小学四年级奥数教程——第八讲

合集下载

小学四年级奥数培训教材(精讲版)

小学四年级奥数培训教材(精讲版)

第一讲简单推理例1:一包巧克力的重量等于两袋饼干的重量,4袋牛肉干的重量等于一包巧克力的重量,一袋饼干等于几袋牛肉干的重量?1、一只菠萝的重量等于4根香蕉的重量,两只梨子的重量等于一只菠萝的重量,一只梨的重量等于几根香蕉的重量?2、3包巧克力的重量等于两袋糖的重量,12袋牛肉干的重量等于3包巧克力的重量,一袋糖的重量等于几袋牛肉干的重量?3、一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量,一只小猪的重量等于几只鸭的重量?例2:一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量,一头象的重量等于几头小猪的重量?1、一只西瓜的重量等于两个菠萝的重量,一个菠萝的重量等于4个苹果的重量,1个苹果的重量等于两个橘子的重量,一只西瓜的重量等于几个橘子的重量?2、一头牛一天吃草的重量和一只兔子9天吃草的重量相等,也和6只羊一天吃草的重量相等。

已知一头牛每天吃青草18千克,一只兔子和一只羊一天一共吃青草多少千克?3、一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量,两只鸭的重量等于6条鱼的重量,问两只小猪的重量等于几条鱼的重量?例3:根据下面两个算式,求○和□各代表多少?○+○+○=18○+□=101、根据下面两个算式,求○和□各代表多少?○+○+○+○=32□-○=202、根据下面两个算式,求○和□各代表多少?○+○+○=15○+○+□+□+□=403、根据下面两个算式,求○和□各代表多少?□-○=8例4:根据下面两个算式,求○和□各代表多少?△-○=2○+○+△+△+△=561、根据下面两个算式,求○和□各代表多少?□-○=8○+○+□+□=202、根据下面两个算式,求○和□各代表多少?△+△+△+○+○=78△+△+○+○+○=723、根据下面两个算式,求○和□各代表多少?△+△+△-□-□=12□+□+□-△-△=2第二讲应用题例1:某玩具厂把630件玩具分别装在5个塑料箱和6个纸箱里,1个塑料箱与3个纸箱装的玩具同样多,每个塑料箱和纸箱各装多少件玩具?1、百货商店运来300双球鞋分别装在两个木箱和6个纸箱里。

高思奥数导引小学四年级含详解答案第8讲 抽屉原理一.

高思奥数导引小学四年级含详解答案第8讲 抽屉原理一.

第8讲抽屉原理一兴趣篇1、学校周末要组织四个班的同学去春游,有三个地点可供选择:石景山游乐园、植物园和动物园。

如果一个班只能去一个地点。

试说明:一定有两个班要去同一个地点。

2、小悦、冬冬和阿奇到费叔叔家玩,费叔叔拿出许多巧克力来招待他们。

他们一数,共有19块巧克力。

如果把这些巧克力分给他们三人,试说明:一定有人至少拿到7块巧克力,但不一定有人拿到8块。

3、任意40个人中,至少有几个人属于同一生肖?4、有红、黄、蓝、绿四种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多。

一次至少要取几颗珠子,才能保证其中一定有两颗颜色相同?5、某校的小学生中,年龄最小的6岁,最大的13岁。

从这个学校中至少选几个学生,就能保证其中一定有三个学生的年龄相同?6、有红、黄、蓝、绿四种颜色的铅笔各10支,拿的时候不许看铅笔的颜色,那么一次至少要拿多少支,才能保证其中一定有4支使同一种颜色的铅笔?7、口袋装有红、黄、蓝、绿这4种颜色的球,且每种颜色的球都有4个。

小华闭着眼睛从口袋往外摸球,那么他至少要摸出多少个球,才能保证摸出的球中每种颜色的球都有?8、一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。

