18学年高中数学第二章数列2.3.1等比数列(一)学案新人教B版必修5

合集下载

2.3.1.1《等比数列的概念》课件(人教B版必修5)

2.3.1.1《等比数列的概念》课件(人教B版必修5)

∴c9=a9+b9=1×28+8×(-1)=248. 答案:248
4.(15分)有四个数,前三个数成等比数列,后三个数成等 差数列,首末两项的和为21,中间两项的和为18,求这四个
数.
【解题提示】由题意可借助等比数列、等差数列的定义 及等差中项和等比中项设出相应变量进行求解,但需注意设 法不同可能运算量会不同,注意方法的选择 .
2.对任意两个数是否一定都有等比中项?若有,是否唯一? 提示:不一定.只有当两数同号,即两数之积大于零时,此二 数才有等比中项,且有两个等比中项,它们互为相反数.
典型例题精析
知能巩固提升
一、选择题(每题5分,共15分)
1 1.(2010·福州高二检测)在等比数列{an}中,a1= 2 1 q= 1 ,an= ,则项数n为( ) 64 2
3.(5分)若数列{an}是等比数列,{bn}为等差数列,且b1=0, cn=an+bn,当数列{cn}中的前三项分别为1,1,2时,c9=_____.
【解析】设{an}的首项为a1,公比为q,{bn}的公差为d,则
a 1 0 1 a1q d 1 解得 2 a1q 2d 2 a 1 1 q 2 d 1
∴4a2=4a1+a3, 即4·a1·q=4a1+a1·q2. ∴q2-4q+4=0.∴(q-2)2=0,∴q=2. 故a2+a3+a4=a1·(q+q2+q3)=14.
3.(2010·岳阳高二检测)一个各项均为正数的等比数列,其 任何项都是它后面两项的和,则其公比是( )
【解析】选D.设等比数列{an}的公比为q,且q>0,则 an=an+1+an+2, ∴qn-1=qn+qn+1,即q2+q-1=0, ∴q= 1 5 ,又q>0,∴q=

高中数学新人教B版必修5课件:第二章数列2.3习题课——等比数列习题课

高中数学新人教B版必修5课件:第二章数列2.3习题课——等比数列习题课

D典例透析 S随堂演练
目标导航
题型一
题型二
题型三
题型四
1
1

2
1
(2)解:由(1)知 -1= · -1 =
1


1
=
2
1
+1,则

设 Tn= +
2


3
=
1
22
2
2
2
2
1
+
2
2
+…+
3
=
2

1
1-
2
1
12
1
=1-
2


2
1
2
1
2
22
,
+n.

2
+

2 +1
1
,②

+…+
2

2 +1
(2)设等比数列{bn}的公比为q.
因为b2=a1+a2+a3=-24,b1=-8,
所以-8q=-24,q=3.
1 (1- )
所以数列{bn}的前 n 项和公式 Sn=
1-
=4(1-3n).
D典例透析 S随堂演练
目标导航
IANLITOUXI
1
2
3
UITANGLIANXI
4
1等比数列{an}的前n项和为Sn.已知S3=a2+10a1,a5=9,则a1的值为
题型四
等比数列的基本运算
【例1】 (1)已知Sn为等比数列{an}的前n项和,Sn=93,an=48,公比

数学:2.3.1《等比数列》例题解析(新人教B版必修5)

数学:2.3.1《等比数列》例题解析(新人教B版必修5)

