1第4章 流体运动
第4章 流体基本知识

注:不是流体没有粘性
一、流体的静压强定义:
流体的压强(pressure) :在流体内部或固体壁面所存在的单位 面积上 的法向作用力 流体静压强(static pressure):流体处于静止状态时的压强。
p
lim
A0
P A
4、稳定流和非稳定流
定常流动(steady flow) :流动物理参数不随时间而变化
如:p f ( x, y, z), u f ( x, y, z, )
非定常流动(unsteady flow) :流动物理参数随时间而变化
如:p f ( x, y, z, t ), u f ( x, y, z, t )
式中μ——黏度或黏滞系数(viscosity or absolute viscosity)。
黏度的单位是:N.s/m2或Pa.s 黏度μ的物理意义:表征单位速度梯度作用下的切应力, 反映了流体黏性的动力性质,所以μ又被称为动力黏度。 与动力黏度μ对应的是运动黏度υ(kinematic viscosity),二 者的关系是
V 0
V 0
V
V
G V
三、流体的压缩性与膨胀性 1、压缩性: 定义:在一定的温度下,流体的体积随压强升高而缩 小的性质 表示方法:体积压缩系数β (The coefficient of compressibility)
1 dV V dp
(1/Pa)
2、膨胀性: 定义: 在一定的压强下,流体的体积随温度的升 高而增大的性质 表示方法:温度膨胀系数α(the coefficient of expansibility)
特别注意:流体静压强的分 布规律只适用于静止、同种、 连续的流体。
流体力学第四章

• 在每一个微元流束的有效截面上,各点的速度可认为是相同的 总流:无数微元流束的总和。
38
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
均匀流与非均匀流·渐变流和急变流
均匀流——同一条流线上各空间点上的流速相 同的流动,流线是平行直线,各有效截面上的 流速分布沿程不变 非均匀流——同一条流线上各空间点上的流速不 同的流动,流线不是平行直线,即沿流程方向速 度分布不均
迹线· 流线 1、迹线 1)定义:某一质点在某一时段内的运动轨迹 线。 2)迹线的微分方程
dx dy dz dt ux u y uz
烟火的轨迹为迹线
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
25
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
一维、二维和三维流动
三维流动:流动参数是x、y、z三个坐标的函数
的流动。
二维流动:流动参数是x、y两个坐标的函数的
流动。
一维流动:是一个坐标的函数的流动。
26
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
x= x (t)
dux ux ux dx ux dy ux dz ax dt t x dt y dt z dt
(1)当地加速度(时变加速度):流动过程中流体 由于速度随时间变化而引起的加速度; (2)迁移加速度(位变加速度):流动过程中流体 由于速度随位置变化而引起的加速度。
第一章流体及其物理性质

理想气体状态的温度、压力、体积之间满足理想气体状态方 程:
pVmRgT
理想气体状态方程:
PV=mRgT
或
P=ρRgT
→气体密度:
P RgT
注意Rg的含 义:气体常数
kg K
绝热变换:忽略气体在高速压缩过程中与环境的换热,则 气体的压缩或膨胀过程被称为绝热压缩(膨胀)。在绝热压缩 过程中压力与气体体积和密度的关系满足如下关系:
P1V1k P2V2k 或
v
v1 (
p1 ) 1k p
1(
p
1
)k
p 1
式中:绝热指数k――定压比热CP和定容比热CV的比值k=Cp/CV
