第三章线性规划问题的计算机求解
管理运筹学作业 韩伯棠第3版高等教育出版社课后答案
课程:管理运筹学管理运筹学作业第二章线性规划的图解法P23:Q2:(1)-(6);Q3:(2)Q2:用图解法求解下列线性规划问题,并指出哪个问题具有唯一最优解,无穷多最优解,无界解或无可行解。
(1)Min f=6X1+4X2约束条件:2X1+X2>=1,3X1+4X2>=3X1, X2>=0解题如下:如图1Min f=3.6X1=0.2, X2=0.6本题具有唯一最优解。
图1(2)Max z=4X1+8X2约束条件:2X1+2X2<=10-X1+X2>=8X1,X2>=0解题如下:如图2:Max Z 无可行解。
图2(3) Max z =X1+X2 约束条件 8X1+6X2>=24 4X1+6X2>=-12 2X2>=4 X1,X2>=0 解题如下:如图3: Max Z=有无界解。
图3(4) Max Z =3X1-2X2 约束条件:X1+X2<=1 2X1+2X2>=4 X1,X2>=0 解题如下:如图4: Max Z 无可行解。
图4(5)Max Z=3X1+9X2 约束条件:X1+3X2<=22-X1+X2<=4X2<=62X1-5X2<=0X1,X2>=0解题如下:如图5:Max Z =66;X1=4 X2=6本题有唯一最优解。
图5(6)Max Z=3X1+4X2 约束条件:-X1+2X2<=8X1+2X2<=122X1+X2<=162X1-5X2<=0X1,X2>=0解题如下:如图6Max Z =30.669X1=6.667 X2=2.667本题有唯一最优解。
图6Q3:将线性规划问题转化为标准形式(2)min f=4X1+6X2约束条件:3X1-2X2>=6X1+2X2>=107X1-6X2=4X1,X2>=0解题如下:1)目标函数求最小值化为求最大值:目标函数等式左边min改为max,等式右边各项均改变正负号。
线性规划的应用及计算机求解
金融投资
在金融投资领域,如何合理配置资产以实现最大收益或最小风险是投资者关注的问题。线性规划可以用于制定最优的资产配 置方案,考虑风险和收益的平衡,以实现投资效益的最大化。
例如,一个养老基金可以使用线性规划来配置股票、债券和现金等资产,以实现长期稳定的收益并控制风险。
农业优化
在农业生产中,如何合理安排种植、养殖等 生产活动以达到最优的经济效益是农业经营 者关注的问题。线性规划可以用于解决农业 生产的优化问题,考虑土地、水资源、劳动 力等资源的限制,通过调整生产结构实现农 业生产的效益最大化。
其中,单纯形法是最常用的一种,它 通过迭代的方法逐步逼近最优解,直 到找到最优解或确定无解为止。
02
线性规划的应用领域
生产计划
生产计划是企业运营管理中的重要环节,线性规划可以用于制定最优的生产计划,以最小化生产成本 或最大化利润为目标,考虑生产能力、市场需求、产品组合等因素,通过调整生产资源的配置,实现 生产效益的最大化。
金融投ห้องสมุดไป่ตู้优化案例
总结词
金融投资优化
数学模型
目标函数通常是最大化预期收益或最小化 风险,约束条件包括投资限额、资产种类
限制等。
详细描述
线性规划在金融投资优化中具有实际应用 价值,通过合理配置投资组合,降低投资 风险,提高投资收益。
求解方法
使用计算机求解线性规划问题,常用的算 法有单纯形法、椭球法等。
资源分配优化案例
总结词 详细描述 数学模型 求解方法
资源分配优化
线性规划在资源分配优化中起到关键作用,通过合理分配有限 资源,实现资源利用的最大化,提高资源效益。
目标函数通常是最小化总成本或最大化总效益,约束条件包括 资源限制、需求约束等。
运筹学 第3章 线性规划问题的计算机求解
• 50
74
• 100
78
• 允许增加量是指该系数在上限范围内的 最大增加量。
• 允许减少量是指该系数在下限范围内的 最大减少量。
c • x1系数的上限为100,故 1的允许增加量为
•
上限-现在值=100-50=50
x c • 而 2的下限为50,故 2的允许减少量为
•
现在值-下限=100-50=50
管理运筹学
朱晓辉 管理科学与工程
第三章 线性规划问题的计算机求解
• 3.1 “管理运筹学软件的操作方法
3.2 “管理运筹学”软件的输出信息分析
• 相差值提供的数值表示相应的决策变量的目 标系数需要改进的数量,使得该决策变量有可能 取正数值,当决策变量已取正数值时相差值为零。
• 在目标函数系数范围一栏中,所谓的上限与 下限是指目标函数的决策变量的系数在此范围内 变化时,其线性规划的最优解不变。
c • 其中bj的允许增加(减少)百分比的定义同 i
的允许增加(减少)百分比一样,为bj的增加量 (减少量)除以bj的允许增加量(减少量)所得
到的值。
• 在使用百分之一百法则进行灵敏度分析时,要 注意以下三点:
• (1)当允许增加量(减少量)为无穷大时,则 对于任一个增加量(减少量),其允许增加(减 少)百分比都看成零。
• 在常数项数范围一栏中,所谓上限与下限是指 当约束条件中的常数项在此范围内变化时,与其 对应的约束条件的对偶价格不变。
• 以上讨论计算机输出的关于目标函数系 数及约束条件中常数项的灵敏度分析都是 基于这样一个重要假设:当一个系数发生 变化时,其他系数保持不变。
• 两个或更多的系数发生变化时,怎么来 进行灵敏度分析?
