八年级数学上册 1.2 定义与命题教案 (新版)浙教版(1)
浙教版数学八年级上册1.2定义与命题(1) 教学设计
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯浙教版数学八年级上1.2定义与命题(1) 教学设计课题定义与命题单元第一章学科数学年级八年级学习目标情感态度和价值观目标学生在学习之后树立科学严谨的学习方法能力目标学生能在思考探究中培养自主探究和合作交流的能力知识目标了解定义和命题的含义,掌握命题的结构重点命题的概念和结构难点命题的条件和结论改写成“如果……那么……”的形式学法自主探究法教法讲授法教学过程教学环节教师活动学生活动设计意图导入新课“鸟是动物”“鸟是动物吗”思考一下这两个句子在叙述上有什么区别?思考并回答问题创设情境,提出课题讲授新课日常交流时我们需要用到很多名称和术语,为了不产生歧义,对这些名称和术语的含义必须有明确的规定,我们把能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。
比如,商店降低商品的定价出售商品叫做打折;物体单位面积受到的压力叫做压强;在同一个平面内,不想交的两条直线叫平行线。
思考做笔记结合生活实例来引出定义的概念,让学生容易理解做一做 1.说出下列数学名词的定义:2.下列语句中,属于定义的是()A.对顶角相等B.作一条直线和已知直线垂直看PPT,动手动脑回答问题做练习来巩固学到的知识如果C地水流被污染,那么__E、F_的水流也被污染。
根据上图,你还能说出其他的命题吗?思维达标测评 1.观察下面四组图形,找出每一组图形的共同特征,并对类似于这样的图形下一个定义。
如:一个图形由另一个图形改变而来,在改变的过程中保持形状不变(大小可以改变)这个图形和原图形叫做相似图形.2.观察下列各数:-30,2,0,-42,12,8,…,找出它们的共同特征,给出名称,并作出定义。
解:都是偶数。
偶数的定义:能被2整除的数是偶数。
3.判断下列语句是不是命题?是用“√”,不是用“×表示。
1)长度相等的两条线段是相等的线段吗?()2)两条直线相交,有且只有一个交点()3)不相等的两个角不是对顶角()4)一个平角的度数是180度()5)相等的两个角是对顶角()6)取线段AB的中点C;()与老师一起做练习,巩固提升巩固新知一天,毕达哥拉斯应邀到朋友家做客。
浙教版八年级数学上册:1.2《定义与命题》教案
浙教版八年级数学上册:1学习目的1、我会区分命题的条件和结论.2、培育我观察效果和剖析效果的才干.3、我经过探求交流,体验成功的乐趣.学习重点我对命题的概念有正确的了解,会找出命题的条件(题设)和结论.学习难点我对命题概念的了解.自主学习一、知识回忆对称号和术语的含义加以描画,作出明白的规则,这就是给出它们的____________.例如:(1)〝具有中华人民共和国国籍的人,叫做中华人民共和国公民〞是〝中华人民共和国公民〞的_________.(2)〝两点之间线段的长度,叫做这两点之间的距离〞是________________的定义.(3)_________________________________________是〝在理数〞的定义.(4)_________________________________________是〝多边形〞的定义.(5)等腰三角形的定义是_________________________________________.二、协作探求1、仔细阅读课本P165页议一议,小组内相互讨论并完成以下效果.命题是_________________________________________反之,_________________________________________就不是命题.你能举出一些命题吗?(至少写出两个)2、阅读课本P166页想一想并回答以下效果.两直线平行,同位角相等.也可以写成:假设____________,那么____________.题设(条件)____________,结论____________.命题可看做由____________和____________两局部组成. ____________是事项,_____ _______是由事项推出的事项.3、指出以下命题的条件和结论,并改写成〝假设…那么…〞的方式:(1)三条边对应成比例的两个三角形相似;条件是:____________结论是:____________改写成:____________(2)两角对应相等的两个三角形相似;条件是:____________结论是:____________改写成:____________三、阅读课本P166页做一做并回答以下效果.真命题_________________________________________. 假命题_________________________________________. 反例_________________________________________.。
2019-2020学年八年级数学上册 定义与命题教案 (新版)浙教版.doc
2019-2020学年八年级数学上册定义与命题教案(新版)浙教版
对某一件事情作出正确或不正确的判断的句子叫做命题
只需要举一个反例即可,
)
在教学中要求学生能学会在简单情况下判断一个命题的真假。
并理解反例的作用,知道利
而且实际也说明学生已基本掌握这一规律,因此我们在教学
并在习题完成之后教给学生一定的总结方法:如判断命题是否正确
、举例:前面学过的,用推理的方法得到的那
()“两点之间,线段最短”这个语句是(
、、只是命题)“同一平面内,不相交的两条直线叫做平行线”这个语句是()
证特例等方法→这些方法往往并不可靠→过推理的方式即根据已知。
浙教版数学八年级上册1.2《定义与命题》教案1