等比数列·例题解析【例1】 已知S n 是数列{a n }的前n 项和,S n =p n (p ∈R ,n ∈N*),那么数列{a n }.[ ]A .是等比数列B .当p ≠0时是等比数列C .当p ≠0,p ≠1时是等比数列D .不是等比数列分析 由S n =p n (n ∈N*),有a 1=S 1=p ,并且当n ≥2时, a n =S n -S n-1=p n -p n-1=(p -1)p n-1故-,因此数列成等比数列≠-≠a =(p 1)p {a }p 0p 10(p 1)p 2n n 1⇔--=-⎧⎨⎪⎪⎪⎩⎪⎪⎪--()()p pp p p n 212但满足此条件的实数p 是不存在的,故本题应选D .说明 数列{a n }成等比数列的必要条件是a n ≠0(n ∈N*),还要注意对任∈,≥,都为同一常数是其定义规定的准确含义.n *n 2N a a nn -1【例2】 已知等比数列1,x 1,x 2,…,x 2n ,2,求x 1·x 2·x 3·…·x 2n .解 ∵1,x 1,x 2,…,x 2n ,2成等比数列,公比q ∴2=1·q 2n+1x 1x 2x 3...x 2n =q .q 2.q 3...q 2n =q 1+2+3+ (2)=q2n(1+2n)2==+q n n n ()212【例3】 {a }(1)a =4a n 25等比数列中,已知,=-,求通项公12式;(2)已知a 3·a 4·a 5=8,求a 2a 3a 4a 5a 6的值.解 (1)a =a q q =5252-∴-12∴==-=∵·=··=a a q 4()()(2)a a a a a a a =8n 2n 2n 2n 4354234543----1212∴a 4=2又==∴a a a a a a a a a a =a =322635423456452【例4】 已知a >0,b >0且a ≠b ,在a ,b 之间插入n 个正数x 1,x 2,…,x n ,使得a ,x 1,x 2,…,x n ,b 成等比数列,求证…<.x x x a bn n 122+ 证明 设这n +2个数所成数列的公比为q ,则b=aq n+1∴∴……<q b ax x x aqaq aq aqab a bn n n nn n ++====+1122122【例5】 设a 、b 、c 、d 成等比数列,求证:(b -c)2+(c -a)2+(d -b)2=(a -d)2.证法一 ∵a 、b 、c 、d 成等比数列∴a b b c c d== ∴b 2=ac ,c 2=bd ,ad =bc∴左边=b 2-2bc +c 2+c 2-2ac +a 2+d 2-2bd +b 2 =2(b 2-ac)+2(c 2-bd)+(a 2-2bc +d 2) =a 2-2ad +d 2 =(a -d)2=右边证毕.证法二 ∵a 、b 、c 、d 成等比数列,设其公比为q ,则: b =aq ,c =aq 2,d=aq 3∴左边=(aq -aq 2)2+(aq 2-a)2+(aq 3-aq)2=a 2-2a 2q 3+a 2q 6 =(a -aq 3)2 =(a -d)2=右边证毕.说明 这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b 、c 的特点,走的是利用等比的条件消去左边式中的b 、c 的路子.证法二则是把a 、b 、c 、d 统一化成等比数列的基本元素a 、q 去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性. 【例6】 求数列的通项公式:(1){a n }中,a 1=2,a n+1=3a n +2(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0 思路:转化为等比数列.解 (1)a =3a 2a 1=3(a 1)n+1n n+1n +++⇒∴{a n +1}是等比数列 ∴a n +1=3·3n-1 ∴a n =3n -1(2)a 3a 2a =0a a =2(a a )n+2n+1n n+2n+1n+1n -+--⇒∴{a n+1-a n }是等比数列,即 a n+1-a n =(a 2-a 1)·2n-1=3·2n-1再注意到a 2-a 1=3,a 3-a 2=3·21,a 4-a 3=3·22,…,a n -a n-1=3·2n-2,这些等式相加,即可以得到a =3[1222]=3=3(21)n 2n-2n 1+++…+·-21211n ----说明 解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n +1}是等比数列,(2)中发现{a n+1-a n }是等比数列,这也是通常说的化归思想的一种体现.【例7】 a a a a (a a )a 2a (a a )a a a =0a a a a 1234122242213422321234若实数、、、都不为零,且满足+-+++求证:、、成等比数列,且公比为.证 ∵a 1、a 2、a 3、a 4均为不为零的实数∴+-+++为实系数一元二次方程等式+-+++说明上述方程有实数根.(a a )x 2a (a a )x a a =0(a a )a 2a (a a )a a a =0a 122222132232122242213422324∴上述方程的判别式Δ≥0,即[2a (a a )]4(a a )(a a )=4(a a a )0(a a a )02132122222322213222132-+-++--≥∴-≤又∵a 1、a 2、a 3为实数∴-≥必有-即(a a a )0a a a =0a =a a 2213222132213因而a 1、a 2、a 3成等比数列又∵a =2a 42()()()a a a a a a a a a a a a 1312222131213212++=++= ∴a 4即为等比数列a 1、a 2、a 3的公比.【例8】 若a 、b 、c 成等差数列,且a +1、b 、c 与a 、b 、c +2都成等比数列,求b 的值.解 设a 、b 、c 分别为b -d 、b 、b +d ,由已知b -d +1、b 、b +d 与b -d 、b 、b +d +2都成等比数列,有b =(b d 1)(b d)b =(b d)(b d 2)22-++①-++②⎧⎨⎪⎩⎪整理,得b =b d b db =b d 2b 2d 222222-++-+-⎧⎨⎪⎩⎪ ∴b +d=2b -2d 即b=3d 代入①,得9d 2=(3d -d +1)(3d +d) 9d 2=(2d +1)·4d 解之,得d=4或d=0(舍) ∴b=12【例9】 已知等差数列{a n }的公差和等比数列{b n }的公比都是d ,又知d ≠1,且a 4=b 4,a 10=b 10:(1)求a 1与d 的值;(2)b 16是不是{a n }中的项? 思路:运用通项公式列方程解 (1)a =b a =b 3d =a da 9d =a da (1d )=3d a (1d )=9d4410101131191319由++----⎧⎨⎩⇒⎧⎨⎪⎩⎪⇒⎧⎨⎪⎩⎪a⇒⇒==-=-==-d d 2=063+-舍或∴d d a d d 1231331222()(2)∵b 16=b 1·d 15=-32b 1且+·--∴a =a 3d =22=b b =b d =2b =22b =a =2413441313113- ∴b 16=-32b 1=-32a 1,如果b 16是{a n }中的第k 项,则 -32a 1=a 1+(k -1)d ∴(k -1)d=-33a 1=33d∴k=34即b 16是{a n }中的第34项.