第3章%20线性规划问题的计算机求解pdf
第三章思考题、主要概念及内容“管理运筹学”软件的操作方法“管理运筹学”软件的输出信息分析复习题1.见第二章第7题,设x1为产品Ⅰ每天的产量,x2为产品Ⅱ每天的产量,可以建立下面的线性规划模型:max z=500x1+400x2;约束条件:2x1≤300,3x2≤540,2x1+2x2≤440,1.2x1+1.5x2≤300,x1,x2≥0.使用“管理运筹学”软件,得到的计算机解如图1所示图1根据图3-5回答下面的问题:(1) 最优解即最优产品组合是什么?此时最大目标函数值即最大利润为多少?(2) 哪些车间的加工工时数已使用完?哪些车间的加工工时数还没用完?其松弛变量即没用完的加工工时数为多少?(3) 四个车间的加工工时的对偶价格各为多少?请对此对偶价格的含义予以说明.(4) 如果请你在这四个车间中选择一个车间进行加班生产,你会选择哪个车间?为什么?(5) 目标函数中x1的系数c1,即每单位产品Ⅰ的利润值,在什么范围内变化时,最优产品的组合不变?(6) 目标函数中x2的系数c2,即每单位产品Ⅱ的利润值,从400元提高为490元时,最优产品组合变化了没有?为什么?(7) 请解释约束条件中的常数项的上限与下限.(8) 第1车间的加工工时数从300增加到400时,总利润能增加多少?这时最优产品的组合变化了没有?(9) 第3车间的加工工时数从440增加到480时,从图3-5中我们能否求得总利润增加的数量?为什么?(10) 当每单位产品Ⅰ的利润从500元降至475元,而每单位产品Ⅱ的利润从400元升至450元时,其最优产品组合(即最优解)是否发生变化?请用百分之一百法则进行判断.(11) 当第1车间的加工工时数从300增加到350,而第3车间的加工工时数从440降到380时,用百分之一百法则能否判断原来的对偶价格是否发生变化?如不发生变化,请求出其最大利润.2. 见第二章第8题(2),仍设xA为购买基金A的数量,xB为购买基金B的数量,建立的线性规划模型如下:max z=5xA+4xB;约束条件:50xA+100xB≤1 200 000,100xB≥300 000,xA,xB≥0.使用“管理运筹学”软件,求得计算机解如图2所示.图2根据图2,回答下列问题:(1) 在这个最优解中,购买基金A和基金B的数量各为多少?这时获得的最大利润是多少?这时总的投资风险指数为多少?(2) 图3-7中的松弛/剩余变量的含义是什么?(3) 请对图3-7中的两个对偶价格的含义给予解释.(4) 请对图3-7中的目标函数范围中的上、下限的含义给予具体说明,并阐述如何使用这些信息.(5) 请对图3-7中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息.(6) 当投资总金额从1 200 000元下降到600 000元,而在基金B上至少投资的金额从300 000元增加到600 000元时,其对偶价格是否发生变化?为什么?3. 考虑下面的线性规划问题:min z=16x1+16x2+17x3;约束条件:x1+x3≤30, -x2+6x3≥15,05x13x1+4x2-x3≥20,x1,x2,x3≥0.其计算机求解结果如图3所示.图3根据图3,回答下列问题:(1) 第二个约束方程的对偶价格是一个负数(为-3622) ,它的含义是什么? ,它的含义是什么?(2) x2的相差值为0703(3) 当目标函数中x1的系数从16降为15,而x2的系数从16升为18时,最优解是否发生变化?(4) 当第一个约束条件的常数项从30减少到15,而第二个约束条件的常数项从15增加到80时,你能断定其对偶价格是否发生变化吗?为什么?。
线性规划问题的两种求解方式
线性规划问题的两种求解⽅式线性规划问题的两种求解⽅式线性规划是运筹学中研究较早、发展较快、应⽤⼴泛、⽅法较成熟的⼀个重要分⽀,它是辅助⼈们进⾏科学管理的⼀种数学⽅法。