那么:(1)至少从中摸出多少张牌,才能保证在摸出的牌中有黑桃?(2)至少从中摸出多少张牌,才能保证至少有2张牌是红桃?(3)至少从中摸出多少张牌,才能保证有5张牌是同一花色的?9、把40块巧克力放入A、B、C、D四个盒子内。

如图,A盒子放的最多,放了13块,且四个盒子内装的巧克力的数量依次减少,那么:(1)D盒最少可以装几块?(2)D盒最多可以装几块?10、圆桌周围恰好有12把椅子,现在已经有一些人在桌边就坐。

当再有一人入座时,就必须和已经就坐的某个人相邻。

问:已就坐的最少有多少人?拓展篇1、红领巾小学今年入学的一年级新生中有370人是在同一年出生的,试说明:他们中一定有两个人是在同一天出生的。

小学数学奥数基础教程(四年级)目30讲全

小学数学奥数基础教程(四年级)目30讲全

小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

四年级奥数举一反三第八课巧妙求和1附作业

四年级奥数举一反三第八课巧妙求和1附作业

第8讲巧妙求和(一)一、知识要点若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

练习1:1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项?2.有一个等差数列:,8,11.…,101.这个等差数列共有多少项?3.已知等差数列,,…,1001.这个等差数列共有多少项?【例题2】有一等差数列:,,……,这个等差数列的第100项是多少?【思路导航】这个等差数列的首项是3.公差是4,项数是100。

要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。

第100项=3+4×(100-1)=399.练习2:1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2.求,7,10……这个等差数列的第30项。

3.求等差数列,10,14……的第100项。

【例题3】有这样一个数列:,…,99,100。

请求出这个数列所有项的和。

【思路导航】如果我们把,…,99,100与列100,99,…,相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。

小学数学奥数基础教程(四年级)目30讲全

小学数学奥数基础教程(四年级)目30讲全

小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

小学数学奥数基础教程(四年级)目30讲全

小学数学奥数基础教程(四年级)目30讲全

小学奥数基础教程(四年级)- 1 -小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

小学数学奥数基础教程四年级目30讲全

小学数学奥数基础教程四年级目30讲全

小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

四年级奥数第8讲:巧妙求和-教案

四年级奥数第8讲:巧妙求和-教案

(四年级)备课教员:* * *第八讲巧妙求和一、教学目标:知识目标1.认识等差数列及各个相关名称。

2.利用规律来简便求出等差数列的项数。

能力目标根据实际情况会判断所求的总和是否是求等差数列的总和。

情感目标善于发现善思考,提高计算能力。

培养良好的审题习惯和思维习惯。

二、教学重点:利用规律来简便求出等差数列的项数。

三、教学难点:理解等差数列的意义,知道等差数列中各部分的名称,掌握求尾项和项数的公式。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:故事引入,提高学生学习兴趣。

】师:今年上课前,老师要给大家讲一个数学家高斯的故事。

高斯7岁那年开始上学。

10岁的时候,他进入了学习数学的班级,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。

数学教师是布特纳,他对高斯的成长也起了一定作用。

一天,老师布置了一道题,1+2+3……这样从1一直加到100等于多少。

高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:"你一定是算错了,回去再算算。

”高斯说出答案就是5050,高斯是这样算的1+100=101,2+99=101……1加到100有50组这样的数,所以50×101=5050。

布特纳对他刮目相看。

他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。

”接着,高斯与布特纳的助手巴特尔斯建立了真诚的友谊,直到巴特尔斯逝世。

他们一起学习,互相帮助,高斯由此开始了真正的数学研究。

师:听了故事后,你有什么感想?生:学生回答。

师:高斯是利用什么方法去求1至100这100个数的和?生:分组的方法。

师:是的,就是把头尾两两分组。

为什么要这样分组呢?生:因为这样分组后,每组的和都是一样的。

师:这位同学讲的太棒了!是的,这样分组,刚好每组的两个数的和是一样的。

这也是我们在计算中一种重要的方法,也就是分组法。

接下来我们就要用这种方法去解答我们数学问题。

四年级上册奥数讲义-第八讲 乘法原理进阶-冀教版(无答案)

