生物化学考试辅导资料1
生物化学复习资料
生物化学复习资料生物化学是研究生物体内各种化学成分及其相互关系的一门学科。
它是生物学和化学两门学科的交叉领域,通过对生物体内的化学物质进行分析和研究,揭示生命现象的基本原理和机制。
以下是关于生物化学的复习资料,希望能够帮助同学们温故知新。
一、生物大分子的结构与功能1. 蛋白质:蛋白质是生物体内最重要的物质之一,由氨基酸组成,具有结构和功能多样性。
了解蛋白质的结构层次(一级结构、二级结构、三级结构和四级结构)、功能和分类是生物化学的基础。
例如,酶是一类重要的蛋白质,它可以催化生物体内的化学反应。
2. 核酸:核酸是构成生物体遗传信息的基本单位,包括DNA和RNA。
DNA是遗传信息的存储介质,RNA参与蛋白质的合成。
了解核酸的结构、功能和生物合成是理解遗传信息传递的关键。
3. 多糖:多糖是一类碳水化合物,由单糖分子通过糖苷键结合而成。
多糖在生物体内具有能量储存和结构支持的功能。
了解多糖的种类、结构和生物功能对于了解生物体内的能量代谢和细胞结构具有重要意义。
二、代谢与能量1. 代谢途径:代谢是生物体内的化学反应过程,包括物质的合成、降解和转化。
了解代谢途径(如糖酵解、脂肪酸合成、氨基酸代谢等)和相关酶的作用是理解生物体内化学反应的基本原理。
2. 能量产生与转化:生物体内的能量主要来自ATP(三磷酸腺苷)的合成和分解。
了解ATP的结构、合成途径和参与的能量转化过程是理解生物体内能量代谢的关键。
三、酶的性质与调节1. 酶的性质:酶是生物体内催化化学反应的蛋白质,具有高度的专一性和催化效率。
了解酶的底物特异性、酶促反应的速率和酶的催化机制是理解酶学的基础。
2. 酶的调节:生物体内的酶活性可以通过多种方式进行调节,如底物浓度、温度、pH值的变化以及酶的共价修饰等。
了解酶的调节机制对研究生物体内代谢的调控具有重要意义。
四、生物体内的信号传导1. 细胞膜受体:细胞膜受体是生物体内信号传导的重要组成部分,包括离子通道和酶联受体等。
生物化学复习资料(全)
⽣物化学复习资料(全)⽣物化学复习资料第⼆章核酸化学1、说明碱基、核苷、核苷酸和核酸之间在结构上的区别。
碱基主要是指嘌呤和嘧啶的衍⽣物,是核苷、核苷酸和核酸的主要成分;⽽核苷是在碱基上连⼀个戊糖⽽形成;核苷酸是核苷的磷酸酯,是核苷酸结构中戊糖上5号位相连接的羟基被⼀个磷酸分⼦酯化的产物;核酸是以核苷酸为基本结构单元所构成的巨⼤分⼦。
2、试从分⼦⼤⼩、细胞定位以及结构和功能上⽐较DNA和RNA。
DNA由两条互补的脱氧核糖核⽢酸亚单元的链组成的双螺旋结构,RNA仅是⽐DNA⼩得多的核糖核苷酸亚单元单链结构;DNA中有胸腺嘧啶(T),但⽆尿嘧啶(U),但RNA则相反,DNA主要是携带⽣物的遗传信息,指挥蛋⽩质的合成等,⽽RNA则在于遗传信息的翻译,转录等,有时也可以作为⼀种催化剂在⽣物的⽣命活动起⼀定的作⽤。
3、DNA双螺旋结构模型的要点有哪些?(1)、天然DNA分⼦由两条反向平⾏的5′-3′,另⼀条链的⾛向为3′-5′。
两条链沿⼀个假想的中⼼轴右旋相互盘绕,形成⼤沟和⼩沟。
(2)、磷酸和脱氧核糖作为不变的链⾻架成分位于螺旋外侧,作为可变成分的碱基位于螺旋内侧。
(3)、螺旋的直径为2nm,相邻碱基平⾯的垂直距离为0.34nm。
螺旋结构每隔10个碱基重复⼀次,间距为3.4nm。
(4)、DNA双螺旋结构是⼗分稳定的。
(稳定⼒量主要有两个:⼀个是碱基堆积⼒。
⼀个是碱基配对的氢键。
P25)4、正确写出与下列寡核苷酸互补的DNA 和RNA序列:(1)GA TCAA(2)TGGAAC(3)ACGCGT(4)TAGCA TCTAGTT ACCTTG TGCGCAA TCGTA(DNA)CUAGUU ACCUUG UGCGCA AUCGUA(RNA)7.从两种不同细菌提取得DNA样品,其腺嘌呤核苷酸残基分别占其核苷酸残基总数的32%和17%,计算这两种不同来分组成。
两种细菌中有⼀种是从温泉(64℃)中分离出来的,该细菌DNA具有何种碱基组成?为什么?答:第⼀种细菌腺嘌呤核苷酸占32%,鸟嘌呤核苷酸占18%,胸腺嘧啶核苷酸占32%,胞嘧啶核苷酸占18%;第⼆种细菌腺嘌呤核苷酸占17%,鸟嘌呤核苷酸占33%,胸腺嘧啶核苷酸占17%,胞嘧啶核苷酸占33%。
基础生物化学复习资料
基础生物化学复习资料基础生物化学复习资料生物化学是生物学和化学的交叉学科,研究生物体内的化学成分、化学反应和化学过程。
在生物学的学习中,生物化学是一个重要的组成部分,它帮助我们理解生命的基本原理和机制。
在这篇文章中,我们将回顾一些基础的生物化学知识,帮助大家复习和巩固这些重要的概念。
1. 生物大分子生物体内存在着许多重要的大分子,包括蛋白质、核酸、多糖和脂类。
蛋白质是生物体内功能最为多样的大分子,它们参与了几乎所有的生物过程,包括酶催化、信号传导和结构支持。
核酸是遗传信息的携带者,包括DNA和RNA,它们在细胞中担任着重要的角色。
多糖是由许多单糖分子组成的聚合物,它们在细胞中起到能量储存和结构支持的作用。
脂类是由脂肪酸和甘油分子组成的,它们在细胞中起到能量储存和细胞膜组成的作用。
2. 生物化学反应生物体内存在着许多重要的生物化学反应,包括氧化还原反应、酶催化反应和代谢反应。
氧化还原反应是生物体内能量转化的基础,它涉及电子的转移和能量的释放。
酶催化反应是生物体内反应速率加快的重要手段,酶是生物体内的催化剂,能够降低反应的活化能。
代谢反应是生物体内物质转化的过程,包括合成代谢和分解代谢,它们共同维持了生物体内的稳态。
3. 生物体内的能量转化生物体内的能量转化是维持生命活动的重要过程。
生物体通过食物摄取获得能量,其中最重要的是葡萄糖。
葡萄糖在细胞内经过糖酵解和细胞呼吸产生能量。
糖酵解是在缺氧条件下进行的,产生少量的ATP和乳酸。
