综上所述,t=3−3或3.9.已知二次函数y=ax2+4x+a﹣1的最小值为2,则a的值为()A.3B.﹣1C.4D.4或﹣1解:∵二次函数y=ax2+4x+a﹣1有最小值2,∴a>0,y最小值=4a−24=4oK1)−424=2,整理,得a2﹣3a﹣4=0,解得a=﹣1或4,∵a>0,∴a=4.答案:C.10.设二次函数y=a(x﹣m)(x﹣m﹣k)(a>0,m,k是实数),则()A.当k=2时,函数y的最小值为﹣aB.当k=2时,函数y的最小值为﹣2aC.当k=4时,函数y的最小值为﹣aD.当k=4时,函数y的最小值为﹣2a题型02动轴定区间解:令y=0,则(x﹣m)(x﹣m﹣k)=0,∴x1=m,x2=m+k,∴二次函数y=a(x﹣m)(x﹣m﹣k)与x轴的交点坐标是(m,0),(m+k,0),∴二次函数的对称轴是:=1+22=rr2=2r2,∵a>0,∴y有最小值,当=2r2时y最小,即=o2r2−p(2r2−−p=−24,当k=2时,函数y的最小值为=−224=−;当k=4时,函数y的最小值为=−424=−4,答案:A.11.在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值154C.最小值5D.最小值154解:由题意可得:6=m2﹣m,解得:m1=3,m2=﹣2,∵二次函数y=x2+mx+m2﹣m,对称轴在y轴左侧,∴m>0,∴m=3,∴y=x2+3x+6,∴二次函数有最小值为:4a−24=4×1×6−324×1=154.答案:D.12.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.32B.2C.32或2D.−32或2解:y=x2﹣2mx=(x﹣m)2﹣m2,①若m<﹣1,当x=﹣1时,y=1+2m=﹣2,解得:m=−32;②若m>2,当x=2时,y=4﹣4m=﹣2,解得:m=32<2(舍);③若﹣1≤m≤2,当x=m时,y=﹣m2=﹣2,解得:m=2或m=−2<−1(舍),∴m的值为−32或2,答案:D.13.(易错题)当﹣1≤x≤2时,二次函数y=x2+2kx+1的最小值是﹣1,则k的值可能是32或−解:对称轴:x=−22=−k,分三种情况讨论:①当﹣k<﹣1时,即k>1时,此时﹣1≤x≤2在对称轴的右侧,y随x的增大而增大,=(﹣1)2+2k×(﹣1)+1=﹣1,∴当x=﹣1时,y有最小值,y小k=32,②当﹣1≤﹣k≤2时,即﹣2≤k≤1,对称轴在﹣1≤x≤2内,此时函数在﹣1≤x≤﹣k,y随x的增大而减小,在﹣k≤x≤2时,y随x的增大而增大,=(﹣k)2+2k•(﹣k)+1=﹣1,∴当x=﹣k时,y有最小值,y小k2﹣2k2+2=0,k2﹣2=0,k=±2,∵﹣2≤k≤1,∴k=−2,③当﹣k>2时,即k<﹣2,此时﹣1≤x≤2在对称轴的左侧,y随x的增大而减小,∴当x=2时,y有最小值,y=22+2k×2+1=﹣1,小k=−32(舍),综上所述,k的值可能是32或−2,答案:32或−2.14.已知y=﹣x(x+3﹣a)是关于x的二次函数,当x的取值范围在1≤x≤5时,若y在x=1时取得最大值,则实数a的取值范围是a≤5.解:第一种情况:当二次函数的对称轴不在1≤x≤5内时,此时,对称轴一定在1≤x≤5的左边,函数方能在这个区域取得最大值,x=K32<1,即a<5,第二种情况:当对称轴在1≤x≤5内时,对称轴一定是在顶点处取得最大值,即对称轴为x=1,∴K32=1,即a=5综合上所述a≤5.答案:a≤5.15.(易错题)已知二次函数y=x2﹣2hx+h,当自变量x的取值在﹣1≤x≤1的范围中时,函数有最小值n,则n的最大值是14.解:二次函数y=x2﹣2hx+h图象的对称轴为直线x=h.当h≤﹣1时,x=﹣1时y取最小值,此时n=1+2h+h=1+3h≤﹣2;当﹣1<h<1时,x=h时y取最小值,此时n=h2﹣2h2+h=﹣h2+h=﹣(h−12)2+14≤14;当h≥1时,x=1时y取最小值,此时n=1﹣2h+h=1﹣h≤0.综上所述:n的最大值为14.答案:14.16.(易错题)已知二次函数y=x2﹣2x+2在t≤x≤t+1时的最小值是t,则t的值为1或2.解:y=x2﹣2x+2=(x﹣1)2+1,分类讨论:(1)若顶点横坐标在范围t≤x≤t+1右侧时,有t+1<1,即t<0,此时y随x的增大而减小,=t=(t+1)2﹣2(t+1)+2,∴当x=t+1时,函数取得最小值,y最小值方程无解.(2)若顶点横坐标在范围t≤x≤t+1内时,即有t≤1≤t+1,=1,解这个不等式,即0≤t≤1.