第3章 线性规划的解法(1)
第三章线性规划的解法习题解答090426y
第三章线性规划的解法§3.1重点、难点提要一、线性规划问题的图解法及几何意义1.图解法。
线性规划问题采用在平面上作图的方法求解,这种方法称为图解法。
图解法具有简单、直观、容易理解的特点,而且从几何的角度说明了线性规划方法的思路,所以,图解法还有助于了解一般线性规划问题的实质和求解的原理。
(1)图解法适用于求解只有两个或三个变量的线性规划问题,求解的具体步骤为:1)在平面上建立直角坐标系;2)图示约束条件,找出可行域。
具体做法是画出所有约束方程(约束条件取等式)对应的直线,用原点判定直线的哪一边符合约束条件,从而找出所有约束条件都同时满足的公共平面区域,即得可行域。
求出约束直线之间,以及约束直线与坐标轴的所有交点,即可行域的所有顶点;3)图示目标函数直线。
给定目标函数Z一个特定的值k,画出相应的目标函数等值线;4)将目标函数直线沿其法线方向向可行域边界平移,直至与可行域边界第一次相切为止,这个切点就是最优点。
具体地,当k值发生变化时,等值线将平行移动。
对于目标函数最大化问题,找出目标函数值增加的方向(即坐标系纵轴值增大的方向),等值线平行上移到可行域(阴影部分)的临界点,最终交点就是取得目标函数最大值的最优解;对于目标函数最小化问题,找出目标函数值减少的方向(即坐标系纵轴值减少的方向),等值线平行下移到可行域(阴影部分)的临界点,最终交点就是取得目标函数最小值的最优解。
(2)线性规划问题的几种可能结果:1)有唯一最优解;2)有无穷多个最优解;3)无最优解(无解或只有无界解)。
2.重要结论。
(1)线性规划的可行域为一个凸集,每一个可行解对应该凸集中的一个点;(2)每一个基可行解对应可行域的一个顶点。
若可行解集非空,则必有顶点存在,从而,有可行解必有基可行解。
(3)一个基可行解对应约束方程组系数矩阵中一组线性无关的列向量,对于n 个变量m 个约束方程的线性规划问题,基可行解的个数不会超过!!()!m n n m n m C =-。
《数据模型与决策》复习题及参考答案
《数据模型与决策》复习题及参考答案第一章绪言一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2.运筹学的核心是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
3.模型是一件实际事物或现实情况的代表或抽象。
4、通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。
运筹学研究和解决问题的效果具有连续性。
6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是建立数学模型,并对模型求解。
13用运筹学解决问题时,要分析,定议待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s·t”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格2.我们可以通过( C )来验证模型最优解。
A.观察 B.应用 C.实验 D.调查3.建立运筹学模型的过程不包括( A )阶段。
A.观察环境 B.数据分析 C.模型设计 D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B )A数量 B变量 C 约束条件 D 目标函数5.模型中要求变量取值( D )A可正 B可负 C非正 D非负6.运筹学研究和解决问题的效果具有( A )A 连续性B 整体性C 阶段性D 再生性7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
线性规划问题的解法
线性规划问题的解法线性规划(Linear Programming,LP)是一种数学优化方法,用于求解线性约束条件下的最大化或最小化目标函数的问题。
线性规划问题在经济学、管理学、工程学等领域都具有广泛的应用,其求解方法也十分成熟。
本文将介绍线性规划问题的常用解法,包括单纯形法和内点法。
一、单纯形法单纯形法是解决线性规划问题最常用的方法之一。
它通过在可行解空间中不断移动,直到找到目标函数的最优解。