比热C:不发生状态变化的条件下,单位质量物质温度升高 1℃所需的热量。〔J/(g·℃)〕 定压比热CP:压力不变时的比热 定容比热CV:体积不变时的比热
流体的易变形性是流体的决定性宏观力学特性,表现在:
▲ 在受到剪切力持续作用时,固体的变形一般是微小的(如金属)或有 限的(如塑料),但流体却能产生很大的甚至无限大的变形(力的作用 时间无限长)。 ▲ 当剪切力停止作用后,固体变形能恢复或部分恢复,流体不作任何恢 复。 ▲ 固体内的切应力由剪切变形量(位移)决定,而流体内的切应力与变 形量无关,由变形速度(切变率)决定。
6.粘性 (1)定义:粘性(粘滞性)----流体内部质点间或流层间因相对 运动而产生内摩擦力以反抗相对运动的性质。
时间:t 0 时,维持上平板恒速(匀速)运动需要一个恒力F :
F u —— 试验结果 Ay
A : 平板面积,m2
流体力学

流体力学基本方程
连 续 性 方 程
动 量 方 程
动 量 矩 方 程
伯 努 利 方 程
能 量 方 程
第一节 描述流体运动的两种方法
流体的流动是由充满整个流动空间的无限多个流体 质点的运动构成的。充满运动流体的的空间称为流场。
研
欧拉法
究
方
着眼于整个流场的状态,即研究表征流场内流体流动 特性的各种物理量的矢量场与标量场
7.湿周 水力半径 当量直径
湿周——在总流的有效截面上,流体与固体壁面的接触长度。
水力半径——总流的有效截面积A和湿周之比。
圆形截面管道的几何直径
d 2 4A d 4R d x
D
R
A x
非圆形截面管道的当量直径
4A 4R x
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
二、欧拉法
欧拉法(euler method)是以流体质点流经流场中 各空间点的运动来研究流动的方法。 ——流场法
研究对象:流场
它不直接追究质点的运动过程,而是以充满运动
流体质点的空间——流场为对象。研究各时刻质点在 流场中的变化规律。将个别流体质点运动过程置之不 理,而固守于流场各空间点。通过观察在流动空间中 的每一个空间点上运动要素随时间的变化,把足够多 的空间点综合起来而得出的整个流体的运动情况。
由欧拉法的特点可知,各物理量是空间点x,y,z和时 间t的函数。所以速度、密度、压强和温度可表示为:
v v x,y,z,t = x,y,z,t p p x,y,z,t T T x,y,z,t
1.速度
u ux, y, z, t
第4章流体动力学基础1

2、连续性微分方程有哪几种形式?不可压缩流体的连续性 、连续性微分方程有哪几种形式? 微分方程说明了什么问题? 微分方程说明了什么问题? 质量守恒
第二节 元流的伯努利方程
欧拉运动微分方程组各式分别乘以 , , ( 欧拉运动微分方程组各式分别乘以dx,dy,dz(流场任意相邻两点间距 各式分别乘以 ds的坐标分量): 的坐标分量): 的坐标分量
1 ( Xdx +Ydy + Zdz) − ρ ( ∂p dx + ∂p dy + ∂p dz) = dux dx + ∂x ∂y ∂z dt duy dt
dy + duz dz dt
<I> 考虑条件 、 考虑条件 1、恒定流
<II>
<III>
一、在势流条件下的积分
∂p ∂p =0 ∂t
∂ux ∂uy ∂uz = = =0 ∂t ∂t ∂t
∂ux ∂y ∂uy ∂z ∂ux ∂z
= = =
∂uy ∂x ∂uz ∂y ∂uz ∂x
积分得:
z+γ +
p
u2 2g
=c
•
理想势流(无黏性) 理想势流(无黏性)伯努利方程
z+γ +
p
或
u2 2g
=c
p2 u22 2g
z1 + γ +
p1
u12 2g
= z2 + γ +
在同一恒定不可压缩流体重力势流 恒定不可压缩流体重力势流中 物理意义:在同一恒定不可压缩流体重力势流中 ,各点的总比能值相等 即在整个势流场中,伯努利常数 均相等。(应用条件 均相等。(应用条件: 即在整个势流场中,伯努利常数C均相等。(应用条件:“——”所示) ”所示)
第04章 流体在圆管中的流动-t

试求: 确定其流动状态?
