人教版2020高中数学 第三章3.3.2 第2课时 线性规划的实际应用学案 新人教A版必修5
2020高中数学《线性规划的实际应用》学案大纲人教版
2020高中数学《线性规划的实际应用》学案大纲人教版1 / 1线性规划的实质应用一、学习目标:1.掌握线性规划问题中整点问题的求解方法.2. 经过对线性规划方法的实质应用,进一步加深对线性规划相关知识的理解; 二、预习指导1 .由直线 x + y +2 = 0 , x + 2 y + 1 = 0 和 2x + y + 1= 0 围成的三角形地区(含界限)用不等式可表示为 __________ .2.线性规划的可行域是由直线x = 0, y = 0,2 y - x - 10 = 0 和 2x - y - 10 = 0 围成的四边形.点 (10,10) 是使目标函数z = ax + y 取最大值的点,求 a 的取值范围三、例题选讲例 1 投资生产 A 产品时, 每生产 100t 需要资本 2200 万元,需要场所 200m 可获收益 300 万元;投资生产 B 产品时,每生产 100m 需要资本 300 2200 万元,现万元,需要场所 100m 可获收益 某单位可使用资本 1400 万元,场所 900 m2问 : 应作如何的投资,可使赢利最大?例 2 某运输企业向某地域运送物质,每日起码运送 180t ,该企业有 8 辆载重为 6t 的 A 型卡车与 4 辆载重为 10t 的 B 型卡车,有 10 名驾驶员。
每辆卡车每日来回次数为 A 型车 4 次, B型车 3 次。
每辆卡车每日来回的成本费 A 型车为 320 元, B 型车为 504 元。
试为该企业设计调配车辆方案,使企业花销的成本最低。
3xy 300 四、讲堂练习1.z =600x +300y 的最大值,使式中的 x , y 知足拘束条件 x2 y 250 的整数x 0, y值 .2. 某厂生产 A 与 B 两种产品,每公斤的产值分别为 600 元与 400 元 . 又知每生产 1 公斤 A 产需要电力 2 千瓦、煤 4 吨;而生产 1 公斤 B 产品需要电力 3 鱭、煤 2吨 . 但该厂的电力供给不得超出 100 鱭,煤最多只有 120 吨 . 问如何安排生产计划以获得最大产值?五.小结作业 : 教材 P 77 3, 4。
线性规划教案
线性规划教案一、教案概述本教案是针对线性规划这一数学概念的教学设计,旨在匡助学生理解线性规划的基本概念、原理和应用,并通过实例让学生掌握线性规划的解题方法和技巧。
本教案适合于高中数学课程中线性规划的教学。
二、教学目标1. 知识目标:a. 理解线性规划的基本概念和特点;b. 掌握线性规划的解题方法和技巧;c. 了解线性规划在实际生活中的应用。
2. 能力目标:a. 能够分析和解决简单的线性规划问题;b. 能够运用线性规划的思维方式解决实际问题;c. 能够运用线性规划的方法进行决策和优化。
三、教学重点和难点1. 教学重点:a. 线性规划的基本概念和特点;b. 线性规划的解题方法和技巧;c. 线性规划在实际生活中的应用。
2. 教学难点:a. 如何将实际问题转化为线性规划模型;b. 如何运用线性规划的方法进行决策和优化。
四、教学内容与安排1. 教学内容:a. 线性规划的基本概念和特点;b. 线性规划的解题方法和技巧;c. 线性规划在实际生活中的应用。
2. 教学安排:第一课时:线性规划的基本概念和特点a. 引入线性规划的概念,解释线性规划的基本特点;b. 介绍线性规划的基本术语和符号;c. 分析线性规划的基本模型和约束条件。
第二课时:线性规划的解题方法和技巧a. 介绍线性规划的图形解法和代数解法;b. 演示如何通过图形法解决简单的线性规划问题;c. 分析线性规划中的最优解和可行解的概念。
第三课时:线性规划在实际生活中的应用a. 介绍线性规划在生产计划、资源分配等方面的应用;b. 分析线性规划在经济管理、运输调度等领域的实际案例;c. 引导学生思量如何运用线性规划的思维方式解决实际问题。
五、教学方法与手段1. 教学方法:a. 讲授法:通过讲解线性规划的基本概念和解题方法,匡助学生理解和掌握知识;b. 演示法:通过实例演示线性规划的解题过程,提高学生的解题能力;c. 组织讨论:引导学生参预课堂讨论,促进学生对线性规划的思量和理解。
人教版高中数学必修五 3.3.2简单的线性规划问题(导学案)
必修 第三章
简单的线性规划问题
【课前预习】阅读教材
. 线性规划的有关概念:
①线性约束条件:在上述问题中,不等式组是一组变量、的约束条件,这组约束条件都是关于、的一次不等式,故又称线性约束条件.
②线性目标函数:关于、的一次式是欲达到最大值或最小值所涉及的变量、的解析式,叫线性目标函数.
③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
④可行解、可行域和最优解:满足线性约束条件的解叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. . 用图解法解决简单的线性规划问题的基本步骤:
()寻找线性约束条件,线性目标函数;
()由二元一次不等式表示的平面区域做出可行域;
()在可行域内求目标函数的最优解
【课初分钟】课前完成下列练习,课前分钟回答下列问题
. 目标函数,将其看成直线方程时,的意义是( ).
.该直线的横截距
.该直线的纵截距
.该直线的纵截距的一半的相反数
.该直线的纵截距的两倍的相反数
. 已知、满足约束条件,则
的最小值为( ).
. . . .
.
在如图所示的可行域内,目标函数
取得最小值的最优解有无数个,则的一个可能值是( ).
.求的最大值,其中、满足约束条件
强调(笔记):
【课中分钟】边听边练边落实
.若实数,满足,求的取值范围.
.求的最大值和最小值,其中、满足约束条件.。
高中数学 第三章 不等式 3.3.2 简单的线性规划问题(第2课时)教案 高二数学教案
3.3.2 简单线性规划问题(第2课时)一、教学目标1.知识目标:1、在应用图解法解题的过程中培养学生的观察能力、理解能力;2、在变式训练的过程中,培养学生的分析能力、探索能力;3、会用线性规划的理论和方法解决一些较简单的实际问题。
2.能力目标: 1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;2、理解线性规划问题的图解法;3、会利用图解法求线性目标函数的最优解;4、让学生体验数学来源于生活,服务于生活,体验应用数学的快乐。
3.情感目标: 1、培养学生学习数学的兴趣和“用数学”的意识,激励学生创新,鼓励学生讨论,学会沟通,培养团结协作精神;2、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。
二、教学重点与难点:重点:1、画可行域;在可行域内,用图解法准确求得线性规划问题的最优;2、解经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力和意识。
难点:1、建立数学模型.把实际问题转化为线性规划问题;2、在可行域内,用图解法准确求得线性规划问题的最优解。
三、教学模式与教法、学法教学模式:采用探究教学法,通过“猜想,验证,证明”来探究二元一次不等式(组)表示的平面区域,并通过讲练结合巩固所学的知识。
使用多媒体辅助教学。
教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线.“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.学法设计:引导学生通过主动参与、合作探讨学习知。
四、教学过程:数学教学是数学活动的教学。
因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,解决问题,3、复习概念,回顾方法;4、实际应用,强化思想;5、自主思考,归纳总结;6、布置作业,巩固提高.五、教学过程设计比较分析,深化认识播放片甲播放片乙节目要求片集时间(min)3.5 1≤16广告时间(min)0.5 1≥3.5收视观众(万)60 20先请学生回答提出的问题,然后总结再根据所求设出未知参数,得到目标函数。
高中数学 第三章 3.3.2简单的线性规划问题(二)导学案新人教A版必修5(2)
3.3.2 简单的线性规划问题(二)课时目标1.准确利用线性规划知识求解目标函数的最值. 2.掌握线性规划实际问题中的两种常见类型.1.用图解法解线性规划问题的步骤: (1)分析并将已知数据列出表格; (2)确定线性约束条件; (3)确定线性目标函数; (4)画出可行域;(5)利用线性目标函数(直线)求出最优解;根据实际问题的需要,适当调整最优解(如整数解等).2.在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.一、选择题1.某厂生产甲产品每千克需用原料A 和原料B 分别为a 1、b 1千克,生产乙产品每千克需用原料A 和原料B 分别为a 2、b 2千克,甲、乙产品每千克可获利润分别为d 1、d 2元.月初一次性购进本月用的原料A 、B 各c 1、c 2千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大.在这个问题中,设全月生产甲、乙两种产品分别为x 千克、y 千克,月利润总额为z 元,那么,用于求使总利润z =d 1x +d 2y 最大的数学模型中,约束条件为( )A.⎩⎪⎨⎪⎧ a 1x +a 2y ≥c 1,b 1x +b 2y ≥c 2,x ≥0,y ≥0B.⎩⎪⎨⎪⎧ a 1x +b 1y ≤c 1,a 2x +b 2y ≤c 2,x ≥0,y ≥0C.⎩⎪⎨⎪⎧a 1x +a 2y ≤c 1,b 1x +b 2y ≤c 2,x ≥0,y ≥0D.⎩⎪⎨⎪⎧a 1x +a 2y =c 1,b 1x +b 2y =c 2,x ≥0,y ≥0答案 C解析 比较选项可知C 正确.2. 如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为()A.14B.35 C .4 D.53答案 B解析 由y =-ax +z 知当-a =k AC 时,最优解有无穷多个.∵k AC =-35,∴a =35.3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )A .36万元B .31.2万元C .30.4万元D .24万元 答案 B解析 设投资甲项目x 万元,投资乙项目y 万元,可获得利润为z 万元,则⎩⎪⎨⎪⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5,z =0.4x +0.6y .由图象知,目标函数z =0.4x +0.6y 在A 点取得最大值. ∴y max =0.4×24+0.6×36=31.2(万元).4.