单纯形法的基本步骤如下:1. 标准化问题:将线性规划问题转化为标准形式,即将目标函数转化为最小化形式,所有约束条件均为等式形式,且变量的取值范围为非负数。
2. 初始可行解:选择一个初始可行解,可以通过人工选取或者其他启发式算法得到。
3. 进行迭代:通过不断移动至更优解来逼近最优解。
首先选择一个非基变量进行入基操作,然后选取一个基变量进行出基操作,使目标函数值更小。
通过迭代进行入基和出基操作,直到无法找到更优解为止。
4. 结束条件:判断迭代是否结束,即目标函数是否达到最小值或最大值,以及约束条件是否满足。
单纯形法的优点是易于理解和实现,而且在实际应用中通常具有较好的性能。
但是,对于某些问题,单纯形法可能会陷入循环或者运算效率较低。
二、内点法内点法是一种相对较新的线性规划求解方法,它通过在可行解空间的内部搜索来逼近最优解。
与单纯形法相比,内点法具有更好的数值稳定性和运算效率。
内点法的基本思想是通过将问题转化为求解一系列等价的非线性方程组来求解最优解。
首先,将线性规划问题转化为等价的非线性优化问题,然后通过迭代求解非线性方程组。
每次迭代时,内点法通过在可行解空间的内部搜索来逼近最优解,直到找到满足停止条件的解。
内点法的优点是在计算过程中不需要基变量和非基变量的切换,因此可以避免单纯形法中可能出现的循环问题。
此外,内点法还可以求解非线性约束条件下的最优解,具有更广泛的适用性。
三、其他方法除了单纯形法和内点法,还有一些其他的线性规划求解方法,如对偶方法、割平面法等。
线性规划知识点总结
线性规划知识点总结一、概述线性规划(Linear Programming,简称LP)是一种数学优化方法,用于解决线性约束下的最优化问题。
它的基本思想是通过线性目标函数和线性约束条件,找到使目标函数取得最大(或最小)值的变量取值。
二、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
目标函数通常表示为z = c1x1 + c2x2 + ... + cnxn,其中c1, c2, ..., cn为常数,x1,x2, ..., xn为决策变量。
2. 决策变量:决策变量是问题中需要决策的变量,用于表示问题的解。
决策变量通常用x1, x2, ..., xn表示。
3. 约束条件:约束条件是对决策变量的限制条件,用于限定解的可行域。
约束条件通常表示为a11x1 + a12x2 + ... + a1nxn ≤ b1, a21x1 + a22x2 + ... + a2nxn ≤ b2, ..., am1x1 + am2x2 + ... + amnxn ≤ bm,其中a11, a12, ..., amn为常数,b1, b2, ..., bm为常数。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使目标函数取得最大(或最小)值的解称为最优解。
三、线性规划的解法线性规划问题可以通过以下几种方法求解:1. 图形法:对于二维线性规划问题,可以通过绘制约束条件的直线和目标函数的等高线图,找到最优解。
2. 单纯形法:单纯形法是一种迭代算法,通过不断移动到更优的解来寻找最优解。
它从一个可行解开始,每次迭代都朝着更优的方向移动,直到找到最优解或证明问题无解。
3. 对偶理论:线性规划问题可以通过对偶理论转化为对偶问题,并通过求解对偶问题来获得原始问题的最优解。
4. 整数线性规划:当决策变量需要取整数值时,问题称为整数线性规划。
整数线性规划问题通常比线性规划问题更难求解,可以使用分支定界法等方法进行求解。
线性规划的定义及解题方法
线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
线性规划与最优化问题的解法
稻壳学院
感谢观看
汇报人:XX
求解方法:使用 单纯形法、椭球 法等算法求解线 性规划问题
线性规划的几何解释
添加 标题
线性规划问题可以看作是在多维空间中寻找一条直 线,使得该直线在满足一系列约束条件下,最大化 或最小化某个目标函数。
添加 标题
线性规划的基本概念包括决策变量、目标函数 和约束条件。决策变量是问题中需要求解的未 知数,目标函数是希望最大化或最小化的函数, 约束条件是限制决策变量取值的条件。