解:水的流动雷诺数
Re
油的流动雷诺数
vd
1
27933 2300 ——湍流流态
Re
vd
2
1667 2300 ——层流流态
4.2 圆管中的层流运动
ghf 2 2 (r0 r ) 4l ghf 4 ghf 4 Qv r0 d 8l 128l ghf 2 Q 32l v v d , hf v 2 A 32l gd ghf 2 ghf 2 umax r0 d 2v 4l 16l
Re k
vk R
575
R— 水力半径 R — 水力半径
vk R
300
水力半径: R
A
A 过流断面面积
过流断面上流体与固体接触周长(湿周)
水 力 直 径 : d k 4R 水力直径越大,说明流体与管壁接触少,阻力小,过流能力大
(3)水头损失与速度的关系
水头损失:单位重量的液体自一断面流至另一断面所损失的机械 能。 内因— 流体的粘滞性和惯性 造成能量损失的原因:流动阻力 外因— 流体与固体壁面的接触情况 流体的运动状态 能量损失按性质可分为两类:
相对运动所产生的粘性切应力。
1
u x — 流体质点沿流向的时均速度
第二部分:由脉动流速所引起的时均附加
切应力,又称为紊动切应力。
2 u xu y
2
——只与流体的密度和脉动流速有关,而与流体粘
性无关,所以又称为雷诺切应力或惯性切应力。 雷诺切应力反映了流层之间的动量交换效应。
(4)雷诺数:
因为下临界雷诺数 Rec 就是流体两种流态的判别准则,雷诺数
《流体力学》 合肥工业大学 胡小春 曾亿山 答案

流体力学第1章 绪论1.1 若某种牌号的汽油的重度γ为7000N/m 3,求它的密度ρ。
解:由g γρ=得,3327000N/m 714.29kg/m9.8m /m γρ===g1.2 已知水的密度ρ=997.0kg/m 3,运动黏度ν=0.893×10-6m 2/s ,求它的动力黏度μ。
解:ρμ=v 得,3624997.0kg/m 0.89310m /s 8.910Pa s μρν--==⨯⨯=⨯⋅ 1.3 一块可动平板与另一块不动平板同时浸在某种液体中,它们之间的距离为0.5mm ,可动板若以 0.25m/s 的速度移动,为了维持这个速度需要单位面积上的作用力为2N/m 2,求这两块平板间流体的动力黏度μ。
解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度可计算为13du u 0.25500s dy y 0.510--===⨯ 由牛顿切应力定律d d uyτμ=,可得两块平板间流体的动力黏度为 3d 410Pa s d yuτμ-==⨯⋅1.4上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩T 的表达式。
题1.4图解:圆盘不同半径处线速度 不同,速度梯度不同,摩擦力也不同,但在微小面积上可视为常量。
在半径r 处,取增量dr ,微面积 ,则微面积dA 上的摩擦力dF 为du r dF dA2r dr dz ωμπμδ== 由dF 可求dA 上的摩擦矩dT32dT rdF r dr πμωδ==积分上式则有d 43202d T dT r dr 32πμωπμωδδ===⎰⎰1.5 如下图所示,水流在平板上运动,靠近板壁附近的流速呈抛物线形分布,E 点为抛物线端点,E 点处0d d =y u ,水的运动黏度ν=1.0×10-6m 2/s ,试求y =0,2,4cm 处的切应力。
(提示:先设流速分布C By Ay u ++=2,利用给定的条件确定待定常数A 、B 、C )题1.5图解:以D 点为原点建立坐标系,设流速分布C By Ay u ++=2,由已知条件得C=0,A=-625,B=50则2u 625y 50y =-+ 由切应力公式du dyτμ=得du(1250y 50)dy τμρν==-+ y=0cm 时,221510N/m τ-=⨯;y=2cm 时,222 2.510N/m τ-=⨯;y=4cm 时,30τ= 1.6 某流体在圆筒形容器中。
流体力学第四章

1.渐变流及其特性
渐变流过水断面近似为平面,即渐变流是流线接近于
平行直线的流动。均匀流是渐变流的极限。
动压强特性:在渐变流同一过水断面上,各点动压强
按静压强的规律式分布,即
注:上述结论只适用于渐变流或均匀流的同一过水断面上 的 各点,对不同过水断面,其单位势能往往不同。
选取:控制断面一般取在渐变流过水断面或其极限情况均匀 流断面上。
即J=JP。 5.总水头线和测压管水头线之间的距离为相应段
的流速水头。
6.如果测压管水头线在总流中心线以上,压强就 是正职;如相反,则压强为负值,则有真空。
4.总流能量方程在推导过程中的限制条件
(1)不可压缩流体;
(2)恒定流;
(3)质量力只有重力,所研究的流体边界是静止 的(或处于平衡状态);