细胞呼吸是在氧气存在的条件下进行的,产生大量的ATP和二氧化碳。
能量转化的最终产物是ATP,它是细胞内的能量货币,提供细胞内各种生物过程所需的能量。
4. 生物体内的信号传导生物体内的信号传导是维持生命活动的重要过程。
细胞通过受体蛋白质感受外界的信号,通过信号转导通路将信号传递到细胞内部。
信号转导通路包括多种信号分子、信号受体、信号传导分子和效应分子。
信号转导通路可以调节细胞的生长、分化、凋亡等生物过程,它在细胞内起到了重要的调控作用。
生物化学考试重点笔记(完整版)培训资料
生物化学考试重点笔记(完整版)第一章蛋白质的结构与功能第一节蛋白质的分子组成一、组成蛋白质的元素1、主要有C、H、O、N和S,有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别蛋白质还含有碘。
2、蛋白质元素组成的特点:各种蛋白质的含氮量很接近,平均为16%。
3、由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可以根据以下公式推算出蛋白质的大致含量:100克样品中蛋白质的含量( g % )= 每克样品含氮克数× 6.25×100二、氨基酸——组成蛋白质的基本单位(一)氨基酸的分类1.非极性氨基酸(9):甘氨酸(Gly)丙氨酸( Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)色氨酸(Try)蛋氨酸(Met)2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨酸 (Cys) 天冬酰胺 (Asn) 谷氨酰胺(Gln ) 苏氨酸(Thr )3、带负电荷氨基酸(酸性氨基酸)(2):天冬氨酸(Asp ) 谷氨酸(Glu)4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg)组氨酸( His)(二)氨基酸的理化性质1. 两性解离及等电点等电点 :在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
此时溶液的pH值称为该氨基酸的等电点。
2. 紫外吸收(1)色氨酸、酪氨酸的最大吸收峰在 280 nm 附近。
(2)大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法。
3. 茚三酮反应氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm 处。
由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法三、肽(一)肽1、肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。
(完整word版)生物化学复习资料(人卫7版) (1)
生化复习资料第一章一、蛋白质的生理功能蛋白质是生物体的基本组成成分之一,约占人体固体成分的45%左右。
蛋白质在生物体内分布广泛,几乎存在于所有的组织器官中。
蛋白质是一切生命活动的物质基础,是各种生命功能的直接执行者,在物质运输与代谢、机体防御、肌肉收缩、信号传递、个体发育、组织生长与修复等方面发挥着不可替代的作用。
二、蛋白质的分子组成特点蛋白质的基本组成单位是氨基酸✧编码氨基酸:自然界存在的氨基酸有300余种,构成人体蛋白质的氨基酸只有20种,且具有自己的遗传密码。
各种蛋白质的含氮量很接近,平均为16%。
✧每100mg样品中蛋白质含量(mg%):每克样品含氮质量(mg)×6.25×100。
氨基酸的分类✧所有的氨基酸均为L型氨基酸(甘氨酸)除外。
✧根据侧链基团的结构和理化性质,20种氨基酸分为四类。
1.非极性疏水性氨基酸:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、亮氨酸(Leu)、异亮氨酸(Ile)、苯丙氨酸(Phe)、脯氨酸(Pro)。
2.极性中性氨基酸:色氨酸(Trp)、丝氨酸(Ser)、酪氨酸(Tyr)、半胱氨酸(Cys)、蛋氨酸(Met)、天冬酰胺(Asn)、谷胺酰胺(gln)、苏氨酸(Thr)。
3.酸性氨基酸:天冬氨酸(Asp)、谷氨酸(Glu)。
4.碱性氨基酸:赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His)。
✧含有硫原子的氨基酸:蛋氨酸(又称为甲硫氨酸)、半胱氨酸(含有由硫原子构成的巯基-SH)、胱氨酸(由两个半胱氨酸通过二硫键连接而成)。
✧芳香族氨基酸:色氨酸、酪氨酸、苯丙氨酸。
✧唯一的亚氨基酸:脯氨酸,其存在影响α-螺旋的形成。
✧营养必需氨基酸:八种,即异亮氨酸、甲硫氨酸、缬氨酸、亮氨酸、色氨酸、苯丙氨酸、苏氨酸、赖氨酸。
可用一句话概括为“一家写两三本书来”,与之谐音。
氨基酸的理化性质✧氨基酸的两性解离性质:所有的氨基酸都含有能与质子结合成NH4+的氨基;含有能与羟基结合成为COO-的羧基,因此,在水溶液中,它具有两性解离的特性。
生物化学复习资料
⽣物化学复习资料⽣物化学复习题⼀、基本概念1、离⼦泵(K-Na泵和功能):(P49)由ATP酶驱动使膜内ATP⽔解并产⽣阴离⼦ADP-和阳离⼦H+。
H+释放到膜外,ADP-留在膜内,因⽽产⽣跨膜的质⼦梯度和电位差⽽引起对其他离⼦的吸收。
Na-K泵存在于动、植物细胞质膜上,它有⼤⼩两个亚基,⼤亚基催化ATP⽔解,⼩亚基是⼀个糖蛋⽩。
⼤亚基以亲Na+态结合Na+后,触发⽔解ATP。
每⽔解⼀个ATP释放的能量输送3个Na+到胞外,同时摄取2个K+⼊胞,造成跨膜梯度和电位差,这对神经冲动传导尤其重要,Na+-K+泵造成的膜电位差约占整个神经膜电压的80%。