此时当x=1时,函数取得最小值,y最小值∴t=1.(3)若顶点横坐标在范围t≤x≤t+1左侧时,即t>1时,y随x的增大而增大,=t=t2﹣2t+2,解得t=2或1(舍弃),∵当x=t时,函数取得最小值,y最小值∴t=1或2.答案:1或2.17.已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=−3−10或m=−3+10(舍去).综上所述,m=﹣2或−3−10.18.(易错题)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y=x2+bx+b2,图象开口向上,对称轴为直线x=−2,①当−2<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=−7(舍去),b2=7;②当b≤−2≤b+3时,即﹣2≤b≤0,∴x=−2,y=34b2为最小值,∴34b2=21,解得,b1=﹣27(舍去),b2=27(舍去);③当−2>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=7时,解析式为:y=x2+7x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+7x+7或y=x2﹣4x+16.。
二次函数求最值(动轴定区间、动区间定轴)
4
4
4
2 x=1
x=1
2
x=1
2
k+2
k k+2
k k+2
k 15
5
10
5
15
5 10
5
15
10
10
5
5
2
2
2
6
4
2 x=1
15
k 10
k+2 5
2
4
4
4
4
6
评注6:例1属于6“轴定区间动”的问题,看6 作动区
间沿8x轴移动的过8 程中,函数8 最值的变化,8 即动区
间在定轴的左、右两侧及包10含定轴的变化,要注
y 解: ⑴当
即a≥ 2时
y的最小值为f(-1)
O -1 1 x
=4-a
例3:若x∈
,求函数
•
y =x2+ax+3的最小值:
(2)当 1 < a 1
2
y
即-2≤ a<2时
y的最小值为
O
f( )=
-1 1 x
例2:若x∈
•
,求函数
y =x2+ax+3的最小值:
y
O -1 1
(3)当
即a<-2时
解:画出函数在定义域内的图像如图 8
对称轴为直线x=1
6
由图知,y=f(x)在[ 2,4 ]上为增函数
4
故x=4时有最大值f(4)=5
x=2时有最小值f(2)=-3
10
5
2 x=1 2
45
2
4
y = x2 2∙x 3
y = x2 2∙x 3
含参数二次函数分类讨论的方法总结
含参数二次函数分类讨论的方法总结二次函数求最值参数分类讨论的方法分类讨论是数学中重要的思想方法和解题策略。
它是根据研究对象的本质属性的相同点和不同点,将对象分为不同种类然后逐类解决问题。
对于二次函数y=a(x-m)+n,x∈[t,s]求最值的问题,解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。
为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类。
分类图如下:t+s/2为对称轴,①表示对称轴在区间[t,s]的左侧,②表示对称轴在区间[t,s]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t,s]的右侧。
然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。
含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论。
题型一:“动轴定区间”型的二次函数最值。
例如,求函数f(x)=x-2ax+3在x∈[0,4]上的最值。
先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。
解:f(x)=x-2ax+3=(x-a)+3-a,此函数图像开口向上,对称轴x=a。
①、当a<0时,距对称轴x=a最近,4距对称轴x=a最远,∴x=0时,ymin=3,x=4时,ymax=19-8a。
②、当0≤a<2时,a距对称轴x=a最近,4距对称轴x=a 最远,∴x=a时,ymin=3-a2,x=4时,ymax=19-8a。