取管轴0-0为基准面,测压管所在断面
1,2为计算断面(符合渐变流),断面的形
心点为计算点,对断面1,2写能量方程(4-
15),由于断面1,2间的水头损失很小,
可视
,取α1=α2=1,得
由此得:
故可解得:
式中,K对给定管径是常量,称为文丘里流 量计常数。
实际流量 : μ——文丘里流量计系数,随流动情况和管
流体力学
第四章 流体动力学基础
本章是工程流体力学课程中最重要的一 章。本章建立了控制流体运动的微分方程, 即理想流体运动微分方程和实际流体的运 动微分方程;并介绍了求解理想流体运动 微分方程的伯努利积分形式;构建了工程 流体力学中应用最广的恒定总流运动的三 大基本方程:连续性方程、伯努利方程 (即能量方程)和动量方程。通过本章的 学习要培养综合运用三大基本方程分析、 计算实际总流运动问题的能力。
道收缩的几何形状而不同。
流体力学-知识点

第一章 流体的基本概念质量力:f X i Yj Z k =++表面力:0lim =limA A P T p AAτ∆→∆→∆∆=∆∆/w w g s γργγρρ== =/体积压缩系数:111dV d V dpdp Kρβρ=-==温度膨胀系数: 11dV d V dTdTραρ==-pRT ρ= =du du T Adydyμμτμνρ= =第二章 流体静力学欧拉平衡微分方程:()dp Xdx Ydy Zdz ρ=++0p p h γ=+ vv a v p p p p p h γ'=-=-=12sin A p l Kl A γα⎛⎫=+= ⎪⎝⎭匀加速水平直线运动中液体的平衡:0arctan s a a ap p x z ax gz C z x g g g γα⎛⎫⎛⎫=+--+==- ⎪ ⎪⎝⎭⎝⎭=匀角速度旋转运动容器中液体的平衡:2222220222s r r rp p z z C z g g g ωωωγ⎛⎫=+--== ⎪⎝⎭静止液体作用于平面壁上的总压力:1.解析法:C c c D C C J P h A p A y y y Aγ===+2.图解法:静水总压力大小等于压强分布图的体积,其作用线通过压强分布图的形心,该作用线与受压面的交点即是压力中心D 。
第三章 流体运动学基础欧拉法:速度为()()(),,,,,,,,,x x y y z z u u x y z t u u x y z t u u x y z t ⎧=⎪=⎨⎪=⎩加速度为x x x x x xx y z y y y y y y x y z z z z z zz x y zdu u u u u a u u u dt t x y zdu u u u u a u u u dt t x y z du u u u u a u u u dt t x y z ∂∂∂∂⎧==+++⎪∂∂∂∂⎪∂∂∂∂⎪==+++⎨∂∂∂∂⎪⎪∂∂∂∂==+++⎪∂∂∂∂⎩()u a u u t ∂=+⨯∇∂0utu t⎧∂≠⎪⎪∂⎨∂⎪=⎪∂⎩非恒定流: 恒定流: ()()u u u u ⎧⨯∇≠⎪⎨⨯∇=⎪⎩非均匀流: 均匀流: 流线微分方程:xyzdx dy dz u u u ==迹线微分方程:xyzdx dy dz dt u u u ===流体微团运动分解:1.亥姆霍兹(Helmhotz )速度分解定理 2.微团运动分解 (1)平移运动(2)线变形运动 线变形速度:x xy y z z u xu y u z θθθ∂⎧=⎪∂⎪∂⎪=⎨∂⎪⎪∂=⎪∂⎩(3)角变形运动 角变形速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=+⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=+⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=+⎪∂∂⎪⎝⎭⎩ (4)旋转运动 旋转角速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=-⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=-⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=-⎪∂∂⎪⎝⎭⎩3.有旋运动与无旋运动定义涡量:2xyzij k u xy z u u u ω∂∂∂Ω==∇⨯=∂∂∂有旋流:0Ω≠ 无旋流:0Ω= 即y z x z y xu u y z u u z x u u xy ∂⎧∂=⎪∂∂⎪⎪∂∂=⎨∂∂⎪∂⎪∂=⎪∂∂⎩ 或 000x y z ωωω⎧=⎪=⎨⎪=⎩平面无旋运动:1.速度势函数(简称势函数)(),,x y z ϕ (1)存在条件:不可压缩无旋流。