【例10】 {a }b =(12)b b b =218b b b =18n n a n 123123设是等差数列,,已知++,,求等差数列的通项.解 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d∴·b =(12)b b =(12)(12)=(12)b n a 13a a +2d 2(a +d)221111+-()n d1由,解得,解得,代入已知条件整理得+b b b =18b =18b =12b b b =18b b =14b b =1781232321231313b b b 123218++=⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎩⎪⎪ 解这个方程组,得b =2b =18b =18b =21313,或, ∴a 1=-1,d=2或a 1=3,d=-2∴当a 1=-1,d=2时,a n =a 1+(n -1)d=2n -3 当a 1=3,d=2时,a n =a 1+(n -1)d=5-2n【例11】 三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一 按等比数列设三个数,设原数列为a ,aq ,aq 2 由已知:a ,aq +4,aq 2成等差数列 即:2(aq +4)=a +aq 2①a ,aq +4,a q 2+32成等比数列 即:(aq +4)2=a(aq 2+32)⇒aq 2=4a +②①,②两式联立解得:或-∴这三数为:,,或,,.a =2q =3a =29q =52618⎧⎨⎩⎧⎨⎪⎩⎪-29109509解法二 按等差数列设三个数,设原数列为b -d ,b -4,b +d由已知:三个数成等比数列 即:(b -4)2=(b -d)(b +d)⇒8b d =162-①b -d ,b ,b +d +32成等比数列即b 2=(b -d)(b +d +32)⇒32b d 32d =02--②①、②两式联立,解得:或∴三数为,,或,,.b =269d =83b =10d =82618⎧⎨⎪⎪⎩⎪⎪⎧⎨⎩-29109509解法三 任意设三个未知数,设原数列为a 1,a 2,a 3 由已知:a 1,a 2,a 3成等比数列得:①a =a a 2213a 1,a 2+4,a 3成等差数列 得:2(a 2+4)=a 1+a 3②a 1,a 2+4,a 3+32成等比数列 得:(a 2+4)2=a 1(a 3+32)③①、②、③式联立,解得:或a =29a =109a =509a =2a =6a =18123123-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎩⎪ 说明 将三个成等差数列的数设为a -d ,a ,a +d ;将三个成等比数列的数设为,,或,,是一种常用技巧,可起到a aq aq (a aq)2aq简化计算过程的作用.【例12】 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.分析 本题有三种设未知数的方法方法一 设前三个数为a -d ,a ,a +d ,则第四个数由已知条件可推得:()a d a+2方法二 设后三个数为b ,bq ,bq 2,则第一个数由已知条件推得为2b -bq . 方法三 设第一个数与第二个数分别为x ,y ,则第三、第四个数依次为12-y ,16-x .由这三种设法可利用余下的条件列方程组解出相关的未知数,从而解出所求的四个数,解法一 a d a a d 设前三个数为-,,+,则第四个数为.()a d a+2依题意,有-+++a d =16a (a d)=12()a d a+⎧⎨⎪⎩⎪2解方程组得:或-a =4d =4a =9d =61122⎧⎨⎩⎧⎨⎩所求四个数为:0,4,8,16或15,9,3,1.解法二 设后三个数为:b ,bq ,bq 2,则第一个数为:2b -bq依题意有:-++2b bq bq =16b bq =122⎧⎨⎩解方程组得:或b =4q =2 b =9q =131122⎧⎨⎩⎧⎨⎪⎩⎪所求四个数为:0,4,8,16或15,9,3,1.解法三 设四个数依次为x ,y ,12-y ,16-x .依题意有+-·--x (12y)=2yy (16x)=(12y)2⎧⎨⎩ 解方程组得:或x =0y =4x =15y =91122⎧⎨⎩⎧⎨⎩ 这四个数为0,4,8,16或15,9,3,1.【例13】 已知三个数成等差数列,其和为126;另外三个数成等比数列,把两个数列的对应项依次相加,分别得到85,76,84.求这两个数列.解 设成等差数列的三个数为b -d ,b ,b +d ,由已知,b -d +b +b +d=126 ∴b=42这三个数可写成42-d ,42,42+d .再设另三个数为a ,aq ,aq 2.由题设,得a 42d =85ap 42=76aq 42d =842+-+++⎧⎨⎪⎩⎪ 整理,得-①②+③a d =43aq =34aq d =422⎧⎨⎪⎩⎪ 解这个方程组,得 a 1=17或a 2=68当a=17时,q =2,d=-26当时,,a =68q =12d =25 从而得到:成等比数列的三个数为17,34,68,此时成等差的三个数为68,42,16;或者成等比的三个数为68,34,17,此时成等差的三个数为17,42,67. 【例14】 已知在数列{a n }中,a 1、a 2、a 3成等差数列,a 2、a 3、a 4成等比数列,a 3、a 4、a 5的倒数成等差数列,证明:a 1、a 3、a 5成等比数列.证明 由已知,有 2a 2=a 1+a 3①a =a a 3224·②③211435a a a =+由③,得·由①,得代入②,得··a =2a a a +a a =a +a 2a =a +a 243535213321323535a a a a +整理,得a =a (a +a )a +a 351235即 a 3(a 3+a 5)=a 5(a 1+a 3)a a a =a a a a a =a a 323515353215++∴·所以a 1、a 3、a 5成等比数列.【例15】已知(b-c)log m x+(c-a)log m y+(a-b)log m z=0.(1)设a,b,c依次成等差数列,且公差不为零,求证:x,y,z成等比数列.(2)设正数x,y,z依次成等比数列,且公比不为1,求证:a,b,c成等差数列.证明(1)∵a,b,c成等差数列,且公差d≠0∴b-c=a-b=-d,c-a=2d代入已知条件,得:-d(log m x-2log m y+log m z)=0∴log m x+log m z=2log m y∴y2=xz∵x,y,z均为正数∴x,y,z成等比数列(2)∵x,y,z成等比数列且公比q≠1∴y=xq,z=xq2代入已知条件得:(b-c)log m x+(c-a)log m xq+(a-b)log m xq2=0变形、整理得:(c+a-2b)log m q=0∵q≠1 ∴log m q≠0∴c+a-2b=0 即2b=a+c即a,b,c成等差数列。