2、新陈代谢:(P1)营养物质在⽣物体内所经历的由酶催化的⼀切化学变化的总称为新陈代谢,代谢特点:①连续的⼀系列单元反应组成②⽣化反应具体过程(TCA)③特定部位,特定终产物④包括物质代谢和能量代谢3、亲核反应:有机反应的⼀类,电负性⾼的亲核基团向反应底物中的带正电的部分进攻⽽使反应发⽣,这种反应为亲核反应。
与之相对的为亲电反应。
4、半保留复制与半不连续复制:半保留复制是双链DNA 的复制⽅式,其中亲代链分离,每⼀⼦代DNA 分⼦由⼀条亲代链和⼀条新合成的链组成。
(P407)半不连续复制是指DNA复制时,前导链上DNA的合成是连续的,后滞链上是不连续的,故称为半不连续复制5、异构化反应:(P11)⽣物化学中的异构化反应指的是⼀个氢原⼦在分⼦内迁移,即质⼦从⼀个碳原⼦脱离,转移到另⼀个碳原⼦上,由此发⽣了双键位置的改变。
代谢中最多的是醛糖-酮糖异构化互变反应6、分⼦重排反应:(P11)重排是C-C键断裂,⼜重新形成的反应。
其结果碳⾻架发⽣了变化。
7、克莱森酯缩合反应:(P13)克莱森(酯)缩合反应是含有α-活泼氢的酯类在醇钠、三苯甲基钠等碱性试剂的作⽤下,发⽣缩合反应形成β-酮酸酯类化合物,称为克莱森(脂)缩合反应,反应可在不同的酯之间进⾏,称为交叉酯缩合8、标准⽣成⾃由能:(P30)由标准状态下的稳定单质⽣成标准状态下1mol的化合物所引起的⾃由能的改变称为该化合物的标准摩尔⽣成吉布斯⾃由能。
小学生物化学复习资料
小学生物化学复习资料小学生物化学复习资料在小学生物学的学习中,化学是一个重要的分支。
通过学习化学,我们可以了解到生物体内发生的许多化学反应和物质的组成。
下面,我将为大家提供一些小学生物化学复习资料,希望对大家的学习有所帮助。
1. 物质的组成生物体内的物质主要由元素组成,最常见的元素有氧、碳、氢、氮、磷和硫等。
这些元素通过化学键的形式结合在一起,形成各种有机物和无机物。
有机物是由碳元素组成的,如蛋白质、脂肪和碳水化合物等。
无机物主要包括水、盐和矿物质等。
2. 化学反应生物体内的许多生命活动都与化学反应密切相关。
例如,消化食物是一种化学反应,我们的身体通过分解食物中的有机物,将其转化为能量和营养物质。
呼吸也是一种化学反应,我们吸入氧气,将其与食物中的有机物反应,产生二氧化碳和水,并释放出能量。
3. 酶的作用酶是一种特殊的蛋白质,它在生物体内起着催化化学反应的作用。
酶能够降低化学反应的活化能,使反应更容易发生。
例如,我们的口腔中有一种叫做唾液淀粉酶的酶,它能够将淀粉分解为糖类物质,为消化食物提供能量。
4. pH值的重要性pH值是衡量溶液酸碱性的指标。
在生物体内,许多生物活动都要求特定的pH 值。
例如,我们的胃液具有很低的pH值,能够杀死进入体内的细菌和病毒。
而血液的pH值要保持在一定的范围内,才能保证正常的生理功能。
5. 营养物质的作用营养物质是生物体生长和发育所必需的物质。
其中,碳水化合物是提供能量的主要来源,脂肪则是能量的储存物质。
蛋白质是构成细胞和组织的基本单位,同时也参与许多生物反应。
维生素和矿物质则是维持生理功能所必须的物质。
6. 化学与环境化学在生物体内不仅发生着各种反应,也与环境密切相关。
例如,光合作用是植物通过吸收阳光能量将二氧化碳和水转化为氧气和葡萄糖的过程。
这个过程不仅为植物提供了能量,也为我们提供了氧气。
7. 化学与健康化学在保持身体健康方面也起着重要的作用。
例如,我们需要摄入适量的维生素C来预防坏血病,摄入适量的钙来保持骨骼健康。
生物化学复习提纲
生物化学复习提纲一、蛋白质化学(一)蛋白质的组成和结构1、氨基酸的结构和分类20 种常见氨基酸的结构通式和特点氨基酸的分类方法(根据侧链性质)2、肽键和多肽链肽键的形成和结构特点多肽链的方向性(N 端和 C 端)3、蛋白质的一级结构定义和测定方法(如 Edman 降解法)一级结构与生物功能的关系4、蛋白质的二级结构α螺旋、β折叠、β转角和无规卷曲的结构特点和形成条件维系二级结构的化学键(氢键)5、蛋白质的三级结构定义和结构特点维系三级结构的化学键(疏水作用、离子键、氢键、范德华力等)6、蛋白质的四级结构概念和多亚基蛋白质的结构特点四级结构与功能的关系(二)蛋白质的性质1、两性解离和等电点蛋白质的两性解离性质等电点的定义和测定方法2、胶体性质蛋白质胶体稳定的原因破坏胶体稳定性的方法(如盐析)3、变性和复性变性的概念和因素(物理因素、化学因素)复性的条件和意义4、沉淀反应盐析、有机溶剂沉淀、重金属盐沉淀等方法的原理和应用5、颜色反应双缩脲反应、茚三酮反应等的原理和应用二、核酸化学(一)核酸的组成和结构1、核苷酸的组成碱基、戊糖和磷酸的结构和种类核苷酸的命名和缩写2、 DNA 的结构DNA 的双螺旋结构模型(Watson 和 Crick 模型)双螺旋结构的特点(碱基互补配对、大沟和小沟等) DNA 的三级结构(超螺旋结构)3、 RNA 的结构mRNA、tRNA、rRNA 的结构特点和功能各种 RNA 在蛋白质合成中的作用(二)核酸的性质1、紫外吸收DNA 和 RNA 的紫外吸收峰值紫外吸收在核酸定量分析中的应用2、变性和复性DNA 变性的概念和特点(增色效应)复性的条件和杂交技术的原理3、核酸的水解酸水解、碱水解和酶水解的特点和产物三、酶学(一)酶的概念和特点1、酶的定义和催化作用酶作为生物催化剂的作用原理酶与一般催化剂的异同点2、酶的特点高效性、专一性、可调节性、不稳定性等3、酶的命名和分类酶的命名方法(系统命名法和习惯命名法)酶的分类(氧化还原酶、转移酶、水解酶、裂合酶、异构酶、合成酶)(二)酶的结构与功能1、酶的活性中心活性中心的概念和组成活性中心与催化作用的关系2、酶原与酶原激活酶原的概念和生理意义酶原激活的机制和实例3、同工酶同工酶的概念和生理意义同工酶在临床上的应用(三)酶的作用机制1、降低反应的活化能活化能的概念酶降低活化能的方式2、酶的催化机制邻近效应和定向效应诱导契合学说酸碱催化、共价催化等(四)影响酶促反应速率的因素1、底物浓度米氏方程和米氏常数的意义底物浓度对反应速率的影响曲线(双曲线)2、酶浓度酶浓度与反应速率的关系3、温度温度对酶促反应速率的影响(最适温度)低温和高温对酶活性的影响4、 