四年级上册奥数讲义-第八讲 乘法原理进阶-冀教版(无答案)

四年级第八讲乘法原理进阶◆温故知新:1. 要想把过程分成几个步骤从而应用乘法原理,必须保证各步骤之间满足下面三个要求:(1)每步都只是整体事情的一个部分,必须全部完成才能做完这件事;(2)步骤之间要有先后顺序,先确定好一步,再做下一步,直到最后。

(3)做完一步时,这一步的结果很可能会影响后面步骤的结果,但一定不能影响后面步骤的方法数。

如果这一步的不同结果会导致后面某一步的方法数不同,就不能直接用乘法原理计算。

2.应用乘法原理时,某一步的结果可以影响后面步骤的结果,但一定不能影响到后面步骤的方法数。

3.对于染色问题较复杂的乘法原理问题,在分布时要优先考虑可选择情况较少的步骤,必须让前面步骤的结果不影响后面步骤选择的方法数。

4.在做数字迷问题时,要从可能情况较少的地方入手分析。

对于较复杂的乘法原理问题,在分步时,也要优先考虑可选择情况较少的步骤,尽可能地让前面步骤的结果不影响后面步骤选择的方法数。

◆例题展示例题1运动会中有四个跑步比赛项目,分别为50米、100米、200米、400米,规定每个参赛者只能参加其中的一项,甲、乙、丙、丁四名同学报名参加这四个项目。

请问:(1)如果每名同学都可以任意报这四个项目,一共有多少种报名方法?(2)如果这四名同学所报的项目各不相同,一共有多少种报名方法?练习1小萱的书包里有5本不同的语文书、6本不同的数学书、3本不同的英语书。

(1)如果从中任取1本书,共有多少种不同的取法?(2)如果从中取出语文书、数学书、英语书各1本,共有多少种不同的取法?例题2用红、黄、蓝三种颜色给下图的三个圆圈染色,一个圆圈只能染一种颜色,并且相连的两个圆圈不能同色,一共有多少种不同的染色方法?练习2用红、黄两种颜色给下图中小丑的眼睛、鼻子、嘴巴染色,如果每种器官必须染相同的颜色,一共有多少种不同的染色方法?例题3 如图,把A、B、C、D、E这五部分用4种不同的颜色染色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色。

四年级奥数培训教材

四年级奥数培训教材

四年级奥数培训教材四年级奥数培训教材目录第一章组合与推理第一讲逻辑推理第二讲容斥问题第二章数与计算(一)第一讲速算与巧算(一)第二讲速算与巧算(二)单元练(一)第三章实践与应用(一)第一讲应用题(二)第二讲平均数问题第三讲差倍问题第四讲和差问题第五讲巧算年龄第六讲假设法解题第七讲盈亏问题第八讲还原问题单元练(二)第四章数与计算(二)第一讲定义新运算第二讲速算与巧算(三)第三讲二进制单元练(三)第五章实践与应用(二)第一讲行程问题(一)第二讲行程问题(二)第三讲应用题(三)第四讲应用题(四)第五讲较复杂的和差倍问题单元练(四)第六章趣题与智巧第一讲周期问题第二讲数学开放题综合练(一)综合练(二)第一章组合与推理第一讲逻辑推理专题导引】解答推理问题常用的方法有:排除法、假设法、反证法。