高中数学 第二章 数列习题课教案 新人教B版必修5-新人教B版高二必修5数学教案

高中数学 第二章 数列习题课教案 新人教B版必修5-新人教B版高二必修5数学教案
环节
教学内容
教师行为
学生行为
设计意图
时间
1.
课前3分钟
1、展示《优化设计》第20页预习测评
2、目标解读
检查,评价总结。
1.展示答案
2.提出自主学习困惑.
明确本节课学习目标,准备学习。
3分钟
2.
承接结 果
1、求通项公式的方法和步骤;
2、通项公式含义的理解
1.巡视检查学生预习习题完成情况,进行及时评价。
1、巡视学生完成情况,让学生更准确的认识计算〔化简〕的方法。
2、抽查记忆情况。
1、独立完成练习册习题。
2、归纳出计算〔化简〕的方法。

通过具体例题,总结出计算〔化简〕的方法。
10分钟
思考1:数列通项公式的ຫໍສະໝຸດ 义和谁密不可分?思考2:研究数列的项,本质是在研究什么?
思考3:面对一个数列,最在意的应该是什么?
思考4:如何利用通项看其单调性?
1、巡视学生的完成情况。
2、对学生的展示和评价要给予及时的反馈。
3.要对学生不同的解题过程和答案给出准确的评价,总结。
1、学生先独立完成教辅习题,然后以小组为单位统一答案。
2、小组讨论并展示自己组所写的答案。
3、其他组给予评价〔主要是找错,纠错〕
在具体问题中,探索、挖掘内在规律、发现数学的本质。
2分钟
7
板书设 计
数列
学习目标: 例题: 练习:
8
课 后反 思
本节课,重点在于对数列通项公式的理解与应用上,唯一干扰学生思绪的地方在于函数的概念和性质的应用上;所以只有充分的理解了函数,才能真正明确通项公式的意义。
1、小考卷上作答。
2、同桌互批。