流体力学四章节流体运动学

(4.6)
w
iw x
jw y
k
w
z
w
w
2 x
w
2 y
w
2 z
ppx,y,z,t
(4.7)
x,y,z,t
第7页
退出 返回
(4.8)
第四章 流体运动学
第一节 流体运动的描述
因为质点在流场内是连续的,所以流体加速度的各分量为
同样
dwx wx wx x wx y wx z dt t x t y t z t
A
a
t0 et0
1
B
b
t0 1 et0
将A,B,C值代入前式得到
Cc
xaett00 1et t1
ybet0t01et t1 zc
这就是流场中的迹线方程式,也就是质点空间坐标的拉格朗日表达式,它
表示一迹线族。若某一个质点,当 t0 0时其起始位置 a 1,b2,c 3,
则这个质点的迹线方程式为 x2et t1 y3et t1 z 3
D D B t B tw x B xw y B yw z B zB t wBtwB (4.11)
(三)两种描述方法的关系 拉格朗日法和欧拉法两种表达式可以互换。例如,从拉格朗日法的坐标 位置表达式(4.1),可以求出用x,y,z,t 表示的拉格朗日变数a,b, c 的关系式
第9页 退出 返回
第四章 流体运动学
y,
z, t
wz
z t
wz x,
y,
z,
t
(b)
第10页 退出 返回
第四章 流体运动学
第一节 流体运动的描述
将(b)式进行积分,则
x F1C1, C2, C3, t
流体力学第四章-黏性流体的运动和阻力计算

6、层流起始段长度——见课本74页
*4.4 圆管中的湍流流动
30
一、脉动现象与时均值
1、这种在定点上的瞬时运动参数随时间而发生波动的现象称为
脉动。
2、时均法分析湍流运动
u u u'
如取时间间隔T,瞬时速度在T时间内的平均值称为时间平均 速度,简称时均速度,即
二局部阻力某段管道上流体产生的总的能量损失应该是这段管路上各种能量损失的迭加即等于所有沿程能量损失与所有局部能量损失的和用公式表示为三总能量损失能量损失的量纲为长度工程中也称其为水头损失221圆管层流时的运动微分方程牛顿力学分析法可参考课本71页的ns方程分析法取长为dx半径为r的圆柱体不计质量力和惯性力仅考虑压力和剪应力则有pdpdxdprdxdpdrdudxdpdrdu根据牛顿粘性定律再考虑到则有dr图41圆管层流的速度和剪应力分布25在过流断面的任一半径r处取一宽度为dr的圆环如图42所示
u1
Tudt1
T(uu')dt1
Tudt1
T
u'dt
T0
T0
T0
T0
u1
T
u'dt
T0
时均压强
p
1
T
pdt
T0
.
二、湍流的速度结构、水力光滑管和水力粗糙管
31
1.湍流的速度结构 管中湍流的速度结构可以划分为以下三个区域:
(1)粘性底层区(层流底层):在靠近管壁的薄层区域内,流 体的粘性力起主要作用,速度分布呈线性,速度梯度很大,这 一薄层叫粘性底层。如图所示。
湍流 层流的临界速度 ——下临界流速
v c ——上临界速度
v c ——下临界速度
流体力学-第四章 流体动力学基础

Dt t CV
CS
单位质量流体的能量 e (u V 2 gz) 流体系统的总能量
2
DE ed eV ndS
Dt t CV
CS
E ed
初始时刻系统与控制体重合
Q WSYS Q WCV
ed eV ndS Q W
t CV
CS
§4.2 对控制体的流体力学积分方程
§4.1 系统和控制体,雷诺输运定理
雷诺输运定理:
举例:动量定理运用于流体系统
F Dk Dt
F 是外界作用系统的合力,K 是系统的动量,
k Vd
由于系统不断改变位置、形状大小,组成系统的流体质点的密度和速度随
时间也是变化的,所以系统的动量也是变化的,求其对时间的变化率,即
求该流体系统体积分的物质导数。
取 N M 单位体积的质量
DM 0 Dt
d V ndS 0
t CV
CS
d V ndS 0
t CV
CS
积分形式的连续性方程
§4.2 对控制体的流体力学积分方程
非定常流动情况下:
d V ndS 0
t CV
CS
即单位时间内控制体内流体质量的增加或减少等于同时间内通过控制面流入 或流出的净流体质量。如果控制体内的流体质量不变,则必然同一时间内流 入与流出控制体的流体质量相等。
左端第一项——是控制体内流体动量随时间变化而产生的力,它反映流体运动的非定常性
左端第二项——是单位时间内流体流入和流出控制体的动量之差,它表示流入动量与流出动量
不等所产生的力。
§4.2 对控制体的流体力学积分方程
定常流动条件:
F
FB FS
VV ndS
CS
VV ndS
流体力学第4章流体流动基本原理

mCV qm2 qm1 0 t
28
对稳态流动系统,流体及流动参数均与 时间无关,即