一般可以从以下几方面考虑:1、选准突破口,分析时综合几个条件进行判断。

2、根据题中条件,在推理过程中,不断排除不可能的情况,从而得出要求的结论。

3、对可能出现的情况作出假设,然后再根据条件推理,如果得到的结论和条件不矛盾,说明假设是正确的。

4、遇到比较复杂的推理问题,可以借助图表进行分析。

典型例题】例1】桌上有排球、足球、篮球各1个。

排球在足球的右边,篮球在足球的左边。

请按从左到右的顺序排列出球的摆放情况。

改写:在桌子上有一排球,包括排球、足球和篮球各一个。

排球在足球的右边,篮球在足球的左边。

请按照从左到右的顺序排列球的位置。

试一试】1、甲、乙、丙比身高,甲说:“丙的身高没有乙高。

”乙说;“甲的身高比丙高。

”丙说:“乙比甲矮。

”问:最高的是谁?改写:甲、乙、丙三人身高不同。

甲说:“丙的身高没有乙高。

”乙说:“甲的身高比丙高。

”丙说:“乙比甲矮。

”请问,谁是最高的?2、某班学生,如果:有红色铅笔的人没有绿色铅笔;没有红色铅笔的人有蓝色铅笔。

那么“有绿色铅笔的人就有蓝色铅笔”。

对吗?改写:某个班级的学生中,有些人有红色铅笔,没有绿色铅笔;有些人没有红色铅笔,有蓝色铅笔。

小学数学奥数基础教程(四年级)目30讲全

小学数学奥数基础教程(四年级)目30讲全

小学奥数基础教程(四年级)- 1 -小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

四年级奥数第8讲变化规律(二)

四年级奥数第8讲变化规律(二)

第8讲变化规律二
一、知识要点
乘、除变化规律见下表(m≠0)
二、练习:
1.两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积将有什么变化?
2.两数相乘,如果一个因数缩小4倍,另一个因数扩大4倍,和是否起变化?
3.两数相乘,如果一个因数扩大3倍,另一个因数缩小12倍,积将有什么变化?
4.两数相乘,如果一个因数扩大3倍,另一个因数扩大6倍,积将有什么变化?
5两数相除,如果被除数扩大4倍,除数缩小2倍,商将怎样变化?
6.两数相除,被除数扩大30倍,除数缩小5倍,商将怎样变化?
7.两数相除,被除数缩小12倍,除数缩小2倍,商将怎样变化?
8.两数相除,除数扩大6倍,要使商扩大3倍,被除数应怎样变化?
9.两数相除,商是6,余数是30,如果被除数和除数同时扩大10倍,商是多少?余数是多少?
10.两个数相除,商是9,余数是3。