浙教版数学八年级上册1.2《定义与命题》教案1一. 教材分析《定义与命题》是浙教版数学八年级上册第一章第二节的内容。
本节内容主要介绍定义与命题的概念,让学生了解如何正确理解和运用定义与命题。
通过本节内容的学习,学生能够掌握定义与命题的基本形式和特点,提高阅读和理解数学文本的能力。
二. 学情分析学生在学习本节内容前,已经学习了实数、代数等基础知识,具备一定的逻辑思维能力。
但部分学生对抽象的概念理解较为困难,对定义与命题的运用还不够熟练。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和辅导。
三. 教学目标1.理解定义与命题的概念,掌握定义与命题的基本形式和特点。
2.能够正确理解和运用定义与命题,提高阅读和理解数学文本的能力。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.重点:定义与命题的概念、基本形式和特点。
2.难点:对定义与命题的理解和运用。
五. 教学方法1.采用问题驱动法,引导学生主动探究定义与命题的概念和特点。
2.运用案例分析法,让学生通过具体例子理解定义与命题的运用。
3.采用小组合作学习法,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关案例和例题,用于讲解和练习。
2.准备课件和教学素材,以便于教学展示。
七. 教学过程1.导入(5分钟)利用课件展示生活中的定义与命题实例,如“平行线”、“勾股定理”等,引导学生思考:什么是定义?什么是命题?2.呈现(10分钟)讲解定义与命题的概念,阐述定义与命题的基本形式和特点。
通过PPT展示相关知识点,让学生直观地理解定义与命题。
3.操练(10分钟)根据所学内容,让学生尝试判断一些实例是否为定义与命题。
教师引导学生进行分析,纠正错误观点,巩固所学知识。
4.巩固(10分钟)学生自主完成相关练习题,教师巡回指导,解答学生疑问。
通过练习题让学生进一步理解和掌握定义与命题。
5.拓展(10分钟)探讨定义与命题在实际问题中的应用,让学生举例说明。
1.2定义与命题-浙教版八年级数学上册教案
1.2 定义与命题-浙教版八年级数学上册教案一、知识目标1.了解命题的基本定义2.掌握命题的符号表示方式3.学会命题的真值表达式的构造方法4.能够判断命题的真假二、教学重难点教学重点:1.命题的概念与符号表示方法2.命题的真值表达式构造方法3.命题的真假判断教学难点:1.真值表达式的构造方法2.命题真假的判断方法三、教学过程A. 导入新知1.引入数学中命题的基本概念,比如陈述句、命题的真假等。
2.介绍命题的符号表示方式,包括命题符号、逻辑联接符号等。
3.通过生活中的例子引导学生理解命题符号及逻辑联接符号的含义,并操练一些简单的命题符号的构造方法。
B. 理论讲授1.通过例题讲解命题的真值表达式的构造方法,要求学生熟记各逻辑联接符号的真值表。
2.对于一些特殊的命题,比如否定命题、充分必要条件命题、异或命题等,需要对其进行特别讲解。
C. 练习活动1.让学生自己构造一些命题,使用真值表达式的构造方法求出其真值表。
2.给出一些命题,让学生判断其真假,并解释判断过程。
D. 课堂小结1.老师回顾本节课的重点难点内容,检查学生掌握情况。
2.学生提出自己对问题的疑问,与老师和同学进行互动交流,并得出结论。
四、教学资源1.教材:浙教版八年级数学上册2.幻灯片:PPT等五、教学反思命题是数学中非常基础的一个概念,在后续学习中也是必要的工具之一。
本节课主要通过例子引入命题的概念,并介绍命题的符号表示方式以及真值表达式的构造方法,从而培养学生对于数学命题的敏感度。
在后续课堂中,需要将命题的应用和实际问题结合起来,让学生更好地理解和掌握命题的应用技巧。
浙教版-数学-八年级上册-1.2 定义与命题1 教案
定义与命题1●教学目标(一)教学知识点1.定义的意义2.命题的概念(二)能力训练要求1.从具体实例中,探索出定义,并了解定义在现实生活中的重要性.2.从具体实例中,了解命题的概念,并会区分命题.(三)情感与价值观要求通过从具体例子中提炼数学概念,使学生体会数学与实践的联系.●教学重点命题的概念●教学难点命题的概念的理解●教学方法引导发现法●教具准备●教学过程Ⅰ.巧设现实情境,引入新课[师]随着时代的发展,电脑逐渐走进我们的生活,上过网或懂电脑的同学都知道什么是“黑客”.下面我们来看一段对话(电脑演示)小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(学生听后,大笑)[师]同学们为什么笑呢?[生甲]旁边那两个人的概念不清.[生乙]“黑客”“因特网”等都是电脑中的专用名词.……[师]同学们说得都很好.由此可知:人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.这节课我们就要研究:定义与命题Ⅱ.讲授新课[师]在日常生活中,为了交流方便,我们就要对名称和术语的含义加以描述,作出明确的规定,也就是给他们下定义(definition).如:“具有中华人民共和国国籍的人,叫做中华人民共和国的公民”是“中华人民共和国公民”的定义.大家还能举出一些例子吗?[生甲]“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义. [生乙]“在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫做一元一次方程”是“一元一次方程”的定义.[生丙]“两组对边分别平行的四边形叫做平行四边形”是“平行四边形”的定义.[生丁]“角是由两条具有公共端点的射线组成的图形”是“角”的定义.……[师]同学们举出了这么多例子.说明定义就是对名称和术语的含义加以描述,作出明确的规定.