2020版数学人教B版必修5学案:第二章 2.3.1 第2课时 等比数列的性质 Word版含解析

2020版数学人教B版必修5学案:第二章 2.3.1 第2课时 等比数列的性质 Word版含解析

第2课时 等比数列的性质学习目标 1.灵活应用等比数列的通项公式推广形式及变形.2.理解等比数列的有关性质,并能用相关性质简化计算.知识点一 等比数列通项公式的推广和变形 等比数列{a n }的公比为q ,则 a n =a 1·q n -1 ① =a m ·q n -m ② =a 1q·q n ③其中当②中m =1时,即化为①.当③中q >0且q ≠1时,y =a 1q ·q x为指数型函数.知识点二 等比数列常见性质(1)对称性:a 1a n =a 2a n -1=a 3a n -2=…=a m ·a n -m +1(n >m 且n ,m ∈N +); (2)若k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n ; (3)若m ,p ,n 成等差数列,则a m ,a p ,a n 成等比数列;(4)在等比数列{a n }中,连续取相邻k 项的和(或积)构成公比为q k (或2k q )的等比数列;(5)若{a n }是等比数列,公比为q ,则数列{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n }都是等比数列,且公比分别是q ,1q,q 2.(6)若{a n },{b n }是项数相同的等比数列,公比分别是p 和q ,那么{a n b n }与⎩⎨⎧⎭⎬⎫a nb n 也都是等比数列,公比分别为pq 和pq.1.a n =a m q n -m (n ,m ∈N +),当m =1时,就是a n =a 1q n -1.( √ ) 2.等比数列{a n }中,若公比q <0,则{a n }一定不是单调数列.( √ ) 3.若{a n },{b n }都是等比数列,则{a n +b n }是等比数列.( × )4.若数列{a n }的奇数项和偶数项分别成等比数列,且公比相同,则{a n }是等比数列.( × )题型一 等比数列通项公式的推广应用 例1 已知等比数列{a n }中. (1)若a 4=2,a 7=8,求a n ;(2)若{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,求通项公式a n . 解 (1)∵a 7a 4=q 7-4=82,即q 3=4,∴q =34,∴225444333422(2)2n n n n n a a q----=⋅=⋅=⋅= (n ∈N +).(2)由a 25=a 10=a 5·q 10-5,且a 5≠0, 得a 5=q 5,即a 1q 4=q 5, 又q ≠0,∴a 1=q .由2(a n +a n +2)=5a n +1得,2a n (1+q 2)=5qa n , ∵a n ≠0,∴2(1+q 2)=5q , 解得q =12或q =2.∵a 1=q ,且{a n }为递增数列,∴⎩⎪⎨⎪⎧a 1=2,q =2.∴a n =2·2n -1=2n (n ∈N +).反思感悟 (1)应用a n =a m q n -m ,可以凭借任意已知项和公比直接写出通项公式,不必再求a 1.(2)等比数列的单调性由a 1,q 共同确定,但只要单调,必有q >0.跟踪训练1 已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( ) A .21 B .42 C .63 D .84 答案 B解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21, 解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B.题型二等比数列的性质及其应用例2已知{a n}为等比数列.(1)若a n>0,a2a4+2a3a5+a4a6=25,求a3+a5;(2)若a n>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.解(1)a2a4+2a3a5+a4a6=a23+2a3a5+a25=(a3+a5)2=25,∵a n>0,∴a3+a5>0,∴a3+a5=5.(2)根据等比数列的性质,得a5a6=a1a10=a2a9=a3a8=a4a7=9,∴a1a2…a9a10=(a5a6)5=95,∴log3a1+log3a2+…+log3a10=log3(a1a2…a9a10)=log395=10.反思感悟抓住各项序号的数字特征,灵活运用等比数列的性质,可以顺利地解决问题.跟踪训练2设各项均为正数的等比数列{a n}满足a4a8=3a7,则log3(a1a2…a9)等于() A.38B.39C.9 D.7答案 C解析∵a4·a8=a5·a7=3a7且a7≠0,∴a5=3,∴log3(a1a2…a9)=log3a95=log339=9.题型三由等比数列衍生的新数列例3已知各项均为正数的等比数列{a n}中,a1a2a3=5,a7a8a9=10,则a4a5a6等于() A.4 2 B.6 C.7 D.5 2答案 D解析∵{a n}为等比数列,∴a1a2a3,a4a5a6,a7a8a9也成等比数列,∴(a4a5a6)2=(a1a2a3)(a7a8a9)=5×10,又{a n}各项均为正数,∴a4a5a6=5 2.反思感悟借助新数列与原数列的关系,整体代换可以减少运算量.跟踪训练3等比数列{a n}中,若a12=4,a18=8,则a36为()A .32B .64C .128D .256 答案 B解析 由等比数列的性质可知,a 12,a 18,a 24,a 30,a 36成等比数列,且a 18a 12=2,故a 36=4×24=64.等比数列的实际应用典例 某人买了一辆价值13.5万元的新车,专家预测这种车每年按10%的速度贬值. (1)用一个式子表示n (n ∈N +)年后这辆车的价值.