线性规划所研究的是:在⼀定条件下,合理安排⼈⼒物⼒等资源,使经济效果达到最好。
⼀般地,求线性⽬标函数在线性约束条件下的最⼤值或最⼩值的问题,统称为线性规划问题。
解决线性规划问题常⽤的⽅法是图解法和单纯性法,⽽图解法简单⽅便,但只适⽤于⼆维的线性规划问题,单纯性法的优点是可以适⽤于所有的线性规划问题,缺点是单纯形法中涉及⼤量不同的算法,为了针对不同的线性规划问题,计算量⼤,复杂繁琐。
在这个计算机⾼速发展的阶段,利⽤Excel建⽴电⼦表格模型,并利⽤它提供的“规划求解”⼯具,能轻松快捷地求解线性模型的解。
⽆论利⽤哪种⽅法进⾏求解线性规划问题,⾸先都需要对线性规划问题建⽴数学模型,确定⽬标函数和相应的约束条件,进⽽进⾏求解。
从实际问题中建⽴数学模型⼀般有以下三个步骤;1、根据所求⽬标的影响因素找到决策变量;2、由决策变量和所求⽬标的函数关系确定⽬标函数;3、由决策变量所受的限制条件确定决策变量所要满⾜的约束条件。
以下是分别利⽤单纯形法和Excel表格中的“规划求解”两种⽅法对例题进⾏求解的过程。
例题:某⼯⼚在计划期内要安排⽣产I、II两种产品,已知⽣产单位产品所需的设备台时分别为1台时、2台时,所需原材料A分别为4单位、0单位,所需原材料B分别为0单位、4单位,⼯⼚中设备运转最多台时为8台时,原材料A、B的总量分别为16单位、12单位。
每⽣产出I、II产品所获得的利润为2和3,问I、II两种产品的⽣产数量的哪种组合能使总利润最⼤?这是⼀个典型的产品组合问题,现将问题中的有关数据列表1-1如下:表1-1I II 限量设备 1 2 8台时原材料A 4 0 16单位原材料B 0 4 12单位所获利润 2 3⾸先对例题建⽴数学模型。
问题的决策变量有两个:产品I的⽣产数量和产品II的⽣产数量;⽬标是总利润最⼤;需满⾜的条件是:(1)两种产品使⽤设备的台时<= 台时限量值(2) ⽣产两种产品使⽤原材料A、B的数量<= 限量值(3)产品I、II的⽣产数量均>=0。
OR第三章线性规划问题的计算机求解.ppt
1/10
¼
20
Production problem of Golf Bag
Production Time(hours)
Product
Cutting and Dyeing
Sewing
Finishing
Inspection and Packing
Standard bag 7/10
½
1
Deluxe bag
or第三章线性规划问题的计算机求解lingo求解线性规划matlab求解线性规划excel求解线性规划非线性规划求解线性规划求解线性方程组求解求解非线性方程组齐次线性方程组求解非线性方程求解
第三章
线性规划问题的计算机求解
单纯形法
最初是在4 0年代由George Dantzig 研究出来的。 这个求解程序以可行域的一个顶点为出发点,检 验相邻顶点以判断相邻顶点的目标函数值是否比 当前的顶点更优。若相邻顶点的函数值优于当前 顶点,则取相邻顶点值,这一移动方向也就是朝 最优目标函数值递进的最快方向。反复进行这一 比较,当没有相邻顶点的目标函数值优于当前顶 点时,停止比较,当前顶点即为最优。
18
Production problem of Golf Bag
1. Cutting and dyeing the material 2. Sewing 3. Finishing(inserting umbrella holder, club
separators, etc.) 4. Inspection and packaging
If a decision variable is already positive in the optimal solution, its reduced cost is zero.