接下来,我们来做一做(出示投影片)如下图,某地区境内有一条大河,大河的水流入许多小河中,图中A.B.C.D.E.F、G、H、I、J、K处均有一个化工厂,如果它们向河中排放污水,下游河流便会受到污染.如果B处工厂排放污水,那么__________处便会受到污染;如果C处受到污染,那么__________处便受到污染;如果E处受到污染,那么__________处便受到污染;……如果环保人员在h处测得水质受到污染,那么你认为哪个工厂排放了污水?你是怎么想的?与同伴交流.[生甲]如果B处工厂排放污水,那么A.B.C.d处便会受到污染.[生乙]如果B处工厂排放污水,那么E.f、g处也会受到污染的.[生丙]如果C处受到污染,那么A.B.c处便受到污染.[生丁]如果C处受到污染,那么d处也会受到污染的.[生戊]如果E处受到污染,那么A.b处便会受到污染.[生己]如果h处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……[师]很好.同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a.平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.接下来我们做练习来熟悉掌握命题的概念.Ⅲ.课堂练习1.你能列举出一些命题吗?答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB=3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA上,任取两点B.C.等等.(二)例1 指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1) 等底等高的两个三角形面积相等。
浙教版数学八年级上册1.2《定义与命题》教学设计2
浙教版数学八年级上册1.2《定义与命题》教学设计2一. 教材分析《定义与命题》是浙教版数学八年级上册第1章第2节的内容,本节内容是在学生已经掌握了实数、不等式、函数等知识的基础上,引入定义与命题的概念,让学生了解数学语言的基本表达方式,为后续的定理、公式、证明等知识的学习打下基础。
本节内容的重要性在于,它不仅帮助学生理解数学概念,而且培养了学生的逻辑思维能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,能够理解和掌握实数、不等式、函数等知识。
但学生在学习过程中,可能对抽象的定义与命题理解存在一定的困难,需要教师耐心引导,让学生逐步理解并掌握定义与命题的概念。
三. 教学目标1.了解定义与命题的概念,理解命题的构成要素,能够正确书写简单命题。
2.培养学生的逻辑思维能力,提高学生运用数学语言表达数学概念的能力。
3.通过对定义与命题的学习,激发学生对数学的兴趣,提高学生的数学素养。
四. 教学重难点1.重点:理解定义与命题的概念,掌握命题的构成要素。
2.难点:对抽象的定义与命题的理解,以及如何运用定义与命题进行数学推理。
五. 教学方法1.采用问题驱动法,引导学生主动探究定义与命题的概念。
2.运用案例分析法,通过具体例子让学生理解定义与命题的应用。
3.采用讨论交流法,让学生在课堂上充分表达自己的观点,提高学生的逻辑思维能力。
六. 教学准备1.准备相关案例,用于讲解定义与命题的概念。
2.准备课堂练习题,用于巩固学生对定义与命题的理解。
3.准备课件,用于辅助教学。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾已学过的实数、不等式、函数等知识,为新课的学习做好铺垫。
呈现(10分钟)教师通过课件或板书,给出定义与命题的定义,让学生初步了解定义与命题的概念。
同时,教师可以通过举例,让学生理解命题的构成要素。
操练(15分钟)教师给出一些简单的定义与命题,让学生进行判断,巩固对定义与命题的理解。
巩固(10分钟)教师通过课堂练习题,让学生运用定义与命题进行数学推理,检验学生对知识的掌握程度。
浙教版八年级数学上册 1.2 定义与命题 教学设计
12. 1 定义与命题
一、教学内容分析:
说理无疑是重要的,也是十分必要的.合情推理和演绎推理都是获得数学结论的重要途径,演绎推理关注的是发展合乎逻辑的思考.推理与证明的意识,步步有据有理的表达,这都离不开定义、命题,真、假命题等概念清晰的认可,为证明做必要的准备. 通过球赛、天气预报两个情境的展示,体会一些常用术语的描述,让学生感受理解有关名称和术语的重要性,引起学生对概念的关注. 回顾学过的多个结论性的句子,其中包括正确的和不正确的,通过讨论、交流、分析,引导学生感受命题及命题的组成,进而能独立判断一个句子是不是命题,并能说出命题中的条件和结论,从而为后续学习“证明”打好基础.
二、目标设计
学习目标:1、了解定义的含义,能够叙述一些简单的数学概念的定义。
2、了解命题的定义,会把一个命题写成“如果……那么……”的形式。
学习重点:命题的定义,把一个命题写成“如果……那么……”的形式。
学习难点:某些命题有前提条件;或者有些命题的条件与结论不易区分。
八年级数学上册 1.2 定义与命题(第1课时)课件 (新版)浙教版
(1)一个锐角的补角大于这个(zhège)角的余角;
(2)不相等的两个角不是对顶角;
(3)异号两数相加得零. 解:(1)条件:一个角是锐角;结论:这个角的补角大于这个
角的余角 (2)条件:两个角不相等;结论:这两个角不是对
顶角 (3)条件:两个数异号;结论:这两个数相加得零
第六页,共14页。
10.(9分)把下列命题写成“如果……那么……”的形式. (1)等角的补角相等; (2)两条直线相交(xiāngjiāo)只有一个交点; (3)邻补角的平分线互相垂直.