解决方案:运输问题的解决方案通常包括 确定最优的运输路线和数量,以最小化运 输成本或最大化运输效益。
分配问题
简介:线性规划与最优化问题的实际应用之一是解决分配问题,通过合理分配资源,实 现最大化效益。
实例:如将有限的生产任务分配给不同的生产部门,以最小化生产成本或最大化总产量。
解决方法:利用线性规划模型描述问题,通过求解得到最优解,实现资源的最优分配。
添加 标题
在几何解释中,决策变量可以看作是坐标轴上 的点,目标函数可以看作是该点所在的高或低。 通过移动坐标轴上的点,可以找到使目标函数 取得最大值或最小值的点,即最优解。
添加 标题
线性规划的几何解释有助于直观地理解问题,并快 速找到最优解。在实际应用中,线性规划可以用于 资源分配、生产计划、运输问题等领域。
数。
线性规划问题 在现实生活中 应用广泛,如 生产计划、资 源分配和运输
问题等。
线性规划的基 本概念包括变 量、约束条件 和目标函数。
线性规划问题 通常在凸集上 进行,这使得 问题具有全局
最优解。
线性规划的数学模型
目标函数:要求 最大或最小化的 线性函数
约束条件:决策 变量的限制条件
线性规划的解法
线性规划的解法线性规划是现代数学中的一种重要分支,它是研究如何在一定约束条件下优化某种目标函数的一种数学方法。
在现实生活中,许多问题都可以用线性规划求解。
如在生产中,如何安排产品的产量才能最大化利润;在运输中,如何安排不同的运输方式最大程度降低成本等等。
线性规划的解法有多种,下面我们就来对其进行详细的介绍。
1. 单纯形法单纯形法是线性规划中最重要的求解方法之一,它是由Dantzig于1947年提出的。
单纯形法的基本思路是从某一个初始解出发,通过挑选非基变量,使得目标函数值逐步减少,直到得到一个最优解。
单纯形法的求解过程需要确定初始解和逐步迭代优化的过程,所以其求解复杂度较高,但是在实际中仍有广泛应用。
2. 对偶线性规划法对偶线性规划法是一种将线性规划问题转化为另一个线性规划问题来求解的方法。
这种方法的主要优势是,它可以用于求解某些无法用单纯形法求解的问题,如某些非线性规划问题。
对偶线性规划法的基本思路是将原问题通过拉格朗日对偶性转化为对偶问题,然后求解对偶问题,最终得到原问题的最优解。
3. 内点法内点法是一种由Nesterov和Nemirovsky于1984年提出的方法,它是一种不需要寻找可行起点的高效的线性规划求解方法。
内点法的基本思路是通过不断向可行域的内部靠近的方式来求解线性规划问题。
内点法的求解过程需要实现某些特殊的算法技术,其求解效率高,可以解决一些规模较大、约束条件复杂的线性规划问题。
4. 分枝定界法分枝定界法是一种通过逐步将线性规划问题分解成子问题来求解的方法。
这种方法的基本思路是,在求解一个较大的线性规划问题时,将其分解成若干个较小的子问题,并在每个子问题中求解线性规划问题,在不断逐步求解的过程中不断缩小问题的规模,最终得到问题的最优解。
总之,不同的线性规划解法各有千秋,根据实际问题的需要来选择合适的求解方法是非常重要的。
希望本文能够对您有所帮助。
线性规划知识点
线性规划知识点一、什么是线性规划线性规划是一种数学优化方法,用于解决在给定约束条件下的线性目标函数的最优化问题。
线性规划的目标函数和约束条件都是线性的,因此可以通过线性代数的方法进行求解。
线性规划在实际问题中有广泛的应用,如生产计划、资源分配、运输问题等。
二、线性规划的基本要素1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中 Z 为目标函数值,c₁, c₂, ..., cₙ 为系数,x₁, x₂, ..., xₙ为决策变量。
2. 决策变量:决策变量是问题中需要决策的变量,通常表示为x₁, x₂, ..., xₙ。
决策变量的取值决定了目标函数的值。
3. 约束条件:约束条件限制了决策变量的取值范围。
约束条件可以是等式约束或者不等式约束,通常表示为 a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,a₂₁x₁ +a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂,...,aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ,其中 a₁₁, a₁₂, ..., aₙₙ 为系数,b₁, b₂, ..., bₙ 为常数。