某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品,甲车间加工一箱原料需耗费工时10小时,可加工出7千克A 产品,每千克A 产品获利40元,乙车间加工一箱原料耗费工时6小时,可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为( )A .甲车间加工原料10箱,乙车间加工原料60箱B .甲车间加工原料15箱,乙车间加工原料55箱C .甲车间加工原料18箱,乙车间加工原料50箱D .甲车间加工原料40箱,乙车间加工原料30箱 答案B解析 设甲车间加工原料x 箱,乙车间加工原料y 箱,由题意可知⎩⎪⎨⎪⎧x +y ≤70,10x +6y ≤480,x ≥0,y ≥0.甲、乙两车间每天总获利为z =280x +200y . 画出可行域如图所示.点M (15,55)为直线x +y =70和直线10x +6y =480的交点,由图象知在点M (15,55)处z 取得最大值.5.如图所示,目标函数z =kx -y 的可行域为四边形OABC ,点B (3,2)是目标函数的最优解,则k 的取值范围为()A.⎝ ⎛⎭⎪⎫23,2B.⎝ ⎛⎭⎪⎫1,53 C.⎝ ⎛⎭⎪⎫-2,-23 D.⎝⎛⎭⎪⎫-3,-43 答案 C解析 y =kx -z .若k >0,则目标函数的最优解是点A (4,0)或点C (0,4),不符合题意. ∴k <0,∵点(3,2)是目标函数的最优解.∴k AB ≤k ≤k BC ,即-2≤k ≤-23.二、填空题6.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为________元.答案 2 300解析 设需租赁甲种设备x 台,乙种设备y 台,则⎩⎪⎨⎪⎧5x +6y ≥50,10x +20y ≥140,x ∈N *,y ∈N *.目标函数为z =200x +300y .作出其可行域,易知当x =4,y =5时,z =200x +300y 有最小值2 300元. 7.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,则z =10x +10y 的最大值是________.答案 90解析该不等式组表示平面区域如图阴影所示,由于x ,y ∈N *,计算区域内与点⎝⎛⎭⎪⎫112,92最近的整点为(5,4),当x =5,y =4时,z 取得最大值为90.8.某工厂有甲、乙两种产品,按计划每天各生产不少于15吨,已知生产甲产品1吨需煤9吨,电力4千瓦,劳动力3个(按工作日计算);生产乙产品1吨需煤4吨,电力5千瓦,劳动力10个;甲产品每吨价7万元,乙产品每吨价12万元;但每天用煤量不得超过300吨,电力不得超过200千瓦,劳动力只有300个,当每天生产甲产品________吨,乙产品______吨时,既能保证完成生产任务,又能使工厂每天的利润最大.答案 20 24 解析设每天生产甲产品x 吨,乙产品y 吨,总利润为S 万元, 依题意约束条件为:⎩⎪⎨⎪⎧9x +4y ≤300,4x +5y ≤200,3x +10y ≤300,x ≥15,y ≥15,目标函数为S =7x +12y .从图中可以看出,当直线S =7x +12y 经过点A 时,直线的纵截距最大,所以S 也取最大值.解方程组⎩⎪⎨⎪⎧4x +5y -200=0,3x +10y -300=0,得A (20,24),故当x =20,y =24时, S max =7×20+12×24=428(万元). 三、解答题9.医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10 g 含5单位蛋白质和10单位铁质,售价3元;乙种原料每10 g 含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?解设甲、乙两种原料分别用10x g 和10y g ,总费用为z ,那么⎩⎪⎨⎪⎧5x +7y ≥35,10x +4y ≥40,x ≥0,y ≥0,目标函数为z =3x +2y ,作出可行域如图所示:把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线.由图可知,当直线y =-32x +z 2经过可行域上的点A 时,截距z2最小,即z 最小.由⎩⎪⎨⎪⎧10x +4y =40,5x +7y =35,得A (145,3),∴z min =3×145+2×3=14.4.∴甲种原料145×10=28(g),乙种原料3×10=30(g),费用最省.10.某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2,生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所得利润最大? 解(1)则⎩⎪⎨⎪⎧0.1x ≤902x ≤600z =80x⇒⎩⎪⎨⎪⎧x ≤900x ≤300⇒x ≤300.所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元. (2)设只生产书橱y 个,可获利润z 元, 则⎩⎪⎨⎪⎧0.2y ≤901·y ≤600z =120y⇒⎩⎪⎨⎪⎧y ≤450y ≤600⇒y ≤450.所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤902x +y ≤600x ≥0y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在直角坐标平面内作出上面不等式组所表示的平面区域,即可行域.作直线l :80x +120y =0,即直线l :2x +3y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =900,2x +y =600解得点M 的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56 000(元). 因此,生产书桌100张、书橱400个, 可使所得利润最大. 能力提升11.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的一个可能值为( )A .-3B .3C .-1D .1 答案 A解析 当a =0时,z =x .仅在直线x =z 过点A (1,1)时, z 有最小值1,与题意不符.当a >0时,y =-1a x +za.斜率k =-1a<0,仅在直线z =x +ay 过点A (1,1)时,直线在y 轴的截距最小,此时z 也最小,与目标函数取得最小值的最优解有无数个矛盾.当a <0时,y =-1a x +z a ,斜率k =-1a>0,为使目标函数z 取得最小值的最优解有无数个,当且仅当斜率-1a =k AC .即-1a =13,∴a=-3.12.要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的今需要A 、B 、C 三种规格的成品分别至少为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?解 设需截第一种钢板x 张,第二种钢板y 张.⎩⎪⎨⎪⎧2x +y ≥15x +2y ≥18x +3y ≥27x ≥0,y ≥0.作出可行域(如图):(阴影部分) 目标函数为z =x +y .作出一组平行直线x +y =t ,其中经过可行域内的点且和原点距离最近的直线,经过直线x +3y =27和直线2x +y =15的交点A⎝ ⎛⎭⎪⎫185,395,直线方程为x +y =575.由于185和395都不是整数,而最优解(x ,y )中,x ,y 必须都是整数,所以可行域内点⎝ ⎛⎭⎪⎫185,395不是最优解. 经过可行域内的整点且与原点距离最近的直线是x +y =12,经过的整点是B (3,9)和C (4,8),它们都是最优解.答 要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种:第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法都最少要截两种钢板共12张.1.画图对解决线性规划问题至关重要,关键步骤基本上是在图上完成的,所以作图应尽可能准确,图上操作尽可能规范.2.在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等)而直接根据约束条件得到的不一定是整数解,可以运用枚举法验证求最优整数解,或者运用平移直线求最优整数解.最优整数解有时并非只有一个,应具体情况具体分析.。
2020秋高中数学人教A版必修5同步:3.3-3.3.2第2课时 线性规划的实际应用
4.某企业生产甲、乙两种产品均需用 A,B 两种原 料.已知生产 1 吨甲、乙产品所需原料及每天原料的可用 限额如下表所示.如果生产 1 吨甲、乙产品可获利润分别 为 3 万元、4 万元,则该企业每天可获得的最大利润为 ()
项目 甲 乙 原料限额
A/吨 3 2
12
B/吨 1 2
8
A.12 万元 B.16 万元 C.17 万元 D.18 万元
[知识提炼·梳理] 线性规划在实际问题中的题型 主要掌握两种类型:一是给定一定数量的人力、物 力资源,问怎样运用这些资源能使完成的任务量最大, 收到的效益最大;二是给定一项任务,问怎样统筹安排, 能使完成的这项任务耗费的人力、物力资源最小.
[思考尝试·夯基] 1.思考判断(正确的打“√”,错误的打“×”) (1)将目标函数的直线平行移动,最先通过或最后通 过的顶点便是最优解.( ) (2) 当 线 性 目 标 函 数 的 直 线 与 可 行 域 的 某 条 边 平 行 时,最优解可能有无数个.( ) 答案:(1)× (2)√
C.36 800 元
D.38 400 元
解析:设租用 A 型车 x 辆,B 型车 y 辆,租金为 z 元, 36x+60y≥900, 则yy- +xx≤ ≤72, 1, x,y∈N* .
画出可行域(如图中阴影部分内的整点),则目标函数 z=1 600x+2 400y 在点(5,12)处取得最小值,zmin=36 800(元).
x-y≥0, 2.若满足条件x+y-2≤0,的整点(x,y)(整点是指
y≥a 横、纵坐标都是整数的点)恰有 9 个,则整数 a 的值为( )
A.-3 B.-2 C.-1 D.0 解析:不等式组所表示的平面区域如图阴影部分所 示,当 a=0 时,只有 4 个整点,分别为(1, 1),(0,0),(1,0),(2,0). 当 a=-1 时,正好增加(-1,-1), (0,-1),(1,-1),(2,-1),(3,-1)5 个整点,所以 a=-1.