如果被除数和除数同时扩大120倍,商是多少?余数是多少?
11.两个数相除,商是8,余数是600。

如果被除数和除数同时缩小100倍,商是多少?余数是多少?。

高斯小学奥数四年级下册含答案第08讲_复杂数阵图

高斯小学奥数四年级下册含答案第08讲_复杂数阵图

第八讲 复杂数阵图较复杂的数阵图往往给人感觉可能性太多,不知道该怎么去试.而寻找特殊对象可以帮助我们从纷繁复杂的条件中找到最关键的环节进行突破.那什么样的对象在数阵图中可以算特殊呢?比如数阵图要填的若干数中最大或者最小的就算特殊;奇偶性与别的数不同的也算特殊;数阵图中重数最多或最少的空格也算特殊……一个对象只要有与众不同的地方就是特殊.至于什么样的特殊对解题有用,那还得看题目本身.但只要你有一双发现特殊的慧眼,总可以找到那个对解题最有用的“特殊”.例题1请将1~10填入图中的10个圆圈中(其中两个数已经填好),使得除了第一行外每个圆圈内的数都等于与它相连的上方两个圆圈内的两数之差.「分析」根据已有的数字9,图中哪两个圆圈已经可以填出来了?剩下的数中,谁最特殊?请将1~8填入下图的8个方格中,使得a 、b 、c 、d 四个方格中的数,恰好等于它上方与之有公共边的两个方格中所填数的差.其中b 填7.那么d 填几?接下来我们重点学习一下数阵图分析中与“重数分析”有关的一些方法.在已知全部填入数字的情况下,我们通常是把所有相同的和相加,通过对每一个数字的重复次数来找出其中的特殊重数,是解题的关键.例题2将1~9填入图中的九个圆圈内,使四条直线上三个圆圈内所填数之和都是15.「分析」如果把四条直线的和加起来,每个圆圈各加了多少次?它们的重数一样吗?哪个圆圈的重数比较特殊?这个重数特殊的位置必须填几? 练习2把1~8这八个数填入下边的圆圈内,使得每条直线上的数之和都等于14.例题3把1~7这七个数填入下图中的方框中,使得每条直线上的三个数之和都相等.如果中心方框内填的数相等,那么就视为同一种填法.请填出所有的可能性.「分析」如果把三条直线的和加起来,每个方框各加了多少次?它们的重数一样吗?哪个方框的重数比较特殊?这个重数特殊的位置可以填几?有几种可能?把1~9这九个数填入图中的圆圈内,使得三条直线上的所有数之和都是相等.请至少填出两种情况.例题4将数字1,2,3,4,5,6,7填入图中的小圆圈内,使得每个圆周上的3个数之和与每条直线上的3个数之和都相等.「分析」如果把两个圆周的和与三条直线的和加起来,每个圆圈各加了多少次?它们的重数一样吗?哪个圆圈的重数比较特殊?这个重数特殊的位置必须填几?练习4如图所示,将数字1、2、3、4、5、6、7、8、9填入图中的小圆圈内,使得圆周上的4个数之和与每条直线上的3个数之和都相等,那么这个和是多少?前面几个例题只有一个特殊格,那么接下来我们来看一下有多个特殊格、多个重数的题目.例题5图中一共有10个方格,现在把10个连续的自然数填到里面(9是这10个自然数中第三大的),每个方格填一个.如果要求图中的3个22的正方形中的4个数加起来的和都相等,那么这个和最小可能是多少?请给出一种填法.「分析」如果把三个正方形“加起来”,共12个数相加,相当于把每个方格各加了几次?由此你能得到什么结论?下图中有三个圆环,将1~8填入图中的8个圆圈内,使得每个圆环上4个顶点的数字之和都相等.那么这个和最大可能是多少?请给出一种填法.「分析」把三个圆周和加起来,图中的8个○有几种不同的重数?由此你能得到什么结论?课堂内外阵中国古代作战是非常讲究阵法即作战队形的,称之为“布阵”.布阵得法就能充分发挥军队的战斗力,克敌制胜.中国古代军事史上有名的作战阵法有三种:八阵:战国时大军事家孙膑创造,据说是受了《易经》八卦图的启发,所以又称八卦阵.具体阵势是大将居中,四面各布一队正兵,正兵之间再派出四队机动作战的奇兵,构成八阵.八阵散布成八,复而为一,分合变化,又可组成六十四阵.当年诸葛亮还用石头在四川奉节布设过八阵的方位,作为教练将士演习阵法之用,名为“八阵图”.撒星阵:南宋名将岳飞破金兵“拐子马”的阵法.撒星阵的队形布列如星,连成一排的“拐子马”冲来时士兵散而不聚,使敌人扑空.等敌人后撤时散开的士兵再聚拢过来,猛力扑击敌人,并用刀专砍马腿,以破“拐子马”.鸳鸯阵:明代将领戚继光为抗击倭寇而创设的一种阵法.他把士兵分为三队,当敌人进到百步时第一队士兵发射火器;敌人进到六十步时士兵发射弩箭;敌人进到十步时第三队士兵用刀矛向敌人冲杀.这些变化反映了中国作战阵法从传统的方阵向多兵种的集团阵法演变的过程.作业1.请将2~9填入下图的8个方格中,使得a、b、c、d四个方格中的数,恰好等于它上方与之有公共边的两个方格中所填数的差.其中b填7.2.将数字1,3,5,7,9,11,13填入右上图中的小圆圈内,使得每个圆周上的3个数之和与每条直线上的3个数之和都相等.3.