③、当2≤a<4时,a距对称轴x=a最近,距对称轴x=a最远,∴x=a时,ymin=3-a2,x=0时,ymax=3.④、当4≤a时,4距对称轴x=a最近,距对称轴x=a最远,∴x=4时,ymin=19-8a,x=0时,ymax=3.题型二:“区间定动轴”型的二次函数最值。
例如,已知函数f(x)=ax^2+(1-2a)x-3在[0,1]上最小值为-2,求实数a的值。
二次函数的区间最值问题
二次函数最值问题二次函数y ax2bx c( a 0)是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况( 当a0 时,函数在 x b处取得最小值4ac b2,无最大值;当时 a 0 ,函数在x b处取得2a4a2a 2最大值4ac b,无最小值.4a本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.在高中阶段,求二次函数的最值问题只需要记住“三点一轴”,即题目给出的x 的取值范围区间的两个端点,二次函数的顶点,以及二次函数的对称轴,注意结合图像学会用数形结合解题。
高中阶段的二次函数最值问题可以分为一下三个方面: 1. 定轴定区间。
2. 动轴定区间。
3. 定轴动区间。
下面我们来看例题。
【例 1】当 2 x 2 时,求函数y x22x 3 的最大值和最小值.分析:这个问题十分简单,属于定轴定区间这一类题目,只需要画出函数图像即可以解决。
【例 2】当t x t1时,求函数y 1 x2x5的最小值 ( 其中t为常数 ) .22分析:这类问题属于定轴动区间的问题,由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.解:函数y1x2x5的对称轴是 x 1。
画出其草图。
22(1)当对称轴在所给范围左侧.即t1时;当 x t 时,y min 1 t2t5;22(2)当对称轴在所给范围之间.即t1t10t 1时;当 x1时,ymin11215 3 ;22t11t0时,当 x t1时,(3)当对称轴在所给范围右侧.即ymin1t2t151t 2 3 . 12221t 23, t02综上所述: y min3,0t 1 。
1t 2t5, t122【例 3】设二次函数f x x22ax 1 a 在区间 0,1上的最大值为 2,求实数a的值。
分析:这类问题属于动轴定区间的问题,由于函数的对称轴随 a 的变化而变化,所以需要讨论函数对称轴与其范围的相对位置。
含参数二次函数分类讨论的方法总结
二次函数求最值参数分类讨论的方法分类讨论是数学中重要的思想方法和解题策略分类讨论是数学中重要的思想方法和解题策略,,它是根据研究对象的本质属性的相同点和不同点点和不同点,,将对象分为不同种类然后逐类解决问题.将对象分为不同种类然后逐类解决问题.一般地一般地,,对于二次函数y=a (x -m )2+n ,x ∈[t ,s ]求最值的问题求最值的问题;;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。
为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类。
可画对称轴相对于定义域区间的简图分类。
①表示对称轴在区间[t ,s ]的左侧,②表示对称轴在区间[t ,s ]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t ,s ]的右侧。
然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。
即可快速求出最值。
含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论定义域区间的位置关系进行分类讨论题型一:“动轴定区间”型的二次函数最值例1、求函数2()23f x x ax =-+在[0,4]x Î上的最值。
上的最值。
分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。
分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。