4. 非负约束:线性规划中通常要求决策变量的取值非负,即 x₁ ≥ 0, x₂ ≥ 0, ...,xₙ ≥ 0。
三、线性规划的解法线性规划可以通过不同的方法进行求解,常见的方法包括图形法、单纯形法和内点法。
1. 图形法:图形法适合于二维或者三维的线性规划问题。
首先将目标函数和约束条件转化为几何形式,然后在坐标系中绘制约束条件的图形,最后通过图形的分析找到最优解点。
2. 单纯形法:单纯形法是一种通过迭代寻觅最优解的方法。
该方法从一个可行解开始,通过不断挪移到相邻的可行解来逐步接近最优解。
单纯形法的核心是单纯形表,通过表格的变换和计算来确定下一个迭代点,直到找到最优解。
3. 内点法:内点法是一种通过迭代寻觅最优解的方法。
线性规划问题的解法与应用
线性规划问题的解法与应用线性规划是一种数学优化方法,用于求解最大化或最小化目标函数的线性约束问题。
线性规划问题的解法涉及到多种算法和技巧,并且具有广泛的应用领域。
本文将介绍线性规划问题的解法以及其在实际应用中的案例。
一、线性规划问题的基本形式线性规划问题的基本形式可以表示为:Max (or Min) Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z为目标函数,c₁, c₂, ..., cₙ为目标函数中各变量的系数;a₁₁, a₁₂, ..., aₙₙ为约束条件中各变量的系数;b₁, b₂, ..., bₙ为约束条件的右侧常数;x₁, x₂, ..., xₙ为决策变量。
二、线性规划问题的解法线性规划问题的解法通常包括下列步骤:1. 建立模型:根据实际问题和约束条件,确定目标函数和约束条件的形式,并定义决策变量。
2. 简化模型:对模型进行适当的变化和转化,以便于求解。
例如,可以通过引入松弛变量、人工变量或者对偶问题来简化原始问题。
3. 求解模型:根据简化后的模型,通过线性规划算法求解最优解。
常用的线性规划算法包括单纯形法、内点法、分支定界法等。
根据具体情况选择合适的算法。
4. 分析并优化解:分析最优解的意义和解的特点,并进行问题的优化。
如果最优解满足实际需求,则问题得到解决;否则,可以对模型进行进一步优化或者调整。
三、线性规划问题的应用线性规划问题的应用非常广泛,几乎涉及到所有需要进行决策的领域。
以下是一些常见的线性规划应用案例:1. 生产计划问题:生产计划通常需要在有限的资源下最大化产量或者利润。
线性规划可以帮助确定最佳的生产计划,以实现最大化目标。
线性规划的基本概念与解法
线性规划的基本概念与解法线性规划(Linear Programming,简称LP)是一种运筹学中的数学方法,用于寻找最优解决方案的问题。
它在各个领域中得到广泛应用,包括经济学、管理学、工程学等。
本文将介绍线性规划的基本概念和解法,并探讨其实际应用。
一、基本概念1. 目标函数:线性规划的目标是求解一个线性函数的最大值或最小值。
这个线性函数称为目标函数,通常以z表示。
例如,z=c1x1+c2x2+…+cnxn,其中c1、c2…cn为常数,x1、x2…xn为变量。
2. 约束条件:线性规划的约束条件是一组线性不等式或等式。
通常以Ax≤b或Ax=b的形式表示,其中A为系数矩阵,x为变量向量,b为常数向量。
3. 可行解:满足所有约束条件的解称为可行解。
可行解存在于约束条件所定义的空间中。
4. 最优解:在所有可行解中,目标函数取得最大值或最小值时的解称为最优解。
最优解可以是唯一的,也可以有多个。
二、解法方法1. 图形法:当线性规划问题为二维或三维时,可以利用图形的方法求解。
通过绘制目标函数的等高线或平面与约束条件的交点,找到目标函数的最优解。
2. 单纯形法:单纯形法是一种基于迭代的线性规划求解方法,适用于高维问题。
该方法通过不断改变基变量的取值,寻找使目标函数达到最优值的解。
3. 内点法:内点法是一种与单纯形法相比更为高效的求解线性规划问题的方法。
该方法通过在可行域内部搜索最优解,避免了对可行域的边界进行逐个检验的过程。
三、实际应用线性规划在实际问题中有着广泛的应用。
以下是几个常见的应用领域:1. 生产计划:线性规划可以用于确定生产计划中的最佳生产数量和产品组合,以最大化利润或最小化成本。