(2)如果他打算用满4年时卖掉这辆车,他大概能得到多少钱? 解 (1)n 年后车的价值(万元)依次设为:a 1,a 2,a 3,…,a n , 由题意,得a 1=13.5(1-10%),a 2=13.5(1-10%)2,…. 由等比数列定义,知数列{a n }是等比数列, ∴n 年后车的价值为a n =13.5×(0.9)n 万元. (2)由(1)得a 4=a 1·q 4=13.5×0.94≈8.9(万元), ∴用满4年时卖掉这辆车,大概能得到8.9万元.[素养评析] (1)等比数列实际应用问题的关键是:建立数学模型即将实际问题转化成等比数列的问题,解数学模型即解等比数列问题.(2)发现和提出问题,建立和求解模型,是数学建模的核心素养的体现.1.在等比数列{a n }中,a 2=8,a 5=64,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A解析 由a 5=a 2q 3,得q 3=8,所以q =2.2.等比数列{a n }中,若a 2a 6+a 24=π,则a 3a 5等于( ) A.π4 B.π3 C.π2 D.4π3 答案 C解析 a 2a 6=a 24=a 3a 5,∴a 3a 5=π2.3.已知等比数列{a n }共有10项,其中奇数项之积为2,偶数项之积为64,则其公比是( ) A.32 B. 2 C .2 D .2 2 答案 C解析 奇数项之积为2,偶数项之积为64,得a 1a 3a 5a 7a 9=2,a 2a 4a 6a 8a 10=64,则a 2a 4a 6a 8a 10a 1a 3a 5a 7a 9=q 5=32,则q =2,故选C.4.在1与2之间插入6个正数,使这8个数成等比数列,则插入的6个数的积为________. 答案 8解析 设这8个数组成的等比数列为{a n },则a 1=1,a 8=2. 插入的6个数的积为a 2a 3a 4a 5a 6a 7 =(a 2a 7)·(a 3a 6)·(a 4a 5) =(a 1a 8)3=23=8.5.已知a n =2n +3n ,判断数列{a n }是不是等比数列? 解 不是等比数列.∵a 1=21+31=5,a 2=22+32=13,a 3=23+33=35, ∴a 1a 3≠a 22,∴数列{a n }不是等比数列.1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法.2.所谓通式通法,指应用通项公式,前n 项和公式,等差中项,等比中项等列出方程(组),求出基本量.3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.一、选择题1.在等比数列{a n }中,若a 2 019=8a 2 016,则公比q 的值为( ) A .2 B .3 C .4 D .8 答案 A解析 ∵a 2 019=8a 2 016=a 2 016·q 3,∴q 3=8,∴q =2.2.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1·a 15的值为( ) A .100B .-100C .10 000D .-10 000答案 C解析 ∵lg(a 3a 8a 13)=lg a 38=6,∴a 38=106,∴a 8=102=100.∴a 1a 15=a 28=10 000.3.(2018·大连模拟)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1等于( )A .2B .4 C. 2 D .2 2 答案 B解析 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为单调递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12(舍负),a 1=a 2q =4.4.等比数列{a n }中,a 1+a 2=3,a 2+a 3=6.则a 8等于( ) A .64 B .128 C .256 D .512 答案 B解析 a 2+a 3=q (a 1+a 2)=3q =6, ∴q =2,∴a 1+a 2=a 1+2a 1=3a 1=3, ∴a 1=1.∴a 8=27=128.5.已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比q 为( )A.13 B .3 C .±13 D .±3 答案 B解析 设等差数列为{a n },公差为d ,d ≠0. 则a 23=a 2·a 6,∴(a 1+2d )2=(a 1+d )(a 1+5d ), 化简得d 2=-2a 1d ,∵d ≠0,∴d =-2a 1,∴a 2=-a 1,a 3=-3a 1,∴q =a 3a 2=3.6.(2018·长春模拟)公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( )A .8B .9C .10D .11 答案 C解析 由题意得,2a 5a 6=18,a 5a 6=9,∵a 1a m =9,∴a 1a m =a 5a 6,∴m =10,故选C.7.(2018·济南模拟)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( )A .12B .13C .14D .15 答案 C解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n -1a n a n +1=a 31q3n -3=324,因此q 3n -6=81=34=q 36,所以n =14,故选C. 二、填空题8.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7=________. 答案 18解析 由题意得a 4=12,a 5=32,∴q =a 5a 4=3.∴a 6+a 7=(a 4+a 5)q 2=⎝⎛⎭⎫12+32×32=18. 9.