单纯形法(第三章线性规划2)
-f 3 –6M -1+M -1+3M 0
0 -M -M x5 x6 x7 B-1b
0 0 0 11 -1 1 0 3 001 1 -M 0 0 4M
3 -1 -1 0 0 -M -M
xj x1 x2 x3 x4 x5 x6 x7 B-1b
0 x4 -M x6 -1 x3
3 -2 0 1 0100 -2 0 1 0
0 1 0 0 0.5 12
40 0 0 0 -25 -600
6/1=6 36/3=12 __
第二步迭代
40 50 0 0 0
xj
基变量
x1 x2
x3 x4 x5
b
40 x1
1 0 1 0 -1 6
0 x4 0 0 -3 1 2 18
50 x2
0 1 0 0 0.5 12
0 0 -40 0 15 -840
f 428 1.36 x4 0.52 x5
X 3 (20 24 84 0 0)T 目标函数值 f 3 = 428。
X3为最优解
即当A产品生产20kg,B产品生产24kg,工厂才能获得最大利 润428百元。x3=84代表煤的剩余量为84t,x4 = x5 = 0表示电力 和劳动日完全利用,没有剩余。
2.单纯形法的主要步骤
Step1. 标准化,找初始基可行解,建立初始的单纯形表;
对于(max , ),松弛变量对应的列构成一个单位阵 Step2.检验当前基可行解是否为最优解
所有检验数 λj 0,则得到最优解(若存在λk >0,且pk 0,则该问题
无最优解,停止计算) 否则进行下一步。
Step3.换基迭代(改进基可行解)
例2 用单纯形法求解下列LP问题
线性规划问题的计算机求解 心得体会
线性规划问题的计算机求解心得体会
线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料。
二是生产组织与计划的改进,即合理安排人力物力资源。
线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
满足线性约束条件的解叫做可行解,由所有可行解组成的叫做可行域,在可行域中目标函数值最大(或最小)的可行解叫做最优解,最优解的全体称为最优解集合。
决策变量、约束条件、目标函数是线性规划的三大共同点。
线性规划步骤(1)列出约束条件及目标函数(2)画出约束条件所表示的可行域(3)在可行域内求目标函数的最优解及最优值。
在线性规划中有两大模型,一般形式和标准形式。
为了讨论问题的方便,我们经常将线性规划问题约定为某一标准形式。
管理运筹学期末复习资料【韩伯棠】
运筹学(Operational Research)复习资料第一章绪论一、名词解释1.运筹学:运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
二、选择题1.运筹学的主要分支包括(ABDE )A图论B线性规划C非线性规划D整数规划E目标规划2. 最早运用运筹学理论的是( A )A . 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B . 美国最早将运筹学运用到农业和人口规划问题上C . 二次世界大战期间,英国政府将运筹学运用到政府制定计划D . 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上第二章线性规划的图解法一、选择题/填空题1.线性规划标准式的特点:(1)目标函数最大化(2)约束条件为等式(3 决策变量为非负(4 ) 右端常数项为非负2. 在一定范围内,约束条件右边常数项增加一个单位:(1)如果对偶价格大于0,则其最优目标函数值得到改进,即求最大值时,最优目标函数值变得更大,求最小值时最优目标函数值变得更小。
(2)如果对偶价格小于0,则其最优目标函数值变坏,即求最大值时,最优目标函数值变小了;求最小值时,最优目标函数值变大了。
(3)如果对偶价格等于0,则其最优目标函数值不变。
3.LP模型(线性规划模型)三要素:(1)决策变量(2)约束条件(3)目标函数4. 数学模型中,“s·t”表示约束条件。
5. 将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左端加上松弛变量。
6. 将线性规划模型化成标准形式时,“≥”的约束条件要在不等式左端减去剩余变量。
7.下列图形中阴影部分构成的集合是凸集的是A【解析】:如何判断是凸集?凸集:两点之间连线在图内凹集:两点之间连线在图外8. 线性规划问题有可行解且凸多边形无界,这时CA没有无界解 B 没有可行解 C 有无界解 D 有有限最优解9. 对于线性规划问题,下列说法正确的是( D )A. 线性规划问题可能没有可行解B. 在图解法上,线性规划问题的可行解区域都是“凸”区域C. 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D. 上述说法都正确第三章线性规划问题的计算机求解一、名词解释1.相差值:相应的决策变量的目标系数需要改进的数量,使得决策变量为正值。
管理运筹学第四版 第三章习题6答案(P35)