2. 资源分配:线性规划可以用于优化资源分配,例如分配有限的人力、物资和资金,以实现最佳利用和效益。
3. 供应链管理:线性规划可以用于优化供应链中的库存管理、运输计划和物流调配,以降低成本并提高响应速度。
4. 金融投资:线性规划可以用于投资组合优化,以确定最佳的资产配置,以及风险控制和收益最大化。
线性规划及其解法
下一页 返回
3. 3线性规划及其解法
• 二、单纯形法
• 单纯形法是美国数学家G. B.丹齐克于1947年首先提出来的。它的理 论根据是:线性规划问题的可行域是,i维向量空间R,中的多面凸集, 其最优值如果存在则必在该凸集的某顶点处达到,类似图解法中所认 为最优解一般在可行解域的某顶点。顶点所对应的可行解称为基本可 行解。它的基本思想是:先找出一个基本可行解,对它进行鉴别,看 是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行 解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的 个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优 解也可用此法判别。
• (3)第i行所有元素的k倍加到第j行的对应元素上去(记作rj +k ri ) • 如果矩阵A经有限次初等变换可以最终变成矩阵B,就称矩阵A与B等
价,记作A~B
• 任何一个矩阵A,总可以经过有限次初等行变换化为行阶梯形矩阵。
形如
都是行阶梯形矩阵。
上一页 下一页 返回
3. 2矩阵与线性方程组
• 五、线性方程组及其矩阵表示
B的乘积是一个mXp矩阵:C= =(aij) mxp其一般元素为
• 并记作
上一页 下一页 返回
3. 2矩阵与线性方程组
• 四、矩阵的初等行变换与矩阵的秩
• 矩阵的下列变换称为矩阵的初等行变换:
• (1)交换i, j (i≠j)两行的位置(记作ri →rj); • (2)用一个非零常数k乘以第i行的所有元素(记作kr;);
• 设非齐次线性方程组的一般形式为
•
• (b1,b2……b m为不全为零的常数) • (1)若记
(3一2一1)
上一页 下一页 返回
3. 2矩阵与线性方程组
线性规划的解法
线性规划的解法线性规划(Linear Programming)是数学优化的一个重要分支,旨在寻求一组最优解,以满足一系列线性约束条件。
在实际问题中,线性规划方法被广泛应用于资源分配、生产调度、运输计划等领域。
本文将介绍线性规划的解法及其应用。
一、线性规划问题的描述与模型建立线性规划问题可以用数学模型来描述,一般表示为:$max\{c^Tx | Ax \leq b, x \geq 0\}$其中,$c$表示目标函数的系数向量,$x$表示决策变量的值向量,$A$和$b$分别表示约束条件的系数矩阵和常数向量。
解决线性规划问题的关键是确定目标函数和约束条件,以及求解最优解的方法。
二、单纯形法(Simplex Method)单纯形法是解决线性规划问题最常用的方法之一,由乔治·丹尼格(George Dantzig)于1947年提出。
该方法基于下面的原理:从一个顶点出发,沿着边界不断移动到相邻的顶点,直到找到目标函数的最大(或最小)值。
具体而言,单纯形法的步骤如下:1. 将线性规划问题转化为标准形式(如果不满足标准形式)。
2. 选择一个初始基本可行解。
3. 判断当前解是否为最优解,若是,则结束;否则,进行下一步。
4. 选择一个进入变量和一个离开变量,即确定下一个顶点。
5. 进行变量的调整,即计算新的基本可行解。
6. 重复3-5步,直到找到最优解。
三、内点法(Interior Point Method)内点法是另一种常用的线性规划求解方法,其优点是能够在多项式时间内找到最优解。
与单纯形法相比,内点法不需要从一个顶点移动到相邻的顶点,而是通过在可行域内搜索,在每次迭代中逐渐接近最优解。
内点法的基本思路是通过寻找原问题的拉格朗日对偶问题的最优解来解决线性规划问题。
它通过引入一个额外的人工变量,将原问题转化为一个等价的凸二次规划问题,并通过迭代的方式逐步逼近最优解。
四、应用举例线性规划方法在各个领域都有广泛的应用。
第01-03章线性规划(1)
s.t.