高中数学第三章不等式3.3.2.2简单线性规划的应用学案新人教A版必修5
第2课时简单线性规划的应用学习目标1.能从实际问题中抽象出线性规划问题,并加以解决.(数学抽象、数学建模、逻辑推理、数学运算)2.会求解线性规划的最优整数解问题.(数学抽象、数学建模、逻辑推理、数学运算).关键能力·合作学习类型一线性规划的实际应用问题(数学抽象、数学建模、数学运算)【典例】某家具厂有木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要木料0.1 m3,五合板2 m2,生产每个书橱需要木料0.2 m3,五合板1 m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元.怎样安排生产可使所获利润最大.【思路导引】可先设出变量,写出目标函数和约束条件,转化为线性规划问题来求解.【解析】设生产书桌x张,生产书橱y个,利润为z元,则目标函数为z=80x+120y,根据题意知, 约束条件为即画出可行域为如图所示对应的整数点,作直线l:80x+120y=0,并平移直线l,由图可知,当直线l过点C时,z取得最大值,解得C(100,400),所以z max=80×100+120×400=56 000,即生产100张书桌,400个书橱,可获得最大利润.(变结论)例题中的条件不变,如果只安排生产书桌可获利润多少?如果只安排生产书橱呢? 【解析】(1)若只生产书桌,则y=0,此时目标函数z=80x,由例题解析图可知z max=80×300=24 000,即只生产书桌,可获利润24 000元.(2)若只生产书橱,则x=0,此时目标函数z=120y,由例题解析图可知z max=120×450=54 000,即只生产书橱,可获利润54 000元.线性规划的实际问题的数学模型(1)列表定条件:需要通过审题理解题意,找出各量之间的关系,最好是列成表格,找出线性约束条件.(2)定目标函数:写出所研究的目标函数.(3)数形结合求最值:解线性规划应用题时,先转化为简单的线性规划问题,再按作图、平移、求值的步骤完成即可.【补偿训练】某公司生产A,B两种产品,其中生产每吨A产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨B产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一天之内甲、乙、丙三种染料的用量分别不超过50吨、160吨和200吨,如果A产品的利润为300元/吨,B产品的利润为200元/吨,设公司计划一天内安排生产A产品x吨,B产品y吨.(1)用x,y列出满足条件的数学关系式,并在如图所示的坐标系中画出相应的平面区域;(2)该公司每天需生产A,B产品各多少吨可获得最大利润,最大利润是多少?【解析】(1)由题意可得,可行域如图所示.(2)设利润z=300x+200y,由可得x=40,y=10,结合图形可得x=40,y=10时,z max=14 000.答:该公司每天需生产A,B产品分别为40吨,10吨可获得最大利润,最大利润为14 000元. 【拓展延伸】解答线性规划应用题的一般步骤(1)审题——仔细阅读,明确有哪些限制条件,起关键作用的变量有哪些.由于线性规划应用题中的变量比较多,为了理顺题目中量与量之间的关系,有时可借助表格来理顺.(2)转化——设元.写出约束条件和目标函数,从而将实际问题转化为数学上的线性规划问题.(3)求解——利用线性规划求解.(4)作答——就应用题提出的问题作出回答.【拓展训练】某人承揽一项业务,需做文字标牌4个,绘画标牌5个.现有两种规格的原料,甲种规格每张3 m2,可做文字标牌1个,绘画标牌2个;乙种规格每张2 m2,可做文字标牌2个,绘画标牌1个,求这两种规格的原料各用多少张,才能使得总用料面积最小.【解题指南】可先设出变量,写出目标函数和约束条件,转化为线性规划问题来求解.【解析】设需要甲种原料x张,乙种原料y张,则可做文字标牌(x+2y)个,绘画标牌(2x+y)个,由题意可得所用原料的总面积为z=3x+2y,可行域为如图阴影部分对应的整数点.在一组平行直线z=3x+2y中,经过可行域内的点且在y轴上截距最小的直线过直线2x+y=5和直线x+2y=4的交点(2,1),所以最优解为x=2,y=1.所以使用甲种规格原料2张,乙种规格原料1张,可使总的用料面积最小.类型二线性规划中的最优整数解问题(逻辑推理、数学运算)【典例】某校今年计划招聘女教师x人,男教师y人,若x,y满足(1)在如图所示的坐标系中作出可行域;(2)求该学校今年计划招聘的教师人数最多多少人?最少多少人?四步内容条件:已知线性约束条件,理解题意结论:(1)作出可行域;(2)计划招聘的教师人数最多多少人?最少多少人?思路探求作出可行域,求出可行域内满足条件的整点.(1)作出不等式组对应的平面区域为如图阴影部分对应的整数点:书写表达(注:图中直线2x-y=5和x=6为虚线)(2)设z=x+y,则y=-x+z,平移直线y=-x+z,由图象可知当直线y=-x+z经过点A时,直线y=-x+z的截距最大,此时z最大.但此时z最大值取不到,由图象可知当直线经过整点E(5,4)时,z=x+y取得最大值,经过点F(4,2)时,z=x+y取得最小值.代入目标函数z=x+y,得z max=5+4=9,z min=4+2=6.故该学校今年计划招聘的教师人数最多9人,最少6人.当边界的交点不是可行域内的点时,需要另外求区域内的整数解,一题后反思般在交点的附近.寻找整点最优解的三种方法(1)平移找解法:先打网格,描整点,平移直线l,最先经过或最后经过的整点便是最优整点解,这种方法应充分利用整点最优解的信息,结合精确的作图才行,当可行域是有限区域且整点个数又较少时,可逐个将整点坐标代入目标函数求值,经比较求最优解.(2)小范围搜寻法:将求出的非整点最优解附近的整点都求出来,代入目标函数,直接求出目标函数的最大(小)值.(3)调整优值法:先求非整点最优解及最优值,再调整最优值,最后筛选出整点最优解.某运输公司有7辆载重量为6吨的A型卡车,4辆载重量为10吨的B型卡车,有9名驾驶员.在建筑某段高速公路的工程中,此公司承包了每天运送360吨沥青的任务.已知每辆卡车每天往返次数为:A型车8次,B型车6次,每辆卡车每天往返的成本费为:A型车160元,B型车280元.每天派出A型车与B型车各多少辆时,公司花的成本费最低?【解析】设公司每天所花成本费为z元,每天派出A型车x辆,B型车y辆,则z=160x+280y,x,y满足的约束条件为作出不等式组的可行域为如图阴影部分对应的整数点.作直线l:160x+280y=0,即l:4x+7y=0.将l向右上方移至l1位置时,直线l1经过可行域上的M点,由图可知此时z取得最小值.由方程组解得但y=0.4不是整数,故取x=7,y=1,此时z取得最小值.所以,当每天派出A型车7辆、B型车1辆时,公司所花费用最低.【拓展延伸】在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等),而直接根据约束条件得到的不一定是整数解,可以运用枚举法验证求最优整数解,或者运用平移直线求最优整数解.最优整数解有时并非只有一个,应具体情况具体分析.调整优值法时,先求非整点最优解及最优值,再借助不定方程知识调整最优值,最后筛选出最优解.【拓展训练】某人有楼房一幢,室内面积共180 m2,拟分隔成两类房间作为旅游客房,大房间每间18 m2,可住游客5名,每名游客每天住宿费为40元;小房间每间15 m2,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需1 000元,装修小房间每间需600元.如果他只能筹款8 000元用于装修,且游客能住满客房,则他应隔出大房间和小房间各多少间,才能获得最大收益?【解析】设隔出大房间x间,小房间y间,获得收益为z元,则即则目标函数为z=200x+150y=50(4x+3y),作出不等式组表示的平面区域,即可行域,如图中阴影部分内的整点.作直线l:4x+3y=0,当直线l经过平移过点A时,4x+3y取得最大值,由于A点的坐标不是整数,而x,y∈N,所以点A不是最优解.调整最优解: 由x,y∈N,知4x+3y≤37.令4x+3y=37,即y=,代入约束条件①②,解得≤x≤3.由于x∈N,得x=3,但此时y=∉N.再次调整最优解:令4x+3y=36.即y=,代入约束条件①②,解得0≤x≤4(x∈N).当x=0时,y=12;当x=1时,y=10;当x=2时,y=9;当x=3时,y=8;当x=4时,y=6.所以最优解为(0,12)和(3,8),这时z max=1 800.答:应隔出小房间12间或大房间3间、小房间8间,可以获得最大收益. 【补偿训练】两类药片有效成分如表:成分药品阿司匹林/mg小苏打/mg可卡因/mg每片价格/元A(1片) 2 5 1 0.1B(1片) 1 7 6 0.2若要求至少提供12 mg阿司匹林,70 mg小苏打,28 mg可卡因,两类药的最小总数是多少?怎样搭配价格最低?【解析】设需用A和B两种药品分别为x片和y片,药品总数为z片,价格为L元.由题意,得约束条件线性目标函数为:药品总数z=x+y.价格L=0.1x+0.2y.由不等式组作可行域如图,取阴影部分的整点,作直线l0:x+y=0,平移直线l0到l位置,l经过点A时z有最小值.由解得点A坐标为.而点A不是整数点,故不能作为最优解.此时,过点A的直线为l A:x+y=,可行域内与直线l A距离最近的整点有(1,10),(2,9),(3,8),使z min=11,即药品总数为11片,而相应价格为L1=0.1×1+0.2×10=2.1,L2=0.1×2+0.2×9=2.0, L3=0.1×3+0.2×8=1.9,其中的L3最小,所以L min=1.9(元),所以药品最小总数为11片,其中3片A种药、8片B种药搭配的价格最低. 类型三线性规划的综合应用(数学抽象、逻辑推理、数学建模)角度1 与向量相关的问题【典例】已知向量a=(1,3),b=(x,y),且变量x,y满足则z=a·b的最大值为.【思路导引】利用向量运算确定目标函数后求最值.【解析】由变量x,y满足作出可行域如图,联立解得A,因为向量a=(1,3),b=(x,y),所以z=a·b=x+3y,化为y=-x+,由图可知,当直线y=-x+过A时,直线在y轴上的截距最大,z有最大值为6.答案:6本例中若a=(2,1),试求z=a·b的最小值.【解析】z=a·b=2x+y,即y=-2x+z,则当直线l:y=-2x+z平移到点(0,0)时,z取得最小值z min=2×0+0=0.