解:(1)2 cm的直铁丝不能与它们(tā men)摆成三角形 (2)11 cm的直铁丝也不能与它们(tā men)摆成三角形 (3)大于3 cm且小于11 cm直铁丝能与原来的两根直铁丝
摆成三角形
第十一页,共14页。
14.(10分)观察下列给出的方程,找出它们的共同特征 (tèzhēng),试给出名称,并作出定义.
_,结论是 到线段两端(liǎnɡ duān)点的距离相等 __.
第五页,共14页。
8.(4分)把“等角的余角相等”改写成“如果……那么……”
的形式是
如果两个(liǎnɡ ɡè)角相等,那么这两个(l,iǎnɡ它ɡè的)角条的余件角相等
是
两个(,liǎ结nɡ论ɡè是)角相等 这两个角的余.角相等
9.(9分)指出下列命题的条件和结论.
要进行
=3场比赛;有4个球队时,要进行 6 场比
赛;…;那么有20个球队时,要进行 190 场比赛.
第十四页,共14页。
1.2 定义(DÌNGYÌ)与命题
第1课时(kèshí) 定义与命题
第一页,共14页。
1.(4分)下列语句中,属于定义的是( C ) A.两点之间,线段最短 B.三人行,必有我师焉 C.连结三角形两边中点的线段叫做三角形的中位线 D.两条直线相交,只有一个交点 2.(4分)下列语句中,属于命题的是( C ) A.直线AB和CD垂直(chuízhí)吗 B.过线段AB的中点C画AB的垂线 C.同旁内角不互补,两直线不平行 D.连结A,B两点
新浙教版八年级上1.2定义与命题(1)备课讲稿
例如:
1、“具有中华人民共和国国籍的人,叫做中华人 民共和国公民” 是“中华人民共和国公民”的定义; 2、 “两点之间线段的长度,叫做这两点之间的距 离” 是“两点之间的距离”的定义;
3、 “正在发声的物体,叫做声源”是声源的定义。
判断一个句子是不是命题的关键是什么?
命题的结构
命题: 两直线平行,同位角相等.
条件 (题设)
结论
现阶段命题可看作由条件(condition) 和结论(conclusion)两部分组成,题设是已知
事项,结论是由已知事项推出的事项.
例 指出下列命题的条件和结论,并改写成“如果…… 那么……”的形式: ⑴对顶角相等;
考考你
请说出下列名词的定义:
⑴无理数:
无限不循环小数叫做无理数。
⑵直角三角形: 有一个角是直角的三角形叫做
直角三角形。
⑶三角形的中线: 连接三角形一个顶点与该顶点对边
的中点的线段。
⑷压强:
单位面积所受的压力叫做压强。
学好要领
比一比下列句子在表述形式上,哪些对事情作了判断?
哪些没有对事情作出判断?
⑴对顶角相等;
⑵画一个角等于已知角;
⑶两直线平行,同位角相等;⑷a、b两条直线平行吗?
⑸若a2=4,求a的值。
⑹ 若a2= b2,则a=b。
⑺ _(6_)_(_7_) __对事情作了判断,句子__(_2_)(_4_)_(5_)__ 没有
对事情作出判断. 命题
条件是: 两个角是对顶角 结论是:这两个角相等 改写成:如果两个角是对顶角,那么这两个角相等。 ⑵同位角相等,两直线平行;
条件是:两条直线被第三条直线所截得的同位角相等 结论是:两直线平行 改写成:如果两条直线被第三条直线所截得的同位角相等,
浙教版数学八年级上册1.2《定义与命题》教案2
浙教版数学八年级上册1.2《定义与命题》教案2一. 教材分析《定义与命题》是浙教版数学八年级上册第一章第二节的内容。
本节课主要介绍了定义与命题的概念,以及如何正确理解和运用它们。
定义是对于一个概念或者事物的本质特征进行准确的描述,而命题是判断一件事情的语句。
本节课通过具体的例子让学生理解定义与命题的区别和联系,提高学生的逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经学习了七年级的数学知识,对于一些基本的概念和语句有一定的理解。
但是,对于定义与命题的深入理解和运用还需要进一步引导。
通过观察学生的学习情况,我发现他们对于实际例子的理解较为直观,但对于理论层面的抽象思维还需要加强。
因此,在教学过程中,我需要结合具体例子引导学生理解定义与命题的概念,并培养他们的逻辑思维能力。
三. 教学目标1.理解定义与命题的概念,并能够正确区分它们。
2.学会如何阅读和理解定义与命题,提高逻辑思维能力。
3.能够运用定义与命题解决实际问题,培养解决问题的能力。
四. 教学重难点1.重点:理解定义与命题的概念,学会正确运用它们。
2.难点:对于抽象定义与命题的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动思考和探索。
2.通过具体例子讲解定义与命题的概念,让学生直观理解。
3.小组讨论,培养学生的合作意识和沟通能力。
4.运用多媒体教学手段,增加课堂的趣味性和互动性。
六. 教学准备1.准备相关定义与命题的例子,用于讲解和练习。
2.设计小组讨论的问题,促进学生的思考和讨论。
3.准备多媒体教学材料,如PPT等,用于展示和讲解。