把1至10填入右图的圆圈内,使得每条直线上的4个数之和都等于23.4.将2至8填入右上图的圆圈中,使得每条直线上的所有数字之和都相等.5.图中一共有10个方格,现在把10个连续的自然数填到里面(9是这10个自然数中第三大的),每个方格填一个.如果要求图中的3个22的正方形中的4个数加起来的和都相等,那么这个和最大可能是多少?请给出一种填法.第八讲 复杂数阵图1. 例题1答案:详解:20是这里面最大的数,应该在最下端,其中20812=+,再一层的往上推即可.2. 例题2答案:详解:有两种重数,中间的圆圈是特殊格,重数是4,43⨯=+⨯公共和所有和中间数,公共和是15,所有和是45,所以中间数就是5,那么同一条直线上的另外两个数的和就是10,即1、9;2、8;3、7;4、6.3. 例题3答案:其中三种:详解:31272⨯=++++⨯L 公共和中 3282⨯=+⨯公共和中,有三种情况:(1)中=1,公共和=10;(2)中=4,公共和=12;(3)中=7,公共和=14.答案:详解:()51272⨯=+++⨯+L 公共和中556⨯=+公共和中,所以中间数只能为4,公共和=12.直线上除最里面的4,剩下两个数之和为8,分别是17+、26+和35+,然后尝试调整使得圆周的和也都等于12.5. 例题5答案:答案不唯一,中间两数和是7,公共和是24.详解:10个数是2、3、…、10、11,2341165++++=L .这个相等的和是2×2正方形中4个数之和,365A B⨯=++和,则A 和B 的和可以是4、7、… 要使得和最小,这个和只能是7,所以A 、B 可以填2、5;3、4.而这个相等的和是24.经过尝试后其他格均可以填出,答案是其中两种填法.6. 例题6答案:答案不唯一,2A B C ++⨯必须满足27,公共和是21. 详解:重数有三种,A 、B 格的重数是2,C 格的重数是3,其他格都是1;所以A 、B 、C 是特殊格.()32A B C ⨯=++⨯+公共和所有和.所有和是36,所以 2A B C ++⨯可能是9、12、15、… 要这个和最大,所以2A B C ++⨯只能是27,此时公共和是21.A 、B 、C 可以是4、7、8.答案不唯一.4 7 11 8 2 35 9 106 10 9 2 11 3 8 4 6 57 A B答案:详解:b为7,只可能:781=-,而8最大,所以只能在边上,最中间填1.然后注意尝试即可得答案.8.练习2答案:详解:有两种重数,中间的圆圈是特殊格,重数是3,32⨯=+⨯公共和所有和中间数,公共和是14,所有和是36,所以中间数就是3,那么同一条直线上的另外两个数的和就是11,即1、2、8;4、7;5、6.9.练习3答案:其中三种情况:简答:31292⨯=++++⨯L公共和尖3452⨯=+⨯公共和尖,有三种情况:(1)尖=3,公共和=17;(2)中=6,公共和=19;(3)中=9,公共和=21.10.练习4答案:简答:()公共和中L⨯=+++⨯+⨯612922公共和中,所以中间数可以为3、6、9.6902⨯=+⨯(1)如果中=3,则公共和=16,此时直线上除最里面的3,剩下的两个数之和为13,题目数据无法满足,排除;(2)如果中=6,则公共和=17,此时直线上除最里面的3,剩下的两个数之和为11,题目数据无法满足,排除;(3)如果中=9,则公共和=18,此时直线上除最里面的3,剩下的两个数之和为9,则分别为18+.+和45+、36+、27然后尝试调整使得圆周的和也都等于18即可.11.作业1答案:见图简答:7只能是92a=.剩下3、4、5、6、8,-,而9最大,所以2c和d只能是3和4,剩下的根据题中条件依次填出.12.作业2答案:见图简答:将三条直线、两个圆上的数字都加起来,圆上的每个数字都算了2次,而中间的数字算了3次.即1至13这7个数的和的2倍加上中间的数字等于和的5倍.计算可得,这个和为21,中间数字是7.13.作业3答案:见图简答:将三条直线上的数字相加,中间的数字加了3次,其他数字分别加了1次;1至10的和为55,55加上中间数字的两倍等于直线和的3倍,所以中间数字可以4或7或10.直线和为23,所以中间数为7;如图给出了填法.是1或14.作业4答案:见图简答:把每条直线上的数字都加起来,每个上下的六个数字都分别算了两次,中间的数字算了3次.所以70加上中间的数字就等于直线和的5倍,所以中间数字是5,直线和是15.15.作业5答案:28简答:10个数是2、3、4、…、11,2341165+++=L.这个相等的和是22⨯正方形中4个数之和,365A B⨯=++和,则A和B的和可以是1、4、7、…要使得和最大,则A和B分别填8、11或9、10.而这个相等的和是28.经过尝试后其他格均可以填出,答案是其中一种填法.A B3511294107 86。