角度2 与方程的根有关的问题【典例】一元二次方程x2+ax+b=0的一个根在(0,1)内,另一个根在(1,2)内,则a+2b-3的值域为.【思路导引】根据一元二次方程根的分布,利用对应的函数在区间端点处取值正负确定限制条件,再利用线性规划求值域.【解析】根据题意,令f(x)=x2+ax+b,由方程x2+ax+b=0的一个根在(0,1)内,另一个根在(1,2)内,则有画出对应的可行域,如图所示,△ABC的区域(不含边界).其中,A(-1,0)、B(-2,0)、C(-3,2),令z=a+2b-3,当a=-2,b=0时,z=(-2)-3=-5,取得最小值,当a=-3,b=2时,z=(-3)+2×2-3=-2,取得最大值;故a+2b-3的值域为(-5,-2).答案:(-5,-2)已知一元二次方程x2+ax+b=0的一个根在[-2,-1]内,另一个根在[1,2]内,求a+b的取值范围. 【解析】设f(x)=x2+ax+b,因为一元二次方程x2+ax+b=0的一个根在[-2,-1]内,另一个根在[1,2]内,所以即作出不等式组对应的平面区域如图:则以a,b为坐标轴的点(a,b)的存在区域为四边形ABCD及其内部,设z=a+b,即b=-a+z,平移直线b=-a+z,由图象知当直线b=-a+z经过点B(0,-4)时,直线b=-a+z的截距最小,此时z最小,z=0-4=-4,当直线b=-a+z与直线CD:a+b+1=0重合时,直线b=-a+z的截距最大,此时z=-1,即-4≤z≤-1,即a+b的取值范围是[-4,-1].1.与向量有关的问题向量一般作为工具,利用向量的运算可得目标函数或限制条件,再利用线性规划知识解题. 2.与方程的根有关的问题若已知一元二次方程根的分布,可利用对应的二次函数求约束条件,方程的根即函数的零点,根据零点的位置,转化为区间端点处函数的正负,即为约束条件.1.设x,y满足约束条件向量a=(2x,1),b=(1,m-y),则满足a⊥b的实数m的最小值为( )A. B.- C. D.-【解析】选B.由向量a=(2x,1),b=(1,m-y),a⊥b,得m=y-2x,根据约束条件画出可行域,因为m=y-2x,所以y=2x+m,将m的最小值转化为直线y=2x+m在y轴上的截距,当直线y=2x+m经过点A时,m最小,由解得A,所以满足a⊥b的实数m的最小值为:-2×+=-.2.已知α,β是方程x2+ax+2b=0的两根,且α∈[0,1],β∈[1,2],a,b∈R,求的最大值和最小值.【解析】因为所以因为0≤α≤1,1≤β≤2,所以1≤α+β≤3,0≤αβ≤2,所以建立平面直角坐标系aOb,则上述不等式组表示的平面区域如图中阴影部分所示.令k=,可以看成动点P(a,b)与定点A(1,3)的连线的斜率.因为k AB=,k AC=,所以≤≤.故的最大值是,最小值是.课堂检测·素养达标学1.(教材二次开发:例题改编)某旅行社租用A,B两种型号的客车安排900名客人旅行,A,B两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆,则租金最少为( )A.31 200元B.36 000元C.36 800元D.38 400元【解析】选C.设租用A型车x辆,B型车y辆,目标函数为z=1 600x+2 400y,则约束条件为作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min=36 800(元).2.铁矿石A和B的含铁率a,冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如表:a b/万吨c/百万元A 50% 1 3B 70% 0.5 6某冶炼厂至少要生产1.9万吨铁,若要求CO2的排放量不超过2万吨,则购买铁矿石的最少费用为百万元.【解析】设购买A,B两种铁矿石分别为x万吨、y万吨,购买铁矿石的费用为z百万元,则z=3x+6y.由题意,约束条件为作出可行域,如图所示,由图可知,目标函数z=3x+6y在点A(1,2)处取得最小值z min=3×1+6×2=15.答案:153.已知点A(3,-1),点P(x,y)满足线性约束条件O为坐标原点,则在方向上的投影的取值范围为.【解析】因为A(3,-1),P(x,y),所以在方向上的投影为||cos<,>==(3x-y).由约束条件作出可行域如图,令z=3x-y,平移直线y=3x过C(0,5)时,z有最小值为-5,平移直线y=3x过B(2,1)时,z有最大值为5,所以在方向上的投影的取值范围为.答案:4.某加工厂准备生产甲、乙两种产品,已知生产一件甲产品需用原料A和原料B的量分别为4 kg 和3 kg,生产一件乙产品需用原料A和原料B的量分别为5 kg和10 kg.若生产一件甲产品可获利700元,生产一件乙产品可获利1 200元.该厂月初一次性购进原料A,B的量分别为200 kg 和300 kg.问该厂生产甲、乙两种产品各多少件才能使该厂月利润最大,最大利润为多少?【解析】设甲、乙两种产品分别生产x,y件,工厂获得的利润为z元,由已知条件可得二元一次不等式组:目标函数为z=700x+1 200y,作出可行域如图,由可得A(20,24),利用线性规划可得x=20,y=24时,该厂的月利润最大为z=700×20+1 200×24=42 800(元),该厂生产甲、乙两种产品分别为20件,24件才能使该厂月利润最大,最大利润为42 800元.【新情境·新思维】若实数x,y满足约束条件则z=l n y-ln x的最大值是.【解析】由实数x,y满足约束条件作出可行域如图,联立,解得A(1,3),由z=ln y-ln x=ln,而的最大值为k OA=3, 所以z=ln y-ln x的最大值是ln 3.答案:ln 3。
高中数学 第三章 3.3.2简单的线性规划问题(一)导学案新人教A版必修5(2)
3.3.2 简单的线性规划问题(一)课时目标1.了解线性规划的意义.2.会求一些简单的线性规划问题.名称 意义 约束条件 由变量x ,y 组成的不等式或方程 线性约束条件 由x ,y 的一次不等式(或方程)组成的不等式组 目标函数 欲求最大值或最小值所涉及的变量x ,y 的函数解析式 线性目标函数 关于x ,y 的一次解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 所有可行解组成的集合 最优解 使目标函数取得最大值或最小值的可行解线性规划问题 在线性约束条件下求线性目标函数的最大值或最小值问题一、选择题1.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A .9 B.157 C .1 D.715答案 A解析 画出可行域如图:当直线y =-x +z 过点A 时,z 最大. 由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0得A (4,5),∴z max =4+5=9. 2.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,则x 2+y 2的最大值为( )A.10 B .8 C .16 D .10答案 D解析 画出不等式组对应的可行域如下图所示: 易得A (1,1),|OA |=2,B (2,2), |OB |=22,C (1,3),|OC |=10.∴(x 2+y 2)max =|OC |2=(10)2=10.3.在坐标平面上有两个区域M 和N ,其中区域M =⎩⎨⎧⎭⎬⎫x ,y⎩⎪⎨⎪⎧y ≥0y ≤x y ≤2-x,区域N ={(x ,y )|t ≤x ≤t +1,0≤t ≤1},区域M 和N 公共部分的面积用函数f (t )表示,则f (t )的表达式为( )A .-t 2+t +12B .-2t 2+2tC .1-12t 2 D.12(t -2)2答案 A 解析作出不等式组⎩⎪⎨⎪⎧y ≥0y ≤xy ≤2-x所表示的平面区域.由t ≤x ≤t +1,0≤t ≤1,得f (t )=S △OEF -S △AOD -S △BFC=1-12t 2-12(1-t )2=-t 2+t +12.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为( )A .3,-11B .-3,-11C .11,-3D .11,3 答案 A解析 作出可行域如图阴影部分所示,由图可知z =3x -4y 经过点A 时z 有最小值,经过点B 时z 有最大值.易求A (3,5),B (5,3).∴z 最大=3×5-4×3=3,z 最小=3×3-4×5=-11.5设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0y ≥x,所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,则|AB |的最小值为( )A.285 B .4 C.125 D .2 答案 B解析 如图所示.由约束条件作出可行域,得D (1,1),E (1,2),C (3,3).要求|AB |min ,可通过求D 、E 、C 三点到直线3x -4y -9=0距离最小值的2倍来求.经分析,D (1,1)到直线3x -4y -9=0的距离d =|3×1-4×1-9|5=2最小,∴|AB |min=4.二、填空题6.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3.则目标函数z =2x +3y 的最小值为________.答案 7解析 作出可行域如图所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7.7.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________.(答案用区间表示)答案 (3,8)解析 由⎩⎪⎨⎪⎧-1<x +y <4,2<x -y <3得平面区域如图阴影部分所示.由⎩⎪⎨⎪⎧x+y=-1,x-y=3得⎩⎪⎨⎪⎧x=1,y=-2.由⎩⎪⎨⎪⎧x+y=4,x-y=2得⎩⎪⎨⎪⎧x=3,y=1.∴2×3-3×1<z=2x-3y<2×1-3×(-2),即3<z<8,故z=2x-3y的取值范围是(3,8).8.已知实数x,y满足⎩⎪⎨⎪⎧x+2y-5≤0,x≥1,y≥0,x+2y-3≥0,则yx的最大值为________.答案 2解析画出不等式组⎩⎪⎨⎪⎧x+2y-5≤0,x≥1,y≥0,x+2y-3≥0对应的平面区域Ω,yx=y-0x-0表示平面区域Ω上的点P(x,y)与原点的连线的斜率.A(1,2),B(3,0),∴0≤yx≤2.