pHpH 对酶促反应速率的影响(最适 pH)酶的酸碱稳定性5、抑制剂不可逆抑制剂和可逆抑制剂的作用机制竞争性抑制、非竞争性抑制和反竞争性抑制的特点和动力学特征6、激活剂激活剂的种类和作用机制四、生物氧化(一)生物氧化的概念和特点1、生物氧化的定义和意义生物氧化与体外氧化的异同点2、呼吸链呼吸链的组成成分(NADHQ 还原酶、泛醌、细胞色素还原酶、细胞色素 c、细胞色素氧化酶)呼吸链的电子传递顺序和偶联机制3、 ATP 的生成氧化磷酸化的概念和机制(化学渗透学说)ATP 合酶的结构和作用机制底物水平磷酸化的概念和实例(二)生物氧化过程中能量的产生和转移1、自由能的变化和氧化还原电位自由能变化与反应方向的关系氧化还原电位的概念和测定2、高能化合物高能磷酸化合物(如 ATP、GTP 等)其他高能化合物(如硫酯键、甲硫键等)五、糖代谢(一)糖的消化和吸收1、食物中糖的种类单糖、双糖和多糖的常见类型2、糖的消化参与消化的酶(如淀粉酶、麦芽糖酶等)消化的部位和产物3、糖的吸收吸收的部位和机制(主动运输、被动扩散)(二)糖的无氧氧化1、糖酵解的过程十步反应的具体过程和酶的作用能量的产生和消耗2、糖酵解的生理意义在缺氧条件下为机体提供能量是某些组织和细胞的主要供能方式(三)糖的有氧氧化1、有氧氧化的过程三个阶段(糖酵解、丙酮酸氧化脱羧、三羧酸循环)的反应过程和酶的作用能量的产生和计算2、三羧酸循环反应过程和特点三羧酸循环的生理意义3、有氧氧化的生理意义(四)磷酸戊糖途径1、反应过程氧化阶段和非氧化阶段的反应2、生理意义生成 NADPH 和磷酸核糖(五)糖原的合成与分解1、糖原的合成合成的途径和关键酶2、糖原的分解分解的途径和关键酶3、糖原合成与分解的生理意义(六)糖异生1、糖异生的途径从丙酮酸等非糖物质合成葡萄糖的过程2、糖异生的生理意义维持血糖浓度的相对稳定补充肝糖原储备六、脂代谢(一)脂类的消化和吸收1、脂肪的消化参与消化的酶(如胰脂肪酶等)消化的产物(甘油一酯、脂肪酸等)2、脂类的吸收吸收的部位和方式(二)甘油三酯的代谢1、甘油三酯的合成合成的部位和原料合成的途径(甘油二酯途径、甘油一酯途径)2、甘油三酯的分解脂肪动员的概念和关键酶脂肪酸的β氧化过程(活化、转运、β氧化、能量产生)(三)磷脂的代谢1、磷脂的合成合成的部位和原料常见磷脂(如卵磷脂、脑磷脂等)的合成途径2、磷脂的分解参与分解的酶和产物(四)胆固醇的代谢1、胆固醇的合成合成的部位和原料合成的过程和关键酶2、胆固醇的转化转化为胆汁酸、类固醇激素等的途径七、氨基酸代谢(一)蛋白质的营养作用1、必需氨基酸和非必需氨基酸必需氨基酸的种类食物蛋白质的营养价值评价2、蛋白质的互补作用概念和意义(二)氨基酸的一般代谢1、氨基酸的脱氨基作用转氨基作用、氧化脱氨基作用、联合脱氨基作用的机制和特点体内主要的转氨酶和 L谷氨酸脱氢酶2、氨的代谢氨的来源和去路鸟氨酸循环的过程和生理意义3、α酮酸的代谢生成非必需氨基酸、转变为糖或脂肪(三)个别氨基酸的代谢1、一碳单位的代谢一碳单位的概念和种类一碳单位的载体和来源一碳单位的生理功能2、含硫氨基酸的代谢甲硫氨酸的代谢(SAM、同型半胱氨酸等)半胱氨酸的代谢(牛磺酸、谷胱甘肽等)3、芳香族氨基酸的代谢苯丙氨酸和酪氨酸的代谢(多巴胺、黑色素等)色氨酸的代谢(5-羟色胺等)八、核苷酸代谢(一)嘌呤核苷酸的代谢1、嘌呤核苷酸的合成从头合成的途径和关键酶补救合成的途径和酶2、嘌呤核苷酸的分解代谢最终产物(尿酸)痛风症的发病机制(二)嘧啶核苷酸的代谢1、嘧啶核苷酸的合成从头合成的途径和关键酶补救合成的途径和酶2、嘧啶核苷酸的分解代谢最终产物九、物质代谢的联系与调节(一)物质代谢的相互联系1、糖、脂、蛋白质代谢之间的相互联系糖可以转变为脂肪和蛋白质脂肪不能大量转变为糖和蛋白质蛋白质可以转变为糖和脂肪2、核酸与物质代谢的相互联系核酸的合成需要糖、脂、蛋白质代谢提供原料核酸的代谢产物可以参与物质代谢的调节(二)代谢调节1、细胞水平的调节酶活性的调节(变构调节、共价修饰调节)酶含量的调节(基因表达调控)2、激素水平的调节激素的分类和作用机制激素对物质代谢的调节作用3、整体水平的调节神经系统对物质代谢的调节饥饿和应激状态下物质代谢的变化。
生物化学超详细复习资料图文版
一。
核酸的结构和功能脱氧核糖核酸(deoxyribonucleicacid,DNA):遗传信息的贮存和携带者,生物的主要遗传物质。
在真核细胞中,DNA主要集中在细胞核内,线粒体和叶绿体中均有各自的DNA。
原核细胞没有明显的细胞核结构,DNA 存在于称为类核的结构区。
核糖核酸(ribonucleicacid,RNA):主要参与遗传信息的传递和表达过程,细胞内的RNA主要存在于细胞质中,少量存在于细胞核中。
DNA分子中各脱氧核苷酸之间的连接方式(3′-5′磷酸二酯键)和排列顺序叫做DNA的一级结构,简称为DNA旋相互盘绕而形成。
?—C配对(碱基配对原则,?结构每隔隔为DNA?氢键??DNADNA构.?RNA类别:?信使RNA(messengerRNA,mRNA):在蛋白质合成中起模板作用;?核糖体RNA(ribosoalRNA,rRNA):与蛋白质结合构成核糖体(ribosome),核糖体是蛋白质合成的场所;?转移RNA(transforRNA,tRNA):在蛋白质合成时起着携带活化氨基酸的作用。