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=________. 答案 -6解析 由题意知,a 3=a 1+4,a 4=a 1+6. ∵a 1,a 3,a 4成等比数列,∴a 23=a 1a 4, ∴(a 1+4)2=(a 1+6)a 1, 解得a 1=-8,∴a 2=-6.10.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=________. 答案 8解析 由等比数列的性质,得a 3a 11=a 27,∴a 27=4a 7.∵a 7≠0,∴a 7=4,∴b 7=a 7=4. 再由等差数列的性质知b 5+b 9=2b 7=8.11.在等比数列{a n }中,若a 1a 2a 3a 4=1,a 13a 14a 15a 16=8,则a 41a 42a 43a 44=________. 答案 1 024解析 设等比数列{a n }的公比为q , a 1a 2a 3a 4=a 1·a 1q ·a 1q 2·a 1q 3=a 41·q 6=1,① a 13a 14a 15a 16=a 1q 12·a 1q 13·a 1q 14·a 1q 15=a 41·q 54=8,②②÷①得q 48=8,q 16=2,∴a 41a 42a 43a 44=a 1q 40·a 1q 41·a 1q 42·a 1q 43=a 41·q 166=a 41·q 6·q 160=(a 41·q 6)(q 16)10=210=1 024. 三、解答题12.已知数列{a n }是等比数列,a 3+a 7=20,a 1a 9=64,求a 11的值. 解 ∵{a n }为等比数列,∴a 1·a 9=a 3·a 7=64. 又∵a 3+a 7=20,∴a 3=4,a 7=16或a 3=16,a 7=4.①当a 3=4,a 7=16时,a 7a 3=q 4=4,此时a 11=a 3q 8=4×42=64.②当a 3=16,a 7=4时,a 7a 3=q 4=14,此时a 11=a 3q 8=16×⎝⎛⎭⎫142=1. 13.在等比数列{a n }(n ∈N +)中,a 1>1,公比q >0.设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0. (1)求证:数列{b n }是等差数列;(2)求{b n }的前n 项和S n 及{a n }的通项公式a n ; (3)试比较a n 与S n 的大小. (1)证明 因为b n =log 2a n ,所以b n +1-b n =log 2a n +1-log 2a n =log 2a n +1a n =log 2q (q >0)为常数,所以数列{b n }为等差数列且公差d =log 2q . (2)解 因为b 1+b 3+b 5=6,所以(b 1+b 5)+b 3=2b 3+b 3=3b 3=6,即b 3=2. 又因为a 1>1, 所以b 1=log 2a 1>0,又因为b 1·b 3·b 5=0,所以b 5=0,即⎩⎪⎨⎪⎧ b 3=2,b 5=0,即⎩⎪⎨⎪⎧ b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1,因此S n =4n +n (n -1)2·(-1)=9n -n 22.又因为d =log 2q =-1, 所以q =12,b 1=log 2a 1=4,即a 1=16,所以a n =25-n (n ∈N +).(3)解 由(2)知,a n =25-n >0,当n ≥9时,S n =n (9-n )2≤0,所以当n ≥9时,a n >S n .又因为a 1=16,a 2=8,a 3=4,a 4=2,a 5=1,a 6=12,a 7=14,a 8=18,S 1=4,S 2=7,S 3=9,S 4=10,S 5=10,S 6=9,S 7=7,S 8=4, 所以当n =3,4,5,6,7,8时,a n <S n ; 当n =1,2或n ≥9,n ∈N +时,a n >S n .14.已知等比数列{a n }的公比为q (q ≠-1),记b n =a m (n -1)+1+a m (n -1)+2+…+a m (n -1)+m ,c n =a m (n -1)+1·a m (n -1)+2·…·a m (n -1)+m (m ,n ∈N +),则以下结论一定正确的是( ) A .数列{b n }为等差数列,公差为q m B .数列{b n }为等比数列,公比为q 2m C .数列{c n }为等比数列,公比为qm 2 D .数列{c n }为等比数列,公比为qm m 答案 C解析 b n =a m (n -1)+1·(1+q +q 2+…+q m -1),由q ≠-1易知b n ≠0,b n +1b n =a mn +1a m (n -1)+1=q m ,故数列{b n }为等比数列,公比为q m ,选项A ,B 均错误; c n =a m m (n -1)+1·q 1+2+…+(m -1),c n +1c n =a m mn +1a m m (n -1)+1=⎣⎢⎡⎦⎥⎤a mn +1a m (n -1)+1m =(q m )m =2m q ,故数列{c n }为等比数列,公比为2m q ,D 错误.故选C.15.在等差数列{a n }中,公差d ≠0,a 1,a 2,a 4成等比数列,已知数列a 1,a 3,1k a ,2k a ,…,n k a ,…也成等比数列,求数列{k n }的通项公式.解 由题意得a 22=a 1a 4,即(a 1+d )2=a 1(a 1+3d ),得d (d -a 1)=0, 又d ≠0,∴a 1=d .又a 1,a 3,1k a ,2k a ,…,n k a ,…成等比数列, ∴该数列的公比q =a 3a 1=3dd=3,∴n k a =a 1·3n +1.又n k a =a 1+(k n -1)d =k n a 1,∴数列{k n }的通项公式为k n =3n +1(n ∈N +).。