三、解答题9.线性约束条件⎩⎪⎨⎪⎧x+3y≥12x+y≤103x+y≥12下,求z=2x-y的最大值和最小值.解如图作出线性约束条件⎩⎪⎨⎪⎧x +3y ≥12x +y ≤103x +y ≥12下的可行域,包含边界:其中三条直线中x +3y =12与3x +y =12交于点A (3,3),x +y =10与x +3y =12交于点B (9,1), x +y =10与3x +y =12交于点C (1,9),作一组与直线2x -y =0平行的直线l :2x -y =z ,即y =2x -z ,然后平行移动直线l ,直线l 在y 轴上的截距为-z ,当l 经过点B 时,-z 取最小值,此时z 最大,即z max =2×9-1=17;当l 经过点C 时,-z 取最大值,此时z 最小,即z min =2×1-9=-7.∴z max =17,z min =-7.10.已知⎩⎪⎨⎪⎧2x +y -5≥03x -y -5≤0x -2y +5≥0,求x 2+y 2的最小值和最大值.解 作出不等式组 ⎩⎪⎨⎪⎧2x +y -5≥03x -y -5≤0x -2y +5≥0的可行域如图所示,由⎩⎪⎨⎪⎧x -2y +5=02x +y -5=0,得A (1,3), 由⎩⎪⎨⎪⎧ x -2y +5=03x -y -5=0,得B (3,4), 由⎩⎪⎨⎪⎧3x -y -5=02x +y -5=0,得C (2,1),设z =x 2+y 2,则它表示可行域内的点到原点的距离的平方,结合图形知,原点到点B 的距离最大,注意到OC ⊥AC ,∴原点到点C 的距离最小.故z max =|OB |2=25,z min =|OC |2=5. 能力提升11.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +x +y -1≤x ≤4,求x 2+y 2-2的取值范围.解 作出可行域如图,由x 2+y 2=(x -0)2+(y -0)2,可以看作区域内的点与原点的距离的平方,最小值为原点到直线x +y -6=0的距离的平方,即|OP |2,最大值为|OA |2,其中A (4,10),|OP |=|0+0-6|12+12=62=32, |OA |=42+102=116,∴(x 2+y 2-2)min =(32)2-2=18-2=16, (x 2+y 2-2)max =(116)2-2=116-2=114,∴16≤x 2+y 2-2≤114.即x 2+y 2-2的取值范围为16≤x 2+y 2-2≤114. 12.已知实数x 、y 满足⎩⎪⎨⎪⎧2x +y -2≥0x -2y +4≥03x -y -3≤0,试求z =y +1x +1的最大值和最小值. 解 由于z =y +1x +1=y --x --, 所以z 的几何意义是点(x ,y )与点M (-1,-1)连线的斜率,因此y +1x +1的最值就是点(x ,y )与点M (-1,-1)连线的斜率的最值,结合图可知,直线MB 的斜率最大,直线MC 的斜率最小,即 z max =k MB =3,此时x =0,y =2; z min =k MC =12,此时x =1,y =0.∴z 的最大值为3,最小值为12.1.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.2.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.。
高二数学教案:线性规划的实际应用
高二数学教案:线性规划的实际应用学习目标:1.能应用线性规划的方法解决一些简单的实际问题2.增强学生的应用意识.培养学生理论联系实际的观点重点:求得最优解难点:求最优解是整数解求线性目标函数在线性约束条件下的最优解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解例题选讲:例1 已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.煤矿应怎样编制调运方案,能使总运费最少? 解:设甲煤矿向东车站运万吨煤,乙煤矿向东车站运万吨煤,那么总运费z=x+1.5(200-x)+0.8y+1.6(300-y)(万元)即z=780-0.5x-0.8y.x、y应满足:作出上面的不等式组所表示的平面区域设直线x+y=280与y轴的交点为M,则M(0,280)把直线l:0.5x+0.8y=0向上平移至经过平面区域上的点M时,z的值最小∵点M的坐标为(0,280),甲煤矿生产的煤全部运往西车站、乙煤矿向东车站运280万吨向西车站运20万吨时,总运费最少例2、要将甲、乙两种长短不同的钢管截成A、B、C三种规格,每根钢管可同时截得三种规格的短钢管的根数如下表所示:规格类型A规格B规格C规格甲种钢管 2 1 4乙种钢管 2 3 1今需A、B、C三种规格的钢管各13、16、18根,问各截这两种钢管多少根可得所需三种规格钢管,且使所用钢管根数最少解:设需截甲种钢管x根,乙种钢管y根,则作出可行域(如图):目标函数为z=x+y,作出一组平行直线x+y=t中(t为参数)经过可行域内的点且和原点距离最近的直线,此直线经过直线4x+y=18和直线x+3y=16的交点A( ),直线方程为x+y= .由于和都不是整数,所以可行域内的点( )不是最优解经过可行域内的整点且与原点距离最近的直线是x+y=8,经过的整点是B(4,4),它是最优解答:要截得所需三种规格的钢管,且使所截两种钢管的根数最少方法是,截甲种钢管、乙种钢管各4根小结:求线性目标函数在线性约束条件下的最优解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解自我检测:1.某工厂生产甲、乙两种产品,已知生产甲种产品1t需耗A 种矿石8t、B种矿石8t、煤5t;生产乙种产品1t需耗A种矿石4t、B种矿石8t、煤10t.每1t甲种产品的利润是500元,每1t乙种产品的利润是400元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过320t、B种矿石不超过400t、煤不超过450t.甲、乙两种产品应各生产多少能使利润总额达到最大?2.某运输队有8辆载重量为6t的A型卡车与6辆载重量为10t的B型卡车,有10名驾驶员.此车队承包了每天至少搬运720t沥青的任务.已知每辆卡车每天往返的次数为A型卡车16次,B型卡车12次.每辆卡车每天往返的成本费为A型车240元,B型车378元.每天派出A型车与B型车各多少辆运输队所花的成本最低?3.下表给出X、Y、Z三种食品的维生素含量及其成本X Y Z维生素A/单位/千克400 500 300维生素B/单位/千克700 100 300成本/(元/千克) 6 4 3现欲将三种食物混合成100千克的混合食品,要求至少含35000单位维生素A,40000单位维生素B,采用何种配比成本最小?4.某人上午7时,乘摩托艇以匀速v海里/小时(420)的速度从A港出发到距50海里的B港去,然后乘汽车以匀速w千米/小时(30100)的速度自B港到距300千米的C市去,应该在同一天下午4至9点到达C市。
高中生数学线性规划教案
高中生数学线性规划教案教学内容:1. 了解线性规划的基本概念和应用领域。
2. 掌握线性规划的解题思路和方法。
3. 在实际问题中运用线性规划进行分析和解决。
教学目标:1. 理解线性规划的定义和特点。
2. 能够根据具体问题建立线性规划模型。
3. 能够运用线性规划解决实际生活中的问题。
教学重点:1. 线性规划的基本概念和特点。
2. 线性规划模型的建立和求解方法。
3. 实际问题中线性规划的应用。
教学难点:1. 将实际问题抽象成线性规划模型。
2. 运用线性规划方法解决问题的能力。
教学过程及教学方法:1. 导入(5分钟)通过介绍一个生活中的实际问题,引出线性规划的概念和应用场景。
2. 理论讲解(15分钟)讲解线性规划的定义、目标函数、约束条件等基本概念,并介绍线性规划的解题思路和方法。
3. 示例分析(20分钟)通过具体的例题演示,引导学生理解如何建立线性规划模型,并运用线性规划方法解决问题。
4. 练习与讨论(15分钟)组织学生进行练习题目,引导学生思考问题的建模和解决方法,并开展讨论分享。
5. 拓展应用(10分钟)介绍线性规划在实际生活中的广泛应用领域,启发学生深入思考线性规划的实际意义。
6. 总结归纳(5分钟)对本节课的内容进行总结归纳,梳理线性规划的重点和难点,强调学生需要掌握的知识点。
教学资源:1. PPT课件;2. 课堂练习题目;3. 实际问题案例。
教学评估:1. 课堂练习成绩;2. 参与讨论的表现;3. 课后作业完成情况。
教学反馈:及时对学生在课堂练习和课后作业中存在的问题进行指导和辅导,帮助他们提高线性规划解题能力。
高中数学 332简单的线性规划问题导学案(2) 新人教A版必修5 学案
(2)已知 ,求 的取值范围.
(3)已知
的取值范围.
小结:
1、线性目标函数的最大值、最小值一般在可行域的顶点处取得.
2、线性目标函数的最大值、最小值也可能在可行域的边界上取得,即满足条件的最优解有无数多个.
学生自主完成
听课所得
1、问题梳理2、归纳小结
例1 要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:
规格类型
钢板类型
A规格
B规格
C规格
第一种钢板
2
1
1
第二种钢板
1
2
3
今需要三种规格的成品分别为12块、15块、27块,各截这两种钢板多少张可得所需A、B、C、三种规格成品,且使所用钢板张数最少?
3.3.2简单的线性规划问题(2)
学生明确内容
学习目标
1. 从实际情境中抽象出一些简单的二元线性规划问题,并加以解决;
2. 体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题.
重点难点
教学重点:利用图解法求得线性规划问题的最优解
教学难点:把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解
例2 一个化肥厂生产甲乙两种混合肥料,生产1车皮甲肥料的主要原料是磷酸盐4t,硝酸盐18t;生产1车皮乙种肥料的主要原料是磷酸盐1t,硝酸盐15t. 现库存磷酸盐10t,硝酸盐66t,在此基础上生产这两种混合肥料. 若生1车皮甲种肥料能产生的利润为10000元;生产1车皮乙种肥料,产生的利润为5000元. 那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?