rRNA的分子结构特征:?单链,螺旋化程度较tRNA低?与蛋白质组成核糖体后方能发挥其功能mRNA的分子结构原核生物mRNA特征:先导区+翻译区(多顺反子)+末端序列真核生物mRNA特征:5′-“帽子”(m7G-5′ppp5′-Nmp)+单顺反子+“尾巴”(PolyA)-3′核酸的变性、复性和杂交变性:在物理、化学因素影响下,DNA碱基对间的氢键断裂,双螺旋解开,这是一个是跃变过程,伴有A260增加(增色效应),DNA的功能丧失。
复性:在一定条件下,变性DNA单链间碱基重新配对恢复双螺旋结构,伴有A260减小(减色效应),DNA的功能恢复。
不同来源的DNA单链间或单链DNA与RNA之间只要有碱基配对的区域,在复性时可形成局部双螺旋区,称核酸分子杂交Tm:熔解温度DNA的熔6、计算(1)分子量为3?105的双股DNA分子的长度;(2)这种DNA一分子占有的体积;(3)这种DNA一分子占有的螺旋圈数。
生物化学复习资料
⽣物化学复习资料⽣物化学复习资料1.氨基酸的结构特点:在20种标准氨基酸中只有脯氨酸为亚基氨酸,其他氨基酸都是α-氨基酸,除了⽢氨酸之外,其他氨基酸的α-碳原⼦都结合了4个不同的原⼦或基团(羧基、氨基、R基和⼀个氢原⼦)。
所以α-碳原⼦是⼀个⼿性碳原⼦,氨基酸是⼿性分⼦,有L-氨基酸与D-氨基酸之分,标准氨基酸均为L-氨基酸。
2.酸性氨基酸:天冬氨酸、⾕氨酸(R基所含的羧基在⽣理条件下可以给出H+的带负电荷)碱性氨基酸:赖氨酸、精氨酸、组氨酸(R基所含的咪唑基在⽣理条件下可以给出H+的带负电荷)芳⾹族氨基酸:⾊氨酸、苯丙氨酸、酪氨酸3.氨基酸的两性电离:氨基酸都含有氨基和羧基,氨基可以结合H+⽽带正电荷,羧基可以给出H+⽽带负电荷,所以氨基酸是两性电解质,氨基酸的这种解离特征成为两性解离。
等电点:氨基酸在溶液中的解离程度受ph影响,在某⼀ph值条件下,氨基酸解离成阴离⼦和阳离⼦的趋势和程度相同,溶液中氨基酸的静电荷为0,此时溶液的ph值称为该氨基酸的等电点。
4.试⽐较蛋⽩质和多肽的区别:多肽链是蛋⽩质的基本结构,实际上蛋⽩质就是具有特定构象的多肽,但多肽并不都是蛋⽩质(①分⼦量<10kDa的是多肽<不包含寡肽>,分⼦量>10kDa的是蛋⽩质,胰岛素例外,它是蛋⽩质②⼀个多肽分⼦只有⼀条肽链,⽽⼀个蛋⽩质分⼦通常含有不⽌⼀条肽链③多肽的⽣物活性可靠与其构象⽆关,⽽蛋⽩质则不然,改变蛋⽩质的构象会改变其⽣物活性④许多蛋⽩质含有辅基,⽽多肽⼀般不含辅基5.简述蛋⽩质的⼀⼆三四级结构,常见的⼆级结构有哪些?⼀:蛋⽩质分⼦内氨基酸的排列顺序称为蛋⽩质的⼀级结构,包括⼆硫链的位置⼆:蛋⽩质多肽链局部⽚段的构象,不涉及侧链的空间排布:α螺旋、β折叠、β转⾓、⽆规则卷曲。
三:在⼀级结构中相隔较远的⼀些氨基酸依靠⾮共价键及少量共价键相互结合,使多肽链在⼆级结构基础上进⼀步折叠,形成特定的空间结构,这就是蛋⽩质的三级结构。
414生物化学复习指南书
414生物化学复习指南书第1章蛋白质
1.1 蛋白质的结构
1.1.1 一级结构
1.1.2 二级结构
1.1.3 三级结构
1.1.4 四级结构
1.2 蛋白质的功能
1.2.1 酶
1.2.2 结构蛋白
1.2.3 运输蛋白
1.2.4 信号蛋白
第2章核酸
2.1 DNA的结构和复制
2.1.1 DNA的双螺旋结构
2.1.2 DNA的复制机制
2.2 RNA的种类和功能
2.2.1 mRNA
2.2.2 tRNA
2.2.3 rRNA
2.3 蛋白质的合成
第3章酶
3.1 酶的命名和分类
3.2 酶的结构和活性中心3.3 酶的作用机理
3.4 影响酶活性的因素3.5 酶在生物体内的应用
第4章代谢
4.1 糖代谢
4.1.1 糖酵解
4.1.2 柠檬酸循环
4.2 脂肪代谢
4.3 蛋白质代谢
4.4 能量转移和ATP
第5章生物信号传导5.1 受体和信号分子
5.2 信号转导途径
5.3 细胞周期调控
5.4 癌症与信号传导
第6章生物化学实验技术6.1 蛋白质分离和纯化6.2 核酸的提取和分析
6.3 酶活性测定
6.4 基因克隆和序列分析。
生物化学复习资料
生物化学复习资料绪论:生物化学是生命的化学,是研究生物体的化学组成和生命过程中的化学变化规律的一门学科。
它是从分子水平来研究生物体(包括人类、动物、植物和微生物)内基本物质的化学组成、结构与生物学功能,阐明生物物质在生命活动中的化学变化(即反应代谢)规律及复杂生命现象本质的一门科学。
第一章、糖1、糖的概念:糖是指由多羟基醛或多羟基酮及其聚合物和衍生物的总和。
2、糖的化学组成我C、H、O3、糖的生物学功能:3.1 糖是人和动物的主要能源物质3.2糖类还具有结构功能3.3糖具有复杂的多方面的生物活性及功能4、糖的分类:根据含糖单位的数目将糖分为以下几类4.1 单糖,凡不能被水解成更小分子的糖称为单糖。
丙糖、丁糖、戊糖、己糖4.2 寡糖。
是有单糖缩合而成的断链结构(一般含2-6个单糖分子)二糖、三糖4.3 多糖,是由许多单糖分子缩合而成的长链结构。
如淀粉、糖原、纤维素5、多糖的分类5.1 按照多糖来源分为:植物多糖、动物多糖、微生物多糖、海洋生物多糖植物多糖:从植物,尤其是从中药中提取的水溶性多糖。
如当归多糖、枸杞多糖、大黄多糖;动物多糖:从动物的组织、器官及体液中分离、纯化得多的多糖。
如肝素、透明质酸、硫酸软骨素等微生物多糖:如香菇多糖、茯苓多糖、银耳多糖等海洋生物多糖:从海洋、湖泊生物体内分离、纯化得到的多糖。
如几丁质、螺旋藻多糖等5.2 按多糖在生物体内的生理功能分为贮存多糖、结构多糖。
贮存多糖:是细胞在一定生理发展阶段形成的材料,主要以固定形式存在,较少是溶解的或高度水化的胶体状态。
如淀粉和糖原结构多糖:也称水不溶性多糖,具有硬性和韧性。
结构多糖在生长组织里进行合成,是构成细菌的细胞壁或动植物的支撑组织所必需的物质,如几丁质、纤维素。
5.3 多糖按其组成成分不同分为同聚多糖、杂聚多糖、黏多糖、结合糖。
同聚多糖:由一种单糖缩合而成,如淀粉、糖原、纤维素杂聚多糖:有不同单糖缩合而成,肝素,透明质酸黏多糖:是含氮的不均一多糖,其化学组成糖醛酸及氨基己糖或其衍生物,如透明质酸、肝素、硫酸软骨素。