mCV / t 0
因此,质量守恒方程简化为
qm1 qm2
或 1v1 A1 2v2 A2
即稳态流动,输入与输出的质量必然相等。
29
对不可压缩流体的稳态流动,ρ=const,则
v1 A v2 A2 1
CV
vmax
2
R v1R 0
2 2
34
故有
vmax=2v1
例题:一储气罐,罐中空气经管道向外界排出,
已知管道出口处气流密度和压强为均匀分布,而 速度呈抛物线规律分布:
r v vmax (1 2 ) r0
已知排气管r0=0.025m,当储气罐 中p0=0.14MPa,T0=277.8K,测得 管道出口处气流vmax=32m/s,储气 罐和管道的总容积0.32m3。
24
③ 控制体内的质量变化率
对于控制体内密度为ρ的任意微元体积dV,其质 量为ρdV。将ρdV在整个控制体CV积分可得控制体内 的瞬时总质量,再对时间求导得:
控制体内的 质量变化率 =
t
dV
CV
ρ dv
25
④ 质量守恒方程
将上述各式集合在一起即可得到控制体系
统的质量守恒方程:
输出控制体 的质量流量 输入控制体 — 的质量流量
4.2.1 控制体系统的质量守恒方程
根据质量守恒原理,对于质量为m的系统,其质 量守恒方程为
dm ( )系统 0 dt
由输运公式,以控制体为研究对象时质量守恒方程 可表述为
19
输出控制体 的质量流量
—
输入控制体 的质量流量
流体力学资料复习整理

流体复习整理资料第一章 流体及其物理性质1.流体的特征——流动性:在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。
也可以说能够流动的物质即为流体。
流体在静止时不能承受剪切力,不能抵抗剪切变形。
流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。
只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。
运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。
2.流体的重度:单位体积的流体所的受的重力,用γ表示。
g 一般计算中取9.8m /s 23.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/8003. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。
通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。
4.压缩系数:弹性模数:21d /d pp E N m ρβρ==膨胀系数:)(K /1d d 1d /d TVV T V V t ==β5.流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。
流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现。
温度升高时,液体的粘性降低,气体粘性增加。
6.牛顿内摩擦定律: 单位面积上的摩擦力为:3/g N m γρ=p V V p V V p d d 1d /d -=-=β21d 1d /d d p V m NV p pρβρ=-=h U μτ=内摩擦力为: 此式即为牛顿内摩擦定律公式。
其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘度ν τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的内摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 2 ρ dV ( v 2 − v1 ) + ρ dVg( h2 − h1 ) 机械能增量 2 1 2 流入的机械量 Ek + Ep = ρS1v1dt ⋅ v1 +ρS1v1dt ⋅ gh 1
P1 S1 ⋅ v1dt − P2 S 2 ⋅ v 2 dt = ( P − P )S1v1dt 1 2 dV
推导过程: 推导过程:功能原理和连续性方程
考虑dt时刻内, 考虑dt时刻内,流入的质量和流出质量相等 dt时刻内 质量守恒ρ S1 v1dt =
2
ρ S 2 v 2 dt
S2
v2 P
2
外力做功
两侧压力 不做功
v1
1
P
1
h2
S1
外部压力 dt时刻外力的总功: 时刻外力的总功: 时刻外力的总功
2 1 2 流出的机械量 Ek + Ep = ρS2v2dt ⋅ v2 +ρS2v2dt ⋅ gh 2 2
3
A.v/6; . ;
B.v; . ;
C.3v/2 ;√ D.v/3 . . .