《数据、模型和决策》作业一学号:2461604112 姓名:王康兵班级:2016秋MBA2周末班一、第三章线性规划问题的计算机求解习题6 (P35)答:根据图3-10回答问题如下:(1)最优解即最优产品组合是产品Ⅰ每天的产量是150个,产品Ⅱ每天的产量是70个。
此时最大的目标函数即最大利润为103000元。
(2)车间1和车间3的加工工时数已使用完,车间2和车间4的加工工时数还没用完。
车间2的松弛变量即没用完的加工工时数为330工时,车间4的松弛变量即没用完的加工工时数为15工时。
(3)车间1的加工工时的对偶价格为50元,即增加一个工时就可能使总利润增加50元;车间2的加工工时的对偶价格为0元,即增加一个工时不会使总利润有所增加;车间3的加工工时的对偶价格为200元,即增加一个工时就可能使总利润增加200元;车间4的加工工时的对偶价格为0元,即增加一个工时不会使总利润有所增加。
(4)如果要在这四个车间选择一个车间进行加班生产,我会选择车间3。
因为在车间3的加工工时的对偶价格为200元,即每增加一个工时就可能使总利润增加200元,能为公司创造价值。
(5)目标函数中x1的系数c1,即每单位产品Ⅰ的利润值,当c1在400与+∞之间变化时,最优产品组合不变。
(6)目标函数中x2的系数c2,即每单位产品Ⅱ的利润值,当c2从400元提高到490元时,最优产品组合没有变化。
因为当c2=490元时,0《490《500,仍在c2的系数变化范围内,所以其最优产品组合没有变化。
(7)约束条件中的常数项的现在值由图3-10可知,b1=300,b2=540,b3=440,b4=300。
所谓常数项的上限和下限是指当约束条件中的常数项在此范围内变化时,与其对应的约束条件的对偶价格不变。
具体地说,当车间1的加工工时数在200到440的范围内时,其对偶价格都为50元;当车间2的加工工时数在210到+∞范围内时,其对偶价格为零;当车间3的加工工时数在300到460范围内时,其对偶价格都为200元;当车间4的加工工时数在285到+∞范围内时,其对偶价格为零。
《管理运筹学》第三版(韩伯棠 )课后习题答案 高等教育出版社
a、 在满足对职工需求的条件下,在 10 时安排 8 个临时工,12 时新安排 1 个临时工,13 时新安排 1 个临时工,15 时新安排 4 个临时工,17 时新 安排 6 个临时工可使临时工的总成本最小。
50xa + 100xb ≤ 1200000 5xa + 4xb ≥ 60000 100xb ≥ 300000 xa , xb ≥ 0 基金 a,b 分别为 4000,10000。 回报率:60000
b 模型变为: max z = 5xa + 4xb
50xa + 100xb ≤ 1200000 100xb ≥ 300000 xa , xb ≥ 0
xi ≥ 0, yi ≥ 0 i=1,2,…,11
稍微变形后,用管理运筹学软件求解可得:总成本最小为 264 元。 安排如下:y1=8( 即在此时间段安排 8 个 3 小时的班),y3=1,y5=1,y7=4,x8=6 这样能比第一问节省:320-264=56 元。
x2+x3+x4+x5+1 ≥ 3 x3+x4+x5+x6+2 ≥ 3 x4+x5+x6+x7+1 ≥ 6 x5+x6+x7+x8+2 ≥ 12 x6+x7+x8+x9+2 ≥ 12 x7+x8+x9+x10+1 ≥ 7 x8+x9+x10+x11+1 ≥ 7 x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11≥ 0 用管理运筹学软件我们可以求得此问题的解为:
b、 这时付给临时工的工资总额为 80 元,一共需要安排 20 个临时工的班 次。
约束 -------
1 2 3 4 5 6 7 8 9 10 11
运筹学——第3章_线性规划问题的计算机求解
变量 下限 当前值 上限
x1
0
50
100
x2
50
100 无上限
从上面可知目标函数中X1的系数的上限为100,故C1
允许增加量为: 上限-现在值=100-50=50;
而X2的下限为50,故C2的允许减少量为: 现在值-下限=100-50=50。
定义Ci 的允许增加(减少)百分比为:Ci 的增加量 (减少量)除以Ci 的允许增加量(允许减少量)的值。
在上题中C1 的允许增加百分比与C2 的允许减 少百分比之和为92%不超过100%,所以当每件产 品Ⅰ利润从50元增加到74元,每件产品Ⅱ利润从 100元减少到78元时,此线性规划最优解仍然为Ⅰ 产品生产50件, Ⅱ产品生产250件(即x1= 50, x2=250),此时有最大利润为:
74× 50+78× 250=3700+19500=23200(元)。
为50元,即增加了一个台时数就可使总利润增加50元;
原料A还有50千克没有使用,原料A的对偶价格当然为零,
即增加1千克A原料不会使总利润有所增加;原料B全部使
用完,原料B的对偶价格为50元,即增加一千克原料B就
可使总利润增加50元。
在目标函数系数范围一栏中,所谓的当前值是指在目标函数 中决策变量的当前系数值。如x1的系数值为50,x2的系数值为100。 所谓的上限与下限值是指目标函数的决策变量的系数(其它决策 变量的系数固定在当前值)在此范围内变化时,其线性规划的最 优解不变。例如当c1= 80时,因为0≤80≤100,在x1的系数变化范 围内,所以其最优解不变(此时要固定c2=100),也即当x1=50, x2=250时,有最大利润。当然由于产品Ⅰ的单位利润由50变为80 了,其最大利润也增加了(最优值变了),