生物化学 复习资料
生物化学复习资料生物化学复习资料生物化学是研究生物体内化学成分及其相互作用的科学。
它涉及到许多重要的生物分子,如蛋白质、核酸、碳水化合物和脂质,以及与它们相关的代谢途径和能量转化。
在这篇文章中,我们将探讨一些生物化学的重要概念和知识点,以帮助你复习这门学科。
1. 蛋白质:蛋白质是生物体内最重要的分子之一,它们由氨基酸组成。
氨基酸是一种含有氨基和羧基的有机分子,它们通过肽键连接在一起形成多肽链,进而形成蛋白质。
蛋白质在生物体内担任多种功能,包括酶催化、结构支持和信号传导等。
2. 核酸:核酸是生物体内存储和传递遗传信息的分子。
它们由核苷酸组成,核苷酸由糖分子、碱基和磷酸组成。
DNA是一种双链核酸,它包含了生物体的遗传信息。
RNA是一种单链核酸,它在蛋白质合成中起着重要的作用。
3. 碳水化合物:碳水化合物是生物体内最常见的有机分子之一,它们由碳、氢和氧原子组成。
碳水化合物可分为单糖、双糖和多糖三种类型。
单糖包括葡萄糖和果糖,它们是生物体内能量的重要来源。
多糖包括淀粉和纤维素,它们在能量存储和结构支持方面起着重要的作用。
4. 脂质:脂质是生物体内的另一类重要有机分子,它们主要由碳、氢和氧原子组成。
脂质可分为甘油三酯、磷脂和固醇三种类型。
甘油三酯是脂肪的主要组成部分,它们在能量存储和绝缘保护方面起着重要的作用。
磷脂是细胞膜的主要组成部分,它们在细胞结构和信号传导中起着重要的作用。
固醇包括胆固醇和激素,它们在细胞膜的稳定性和调节生理功能方面起着重要的作用。
5. 代谢途径:代谢途径是生物体内化学反应的连续序列,用于合成和分解生物分子以及能量转化。
其中最重要的代谢途径包括糖酵解、脂肪酸氧化和氧化磷酸化。
糖酵解是将葡萄糖分解为乳酸或乙酸,并产生少量ATP的过程。
脂肪酸氧化是将脂肪酸分解为乙酰辅酶A,并产生大量ATP的过程。
氧化磷酸化是将ATP合成反应与氧化还原反应相结合,产生大量ATP的过程。
6. 能量转化:能量转化是生物体内能量的转化和利用过程。
1_生物化学考试提纲(1)(1)
名词解释:1.生物大分子:主要指蛋白质,核酸,多糖,蛋白聚糖和复合脂类等。
2. 肽链:是由一个氨基酸a-羧基与另一个氨基酸的a-氨基脱水缩合而形成的酰胺键。
3.蛋白质的一级结构:蛋白质分子中从N-端至C-端的氨基酸的排列顺序。
4.蛋白质的等电点:当蛋白质溶液处于某一PH时,蛋白质解离成正,负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的PH称为蛋白质的等电点。
5.蛋白质的变性作用:在某些理化因素影响下,蛋白质的空间构象被破坏,导致其理化性质改变和生物学活性丧失,称为蛋白质的变性。
6.DNA的变性:在某些理化因素作用下DNA双链互补碱基对之间的氢键发生断裂使双链DNA解链为单链的过程。
7.Tm值:在DNA解链过程中,A260的值达到最大变化值的一半时所对应的温度称为解链温度。
8.DNA的复性:当变性条件缓慢去除后,两条解离的互补链可重新配对,恢复原来的双螺旋结构,这一过程称为DNA的复性。
9.酶的活性中心:必需基团在一级结构上可能相距甚远,但在空间结构上却彼此靠近,形成具有一定空间结构的区域,能与底物特异结合并催化底物转化为产物,这一区域称为酶的活性中心。
10.酶的专一性:一种酶只能催化一种或一类化合物,或一种化学键,发生一定的化学反应,生成一定的产物,这种特性称为酶的专一性或特异性。
11.Km值:Km等于酶促反应速度为最大速度一半时的底物浓度,即当V=1∕2 Vmax时,Km=[S],Km单位为mol∕L。
12.酶原及酶原的激活:有些酶在细胞内合成或初分泌时没有催化活性,这种无活性的酶的前体称为酶原。
在一定条件下,酶原受到某种因素作用后分子结构发生变化,暴露或形成活性中心,使其转变成具有活性的酶,这一过程称为酶原的激活。
13.氧化磷酸化:是物质在体内氧化时释放的能量供给ADP与无机磷合成ATP的偶连反应。
14.底物水平磷酸化:在生物氧化过程中,代谢物由于脱氢或脱水引起分子内部能量重新分布而产生高能键,所形成的高能键直接转移给ADP而产生ATP的过程。
生物化学复习资料
生物化学复习资料生物化学复习资料生物化学是生物学和化学的交叉学科,研究生物体内的化学成分、结构和功能,以及生物体内的化学反应和代谢过程。
对于学习生物化学的学生来说,复习资料是非常重要的辅助工具。
本文将为大家提供一些生物化学复习资料,帮助大家更好地掌握这门学科。
一、基础知识回顾1. 生物大分子:生物大分子是生物体内的重要组成部分,包括蛋白质、核酸、多糖和脂质。
复习时,可以重点关注它们的结构和功能,以及与生物体内其他分子的相互作用。
2. 酶:酶是生物体内的催化剂,可以加速化学反应的进行。
复习时,可以重点关注酶的分类、酶的活性调节机制以及酶与底物之间的相互作用。
3. 代谢途径:代谢途径是生物体内化学反应的网络,包括糖代谢、脂肪代谢和蛋白质代谢等。
复习时,可以重点关注每个代谢途径的关键酶和反应,以及这些代谢途径的调节机制。
二、实验技术回顾1. 分离技术:在生物化学实验中,分离技术是非常重要的一环。
复习时,可以回顾凝胶电泳、层析技术和离心技术等常用的分离技术,了解它们的原理和应用。
2. 光谱技术:光谱技术在生物化学研究中有广泛的应用,包括紫外-可见吸收光谱、红外光谱和核磁共振光谱等。
复习时,可以回顾这些光谱技术的原理和解读方法。
3. 基因工程技术:基因工程技术是生物化学领域的前沿技术之一,可以用于改造和利用生物体内的基因。
复习时,可以回顾基因工程技术的基本原理和常用的实验方法。
三、应用领域探讨1. 药物研发:生物化学在药物研发中起着重要的作用。