x1+x2+x3≤7
x1-x2+x3≥2
-3x1+x2+2x3=5
x1,x2≥0
24
(3)
Min z = -3 x1 + 5 x2 + 8 x3 - 7 x4 s.t. 2 x1 - 3 x2 + 5 x3 + 6 x4 ≤ 28 4 x1 + 2 x2 + 3 x3 - 9 x4 ≥ 39 6 x2 + 2 x3 + 3 x4 ≤ - 58 x1 , x3 , x4 ≥ 0 解:首先,将目标函数转换成极大化: 令 z’ = -z = 3x1–5x2–8x3+7x4 ; 其次考虑约束,有3个不等式约束,引进松弛变 量x5 ,x6 ,x7 ≥0 ; 由于x2无非负限制,可令x2=x2’-x2”,其中x2’≥0 , x2”≥0 ; 由于第3个约束右端项系数为-58,于是把该式两 端乘以-1 。 25
矩阵,一般有0<m<n
A=[aij]m×n i=1,2,..,m;j=1,2,…,n是约束条件方程的系数
X=(x1,x2,…,xn)T b= (b1,b2,…,bn)T
17
二、标准形式
1.标准型的描写形式
繁写形式
Max z = c1x1 + c2x2 + … + cnxn
s.t. a11x1 + a12x2 + … + a1nxn = b1 a21x1 + a22x2 + … + a2nxn = b2 . . . am1x1 + am2x2 + … + amnxn = bm x1 ,x2 ,… ,xn
线性规划的基本概念与解法
优势:线性规划可以帮助企业快速找到最优的生产计划方案,提高生产效率,降低成本, 增加利润。
运输问题
添加项标题
定义:在多个供应点和需求点之间,如何分配有限的资源以达到 最大效益或满足某些特定条件的问题。
06
线性规划的发展趋势与展望
线性规划算法的改进与优化
算法优化:提高求解速度和精度,减少计算量 混合整数规划:将整数条件引入线性规划,解决更复杂的问题 启发式算法:采用启发式策略加速求解,适用于大规模问题 并行计算:利用多核处理器并行计算,提高求解效率
大数据背景下线性规划的应用拓展
线性规划在大数据时代的应用场景 线性规划在数据挖掘和机器学习中的应用 大数据对线性规划算法的挑战和机遇 线性规划在大数据分析中的未来展望
线性规划的数学模型
目标函数:要求最大或最小化 的线性函数
约束条件:决策变量的限制条 件,一般为线性不等式或等式
定义域:决策变量的取值范围
线性规划问题:在满足约束条 件下,求目标函数的最大或最 小值
线性规划的几何意义
线性规划问题可以转化为在可行域内寻找一组最优解 线性规划的目标函数可以表示为可行域上的一组直线 最优解通常位于可行域的顶点或边界上 线性规划问题可以转化为求解一系列线性方程组
人工智能与线性规划的结合展望
人工智能技术在 优化问题中的应 用
线性规划问题在 人工智能领域的 实际应用
人工智能算法与 线性规划算法的 结合方式
未来人工智能与 线性规划结合的 发展趋势和展望
感谢观看
汇报人:XX
初始解的调整:如果初始基本可行解不满足最优性条件,需要进行调整以获得更好的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当约束条件为: ai1 x1+ai2 x2+ … +ain xn ≥ bi 时,类似地令 s =(ai1 x1+ai2 x2+ … +ain xn)- bi 显然, s 也具有非负约束,即 s≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn-s = bi
松弛变量?