七. 教学过程1.导入(5分钟)通过一个简单的例子引入定义与命题的概念,激发学生的兴趣。
例子:请同学们判断以下语句是定义还是命题?解答:根据语句的特点,判断其为定义或命题。
2.呈现(15分钟)讲解定义与命题的概念,引导学生理解它们的本质区别。
定义:对于一个概念或者事物的本质特征进行准确的描述。
浙教版数学八年级上册1.2《定义与命题》说课稿
浙教版数学八年级上册1.2《定义与命题》说课稿一. 教材分析《定义与命题》是浙教版数学八年级上册第一章第二节的内容。
本节内容是在学生已经掌握了实数、不等式等基础知识的基础上进行讲授的,是学生学习数学语言和逻辑推理的重要基础。
本节课的主要内容是让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题,并能够判断一个命题是真命题还是假命题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于实数、不等式等概念有一定的了解。
但是,学生对于抽象的数学概念的理解还存在一定的困难,需要通过具体的例子和实际操作来帮助学生理解和掌握。
此外,学生的逻辑思维能力和判断能力还在发展中,需要通过教师的引导和培养。
三. 说教学目标1.知识与技能目标:让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题,并能够判断一个命题是真命题还是假命题。
2.过程与方法目标:通过学生的自主学习、合作交流和教师的引导,培养学生的逻辑思维能力和判断能力。
3.情感态度与价值观目标:让学生体验到数学的乐趣,培养学生对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:让学生了解和理解定义和命题的概念,学会如何正确地书写定义和命题。
2.教学难点:让学生能够判断一个命题是真命题还是假命题。
五. 说教学方法与手段在本节课的教学过程中,我将采用自主学习、合作交流和教师的引导相结合的教学方法。
同时,我还将利用多媒体课件和黑板等教学手段,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过一个具体的例子,引出定义和命题的概念,激发学生的兴趣。
2.自主学习:让学生自主阅读教材,理解定义和命题的概念,并尝试判断一些简单的命题的真假。
3.合作交流:让学生分组讨论,分享自己的理解和判断,互相学习和交流。
4.教师引导:教师通过讲解和示范,引导学生理解和掌握定义和命题的概念,并教会学生如何判断一个命题是真命题还是假命题。
5.练习巩固:让学生进行一些相关的练习,巩固所学知识。
浙教版数学八年级上册1.2《定义与命题》教案
浙教版数学八年级上册1.2《定义与命题》教案一. 教材分析《定义与命题》是浙教版数学八年级上册的第一章第二节内容。
本节课的主要内容是让学生理解命题的概念,学会用数学语言表述命题,并了解命题的逆命题、反命题和否定命题之间的关系。
教材通过具体的例子引导学生理解命题、逆命题、反命题和否定命题的概念,并让学生通过观察、思考、交流等活动,掌握这些概念之间的联系和转化。
二. 学情分析学生在七年级时已经接触过一些简单的命题,对命题的概念有一定的了解。
但是,对于逆命题、反命题和否定命题的概念以及它们之间的关系,可能还比较模糊。
因此,在教学过程中,需要引导学生通过具体的例子去理解这些概念,并通过对比、归纳等活动,找出它们之间的关系。
三. 教学目标1.理解命题、逆命题、反命题和否定命题的概念。
2.学会用数学语言表述命题,并能正确判断一个命题的逆命题、反命题和否定命题。
3.理解命题、逆命题、反命题和否定命题之间的关系,并能运用这些概念解决实际问题。
四. 教学重难点1.教学重点:命题、逆命题、反命题和否定命题的概念及它们之间的关系。
2.教学难点:逆命题、反命题和否定命题的判断和转化。
五. 教学方法1.采用引导发现法,让学生通过观察、思考、交流等活动,发现命题、逆命题、反命题和否定命题之间的关系。
2.采用实例分析法,让学生通过具体的例子,理解命题、逆命题、反命题和否定命题的概念。
3.采用对比归纳法,引导学生总结命题、逆命题、反命题和否定命题之间的关系。
六. 教学准备1.准备相关的教学素材,如PPT、黑板、粉笔等。
2.准备一些具体的例子,用于引导学生理解命题、逆命题、反命题和否定命题的概念。
七. 教学过程1.导入(5分钟)通过一个简单的例子,引出命题的概念,让学生思考:如何用数学语言表述一个命题?2.呈现(10分钟)呈现教材中的例子,引导学生观察、思考命题、逆命题、反命题和否定命题之间的关系。
通过对比、归纳等活动,让学生总结出它们之间的关系。
【最新浙教版精选】浙教初中数学八上《1.2定义与命题》word教案 (1).doc
1.2定义与命题教学目标:知识目标:了解定义的含义.了解命题的含义.能力目标:了解命题的结构,会把命题写成“如果……那么……”的形式.情感目标:通过本节学习,培养学生树立科学严谨的学习方法。