2020最新高中数学 第三章3.3.2 第2课时 线性规划的实际应用学案 新人教A版必修5
第2课时 线性规划的实际应用学习目标:理解并初步运用线性规划的图解法解决一些实际问题.(重点、难点)[自 主 预 习·探 新 知]应用线性规划解决实际问题的类型思考:一家银行的信贷部计划年初投入25 000 000元用于企业投资和个人贷款,希望这笔资金至少可带来30 000元的收益,其中从企业贷款中获益12%,从个人贷款中获益10%,假设信贷部用于企业投资的资金为x 元,用于个人贷款的资金为y 元.那么x 和y 应满足哪些不等关系?[提示]分析题意,我们可得到以下式子⎩⎪⎨⎪⎧x +y ≤25 000 000,12x +10y ≥3 000 000,x ≥0,y ≥0.[基础自测]1.思考辨析(1)将目标函数的直线平行移动,最先通过或最后通过的顶点便是最优解.( ) (2)当线性目标函数的直线与可行域的某条边平行时,最优解可能有无数个.( ) [答案] (1)√ (2)√2.已知目标函数z =2x +y ,且变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≥-3,3x +5y <25,x ≥1,则( )A .z max =12,z min =3B .z max =12,无最小值C .z min =3,无最大值D .z 既无最大值又无最小值D [画出可行域如图所示,z =2x +y 即y =-2x +z 在平移过程中的纵截距z 既无最大值也无最小值.]3.完成一项装修工程,请木工需付工资每人每天50元,请瓦工需付工资每人每天40元.现有工人工资预算每天2 000元,设请木工x 人,请瓦工y 人,则请工人的约束条件是________.⎩⎪⎨⎪⎧x ,y ∈N *50x +40y ≤2 0004.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为________元.【导学号:91432334】36 800 [设租用A 型车x 辆,B 型车y 辆,租金为z 元, 则⎩⎪⎨⎪⎧36x +60y ≥900,y -x ≤7,y +x ≤21,x ,y ∈N ,画出可行域(如图中阴影部分内的整点),则目标函数z =1 600x +2 400y 在点(5,12)处取得最小值z min =36 800元.][合 作 探 究·攻 重 难]线性规划的实际应用问题[探究问题]1.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元.设投资甲、乙两个项目的资金分别为x 、y万元,那么x 、y 应满足什么条件?提示:⎩⎪⎨⎪⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5.2.若公司对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,设该公司所获利润为z 万元,那么z 与x ,y 有何关系?提示:根据公司所获利润=投资项目甲获得的利润+投资项目乙获得的利润,可得z 与x ,y 的关系为z =0.4x +0.6y .3.x ,y 应在什么条件下取值,x ,y 取值对利润z 有无影响?提示:x ,y 必须在线性约束条件⎩⎪⎨⎪⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5下取值.x ,y 取不同的值,直接影响z 的取值.某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要木料0.1 m 3,五合板2 m 2,生产每个书橱需要木料0.2 m 3,五合板1 m 2,出售一张书桌可获利润80元,出售一个书橱可获利润120元. 怎样安排生产可使所获利润最大.【导学号:91432335】思路探究:可先设出变量,建立目标函数和约束条件,转化为线性规划问题来求解. [解] 设生产书桌x 张,生产书橱y 个,利润为z 元,则目标函数为z =80x +120y ,根据题意知,约束条件为⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0,x ∈N ,y ∈N ,画出可行域如图所示,作直线l :80x +120y =0,并平移直线l ,由图可知,当直线l 过点C 时,z 取得最大值,解⎩⎪⎨⎪⎧x +2y =900,2x +y =600,得C (100,400),所以z max =80×100+120×400=56 000,即生产100张书桌,400个书橱,可获得最大利润.母题探究:(变结论)例题中的条件不变,如果只安排生产书桌可获利润多少?如果只安排生产书橱呢?[解](1)若只生产书桌,则y=0,此时目标函数z=80x,由图可知z max=80×300=24 000,即只生产书桌,可获利润24 000元.(2)若只生产书橱,则x=0,此时目标函数z=120y,由图可知z max=120×450=54 000,即只生产书橱,可获利润54 000元.[规律方法]解答线性规划应用题的一般步骤(1)审题——仔细阅读,对关键部分进行“精读”,准确理解题意,明确有哪些限制条件,起关键作用的变量有哪些.由于线性规划应用题中的变量比较多,为了理顺题目中量与量之间的关系,有时可借助表格来理顺.(2)转化——设元.写出约束条件和目标函数,从而将实际问题转化为数学上的线性规划问题.(3)求解——解这个纯数学的线性规划问题.(40)作答——就应用题提出的问题作出回答.线性规划中的最优整数解问题某运输公司有7辆载重量为6吨的A型卡车,4辆载重量为10吨的B型卡车,有9名驾驶员.在建筑某段高速公路的工程中,此公司承包了每天运送360吨沥青的任务.已知每辆卡车每天往返次数为:A型车8次,B型车6次,每辆卡车往返一次的成本费为:A型车160元,B型车280元.每天派出A型车与B型车各多少辆时,公司花的成本费最低?思路探究:①本题的线性约束条件及目标函数分别是什么?②根据实际问题的需要,该题是否为整点问题?[解]设公司每天所花成本费为z元,每天派出A型车x辆,B型车y辆,则z=160x+280y,x,y满足的约束条件为⎩⎪⎨⎪⎧x≤7,y≤4,x+y≤9,48x+60y≥360,x≥0,y≥0,x∈N,y∈N,作出不等式组的可行域,如图.作直线l :160x +280y =0,即l :4x +7y =0.将l 向右上方移至l 1位置时,直线l 1经过可行域上的M 点,且此时直线与原点的距离最近,z 取得最小值.由方程组⎩⎪⎨⎪⎧48x +60y =360x =7,解得⎩⎪⎨⎪⎧x =7y =0.4.但y =0.4不是整数,故取x =7,y =1,此时z 取得最小值. 所以,当每天派出A 型车7辆、B 型车1辆时,公司所花费用最低. [规律方法] 寻找整点最优解的三种方法(1)平移找解法:先打网格,描整点,平移直线l ,最先经过或最后经 过的整点便是最优整点解, 这种方法应充分利用整点最优解的信息, 结合精确的作图才行,当可行域是有限区域且整点个数又较少时,可逐 个将整点坐标代入目标函数求值,经比较求最优解.(2)小范围搜寻法:即在求出的非整点最优解附近的整点都求出来, 代入目标函数,直接求出目标函数的最大(小)值.(3)调整优值法:先求非整点最优解及最优值,再调整最优值,最后 筛选出整点最优解. 某厂有一批长为18 m 的条形钢板,可以割成1.8 m 和1.5 m 长的零件.它们的加工费分别为每个1元和0.6元.售价分别为20元和15元,总加工费要求不超过8元.问如何下料能获得最大利润.【导学号:91432336】[解] 设割成的1.8 m 和1.5 m 长的零件分别为x 个、y 个,利润为z 元,则z =20x +15y -(x +0.6y )即z =19x +14.4y 且⎩⎪⎨⎪⎧1.8x +1.5y ≤18,x +0.6y ≤8,x ,y ∈N ,作出不等式组表示的平面区域如图,又由⎩⎪⎨⎪⎧1.8x +1.5y =18,x +0.6y =8,解出x =207,y =607,所以M ⎝ ⎛⎭⎪⎫207,607,因为x ,y 为自然数,在可行域内找出与M 最近的点为(3,8),此时z =19×3+14.4×8=172.2(元).又可行域的另一顶点是(0,12),z =19×0+14.4×12=172.8(元): 过顶点(8,0)的直线使z =19×8+14.4×0=152(元).M ⎝⎛⎭⎪⎫207,607附近的点(1,10),(2,9), 直线z =19x +14.4y 过点(1,10)时,z =163;过点(2,9)时z =167.6. 所以当x =0,y =12时,z =172.8元为最大值. 答:只截1.5 m 长的零件12个,可获得最大利润.[当 堂 达 标·固 双 基]1.某厂生产甲产品每千克需用原料A 和原料B 分别为a 1,a 2千克,生产乙产品每千克需用原料A 和原料B 分别为b 1,b 2千克,甲,乙产品每千克可获利润分别为d 1,d 2元,月初一次性购进原料A ,B 分别为c 1,c 2千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大?在这个问题中,设全月生产甲,乙两种产品分别为x ,y 千克,月利润总额为z 元,那么,用于求使总利润z =d 1x +d 2y 最大的数学模型中,约束条件为________.⎩⎪⎨⎪⎧a 1x +b 1y ≤c 1,a 2x +b 2y ≤c 2,x ≥0,y ≥0[由题设和本题的限制条件可得,另外容易遗漏的限制条件是x ≥0,y ≥0.]2.一农民有基本农田2亩,根据往年经验,若种水稻,则每季每亩产量为400公斤;若种花生,则每季每亩产量为100公斤,但水稻成本较高,每季每亩240元,而花生只需80元,且花生每公斤卖5元,稻米每公斤卖3元,现该农民手头有400元,那么获得最大收益为________元.【导学号:91432337】1 50 [设该农民种x 亩水稻,y 亩花生时能获得利润z 元,则⎩⎪⎨⎪⎧x +y ≤2,240x +80y ≤400,x ≥0,y ≥0,即⎩⎪⎨⎪⎧x +y ≤2,3x +y ≤5,x ≥0,y ≥0,z =960x +420y ,作出可行域如图阴影部分所示,将目标函数变形为y =-167x +z420,作出直线y =-167x ,在可行域内平移直线y =-167x ,可知当直线过点B 时,z 有最大值,由⎩⎪⎨⎪⎧x +y =2,3x +y =5,解得B ⎝ ⎛⎭⎪⎫32,12,故当x =1.5,y =0.5时,z max =1 650元,故该农民种1.5亩水稻,0.5亩花生时,能获得最大利润,最大利润为1 650元.]3.某厂在计划期内要安排生产甲、乙两种产品,这些产品分别需要在A ,B ,C ,D 四种不同的设备上加工,按工艺规定,产品甲和产品乙分别在各种设备上需要加工的台时数如下:设备产品ABCD甲 2 1 4 0 乙224小时称为1台时),该厂每生产一件甲产品可得到利润2元,每生产一件乙产品可得到利润3元 ,若要获得最大利润,则生产甲产品和乙产品的件数分别为________.4,2 [设在计划期内生产甲产品x 件,乙产品y 件,则由题意得约束条件为⎩⎪⎨⎪⎧2x +2y ≤12,x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧x +y ≤6,x +2y ≤8,x ≤4,y ≤3,x ≥0,y ≥0,x ∈N ,y ∈N ,作出可行域如图阴影部分所示,目标函数为z =2x +3y ,由图可知当直线z =2x +3y 经过点A时,z 有最大值,解⎩⎪⎨⎪⎧x +y =6,x +2y =8,得⎩⎪⎨⎪⎧x =4,y =2,即安排生产甲产品4件,乙产品2件时,利润最大.]4.某工厂制造A 种仪器45台,B 种仪器55台,现需用薄钢板给每台仪器配一个外壳.已知钢板有甲、乙两种规格:甲种钢板每张面积2 m 2,每张可作A 种仪器外壳3个和B 种仪器外壳5个,乙种钢板每张面积3 m 2,每张可作A 种仪器外壳6个和B 种仪器外壳6个,问甲、乙两种钢板各用多少张才能用料最省?(“用料最省”是指所用钢板的总面积最小)【导学号:91432338】[解] 设用甲种钢板x 张,乙种钢板y 张,依题意⎩⎪⎨⎪⎧x ,y ∈N *,3x +6y ≥45,5x +6y ≥55,钢铁总面积z =2x +3y .作出可行域,如图所示.由图可知当直线z =2x +3y 过点P 时,z 最小.由方程组⎩⎪⎨⎪⎧3x +6y =45,5x +6y =55,得⎩⎪⎨⎪⎧x =5,y =5.所以甲、乙两种钢板各用5张用料最省.。