解:222()23()3f x x ax x a a =-+=-+-∴此函数图像开口向上,对称轴x=a①、当a <0时,时,00距对称轴x=a 最近,最近,44距对称轴x=a 最远,最远, ∴x=0时,min y =3=3,,x=4时,max y =19-8a②、当0≤a<0≤a<22时,时,a a 距对称轴x=a 最近,最近,44距对称轴x=a 最远,最远, ∴x=a 时,min y =3-a2=3-a2,,x=4时,max y =19-8a③、当2≤2≤a a <4时,时,a a 距对称轴x=a 最近,最近,00距对称轴x=a 最远,最远, ∴x=a 时,min y =3-a2=3-a2,,x=0时,max y =3④、当4≤a 时,时,44距对称轴x=a 最近,最近,00距对称轴x=a 最远,最远, ∴x=4时,min y =19-8a =19-8a,,x=0时,max y =3例2、已知函数2()(21)3f x ax a x =+--在区间3[,2]2-上最大值为1,1,求实数求实数a 的值的值 ① ② ③ ④ t t +s2s分析分析::取a=0,a a=0,a≠≠0,分别化为一次函数与二次函数分别化为一次函数与二次函数,,根据一次函数、二次函数的性质分类讨论类讨论. .解:1):1)若若a=0,a=0,则则f(x)=-x-3,f(x)=-x-3,而而f(x)f(x)在在3[,2]2-上取不到最大值为1,1,∴∴a ≠02)2)若若a ≠0,0,则则2()(21)3f x ax a x =+--的对称轴为0122a x a-=(Ⅰ)若3()12f -=,解得103a =-,此时0233[,2]202x =-Î-a<0, 0()f x 为最大值,但23()120f -¹(Ⅱ) ) 若若(2)1f =解得34a =此时013[,2]32x =-Î-0310,43a x =>=-距右端点2较远,(2)f 最大值符合条件最大值符合条件 (Ⅲ) ) 若若0()1f x =解得3222a -±=当32202a -+=<时03224[,2]2x =--Ï- 当32202a --=<时03224[,2]2x =-Î-综收所述34a =或3222a --=评注:此类题属于“动轴定区间”型的二次函数最值,解决此类问题的关键是讨论对称轴相对于定义域区间的位置,讨论时做到不重不漏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
当 k <1 < k+2 时 即-1 <k <1时 f(x)min=f(1)=- 4
当5 f(k)>f(k+10 2)时, 15
即k2-2k-3 > k2+2k-3 即-1<k<0时
f(x)max=f(k)=k2-2k-3 当f(k) ≤f(k+2)时,
即k2-2k-3 ≤ k2+2k-3 即0≤ k<1时
二次函数在闭区间上的最值问题 动轴定区间、动区间定轴
练习:已知函数f(x)= x2 –2x – 3
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4 ],求函数f(x)的最值;
(3)若x∈[ 1 , 5 ],求函数f(x)的最值;
2
(4)若x∈[
12, 2
3 2],求函数f(x)的最值;
4
4
4
2 x=1
x=1
2
x=1
2
k+2
k k+2
k k+2
k 15
5
10
5
15
5 10
5
15
10
10
5
5
2
2
2
8
6
4
2 x=1
15
k 10
k+2 5
2
4
4
4
4
当k ≤-1时 6
f(x)max6=f(k)=k2-2k-3
6 f(x)min=f(k+2)=k6 2+2k-3
当-1<k <0时 8
f(x)8max=f(k)=k2-2k-38
(1)检查x0=
b 2a
是否属于
[
m,n];
(2)当x0∈[m,n]时,f(m)、f(n)、f(x0) 中的较大者是最大值,较小者是最小值;
(3)当x0 [m,n]时,f(m)、f(n)中的较大
者是最大值,较小者是最小值.
思考:如何 求函数y=x2-2x-3在 x∈[k,k+2]时的最值?
解析: 因为函数 y=x2-2x-3=(x-1)2-4的对称 轴为 x=1 固定不变,要求函数的最值, 即要看区间[k,k+2]与对称轴 x=1的位 置,则从以下几个方面解决如图:
(2)若x∈[ 2,4 ],求函数f(x)的最值; 10
(3)若x∈[ 1 , 5 ],求函数f(x)的最值; 8
2
(4)若x∈[
12, 2
3
6
2]
,求函数f(x)的最值;
4
解:画出函数在定义域内的图像如图
对称轴为直线x=1,由图知,
15
10
5
x= 1 时有最大值 f ( 1) 13
2
24
x=1时有最小值f(1)=-4
2
x=0时15有最小值f(010)=-3
5
0
5
-2
2
4
6
例1、已知函数f(x)= x2 –2x – 3.