小学数学奥数基础教程(四年级)目30讲全

小学数学奥数基础教程(四年级)目30讲全

小学奥数基础教程(四年级)- 1 -小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

小学数学奥数基础教程(四年级)目30讲全

小学数学奥数基础教程(四年级)目30讲全

小学奥数基础教程(四年级)- 1 -小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

小学数学奥数基础教程(四年级)目30讲全

小学数学奥数基础教程(四年级)目30讲全

小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例5:在一条公路上,每隔100千米有一个粮 仓,共有5个粮仓。一号粮仓有10吨粮食,二 号粮仓有20吨粮食和,五号粮仓有40吨粮食, 其余两个粮仓是空的,现在要把所有粮食集中 到一个粮仓里,如果每吨粮食运输1千米需要2 元运费,那么运到哪个粮仓所花运费最少? 分析:这个问题实质上就是一个粮仓地址选择 问题,所花运费最少取决于运粮所行路程及所 运粮食的重量。路程与重量的乘积越小,所花 运费就越少,反之,路程与重量的乘积越大, 所花运费就越多。经过筛选,粮仓地址应选在 五号最少运费。这是“按小往大靠原理”。 2×(10×400+20×30)=20000(元)
例3:小刚、小强、小丽3人分别拿着2个、3个、 1个热水瓶同时到达开水供应点打开水,பைடு நூலகம்水龙 头只有1个,怎样安排他们打开水的次序,可使 他们打热水瓶所花的总时间(包括等待的时间) 最少?(假如打满一瓶水需1分钟) 解:应让拿热水瓶少的小丽排在最先,接着小刚 打水,最后小强打水,所花的总时间最少。 1+(1+2)+(1+2+3)=10(分)
北京
40元 武汉 60元 上海
例7:有49名运动员,每人胸前有一个号码,号 码从1到49各不相同。请你挑选出若干名运动员, 排成一个圆圈,使任何相邻的两个运动员的号码 数的乘积小于100,你最多能挑选出多少个运动员。 分析:这道题我们首先应该从任何相邻的两个运动 员的号码数的乘积小于100入手进行分析,两个一 位数相乘的积一定小于100,两个两位数相乘的积 一定大于100,由此不能让两个两位数相邻。一个 两位数与一个一位数相乘的积有可能小于100。如 果选两个一位数相邻,那只能有9人。如果选一个 两位数,一个一位数相邻,肯定比9人多。所以我 们就选两个一位数之间用两位数隔开的方法。
小学四年级奥数教程
第八讲 选择最佳方案
小超从家到学校有3条路可走,第一条 路步行需10分钟,第二条路步行需8分钟, 第三条路步行需12分钟。小超会选择哪条路 呢?你肯定会说,当然选择第二条路了。这 是一道简单的选择最佳方案的例子。在日常 学习、生活、生产和工作中,人们经常遇到 这类事情,它需要人们积极动脑思考,合理 安排,选择最佳方案。既要在某一段时间内 做好几件事情或完成各项任务,还要考虑到 尽可能精打细算,节省人力、物力和时间, 从而获得最佳效果。这在数学中是一门专门 的学问,叫做统筹规划。学习它,有助于同 学们养成遇事爱动脑筋,做事合理安排的良 好习惯。