教学重点、难点重点:命题的概念.难点:范例中第(3)题,这类命题的条件和结论不十分明显,改写成“如果…那么…”形式学生会感到困难,是本节课的难点.教学过程:一、创设情景,导入新课由学生观看下面两段对话:(幻灯显示)思考:为什么出现这种情况?学生讨论。
总结:可见,在交流时对名称和术语要有共同的认识才行。
得出课题(板书)二、合作交流,探求新知1.定义概念的教学从以上两个问题中引入定义这个概念:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义.象这些问题中的黑客、法律、法盲等含义必须有明确的规定,即需要给出定义.2.完成做一做请说出下列名词的定义:(1)无理数;(2)直角三角形;(3)角平分线;(4)频率;(5)压强.3.命题概念的教学1、练习:判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?(1)对顶角相等;(2)画一个角等于已知角;(3)两直线平行,同位角相等;(4)a ,b 两条直线平行吗?(5)鸟是动物;(6)若42=a ,求a 的值;(7)若22b a =,则b a =.(8)2008年奥运会在北京举行。
在此基础上归纳出命题的概念:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.象句子(1)(3)(5)(7)都是命题;句子(2)(4)(6)都不是命题.2、命题的结构的教学我们在数学上学习的命题可看做由题设(或条件)和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.这样的命题可以写成“如果……那么……”的形式,其中以“如果”开始的部分是条件,“那么”后面的部分是结论.如“两直线平行,同位角相等”可以改写成“如果两条直线平行,那么同位角相等”.三、师生互动 运用新知例1 指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1) 等底等高的两个三角形面积相等。
浙教版数学八年级上册《1.2 定义与命题》教学设计
浙教版数学八年级上册《1.2 定义与命题》教学设计一. 教材分析《1.2 定义与命题》是浙教版数学八年级上册的第一章第二节内容,主要介绍了定义与命题的概念、性质和作用。
本节内容是学生学习数学的基础,对于培养学生的逻辑思维和分析问题能力具有重要意义。
教材通过具体的例子引导学生了解定义与命题的含义,并通过练习让学生掌握如何正确使用定义与命题。
二. 学情分析八年级的学生已经具备了一定的逻辑思维和分析问题能力,但对于定义与命题的概念和应用可能还不太清楚。
因此,在教学过程中,需要注重让学生理解定义与命题的重要性,并通过具体的例子让学生感受到定义与命题在数学学习中的应用。
三. 教学目标1.了解定义与命题的概念、性质和作用。
2.能够正确使用定义与命题,分析问题和解决问题。
3.培养学生的逻辑思维和分析问题能力。
四. 教学重难点1.重点:定义与命题的概念、性质和作用。
2.难点:如何正确使用定义与命题,分析问题和解决问题。
五. 教学方法1.讲解法:通过讲解定义与命题的概念、性质和作用,让学生了解并掌握相关知识。
2.例题法:通过具体的例子让学生感受定义与命题的应用,培养学生的分析问题能力。
3.练习法:通过课堂练习和课后作业,巩固所学知识,提高学生的应用能力。
六. 教学准备1.教材:浙教版数学八年级上册。
2.课件:讲解定义与命题的概念、性质和作用的幻灯片。
3.练习题:针对本节内容的课堂练习和课后作业。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学过的概念,如“什么是直线?什么是射线?”等,激发学生的学习兴趣,引出本节课的内容。
2.呈现(15分钟)讲解定义与命题的概念、性质和作用,让学生了解并掌握相关知识。
3.操练(15分钟)出示具体的例子,让学生尝试分析并解决问题。
引导学生运用定义与命题进行分析,培养学生的分析问题能力。
4.巩固(10分钟)出示练习题,让学生独立完成。
教师批改并讲解,巩固所学知识。
5.拓展(10分钟)出示一些生活中的实际问题,让学生运用定义与命题进行分析。
浙教版-数学-八年级上册-《定义与命题(2)》原创教案