(1)若x∈yy ==[xx22
–2,0 2∙x 3 2∙x 3
],求函数f(x)的最10 值;
(2)若x∈[ 2,4 ],求函数f(x)的最值;
解:画出函数在定义域内的图像如图 8
对称轴为直线x=1
(3)若x∈[ 1
,
5
6
],求函数f(x)的最值;
22
4
解:画出函数在定义域内的图像如图
对称轴为直线x=1,由图知,
10
5
x=
5 2
时有最大值
f (5) 2
1 3 4
2 x=1
1
5
2
2
5
2
4
x=1时有最小值f(1)=-4 6
例1、已知函数f(x)= x2 –2x – 3
(1)若x∈yy[== xx–22 222,∙∙xx 033 ],求函数f(x)的最值;
k
2
2
2
2
1105
k+2
4
4
4
4
6
6
6
6
8
8
8 8
10
6
4
2 x=1 k+2
k
2
4
6
8
当k+2≤1即k ≤-1时
f(x)max=f(k)=k2-2k-3
5
10
15
f(x)min=f(k+2)=(k+2)2-2(k+2)-3 =k2+2k-3
4
x=1
2
k k+2
10
82
64
4 6
x=1
2 8
k k+2
当0≤ k<1时 f(x)max=f(k+2)=k2+21k0 -3
=f(k+2)=k2+2k-3
f(x)min=f(1)=8- 4 f(x)min=f(1)=10- 4 f(x) min=f(k)=k2-2k-3
例: 6求函数y=x2-62x-3在x∈[k,k6+2]时的最值
1 2
,
3] 2
6
6
4
4
4
x=1
2
0
10
-2
2
55
4
2 x=1
10 15
2
5
10
10
4 15
2
2 x=1
1
5
2
2
5
10 2
2
1 -2
5
15 2
x=1
3 2
10
4
4
4 4
6
思考6 :通过以上几6 题,你发现二次6 函数在区间[m,n]
8
上的8 最值通常在哪8 里取到?
8
10 10
10 10
总结:求二次函数f(x)=ax2+bx+c在[m,n]上 上的最值或值域的一般方法是:
x=1
2
13
-2
2
2 4
y = x2 2∙x 3
y = x2 2∙x 3y = x2 2∙x 3
10
y = x2 2∙x 3
2∙例x 3 1、已知函数f(x)=
2∙x 3
10
10
x2 –2x
–8
3
10
8
(1)8 x∈[–2,0](2)8 x∈[ 2,4 (] 3)x6 ∈[
1 2
,
5 2
](4)x6 ∈[
5 f(x)max=10f(k+2)=(1k5 +2)2-2(k+2)-3 =k2+2k-3
8
6
4
2 x=1 k
2
k+2 5
当k ≥1 时 f(x) max=f(k+2)=k2+2k-3
10
15
f(x) min=f(k)=k2-2k-3
4
6
8
10
8
例: 6求函数y=x2-62x-3在x∈[k,k6+2]时的最值
y1=0 x2 2∙x 3
10
y = x2 2∙x 3
y = x2 2∙x 3
10
例:8 求函数yy == x28x2∙x2-3 2x-3在x∈[k,k+210 ]时
8
的最6 值
6
8
6
6
4
4
4
2 x=1
k+2
15
k
5
x=1
2
k
10
5
15
k+2
5
10
10
x=1
2
k k+2
5
15
5
4
2 x=1
10 5
6
由图知,y=f(x)在[ 2,4 ]上为增函数
4
故x=4时有最大值f(4)=5
x=2时有最小值f(2)=-3
10
5
2 x=1 2
45
2
4
y = x2 2∙x 3
y = x2 2∙x 3
例1、已知函数f(x)=
x2 –2x
–
3.
10
(1)若x∈[ –2,0],求函数f(x)的最值;8
(2)若x∈[ 2,4],求函数f(x)的最值;
4
4
4
2 x=1
y = x2 2∙x 3
y = x2 2∙x 3
练习:已知函数f(x)= x2–2x –3.
10
(1)若x∈[ –2,0 ], 求函数f(x)的最值8 ;
解:画出函数在定义域内的图像如图
6
对称轴为直线x=1
由图知,y=f(x)在[ –2,0 ]上为减函数 故x=-2时有最大值f(-2)=5
4
x=1