4-2.流体在流管中作稳定流动,截面积0.5 cm2 .流体在流管中作稳定流动,截面积 处的流速为12 处的流速为 cm/s。流速 cm/s的地方的截面积是 。流速4 的地方的截面积是 ( ) A.0.5 cm2; B.1.2 cm2; . . C.1.5 cm2;√ D.2.0 cm2. . .
(2)
稳定流动
流体在流动过程中,流体质点所经过的空间各点流速大 流体在流动过程中,流体质点所经过的空间各点流速大 小和方向不随时间变化. 小和方向不随时间变化.
r r r v = v x y z,) v x y z t ( , , = ( , ,,)
稳定流动时, 流速场的空间分布不随时间变化. 稳定流动时 流速场的空间分布不随时间变化
dV = S B v B dt
dV = S Adh
SB vB ∴ dh = ⋅ 2 gh dt SA
时水的流速为: 解:当水位为 h 时水的流速为
vB ≈ 2gh
容器中液面下降dh 的高度需要时间为: 容器中液面下降 的高度需要时间为
SB=1 cm2 = 10−4 m2
dt=
dh ⋅ S A S B 2 gh
(4) 流管 流管(tube of flow )
经过该截面周边的流线组成的管状体为流管。 经过该截面周边的流线组成的管状体为流管。
流管同样也是一种形象描述; ① 流管同样也是一种形象描述 流管的形状在稳定流动时保持不变; ② 流管的形状在稳定流动时保持不变 稳定流动时, 流管内外的流体彼此互不交换. ③ 稳定流动时 流管内外的流体彼此互不交换
QSA >> SB ∴vA ≈ 0
选择B处为势能零点, 选择 处为势能零点,则 处为势能零点
点A: hA=h, vA=0, pA=p0 点B: hB=0, pB=p0, vB=? 1 1 2 p0 + ρ ⋅ 0 + ρgh = p0 + ρvB2 + 0 2 2 1 2 ρgh = ρvB vB = 2gh 2
t = ∫0
0
hA
SAdh SB 2gh
−4
整个水箱的水流尽所需时间为 = ∫
0.7
6 × 10 −2 dh
10 × 2 × 9.8 × h
= 227 ( s )
3. 流速计 比托管 流速计(比托管 比托管pitot tube)
2. 稳定流动 (steady flow)
研究方法 (1) 流速场
某一时刻,流体空间中每一点 某一时刻,流体空间中每一点(x, y, z)上有一个速度矢量 上有一个速度矢量 v(x, y, z), 它们构成一个流速场. 它们构成一个流速场. 一般流体运动,速度矢量是空间和时间的函数。 一般流体运动,速度矢量是空间和时间的函数。 空间 的函数 拉格朗日法( 拉格朗日法(Lagrange method) ) 欧拉法( 欧拉法(Euler method) )
P =?