复习时,可以了解药物的发现和设计过程,以及生物化学在药物研发中的应用。
2. 食品工业:生物化学在食品工业中也有广泛的应用,包括食品的加工、储存和保鲜等。
复习时,可以了解食品工业中常用的生物化学技术和方法。
3. 疾病诊断:生物化学在疾病诊断中有重要的应用,例如生物标志物的检测和分析。
复习时,可以了解生物标志物的种类和检测方法,以及它们在疾病诊断中的应用。
四、案例分析为了更好地理解生物化学的理论知识和实验技术,可以通过案例分析来加深对生物化学的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物化学考试辅导资料一.考试内容精要一、蛋白质的生物学功能(了解即可)蛋白质是生命的物质基础,没有蛋白质就没有生命,生物体结构越复杂,其蛋白质种类和功能越繁多,其主要的生物学功能是:(一)催化和调节能力某些蛋白质是酶,催化生物体内的物质代谢反应。
某些蛋白质是激素,具有一定的调节功能,如胰岛素调节糖代谢、体内信号转导也常通过某些蛋白质介导。
(二)转运功能某些蛋白具有运载功能,如血红蛋白是转运氧气和二氧化碳的工具,血清白蛋白可以运输自由脂肪酸及胆红素等。
(三)收缩或运动功能某些蛋白质赋予细胞与器官收缩的能力,可以使其改变形状或运动。
如骨骼肌收缩靠肌动蛋白和肌球蛋白。
(四)防御功能如免疫球蛋白,可抵抗外来的有害物质,保护机体。
(五)营养和储存功能如铁蛋白可以储存铁。
(六)结构蛋白许多蛋白质起支持作用,给生物结构以强度及保护,如韧带含弹性蛋白,具有双向抗拉强度。
(七)其他功能如病毒和噬菌体是核蛋白,病毒可以致病。
二、蛋白质的分子组成(一)元素组成组成蛋白质分子的主要元素有碳、氢、氧、氮、硫。
有些还含有少量磷或金属元素。
各种蛋白质的含氮量很接近,平均为16%,且蛋白质是体内的主要含氮物,因此可以根据生物样品的含氮量推算出蛋白质的大致含量。
(二)氨基酸氨基酸是蛋白质的基本组成单位,存在于自然界的氨基酸有300余种,但组成人体蛋白质的氨基酸仅有20种,且均属L-α-氨基酸(甘氨酸除外)即左旋氨基酸,因为甘氨酸无手性碳原子(与四个不同的原子或基团相连的碳原子),大多数有手性碳原子的是手性分子,手性分子有旋光活性。
根据它们的侧链R的结构和性质可分为四类:1.非极性疏水性氨基酸:这类氨基酸的特征是在水中的溶解度小于极性氨基酸。
2 极性中性氨基酸:这类氨基酸的特征是比非极性氨基酸易溶于水,且羧基数等于氨基数,故为中性氨基酸,但因为羧基电离能力较大,故其实际上具有弱酸性。
3.酸性氨基酸:天冬氨酸、谷氨酸。
这两种氨基酸都含有两个羧基,在生理条件下带负电,故为酸性氨基酸。
4.碱性氨基酸:赖氨酸、精氨酸和组氨酸。
这类氨基酸在生理条件下带正电,故为碱性氨基酸。
还需要记住这20种氨基酸的英文缩写符号,尤其是三字符号,并且这四种类别的氨基酸中还有几种特殊的氨基酸,也需记住它们的独特特征。
芳香族氨基酸:苯丙氨酸、酪氨酸、色氨酸分子中含有芳香环含硫氨基酸:甲硫氨酸、半胱氨酸分子中含硫元素,甲硫氨酸也叫蛋氨酸。
亚氨基酸:脯氨酸,其氨基处于环中,为亚氨基酸支链氨基酸:缬氨酸、亮氨酸、异亮氨酸,这三种均含有支链其中有八种氨基酸人体内不能自身合成,必须从食物中获得,称为必需氨基酸,它们是缬氨酸、亮氨酸、异亮氨酸、苏氨酸、蛋氨酸、赖氨酸、苯丙氨酸和色氨酸。
三、氨基酸的理化性质(一)两性电离及等电点氨基酸分子中含有碱性的α-氨基和酸性的α-羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。
在某一pH值的溶液中氨基酸解离成阳离子和阴离子的趋势与程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点(pI)。
这里有一个等电点的计算问题:1 侧链R为非极性基团或虽为极性但不解离的,此种氨基酸的等电点主要由α-氨基和α-羧基的解离常数的负对数pK1,pK2决定,pI=1/2(pK1+pK2)2 侧链基团可以解离,则由α-氨基,α-羧基及R基团解离情况共同决定,只需写出电离式,取其兼性离子两边的pK值的平均值即可。
如赖氨酸其电离式为:由电离式可以看出,其兼性离子两边pK值分别是pKα-NH3+和pKε-NH3+而与α-羧基无关故其pI=1/2 (8.95+10.537)=9.74(二)紫外吸收性质色氨酸、酪氨酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这类氨基酸,所以测定蛋白质溶液280nm的光吸收值,是分析溶液中蛋白质含量的快速简便方法。
(三)茚三酮反应:氨基酸+茚三酮水合物→还原茚三酮+氨,还原茚三酮+氨+茚三酮→蓝紫色化合物此化合物最大吸收峰在570nm波长处,由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可以作为氨基酸定量分析的方法。
四、肽(一)肽键两分子氨基酸可由一分子所含的氨基与另一分子所带的羧基脱去一分子水缩合成二肽,两个氨基酸之间产生的酰胺键称为肽键,具有不典型双键性质。
由10个以内的氨基酸缩合而成的肽称为寡肽,更多的氨基酸相连而构成多肽。
pr是具有更大分子量的多肽链,但多肽和pr在分子量上很难划出明确界限,实际应用中只有一个习惯上的划分。
肽链中的氨基酸分子因脱水缩合而基团不全,称为氨基酸残基。
多肽链中自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。
(二)生物活性肽1.谷胱甘肽由谷氨酸和甘氨酸和半胱氨酸组成的三肽。
第一个肽键比较特殊,由谷氨酸γ-羧基与半胱氨酸的氨基组成。
分子中半胱氨酸的巯基是该化合物的主要功能基团。