第三章 线性规划问题的求解07.9
输入部分: 2. 输入部分:
(1)线性规划、整数规划的目标函数和约束的输 线性规划、 入必须按由小到大的序号顺序输入, 入必须按由小到大的序号顺序输入,同时约 束变量必须放在运算符的左侧。 束变量必须放在运算符的左侧。如(x1+x2x3=0,不能输为x2-x3+x1=0;x1-x2+x3=0, , ; , 不能输为x1+x3=x2) (2)输入的约束中不包括" ≥ "或"≤",而是用 输入的约束中不包括 或 ,而是用">“ 代替, 或“<”代替,这不会影响求解。如 对于约束 代替 这不会影响求解。 X1 ≥ 2,则输入 X1>2,而不是 1 ≥ 2。 而不是X 则输入 而不是 。 (3)当所有的约束条件输入完了之后,在下一个 )当所有的约束条件输入完了之后, 约束条件中输入“ 约围:
当前值——指bj的现在值 指 当前值 上限值和下限值——指bj在此范围内变化时,则与 上限值和下限值 指 在此范围内变化时, 其对应的约束条件的对偶价格不变。 其对应的约束条件的对偶价格不变。
三、百分之一百法则及其应用
1、允许增加量:允许△ = 上限 – 现在值 、允许增加量: 2、允许减少量:允许△ = 现在值 – 下限 、允许减少量: 3、允许增加(减少)百分比: 、允许增加(减少)百分比:
输出部分: 4. 输出部分:
(1)线性规划和整数规划子程序没有把运算结 果存储到文本文件的功能, 果存储到文本文件的功能,其它子程序都 可以实现。 可以实现。 (2)若不通过运行Main.exe进入各子问题,而 若不通过运行Main.exe进入各子问题, Main.exe进入各子问题 是直接运行各子程序,系统会默认当前目 是直接运行各子程序, 录为存储目录。 录为存储目录。
《管理运筹学》第4版课后习题解析(韩伯棠)
. 但 E 不是可行域内的整点,在可行域的整点中,点 ( 4,8) 使 z 取得最小值。 答:应截第一种钢板 4 张,第二种钢板 8 张,能得所需三种规格的钢板,且使所 用钢板的面积最小. 9.解: 设用甲种规格原料 x 张,乙种规格原料 y 张,所用原料的总面积是 zm2,目标函 x 2 y 2 2 x y 3 数 z=3x+2y,线性约束条件 作出可行域.作一组平等直线 3x+ x 0 y 0 x 2 y 2 2y=t. 解 得 C ( 4 / 3,1 / 3) 2 x y 3
c1 450 ≤ 1 ,所以原来的最优产品组合不变。 c2 430
13.解: (1)模型 min f 8 xA 3 xB
50 xA 100 xB ≤ 1 200 000 5 xA 4 xB ≥ 60 000 100 xB ≥ 300 000 xA , xB ≥ 0
基金 A,B 分别为 4 000 元,10 000 元,回报额为 62000 元。
x1 0.2 ,函数值为 3.6。 x2 0.6
图 2-2 (2)无可行解。 (3)无界解。 (4)无可行解。 (5)无穷多解。
20 x1 92 3 (6)有唯一解 ,函数值为 。 8 3 x 2 3
3.解: (1)标准形式
1
《管理运筹学》第四版课后习题解析
10 x1 2 x2 s1 20 3x1 3x2 s2 18 4 x1 9 x2 s3 36 x1 , x2 , s1 , s2 , s3 ≥ 0
2
《管理运筹学》第四版课后习题解析
韩伯棠
剩余变量(0, 0, 13) 最优解为 x1=1,x2=5。 6.解: (1)最优解为 x1=3,x2=7。 (2) 1 c1 3 。 (3) 2 c2 6 。 (4)
运筹学实验报告(一)线性规划问题的计算机求解
运筹学实验报告实验课程:运筹学实验日期: 2020年4月4日任课教师:杨小康班级:数学1802 姓名:王超学号:2501180224一、实验名称: 简单线性规划模型的求解与Lingo软件的初步使用二、实验目的:了解Lingo软件的基本功能和简单线性规划模型的求解的输入和输出结果。
熟悉Lingo 软件在运筹学模型求解中的作用,增强自身的动手能力,提高实际应用能力三、实验要求:1、熟悉Lingo软件的用户环境,了解Lingo软件的一般命令2、给出Lingo中的输入,能理解Solution Report中输出的四个部分的结果。
4、能给出最优解和最优值;5、能给出实际问题的数学模型,并利用lingo求出最优解四、报告正文(文挡,数据,模型,程序,图形):1.在Lingo中求解下面的线性规划数学模型;(1)12132412512345 max2543..28,,,,0z x xx xx xs tx x xx x x x x=++=⎧⎪+=⎪⎨++=⎪⎪≥⎩(2)12121212max2343..28,0z x xxxs tx xx x=+≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩(3)12121212max243..28,0z x xxxs tx xx x=+≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩(4)12121212max324 ..3,0z x xx xs t x xx x=+-≤⎧⎪-+≤⎨⎪≥⎩(5)1212121212max102401.530.50,0z x xx xx xs tx xx x=++≤⎧⎪+≤⎪⎨+≥⎪⎪≥⎩2、某工厂利用三种原料生产五种产品,其有关数据如下表。