p, h, v均为 量 常
若某处与大气相通, ③ 若某处与大气相通 则该处的压强为大气压 p0
伯努利方程的应用 1. 空吸 空吸(suction)
水平管: 水平管: h1=h2=h
1 2 1 2 p1 + ρgh1 + ρv1 = p2 + ρgh2 + ρv2 2 2
1 2 1 2 p1 + ρv1 = p2 + ρv2 2 2 S1 v1 = S 2 v 2
2
静压强
动压强
(2) 适用条件
1 2 1 2 p1 + ρgh + ρv1 = p2 + ρgh + ρv2 1 2 2 2
理想流体做稳定流动; ① 理想流体做稳定流动 同一流管的不同截面积处或同一流线的不同点; ② 同一流管的不同截面积处或同一流线的不同点
分支管道的伯努利方程: (3) 分支管道的伯努利方程: 1 S1 v1
S2
2
3
v2
1 2 1 2 p1 + ρgh1 + ρv1 = p2 + ρgh2 + ρv 2 2 2 1 2 1 2 p1 + ρv1 + ρgh1 = p3 + ρv3 + ρgh3 2 2
S3
v3
1 2 1 2 p1 + ρgh + ρv1 = p2 + ρgh + ρv2 1 2 2 2
h1
据功能原理(work-energy theory) 据功能原理
1 2 2 ( P − P ) = ρ ( v 2 − v1 ) + ρ g( h2 − h1 ) 1 2 2 1 1 2 2 P + ρv1 + ρgh = P + ρv2 + ρgh 1 1 2 2 2 2
1 P + ρgh+ ρv2 = C 2
S2<S1 v2>v1
∴ p2<p1
≈ p0
p 2< p 0 空吸作用
实例1: 实例 喷雾器
实例2: 实例 水流抽气机
2. 小孔流速
1 2 1 2 p1 + ρgh + ρv1 = p2 + ρgh + ρv2 1 2 2 2
一个很大的开口容器, 当注入液体后, 液体从小孔流出. 一个很大的开口容器 当注入液体后 液体从小孔流出 设小孔距液面的高度是h, 求液体从小孔流出的速度. 设小孔距液面的高度是 求液体从小孔流出的速度 v B = ? 任意选取一流线, 为流线上通过液面的一点 为 为流线上通过液面的一点, 任意选取一流线 A为流线上通过液面的一点 B为 该流线通过小孔上的一点. 该流线通过小孔上的一点 A •
分析: 随着水位下降, 流速逐渐减小, 有关。 分析 随着水位下降 流速逐渐减小 小孔流速和水位 h 有关。
Q S A >> S B ∴vB ≈ 2gh,vA ≈ 0
考察t~t+dt时刻内流出的水的体积: 时刻内流出的水的体积: 考察 时刻内流出的水的体积
SA=6×10−2 m2 ×
dh
hA=0.7 m
(3) 流线 (Stream line)
在流速场中,作一些曲线, 在流速场中,作一些曲线,曲线上任一点的切线方向表示流 体在该点的流速方向,这些曲线为流线 流线。 体在该点的流速方向,这些曲线为流线。 C A vA B vB vC
流线只是一种形象描述; ① 流线只是一种形象描述 任意两条流线互不相交; ② 任意两条流线互不相交 ? 稳定流动时 ③ 稳定流动时,流线形状及 分布不随时间改变。 分布不随时间改变。
单位体积流体的势能 势能; ρ gh :⋅m 单位体积流体的势能;
Daniel Bernoulli (1700 ~1782)
P2
v2
v1
h2
同一流管的不同截面处流体的压 强、单位体积的势能与单位体积 的动能之和是相等的。 的动能之和是相等的。
P1
h1
推导依据: 连续性方程和功能原理. 推导依据 连续性方程和功能原理
v1
c
S
2
d
v2
S 大 小
v 小 大
说明 流线稀 流线密
a b
∆ 流入质量: 流入质量: m1
流出质量: 流出质量: m2 ∆
= ρ S1v1 ∆t = ρ S 2 v 2 ∆t
质量守恒: 3. 质量守恒: ρS1v1= ρS2v2
ρS1v1= ρS2v2
4. 分支流管的连续性方程 S1 v1 S2 v2
(4) 特殊情况下方程的简化
① 不均匀水平管, h1=h2=h 不均匀水平管
1 2 1 2 p1 + ρv1 = p2 + ρv2 2 2 均匀管, ② 均匀管 S1=S2, v1= v2= v
竖直: 竖直 p1 + ρgh = p2 + ρgh 1 2 水平: 水平 h1=h2=h p1 = p2
• B
小孔流速同于自由落体时的速度,是偶然 小孔流速同于自由落体时的速度 是偶然? 是偶然 液面处的势能完全转化为小孔处的动能。 液面处的势能完全转化为小孔处的动能。
一圆形开口容器, 截面积6× 贮满清水, 例1 一圆形开口容器 高0.7 m, 截面积 ×10−2m2. 贮满清水 若容器底 有一小孔1cm2 , 问该容器中水流完需要多少时间? 水的流速是否不变? 问该容器中水流完需要多少时间? 有一小孔
第P104~105页,4-6、4-11、4-13、4-15
第4章 流体运动简介 章 the introduction of motion fluid
第1节 理想流体的运动 节 第2节 黏性流体的运动 节 流体: 液体和气体的各个部分间可以作相对运