1.2 定义与命题(2)教案【教学目标】知识目标:理解真命题、假命题、公理和定义的概念.能力目标:会判断一个命题的真假,会区分定理、公理和命题.情感目标:通过对真假命题的判断,培养学生树立科学严谨的学习方法.【教学重点、难点】重点:判断一个命题的真假是本节的重点.难点:公理、命题和定义的区别.【教学过程】(一)合作学习:1:复习命题的概念,思考下列命题的条件是什么?结论是什么?(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(2)对于任何实数x,x2<0.提问:上述命题中,哪些正确?哪些不正确?2:得出真命题、假命题的概念:正确的命题称为真命题,不正确的命题称为假命题.3:把学生分成两组,一组负责说命题,然后指定第二组中某一个人来回答是真命题还是假命题.(二)例题教学:例2:判断下列命题的真假,并说明理由.(1)三角形一条边的两个顶点到这条边上的中线所在直线的距离相等;(2)一组对边平行,另一组对边相等的四边形是平行四边形;2(3)为实数)aaa((三)讲述公理和定义1:公理:人类经过长期实践后公认为正确的命题,作为判断其他命题的依据.这样公认为正确的命题叫做公理.例如:“两点之间线段最短”,“一条直线截两条平行所得的同位角相等”,然后提问学生:你所学过的还有那些公理.2:定理:用推理的方法判断为正确的命题叫做定理.定理也可以作为判断其他命题真假的依据.3:举例请用学过的公理或定理说明下面这个命题的正确性:“等腰三角形底边上的高线、顶角的角平分线互相重合”.(四)课内练习:完成P14-15页做一做及课内练习(五)作业:完成P15页作业题A、B组。
浙教版数学八年级上册《1.2定义与命题》说课稿
浙教版数学八年级上册《1.2 定义与命题》说课稿一. 教材分析《1.2 定义与命题》是浙教版数学八年级上册的第一课时,本节课主要介绍了定义与命题的概念,以及如何正确理解和运用它们。
教材通过具体的例子,让学生初步认识定义与命题,并学会如何判断一个命题的真假。
本节课的内容是学生进一步学习数学的基础,对于培养学生的逻辑思维能力具有重要意义。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力,对于新知识有一定的接受能力。
但是,学生在学习过程中可能会对定义与命题的概念理解不深,难以区分两者之间的区别。
因此,在教学过程中,教师需要通过具体例子,让学生反复体会定义与命题的含义,提高学生的理解能力。
三. 说教学目标1.知识与技能目标:使学生了解定义与命题的概念,理解它们之间的联系与区别,学会判断一个命题的真假。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生独立思考和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力,提高学生运用数学知识解决实际问题的能力。
四. 说教学重难点1.教学重点:定义与命题的概念,以及如何判断一个命题的真假。
2.教学难点:定义与命题之间的联系与区别,以及如何运用它们解决实际问题。
五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法、小组合作学习法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合具体例子,生动形象地展示定义与命题的概念。
六. 说教学过程1.导入新课:通过一个生活中的实例,引导学生思考如何用数学语言来描述这个实例,从而引出定义与命题的概念。
2.讲解新课:详细讲解定义与命题的概念,并通过具体例子让学生体会它们之间的联系与区别。
3.巩固新知:布置一些练习题,让学生独立完成,检验学生对定义与命题的理解程度。
4.拓展应用:引导学生运用定义与命题解决实际问题,提高学生的运用能力。
浙教版初中数学八年级上册1.2 定义和命题 教案
1.完成作业本①P2-3;2.同步练习P6-7页,其中基础练习必做,拓展提高选做;3.预习1.2(2).
④改写成“如果......那么......”的形式.
设计目的:从特殊到一般,以“两直线平行,同位角相等”这个简单的命题,使学生马上可以找得到条件和结论,并晓得逗号是条件和结论的分割点。进而让学生通过类比的思想来处理“对顶角相等”这类条件和结论相对较为隐蔽的命题.通过小结让学生形成一种解题方法,有利于学生针对性学习.打”?
目的:让同学们感受这些专业名词,对于一些不是这方面专业的人来说较为难理解,需要我们对它进行清楚的规定。
引出:人们在进行沟通交流的时候,为了不产生歧义,需要对一些名词和术语进行明确的规定,进而为引出定义做准备。
T:什么是定义呢?
二.新知讲授
小结:判断与句子对错无关.
4.理一理:
①引出:命题的定义.
②引出:表示命题的句子属于陈述句.
T:我们将对事情作出判断的句子称为命题.
请同学们说说看表示命题的句子从句子语气上分又属于什么句 子?
小结:命题的特点:①对事情(突出事情)作出判断;②陈述句.
5.练一练:
下列句子中,哪些是命题?哪些不是命题?
9.拓展提高:
将下列命题改写成“如果......那么......”的形式:
同角的余角相等.
变式:
命题“等角的余角相等”又该怎么改写呢?
三.课堂总结:
知识点:①定义;②命题;③命题改写
命题改写的一般步骤:
①在适当的位置断句;
②确定条件和结论中的关键词;
③增加合理的词语,将条件和结论进一步完善.
④改写成“如果......那么......”的形式.