原料可利用数(千克)每万件产品所用材料数(千克)A B C D E甲10 1 2 1 0 1 乙24 1 0 1 3 2 丙21 1 2 2 2 2 每万件产品的利润(万元)8 20 10 20 21 (l)建立该问题的运筹学模型。
(2)利用lingo 软件求出最优解,得出最优生产计划解:(1)设xi(i=1,2...,5)为所用材料生产的件数则数学模型,,,,21 2222242 3102;212010208max543215 43215431532154321≥≤++++≤+++≤+++++++ =xxxxxx xxxxt xxxx xxxxsxxxxxz (2)结果为220.3:现有15米长的钢管若干,生产某产品需4米、5米、7米长的钢管各为100、150、120根,问如何截取才能使原材料最省?(建立线性规划模型并利用lingo软件求解)解:方案4米5米7米剩余量截取长度1 3 0 0 32 2 1 0 23 2 0 1 04 1 2 0 15 0 3 0 06 0 1 1 37 0 0 2 14人力资源分配问题某昼夜服务的公交线路每天各时间段内所需司机和乘务人员人数如表1所示。
管理运筹学《线性规划的计算机求解》课件
影子价格与对偶价格
条件
影子价格与对偶价格的关系
求目标函数max
当约束条件中的常数项增加一个单位时,目标函数值增
加的量就为改进的数量,此时影子价格即为对偶价格
求目标函数min
在求目标函数最小值时,改进的数量即减少的数量,此
时影子价格为负的对偶价格
“管理运筹学”软件的操作方法
第六步:点击开始
§1
“管理运筹学”软件的操作方法
第七步:点击下一步
§1
“管理运筹学”软件的操作方法
第八步:点击下一步
§1
“管理运筹学”软件的操作方法
第九步:关闭计算过程
本章内容
1
2
“管理运筹学”软件的操作方法
§2
“管理运筹学”软件的输出信息分析
分析软件输出的信息
百分之一百法则:
对于所有变化的目标函数决策变量系数(约束条件右端
常数值),当其所有允许增加的百分比与允许减少的百
分比之和不超过100%时,最优解不变(对偶价格不变)
§ 2 “管理运筹学”软件的输出信息分析
目标函数系数的百分之一百法则
1 → 74,2 → 78则
74−50
(100−78)
|
|+|
§2
“管理运筹学”软件的输出信息分析
分析软件输出的信息
解释
常数项范围
上限值和下限值:当约束条件的右端常量在此范围内变化
时,与其对应的约束条件的对偶价格不变
当前值:约束条件的右端常量现在的取值。
灵敏度分析都是在只有一个系数变化的基础上得出的
§ 2 “管理运筹学”软件的输出信息分析
当有多个系数变化,怎样进行灵敏度分析?
|=92%
统计学 第3章 线性规划的计算机求解
结果含义
相差值: 表示使决策变量取正值,相应的目标 系数的改进值。比如:若x1 =0,相差值为20 ,则表示只有当c1 =5+20时,x1才不为0。 即产品才能生产。 对偶价格(dual): 表示增加一个台时数时,可使利润增加50元。 表示增加一千克原料A时,利润不增加。 表示增加一千克原料B时,可使利润增加50元。 目标函数系数范围 下限 和 上限 表示: 当 0 ≤ c1 ≤100时,最优解不变。 当 50 ≤ c2时,最优解不变。 注意:最优值变了。
当前值 50 100
上限 100 无
当前值 300 400 250
上Hale Waihona Puke 325 无 300常数项范围 下限 和 上限表示:(1)当 250 ≤ b1 ≤325 时,约束条件1的对偶价格不变。 (2)当350 ≤b2时,约束条件2的对偶价格不变。
线性规划的计算机求解
一 计算机输出结果的含义: 例如:对线性规划问题 max z = 50 x1 +100 x2 s.t. x1 + x2 ≤300 2 x1 + x2 ≤400 x2 ≤250 x1≥0, x2≥0 计算机输出结果为:
——————目标函数
台时数 原料A ———— 约束条件 原料B
输出结果
管理运筹学-1
2 x1 +
x2 ≤ 400
x2 ≤ 250 ≥ 0
11
x1 ,
x2
线 性 规 划 模 型
• 一般形式
目标函数: 约束条件: Max (Min) z = c1 x1 + c2 x2 + … + cn xn s.t. a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2 …… …… am1 x1 + am2 x2 + … + amn xn ≤ ( =, ≥ )bm x1 ,x2 ,… ,xn ≥ 0
15
3.2 约束条件中右边系数 bj 的灵敏度分析