此巯基具有还原性,要记住谷胱甘肽的生理作用:①作为体内重要的还原剂;保护蛋白质或酶免遭氧化,使它们处在活性状态②可还原细胞内产生的H 2O2,避免细胞受损③其巯基具有嗜核特性,能与外源的致癌剂或药物等结合,从而阻断它们与DNA、RNA或蛋白质结合,保护机体免遭损害。
2.多肽类激素及神经肽。
体内有许多激素属寡肽或多肽,如催产素、促肾上腺皮质激素,促甲状腺激素等。
神经肽是在神经传导过程中起信号转导作用的肽类,如脑啡肽、β-内啡肽等。
五pr的分类pr的分类分单纯pr、结合pr,后者除aa外,还含有非pr部分即辅基,绝大部分辅基以共价健与pr部分相连,根据形状分纤维pr及球状pr六、蛋白质的分子结构(要注意构成各级结构的化学键)可分为一级、二级、三级、四级结构四个层次,后三者统称为高级结构或空间构象。
蛋白质的空间构象涵盖了蛋白质分子中每一个原子在三维空间的相对位置,并非所有pr都有四级结构,由二条或二条以上多肽链形成的pr才有四级结构。
(一)蛋白质的一级结构蛋白质的一级结构是指蛋白质分子中氨基酸的排列顺序。
主要化学键是肽键和二硫键。
一级结构是蛋白质空间结构和特异生物学功能的基础。
氨基酸排列顺序的差别意味着从多肽链骨架伸出的侧链R基团的性质和顺序对于每一种蛋白质是特异的——因为R基团大小不同,所带电荷数目不同,对水的亲和力不相同,所以蛋白质的空间构象也不同。
(二)蛋白质的二级结构蛋白质的二级结构指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
维系二级结构的化学键主要是氢键。
二级结构的主要形式包括:α-螺旋结构、β一折叠、β-转角和无规则卷曲。
1 肽单元。
参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,且Cα1、Cα2在平面上所处的位置为反式构型,此6个原子即构成了肽单元,其基本结构为图中的A、B键是单键,可自由旋转,也正由于这两个单键的自由旋转角度,决定了相邻肽单元之间的相对空间位置。
其中的肽键有一定程度双键性质,不能自由旋转。
2.α-螺旋。
多肽链主链围绕中心轴有规律的螺旋式上升,每隔3.6个残基螺旋上升一圈,每个氨基酸残基向上平移0.15nm,故螺距为0.54nm。
螺旋的走向为右手螺旋。
α-螺旋的每个肽键的N-H和第四个肽键的羰基氧形成氢键,氢键的方向与螺旋长轴基本平行,侧链R基团则伸向螺旋外。
3.β-折叠。
多肽链充分伸展,每个肽单元以C为旋转点折叠成锯齿状结构,侧链R基团交错位于锯齿状结构的上下方。
可由两条以上肽链或一条肽链内的若干肽段折叠成锯齿状结构。
平行肽段间靠链间肽键羰基氧和亚氨基氢形成氢键,使构象稳定,此氢键方向与折叠的长轴垂直。
两条平行肽链走向可相同或相反,由一条肽链折返形成的β-折叠多为反式,反式平行较顺式平行更为稳定。
4.β-转角和无规卷曲。
β-转角常发生于肽链进行180度回折时的转角上,通常由4个氨基酸残基组成,其第一个残基的羰基氧与第四个残基的氨基氢可形成氢键。
β-转角第二个残基常为脯氨酸,因为其N 原子位于环中,形成肽键N原子上已没有H,不能再形成氢键,故走向转折β-转角常发生在蛋白质分子的表面,这与蛋白质的生物学功能有关。
无规卷曲用来阐述没有确定规律性的那部分肽链结构。
5.模序。
指在许多蛋白质分子中,可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个具有特殊功能的空间结构,称为模序。
实际上它是一种超二级结构。
一个模序总有其特征性的氨基酸序列,并发挥特殊的功能。
常见的α-螺旋—环—α-螺旋结构及锌指结构,前者可结合Ca2+,后者可结合Zn2+,使α-螺旋能镶嵌于DNA的大沟中。
因此含此结构的pr可与DNA或RNA结合,这对于pr调控DNA的转录和pr翻译过程是必要的。
一段肽链其氨基酸残基的侧链适合形成α-螺旋或β-折叠,就会出现相应的二级结构,aa残基带相同的电荷或侧链太大,都会妨碍二级结构的形成,此外还有一个分子伴侣的概念,其作用就是使肽链正确折叠,从而形成正确的空间构象。
(三)蛋白质的三级结构指整条肽键中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。
三级结构的形成和稳定主要靠疏水键、盐键、二硫键、氢键和范德华力等次级键。
其中疏水键是最主要的稳定力量。
疏水键是蛋白质分子中疏水基团之间的结合力,酸性和碱性氨基酸的R基团可以带电荷,正负电荷互相吸引形成盐键,与氢原子共用电子对形成的键为氢键。
分子量大的蛋白质三级结构其整条肽链中常可分割成多折叠得转为紧密的结构域,实际上结构域也是一种介于二级和三级结构之间的结构层次,每个结构域执行一定的功能。
(四)蛋白质的四级结构蛋白质的四级结构是由有生物活性的两条或多条肽链组成,肽链与肽链之间不通过共价键相连,而由非共价键维系。
每条多肽链都有其完整的三级结构,称为蛋白质的亚基,这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
在四级结构中,各亚基之间的结合力主要是疏水作用,氢键和离子键也参与维持四级结构。
含有四级结构的蛋白质,单独的亚基一般没有生物学功能,只有完整的四级结构才有生物学功能。
七、蛋白质结构与功能的关系(一)蛋白质一级结构与功能的关系要明白三点:1.一级结构是空间构象和功能的基础,空间构象遭破坏的多肽链只要其肽键未断,一级结构未被破坏,就能恢复到原来的三级结构,功能依然存在。
2.即使是不同物种之间的多肽和蛋白质,只要其一级结构相似,其空间构象及功能也越相似。
3.物种越接近,其同类蛋白质一级结构越相似,功能也相似。
但一级结构中有些氨基酸的作用却是非常重要的,若蛋白质分子中起关键作用的氨基酸残基缺失或被替代,都会严重影响其空间构象或生理功能,产生某种疾病,这种由蛋白质分子发生变异所导致的疾病,称为“分子病”。