为了使约束由不等式成为等式而 引进的变量s称为“松弛变量”。 如果原问题中有若干个非等式约 束,则将其转化为标准形式时,必须 对各个约束引进不同的松弛变量。
目标函数为求极大值; 约束条件全为等式; 约束条件右端常数项全为非负值; 决策变量取值非负。
标准形式(用矩阵表示)
max Z c x Ax b s.t x 0
假定: (1)rank(A)=m o<m≤n; (2) b≥0 。若有bi<0,则考虑对第i个约束方程两边同时乗 以-1即可。
§3
内容: §3.1 §3.2 §3.3 §3.4 §3.5
线性规划的解法
线性规划的图解法 单纯形原理 表格形式的单纯形方法 单纯形法的进一步讨论 改进的单纯形法
§3.1 线性规划问题的图解法
对于只有两个变量的线性规划问题可以用图解法 求解: 1、约束条件用坐标系中的半平面或直线的交表示, 得到的可行区域是一个凸多边形。 2、目标函数用一组等值线表示,沿着增加或减少 的方向移动,与可行域最后的交点就是最优解。
其中:
C c1 , c2 ,, cn
X x1, x2 ,, xn
T
b b1, b2 ,, bn
T
a11 a21 A a n1
a12 a22 an 2
a1n a2 n ann
规 范 形式(用矩阵表示)
例1 用图解法求解:
max Z 4 x1 3 x2
x2 C
2 x1 3 x2 24 s.t.3 x1 2 x2 26 D x , x 0 1 2 4 解 : 在直角坐标系中分别做出 1.
各约束方程表示的直线,从而得 O 到可行域OBQD.
2.做出一条目标函数表示的等 值线,并确定Z的增大方向. 6
画出线性规划问题的可行域:
目标函数的几何意义:
最优解的确定:
图解法的解题步骤
1 在平面直角坐标系中画出所有的约束等式, 并找出所有约束条件的公共部分,称为可 行域,可行域中的点称为可行解。 2 标出目标函数值增加的方向。 3 若求最大(小)值,则令目标函数等值线 沿(逆)目标函数值增加的方向平行移动, 找与可行域最后相交的点,该点就是最优 解。 4 将最优解代入目标函数,求出最优值。
例如
(1)当约束条件为“≤”时
如: 2 x1 2 x2 12
可令:2x1 2x2 x3 12 , 显然 x3 0
x3 称为松弛变量。
(2)当约束条件为“≥”时
10 如: x1 12x2 18 10 可令: x1 12x2 x4 18, 显然 x4 0
无穷多最优解的情况:
目标函数与某个约束条件恰好平行
无界解(或无最优解)的情况:
可行域上方无界
无可行解的情况:
约束条件不存在公共范围
由图解法的例可看出:
线性规划的最优解在顶点上
凸集
极点
凸集
不是凸集
(顶点)
一、凸集及其性质: 凸 集: 设 K R n 是 n 维 欧 氏空 间的 点集 ,若 对任 意 x K , y K 的连线上的一切点 X x (1 ) y K (0 1) ,就称 K 是一个凸集。 极点:设 K 是凸集,X K ,若不能用两个不同的点 K , y K x 的线性组合表示为 X x (1 ) y K (0 1) 则称 X 为 K 的一 个极点。
其中:
x 0,x 0
如变量 xj≤0
令
xj x j ,显然 xj 0
例3 化下面的模型为标准型.
m ax Z 4 x1 3 x2 2 x1 3 x2 24 s.t 3 x1 2 x2 26 x , x 0 1 2 解: 加上松弛变量 3 , x4得如下标准型 x : m ax Z 4 x1 3 x2 0 x3 0 x4 2 x1 3 x2 x3 24 s.t 3 x1 2 x2 x4 26 x , x , x , x 0 1 2 3 4
3.2 约束条件不是等式的问题:
设约束条件为 ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量s ,使它等 于约束右边与左边之差 s =bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,s 也具有非负约束,即s≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn+s = bi
决策变量
约束条件
注释
x j ; j 1,2,..., n 为待定的决策变量,
c (c1 , c2 ,, cn ) 为价值向量, c j ; j 1,2,..., n 为价值系
数,
b (b1 , b2 ,..., bm ) ′为资源限量向量,
矩阵
a11 a 21 A a m1 a12 a 22 am2 a1n a 2n a mn
最优值:最优解的目标函数值
v c x, x O
基、基向量、基变量?