• 当约束条件中右边系数 bj 变化时,线性规划的可行域发生变化,可能引起最优 解的变化。 • 考虑例1的情况: 假设设备台时增加10个台时,即 b1变化为310,这时可行域扩 大,最优解为 x2 = 250 和 x1 + x2 = 310 的交点 x1 = 60,x2 = 250 。 变化后的总利润 - 变化前的总利润 = 增加的利润 (50*60+100*250) - (50*50+100*250) = 500 , 500 / 10 = 50 元 说明在一定范围内每增加(减少)1个台时的设备能力就可增加(减少)50元利 润,称为该约束条件的对偶价格。 • 假设原料 A 增加10 千克时,即 b2变化为410,这时可行域扩大,但最优解仍为 x2 = 250 和 x1 + x2 = 300 的交点 x1 = 50,x2 = 250 。 此变化对总利润无影响,该约束条件的对偶价格为 0 。 解释:原最优解没有把原料 A 用尽,有50千克的剩余,因此增加10千克值增加了 库存,而不会增加利润。 • 在一定范围内,当约束条件右边常数增加1个单位时 1)若约束条件的对偶价格大于0,则其最优目标函数值得到改善(变好); 2)若约束条件的对偶价格小于0,则其最优目标函数值受到影响(变坏); 3)若约束条件的对偶价格等于0,则其最优目标函数值不变。 • 作业:P24---6,7,8
运筹学实验报告(一)线性规划问题的计算机求解-(1)
运筹学实验报告(一)线性规划问题的计算机求解-(1)-CAL-FENGHAI.-(YICAI)-Company One1运筹学实验报告实验课程:运筹学实验日期: 任课教师:王挺第五种方案0 3 0 0第六种方案0 1 1 3第七种方案0 0 2 1设:第i种方案需要的钢管为Xi根(其中i=1,2...6),可得:minz=X1+X2+X3+X4+X5+X6+X7解:model:min= X1+X2+X3+X4+X5+X6+X7;3*X1+2*X2+2*X3+X4>=100;X2+2*X4+3*X5+X6>=150;X3+X6+2*X7>=120;endObjective value: 135.0000Infeasibilities: 0.000000Total solver iterations: 2Variable Value Reduced CostX1 0.000000 0.2500000X2 0.000000 0.1666667X3 50.00000 0.000000X4 0.000000 0.8333333E-01X5 50.00000 0.000000X6 0.000000 0.1666667X7 35.00000 0.0000004人力资源分配问题某昼夜服务的公交线路每天各时间段内所需司机和乘务人员人数如表1所示。
班次时间所需人数班次时间所需人数1 6:00~10:00 60 4 18:00~22:00 502 10:00~14:00 70 5 22:00~2:00 203 14:00~18:00 60 6 2:00~6:00 30设司机和乘务人员分别在各时间段开始时上班,并连续工作8小时,问该公交线路应怎样安排司机和乘务人员,既能满足工作需要,又使配备司机和乘务人员的人数最少?5投资计划问题某地区在今后三年内有四种投资机会,第一种是在3年内每年年初投资,年底可获利润20%,并可将本金收回。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目标函数决策变量系数的百分之一百法则: 当两个或多个目标函数系数同时变化时,对 于所有变化的目标函数决策变量系数,当其 所有允许增加的百分比和允许减少的百分比 之和不超过百分之一百时,最优解不变。
约束条件中常数项的百分之一百法则:当两 个或多个约束条件右端常数项同时变化时, 对于所有变化的约束条件右端常数项,当其 所有允许增加的百分比和允许减少的百分比 之和不超过百分之一百时,其对偶价格不变。
影子价格:当约束条件中的常数项增加一个 单位时,最优目标和数值增加的数量。
对偶价格:当约束条件中的常数项增加一个 单位时,最优目标和数值改进的数量。
因此,当目标函数为最大化要求时,影子价 格=对偶价格,当目标函数为最小化要求时, 影子价格=-对偶价格。
第三章
线性规划问题 的计算机求解
一、应用注意:
1、输入系数可以是整数、小数,但不能是分 数;
2、输入前要合并同类项; 3、可以解决包含50个约束条件、100个决策
变量的线性规划问题。
二、管理运筹学软件的输出信息分析
1、基本信息内容
相差值:使决策变量取正值,目标函数系数 要改进的数量。
对百分之一百法则的说明:
1、百分之一百法则不能用于约束条件右端常 数项和目标函数系数同时变化的情况,在这 种情况下只有重新求解。
2、允许增加(减少)量为无穷大时,其来自许 增加(减少)百分比都看做0。
3、百分之一百法则是判断最优解或对偶价格 是否变化的充分条件,但不是必要条件。
影子价格与对偶价格的区别和联系
对偶价格:约束条件右端项增加一个单位使 目标函数值得到改进的数量。
价值系数上下限是最优解不变的范围; 常数项上下限是对偶价格不变的范围。
2、百分之一百法则
基本概念 允许增加量:该系数的上限值减去当前值; 允许减少量:该系数的当前值减去下限值;
允许增加百分比:系数增加(减少)量除以 允许增加(减少)量。