3.3.2线性规划的实际应用(学案)
※高二班数学课堂学习单(10)※班级姓名小组第二课时线性规划的实际应用一,学习目标:1、了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2、学会用表格处理数据的方法,提高数学建模能力。
二,自学导航:自学p88-p90,:[例1]某公司计划在今年内同时出售电子琴和洗衣机,由于两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力等)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于两种产品的有关数据如下表:例2要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板块数如下表所示:今需要A、B、所需的三种规格成品,且使所用钢板张数最少?3、课本第104页的“阅读与思考”——错在哪里?若实数x,y满足1311x yx y≤+≤⎧⎨-≤-≤⎩求4x+2y的取值范围.三,我的收获:(学到的方法、易错点)四,课堂检测:1.某电视台每周播放甲、乙两部连续剧,播放连续剧甲一次需80分钟,有60万观众收看,播放连续剧乙一次需40分钟,有20万观众收看.已知电视台每周至少播出电视剧6次,总时间不超过320分钟,则电视台最高收视率为每周观众有()A.300万人B.200万人C.210万人D.220万人2.某验室至少需要某种化学药品10 kg,现在市场上出售的该药品有两种包装,一种是每袋3 kg,价格为12元;另一种是每袋2 kg,价格为10元.由于保质期的限制,每一种包装购买的数量都不能超过5袋,则在满足需要的条件下,花费最少为________元.五,作业1.有5辆6吨的汽车,4辆4吨的汽车,要运送最多的货物,完成这项运输任务的线性目标函数为()A.z=6x+4y B.z=5x+4y C.z=x+y D.z=4x+5y2.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为()A.2 000元B.2 200元C.2 400元D.2 800元3、两类药片有效成分如下表所示,若要求至少提供12毫克阿司匹林,70毫克小苏打,28毫克可待因,问两类药片最小总数是多少?怎样搭配价格最低?。
新人教版高中数学3.3.2简单的线性规划问题(一)导学案
§3.3.2简单的线性规划问题(一)导学案【学习目标】一、知识与技能1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题。
二、过程与方法1.经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;2.通过网络载体,利用几何画板的直观演示,培养学生主动探索、善于发现的创新意识;3.在学习过程中通过相互讨论培养学生的团结协作精神。
三、情感、态度与价值观1.培养学生观察、联想以及作图的能力,2.渗透化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力。
【教学过程】一、实例引入问题一:某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,且甲乙两种产品不能同时生产,该厂所有可能的日生产安排是什么?12二、问题升华问题二:若生产一件甲产品获利2万元,生产一件乙产品获利3万元,你作为厂家的老总,将采用哪种生产安排使利润最大?三、合作探究思考讨论:【问题一】把z看作参数,则z=2x+3y表示什么图形?【问题二】在约束条件下,如何找满足函数z=2x+3y最大值的点?【问题三】找到满足条件的点后,如何求函数z=2x+3y的最大值?解简单的线性规划问题的步骤为:四、学以致用1.求z=3x+5y 的最小值, 使x , y 满足约束条件2.变式:求z =x -2y 的最小值呢?注意:求线性目标函数的最优解,要注意分析 的关系5315,1,5 3.x y y x x y +⎧⎪+⎨⎪-⎩≤≤≤五、课后练习(一)选择题1.目标函数4z x y =+将其看成直线方程时,z 的几何意义是( )A .该直线的截距B .该直线的纵截距C .该直线的横截距D .该直线的纵截距的相反数2.z x y =-在2102101x y x y x y -+≥⎧⎪--≤⎨⎪+≤⎩的线性约束条件下,取得最大值的可行解为( )A .(0,1)B .(1,1)--C .(1,0) D.11(,)223.若实数x ,y 满足不等式组x 3y 302x y 30x y 10+-≥⎧⎪--≤⎨⎪-+≥⎩则x y +的最大值为( )A .9 B.157 C .1 D.7154.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得的最大利润是( )A .12万元B .20万元C .25万元D .27万元(二)填空题5.已知点(,)p x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩ (k 为常数),若3x y +的最大值为8,则k =________.6.铁矿石A和B的含铁率a,,冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c2(万吨),则2购买铁矿石的最少费用为________(百万元).。
高中数学优质教案2:3.3.2 简单的线性规划问题
3.3.2 简单的线性规划问题教学目标:1.解线性约束条件、线性目标函数、线性规划概念;2.在线性约束条件下求线性目标函数的最优解;3.了解线性规划问题的图解法.教学重点:线性规划问题.教学难点:线性规划在实际中的应用.教学过程:导入新课 前面我们学习了目标函数、线性目标函数、线性规划问题、可行解、可行域、最优解等概念. 同学们回忆一下用图解法解决简单的线性规划问题的基本步骤.(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t =0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解;(4)最后求得目标函数的最大值及最小值.推进新课 例1:已知x 、y 满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,2502,3002y x y x y x 试求z =300x +900y 的最大值时的整点的坐标及相应的z 的最大值.分析:先画出平面区域,然后在平面区域内寻找使z =300x +900y 取最大值时的整点. 解:如图所示平面区域AOBC ,点A (0,125),点B (150,0),点C 的坐标由方程组⇒⎩⎨⎧=+=+25023002y x y x ⎪⎪⎩⎪⎪⎨⎧==,3200,3350y x 得C (3350,3200), 令t =300x +900y ,即,90031t xy +-=, 欲求z =300x +900y 的最大值,即转化为求截距900t 的最大值,从而可求t 的最大值,因直线90031t x y +-=与直线x y 31-=平行,故作x y 31-=的平行线,当过点A (0,125)时,对应的直线的截距最大,所以此时整点A 使z 取最大值,z max =300×0+900×125=112 500. 例2:求z =600x +300y 的最大值,使式中的x 、y 满足约束条件3x +y ≤300,x +2y ≤250, x ≥0,y ≥0的整数值.分析:画出约束条件表示的平面区域即可行域再解.解:可行域如图所示.四边形AOBC ,易求点A (0,126),B (100,0),由方程组⇒⎩⎨⎧=+=+25223003y x y x ⎪⎪⎩⎪⎪⎨⎧==.5191,5369y x 得点C 的坐标为(5369,5191).因题设条件要求整点(x ,y )使z =600x +300y 取最大值,将点(69,91),(70,90)代入z =600x +300y ,可知当x =70,y =90时,z 取最大值为z max =600×70+300×900=69 000.例3:已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+,0,0,12,22y x y x y x 求z =3x +y 的最小值.分析:可先找出可行域,平行移动直线l 0:3x +y =0找出可行解,进而求出目标函数的最小值. 解:不等式x +2y ≥2表示直线x +2y =2上及其右上方的点的集合;不等式2x +y ≥1表示直线2x +y =1上及其右上方的点的集合.可行域如图所示.作直线l 0:3x +y =0,作一组与直线l 0平行的直线l :3x +y =t (t ∈R ).∵x 、y 是上面不等式组表示的区域内的点的坐标. 由图可知:当直线l :3x +y =t 通过P (0,1)时,t 取到最小值1,即z min =1.评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.课堂练习:请同学们通过完成练习来掌握图解法解决简单的线性规划问题.1.求z =2x +y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如图所示:当x =0,y =0时,z =2x +y =0,点(0,0)在直线l 0:2x +y =0上.作一组与直线l 0平行的直线l :2x +y =t ,t ∈R.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大.所以z max =2×2-1=3.2.求z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如图所示.从图示可知直线3x +5y =t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(89,817)的直线所对应的t 最大. 所以z min =3×(-2)+5×(-1)=-11,z max =3×89+5×817=14. 3.某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360 t 、B 种矿石不超过200 t 、煤不超过300 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?【解析】将已知数据列成下表:解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x目标函数为z =600x +1 000y .作出以上不等式组所表示的平面区域,即可行域.作直线l :600x +1 000y =0,即直线:3x +5y =0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z =600x +1 000y 取最大值.解方程组⎩⎨⎧=+=+,36094,20045y x y x 得M 的坐标为x =29360≈12.4,y =291000≈34.4. 答:应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大.课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).(2)设t=0,画出直线l0.(3)观察、分析,平移直线l0,从而找到最优解.(4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义布置作业课本习题3、4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 线性规划的实际应用学习目标:理解并初步运用线性规划的图解法解决一些实际问题.