下面讨论线性规划标准形式的基、基 本解、基本可行解的概念。 考虑线性规划标准形式的约束条件: Ax=b,x≥0 其中A为m×n的矩阵,n≥m,秩(A) = m, b Rm 。
3、把线性规划模型转化为标准形 式
可以看出,线性规划的标准形式 有如下四个特点:目标最大化、约束 为等式、决策变量均非负、右端项非 负。 对于各种非标准形式的线性规划 问题,我们总可以通过以下变换,将 其转化为标准形式。
3.1 极小化目标函数的问题:
设目标函数为 Min f = c1x1 + c2x2 + … + cnxn 则可以令 z = -f ,该极小化问 题与下面的极大化问题有相同的最优 解,即 Max z = -c1x1 - c2x2 - … - cnxn 但必须注意,尽管以上两个问题 的最优解相同,但他们最优解的目标 函数值却相差一个符号,即 Min f = - Max z
为资源消耗系数矩阵。
简写形式:
max (或 min)z c j x j
j 1 n
n (或 , )bi (i 1, ,m) aij x j j 1 x 0 (j 1, ,n) j
矩阵形式表示为:
max (或 min )z CX (或 , )b AX X 0
可行解(或可行点) :满足所有约束条件的向量 x ( x1 , x2 , xn ) 可行集(或可行域) :所有的可行解的全体
D { x Ax b, x 0}
最优解:在可行域中目标函数值最大(或最小)的可行解,最优解的全体 称为最优解集合
O {x D cT x c y, y D }
x4 称为松弛变量.
目标函数中松弛变量的系数
由于松弛变量表示未被充分利用的资源以及超 用的资源,都没有转化为价值和利润. 因此,目标函数中松弛变量的系数为0。
3. 3 取值无约束的变量
如果变量 x 代表某产品当年计划数与上 一年计划数之差,显然 x 的取值可能是正也 可能是负,这时可令:
x x x
例 化下面的模型为标准型.
max Z x1 x2 2 x1 x2 2 x 2x 2 1 2 s.t. x1 x2 5 x1 0 max z x1 ( x2 x2 ) 0 x3 0 x4 0 x5 2 x1 ( x2 x2 ) x3 2 x 2( x x) x 2 1 2 2 4 s.t. x1 ( x2 x2 ) x5 5 x2 0, x2 0, xi 0; i 1,3, 4,5
max Z cx Ax b s.t. x0
2、线性规划问题的标准形式
标准形式:
max z c j x j
j 1 n
标准形式特点:
1. 2. 3. 4.
n aij x j bi (i 1, ,m) j 1 x 0 (j 1, ,n) j
把问题转化为标准形式的方法
(1)如果目标函数是minZ=cx ,只须令 -Z=Z′,化为 maxZ′= -cx. (2)如果约束方程为不等式: “≥”约束:不等式左端 - 某松弛变量=右端
“≤ ”约束:不等式左端+某松弛变量=右端 其中松弛变量≥ 0且它的价值系数为0. 3) 若xk 0时, 令xk xk
极点即可行域的顶点.
上图中(1)(2)是凸集, (3)(4)不是凸集
§3.1.3 线性规划问题的标准型
内容: 1、线性规划模型的一般形式 2、线性规划模型的标准形式 3、把线性规划模型转化为标准形式 4、例题
1、线性规划的一般形式
目标函数
max(min) c1 x1 c2 x2 cn xn Z ai1 x1 ai 2 x2 ain xn ( )bi .......... .......... ......... 1,2,...,m i s.t. x j 0; j 1,2,...,n
Q(6,4) A
B
x1
3.把等值线沿Z增大方向移动,当移至与可行域OBQD相 切于Q(6,4)点时,Z值最大,maxZ=36