例4:在24个机器零件中有一个零件是次品,次 品比正品轻一些,现在只有一个天平,问至少 移几次,就一定能把次品找到? 分析:可以平均分成3组去称,这样可以缩小范 围。而且,把相同数量的零件放到天平上后只 有两种情况:①天平仍平衡,这说明在这两组 零件中没有次品,只需检查余下的几个;②天 平一边重一边轻,则轻的这一边上的几个零件 中定有次品,而另外两组中没有次品。
例6:北京和上海分别制成了同一型号的电子 计算机若干台,除本地应用外,北京可支援外 地10台,上海可支援外地4台,现在决定给重 庆6台,给武汉8台,若每台计算机的运费如下 表(单位:元),应该如何调运,才能使总的 运费最省?
终点 终点 每台运费
武汉 40 30
重庆 80 60
北京 上海
分析:我们先画一个方位图来帮 助大家理解。如果用“按小往大 靠”原理,可以有两种思路作选 择。 上海 一种是北京的10台给武汉8 台,给重庆2台,上海的4台全给 重庆。此时总运费为: 40×8+80×2+60×4=720(元) 另一种是上海的4台全给武 汉,北京的10台给武汉4台,给重 庆6台,此时总运费为: 30×4+40×4+80×6=760(元) 显然,第一种思路运费最省。
解:如果把9个一位数1,2,3,4,5,6,7,8, 9,排成圆圈,它们之间有9个间隔,也就是一位 数之间的间隔,最多可放9个两位数,这样能挑选 的运动员就有18个。另外,还要考虑一个问题, 一位数之间有9个间隔,是否一定可以找到9个符 合条件的两位数呢?经试验是可以的,所以最多 可以选出18名运动员。如图:
10 9 11 8 12 7 14 6 16 5 1 49 2 33 3 24 4 19
练习: 1.小宇的文具袋里有许多8厘米长的纸条,现在 要剪出每条3厘米长的40条,每条2厘米长的40 条,试设计最省料的下料方案,问要几条原材 料? 2.有一个天平,只有5克砝码和30克砝码各一 个,现在要把300克的盐水分成3等份,问最少 需要天平称几次? 3.15个同学要去河对岸,只有一只渡船,船上 只能乘3个同学。问最少用几趟可以全部渡完?
例2:小玲清早起来 洗脸、刷牙、叠被子需要 8分钟,做保健操需用6分钟,洗杯子、拿奶粉 需用2分钟,烧开水需15分钟,请你安排一下 做这几种事情的顺序,使小玲尽快地喝到牛奶 总共只要几分钟? 分析:如果按照题目的叙述顺序去做每件事, 小玲总共需要的时间是8+6+2+15=31(分钟)。 可实际上,在烧开水的15分钟里,小玲不可能 不做任何事情,因此,可以充分利用这段时 间,同时干其他的事情。因此,需要的最少时 间是8+6+2=16(分钟)
例1:小华的妈妈用一只平底锅煎饼,每一次 只能放两只饼,煎一只需要2分钟(规定正反 面各需1分钟),问煎3只饼至少需要几分钟?
分析:可以先将两只饼同时放入锅一起煎,一 分钟后两只饼都熟了一面,这时将一只取出, 另一只翻个面,再放入第三只,又煎一分钟, 两面都煎好的那只取出,把第三只翻一个面, 再将第一只放入锅内煎,再煎一分钟就全部熟 了,煎3只饼共用了3分钟。
相关文档
最新文档