(重点、难点)[自 主 预 习·探 新 知]应用线性规划解决实际问题的类型思考:一家银行的信贷部计划年初投入25 000 000元用于企业投资和个人贷款,希望这笔资金至少可带来30 000元的收益,其中从企业贷款中获益12%,从个人贷款中获益10%,假设信贷部用于企业投资的资金为x 元,用于个人贷款的资金为y 元.那么x 和y 应满足哪些不等关系?[提示]分析题意,我们可得到以下式子⎩⎪⎨⎪⎧x +y ≤25 000 000,12x +10y ≥3 000 000,x ≥0,y ≥0.[基础自测]1.思考辨析(1)将目标函数的直线平行移动,最先通过或最后通过的顶点便是最优解.( ) (2)当线性目标函数的直线与可行域的某条边平行时,最优解可能有无数个.( ) [答案] (1)√ (2)√2.已知目标函数z =2x +y ,且变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≥-3,3x +5y <25,x ≥1,则( )A .z max =12,z min =3B .z max =12,无最小值C .z min =3,无最大值D .z 既无最大值又无最小值D [画出可行域如图所示,z =2x +y 即y =-2x +z 在平移过程中的纵截距z 既无最大值也无最小值.]3.完成一项装修工程,请木工需付工资每人每天50元,请瓦工需付工资每人每天40元.现有工人工资预算每天2 000元,设请木工x 人,请瓦工y 人,则请工人的约束条件是________.⎩⎪⎨⎪⎧x ,y ∈N *50x +40y ≤2 0004.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为________元.【导学号:91432334】36 800 [设租用A 型车x 辆,B 型车y 辆,租金为z 元, 则⎩⎪⎨⎪⎧36x +60y ≥900,y -x ≤7,y +x ≤21,x ,y ∈N ,画出可行域(如图中阴影部分内的整点),则目标函数z =1 600x +2 400y 在点(5,12)处取得最小值z min =36 800元.][合 作 探 究·攻 重 难]线性规划的实际应用问题[探究问题]1.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元.设投资甲、乙两个项目的资金分别为x 、y万元,那么x 、y 应满足什么条件?提示:⎩⎪⎨⎪⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5.2.若公司对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,设该公司所获利润为z 万元,那么z 与x ,y 有何关系?提示:根据公司所获利润=投资项目甲获得的利润+投资项目乙获得的利润,可得z 与x ,y 的关系为z =0.4x +0.6y .3.x ,y 应在什么条件下取值,x ,y 取值对利润z 有无影响?提示:x ,y 必须在线性约束条件⎩⎪⎨⎪⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5下取值.x ,y 取不同的值,直接影响z 的取值.某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要木料0.1 m 3,五合板2 m 2,生产每个书橱需要木料0.2 m 3,五合板1 m 2,出售一张书桌可获利润80元,出售一个书橱可获利润120元. 怎样安排生产可使所获利润最大.【导学号:91432335】思路探究:可先设出变量,建立目标函数和约束条件,转化为线性规划问题来求解. [解] 设生产书桌x 张,生产书橱y 个,利润为z 元,则目标函数为z =80x +120y ,根据题意知,约束条件为⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0,x ∈N ,y ∈N ,画出可行域如图所示,作直线l :80x +120y =0,并平移直线l ,由图可知,当直线l 过点C 时,z 取得最大值,解⎩⎪⎨⎪⎧x +2y =900,2x +y =600,得C (100,400),所以z max =80×100+120×400=56 000,即生产100张书桌,400个书橱,可获得最大利润.母题探究:(变结论)例题中的条件不变,如果只安排生产书桌可获利润多少?如果只安排生产书橱呢?[解](1)若只生产书桌,则y=0,此时目标函数z=80x,由图可知z max=80×300=24 000,即只生产书桌,可获利润24 000元.(2)若只生产书橱,则x=0,此时目标函数z=120y,由图可知z max=120×450=54 000,即只生产书橱,可获利润54 000元.[规律方法]解答线性规划应用题的一般步骤(1)审题——仔细阅读,对关键部分进行“精读”,准确理解题意,明确有哪些限制条件,起关键作用的变量有哪些.由于线性规划应用题中的变量比较多,为了理顺题目中量与量之间的关系,有时可借助表格来理顺.(2)转化——设元.写出约束条件和目标函数,从而将实际问题转化为数学上的线性规划问题.(3)求解——解这个纯数学的线性规划问题.(40)作答——就应用题提出的问题作出回答.线性规划中的最优整数解问题某运输公司有7辆载重量为6吨的A型卡车,4辆载重量为10吨的B型卡车,有9名驾驶员.在建筑某段高速公路的工程中,此公司承包了每天运送360吨沥青的任务.已知每辆卡车每天往返次数为:A型车8次,B型车6次,每辆卡车往返一次的成本费为:A型车160元,B型车280元.每天派出A型车与B型车各多少辆时,公司花的成本费最低?思路探究:①本题的线性约束条件及目标函数分别是什么?②根据实际问题的需要,该题是否为整点问题?[解]设公司每天所花成本费为z元,每天派出A型车x辆,B型车y辆,则z=160x+280y,x,y满足的约束条件为⎩⎪⎨⎪⎧x≤7,y≤4,x+y≤9,48x+60y≥360,x≥0,y≥0,x∈N,y∈N,作出不等式组的可行域,如图.作直线l :160x +280y =0,即l :4x +7y =0.将l 向右上方移至l 1位置时,直线l 1经过可行域上的M 点,且此时直线与原点的距离最近,z 取得最小值.由方程组⎩⎪⎨⎪⎧48x +60y =360x =7,解得⎩⎪⎨⎪⎧x =7y =0.4.但y =0.4不是整数,故取x =7,y =1,此时z 取得最小值. 所以,当每天派出A 型车7辆、B 型车1辆时,公司所花费用最低. [规律方法] 寻找整点最优解的三种方法(1)平移找解法:先打网格,描整点,平移直线l ,最先经过或最后经 过的整点便是最优整点解, 这种方法应充分利用整点最优解的信息, 结合精确的作图才行,当可行域是有限区域且整点个数又较少时,可逐 个将整点坐标代入目标函数求值,经比较求最优解.(2)小范围搜寻法:即在求出的非整点最优解附近的整点都求出来, 代入目标函数,直接求出目标函数的最大(小)值.(3)调整优值法:先求非整点最优解及最优值,再调整最优值,最后 筛选出整点最优解. 某厂有一批长为18 m 的条形钢板,可以割成1.8 m 和1.5 m 长的零件.它们的加工费分别为每个1元和0.6元.售价分别为20元和15元,总加工费要求不超过8元.问如何下料能获得最大利润.【导学号:91432336】[解] 设割成的1.8 m 和1.5 m 长的零件分别为x 个、y 个,利润为z 元,则z =20x +15y -(x +0.6y )即z =19x +14.4y 且⎩⎪⎨⎪⎧1.8x +1.5y ≤18,x +0.6y ≤8,x ,y ∈N ,作出不等式组表示的平面区域如图,又由⎩⎪⎨⎪⎧1.8x +1.5y =18,x +0.6y =8,解出x =207,y =607,所以M ⎝ ⎛⎭⎪⎫207,607,因为x ,y 为自然数,在可行域内找出与M 最近的点为(3,8),此时z =19×3+14.4×8=172.2(元).又可行域的另一顶点是(0,12),z =19×0+14.4×12=172.8(元): 过顶点(8,0)的直线使z =19×8+14.4×0=152(元).M ⎝⎛⎭⎪⎫207,607附近的点(1,10),(2,9), 直线z =19x +14.4y 过点(1,10)时,z =163;过点(2,9)时z =167.6. 所以当x =0,y =12时,z =172.8元为最大值. 答:只截1.5 m 长的零件12个,可获得最大利润.[当 堂 达 标·固 双 基]1.某厂生产甲产品每千克需用原料A 和原料B 分别为a 1,a 2千克,生产乙产品每千克需用原料A 和原料B 分别为b 1,b 2千克,甲,乙产品每千克可获利润分别为d 1,d 2元,月初一次性购进原料A ,B 分别为c 1,c 2千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大?在这个问题中,设全月生产甲,乙两种产品分别为x ,y 千克,月利润总额为z 元,那么,用于求使总利润z =d 1x +d 2y 最大的数学模型中,约束条件为________.⎩⎪⎨⎪⎧a 1x +b 1y ≤c 1,a 2x +b 2y ≤c 2,x ≥0,y ≥0[由题设和本题的限制条件可得,另外容易遗漏的限制条件是x ≥0,y ≥0.]2.一农民有基本农田2亩,根据往年经验,若种水稻,则每季每亩产量为400公斤;若种花生,则每季每亩产量为100公斤,但水稻成本较高,每季每亩240元,而花生只需80元,且花生每公斤卖5元,稻米每公斤卖3元,现该农民手头有400元,那么获得最大收益为________元.【导学号:91432337】1 50 [设该农民种x 亩水稻,y 亩花生时能获得利润z 元,则⎩⎪⎨⎪⎧x +y ≤2,240x +80y ≤400,x ≥0,y ≥0,即⎩⎪⎨⎪⎧x +y ≤2,3x +y ≤5,x ≥0,y ≥0,z =960x +420y ,作出可行域如图阴影部分所示,将目标函数变形为y =-167x +z420,作出直线y =-167x ,在可行域内平移直线y =-167x ,可知当直线过点B 时,z 有最大值,由⎩⎪⎨⎪⎧x +y =2,3x +y =5,解得B ⎝ ⎛⎭⎪⎫32,12,故当x =1.5,y =0.5时,z max =1 650元,故该农民种1.5亩水稻,0.5亩花生时,能获得最大利润,最大利润为1 650元.]3.某厂在计划期内要安排生产甲、乙两种产品,这些产品分别需要在A ,B ,C ,D 四种不同的设备上加工,按工艺规定,产品甲和产品乙分别在各种设备上需要加工的台时数如下:设备产品ABCD甲 2 1 4 0 乙224小时称为1台时),该厂每生产一件甲产品可得到利润2元,每生产一件乙产品可得到利润3元 ,若要获得最大利润,则生产甲产品和乙产品的件数分别为________.4,2 [设在计划期内生产甲产品x 件,乙产品y 件,则由题意得约束条件为⎩⎪⎨⎪⎧2x +2y ≤12,x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧x +y ≤6,x +2y ≤8,x ≤4,y ≤3,x ≥0,y ≥0,x ∈N ,y ∈N ,作出可行域如图阴影部分所示,目标函数为z =2x +3y ,由图可知当直线z =2x +3y 经过点A时,z 有最大值,解⎩⎪⎨⎪⎧x +y =6,x +2y =8,得⎩⎪⎨⎪⎧x =4,y =2,即安排生产甲产品4件,乙产品2件时,利润最大.]4.某工厂制造A 种仪器45台,B 种仪器55台,现需用薄钢板给每台仪器配一个外壳.已知钢板有甲、乙两种规格:甲种钢板每张面积2 m 2,每张可作A 种仪器外壳3个和B 种仪器外壳5个,乙种钢板每张面积3 m 2,每张可作A 种仪器外壳6个和B 种仪器外壳6个,问甲、乙两种钢板各用多少张才能用料最省?(“用料最省”是指所用钢板的总面积最小)【导学号:91432338】[解] 设用甲种钢板x 张,乙种钢板y 张,依题意⎩⎪⎨⎪⎧x ,y ∈N *,3x +6y ≥45,5x +6y ≥55,钢铁总面积z =2x +3y .作出可行域,如图所示.由图可知当直线z =2x +3y 过点P 时,z 最小.由方程组⎩⎪⎨⎪⎧3x +6y =45,5x +6y =55,得⎩⎪⎨⎪⎧x =5,y =5.所以甲、乙两种钢板各用5张用料最省.。