1.定义的概念:
浙教版数学八年级上册《1.2 定义与命题》教案
浙教版数学八年级上册《1.2 定义与命题》教案一. 教材分析《1.2 定义与命题》是浙教版数学八年级上册的第一课时,主要讲述了定义与命题的概念。
本节课的内容是学生学习数学的基础,对于学生理解数学概念、推理能力和逻辑思维的培养具有重要意义。
教材通过具体的例子引入定义与命题的概念,引导学生理解其内涵和外延,并通过练习题巩固所学知识。
二. 学情分析学生在学习本节课之前,已经学习了初中数学的一些基本概念和符号,具备一定的逻辑思维能力。
然而,对于定义与命题的概念,学生可能较为陌生,需要通过具体的例子和讲解来理解和掌握。
此外,学生可能对于抽象的概念有一定的恐惧心理,需要教师通过生动的讲解和引导来激发学生的学习兴趣。
三. 教学目标1.了解定义与命题的概念,能够正确辨别定义和命题。
2.能够运用定义与命题的方法,分析和解决问题。
3.培养学生的逻辑思维能力和推理能力。
4.激发学生学习数学的兴趣,提高学生对数学的认同感。
四. 教学重难点1.重点:定义与命题的概念及其运用。
2.难点:对定义与命题的理解和运用,特别是在解决问题中的应用。
五. 教学方法1.讲授法:通过讲解和举例,引导学生理解和掌握定义与命题的概念。
2.互动法:通过提问和小组讨论,激发学生的思考和参与,提高学生的理解能力。
3.练习法:通过布置练习题,让学生巩固所学知识,并培养学生的解题能力。
六. 教学准备1.教学课件:制作课件,包括图片、例子和练习题等,以便进行生动讲解和引导学生思考。
2.练习题:准备一些有关定义与命题的练习题,用于巩固所学知识。
3.黑板:准备黑板,用于板书定义与命题的例子和解题步骤。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾之前学习的基本概念和符号,为新课的学习做好铺垫。
2.呈现(15分钟)讲解定义与命题的概念,并举例说明。
让学生理解定义是对于某个概念的准确描述,命题是对于某个陈述的判断。
通过具体的例子,引导学生区分定义和命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2定义与命题
教学目标:
知识目标:了解定义的含义.了解命题的含义.
能力目标:了解命题的结构,会把命题写成“如果……那么……”的形式. 情感目标:通过本节学习,培养学生树立科学严谨的学习方法。
教学重点、难点
重点:命题的概念.
难点:范例中第(3)题,这类命题的条件和结论不十分明显,改写成“如果…那么…” 形
式学生会感到困难,是本节课的难点.
教学过程:
一、 创设情景,导入新课 由学生观看下面两段对话:(幻灯显示)
♦小华与小刚正在津津有味地阅读《我们爱科学》.
♦坐在旁边的两个人一边听着他们的谈话,
一边也在悄悄地议论着。
哈!这个黑客终
于被逮住了.是的,现在的因特网广泛
运用于我们的生活中,给
我们带来了方便,但…….
这个黑客是个
小偷吧?可能是个喜欢穿黑衣服的贼.
♦一对父子的谈话
法律就是法国的律师
爸爸,什么叫
法律?法盲就是法国的盲人
那么什么是法
盲?
思考:为什么出现这种情况?学生讨论。
总结:可见,在交流时对名称和术语要有共同的认识才行。
得出课题(板书)
二、合作交流,探求新知
1.定义概念的教学
从以上两个问题中引入定义这个概念:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义.
象这些问题中的黑客、法律、法盲等含义必须有明确的规定,即需要给出定义.
2.完成做一做
请说出下列名词的定义:
(1)无理数;(2)直角三角形;(3)角平分线;(4)频率;(5)压强.
3.命题概念的教学
1、练习:判断下列语句在表述形式上,哪些对事情作了判断?
哪些没有对事情作出判断?
(1)对顶角相等;
(2)画一个角等于已知角;
(3)两直线平行,同位角相等;
(4)a ,b 两条直线平行吗?
(5)鸟是动物;
(6)若42
=a ,求a 的值;
(7)若22b a =,则b a =.
(8)2008年奥运会在北京举行。
在此基础上归纳出命题的概念:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.象句子(1)(3)(5)(7)都是命题;句子(2)(4)(6)都不是命题.
2、命题的结构的教学
我们在数学上学习的命题可看做由题设(或条件)和结论两部分组成.
题设是已知事项,结论是由已知事项推出的事项.这样的命题可以写成“如果……那么……”的形式,其中以“如果”开始的部分是条件,“那么”后面的部分是结论.如“两直线平行,同位角相等”
可以改写成“如果两条直线平行,那么同位角相等”.
三、师生互动 运用新知
例1 指出下列命题的条件和结论,并改写成“如果……那么……”的形式:
(1) 等底等高的两个三角形面积相等。
(2) 三角形的内角和等于180°。
(3)对顶角相等。
(4)同位角相等,两直线平行。
分析:找出命题的条件和结论是此题关键,因为命题在叙述时要求通顺和简练,把命题中的有些词或句子省略了,在改写是注意把时要把省略的词或句子添加上去.与学生一起完成。
练习:请给下列图形命名,,并给出名称的定义:
① ②
四、应用新知 体验成功
1.课内练习:教材中安排了4个课内练习,第1题是为定义这个概念配置的,
第2题是为命题这个概念配置的,第3、4题是为命题的结构配置的.第4题可以通过同伴或同桌的合作交流完成.
五、总结回顾,反思内化
学生自由发言,这节课学了什么?教师做补充.
三个内容:
⎪⎩⎪⎨⎧分组成题是由条件和结论两部命题的的结构:通常命的判断的句子事情作出正确或不正确命题的概念:对某一件子名称或术语的意义的句定义的含义:规定某一。