《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修5【配套备课资源】第二章2.3.1(一)

《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修5【配套备课资源】第二章2.3.1(一)
a=8 解得 q=2
2.3.1(一)
本 课 时 栏 目 开 关
a=3 或 1 . q= 3
当a=8,q=2时,所求四个数为0,4,8,16; 1 当a=3,q= 时,所求四个数为15,9,3,1. 3 故所求四个数为0,4,8,16或15,9,3,1.
研一研·问题探究、课堂更高效
a=4, 解得 d=4, a=9, 或 d=-6.
所以,当a=4,d=4时,所求四个数为0,4,8,16; 当a=9,d=-6时,所求四个数为15,9,3,1. 故所求四个数为0,4,8,16或15,9,3,1.
研一研·问题探究、课堂更高效
2a a 方法二 设四个数依次为 -a, ,a,aq(q≠0), q q 2a q -a+aq=16 由条件得 , a+a=12 q
研一研·问题探究、课堂更高效
2.3.1(一)
本 课 时 栏 目 开 关
小结
利用等比数列的通项公式求各项时,要注意选取的首项
a1与项数n的对应关系,计算各项时注意防止序号出错.
研一研·问题探究、课堂更高效
2.3.1(一)
8 27 跟踪训练2 在 和 之间插入三个数,使这五个数成等比数 3 2 列,则插入的三个数的乘积为 216 .
本 课 时 栏 目 开 关
解析 设这个等比数列为{an},公比为q, 8 27 4 a5 81 a1=3,a5= 2 ,则q = =16, a1 2 9 ∴q = . 4 ∴a2·3·4=a1q·1q2·1q3 a a a a 83 93 3 3 6 =a1· =(3) ×(4) =6 =216. q
本 课 时 栏 目 开 关
等比中项
请你类比等差中项的概念,给出等比中项的概念.

人教版高中数学B版目录

人教版高中数学B版目录

人教版高中数学B版目录第一篇:人教版高中数学B版目录人教版高中数学B版必修第一章1.1 集合集合与集合的表示方法必修一必修二必修三必修四第二章第三章第一章第二章第一章第二章第三章第一章第二章1.2 集合之间的关系与运算函数2.1 函数2.2 一次函数和二次函数 2.3 函数的应用(Ⅰ)2.4 函数与方程基本初等函数(Ⅰ)3.1 指数与指数函数 3.2 对数与对数函数 3.3 幂函数3.4 函数的应用(Ⅱ)立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系平面解析几何初步2.1平面真角坐标系中的基本公式2.2 直线方程 2.3 圆的方程2.4 空间直角坐标系算法初步1.1 算法与程序框图 1.2 基本算法语句1.3 中国古代数学中的算法案例统计2.1 随机抽样2.2 用样本估计总体 2.3 变量的相关性概率3.1 随机现象 3.2 古典概型3.3 随机数的含义与应用 3.4 概率的应用基本初等函(Ⅱ)1.1 任意角的概念与弧度制 1.2 任意角的三角函数 1.3三角函数的图象与性质平面向量2.1 向量的线性运算必修五第三章第一章第二章第三章2.2 向量的分解与向量的坐标运算 2.3平面向量的数量积 2.4 向量的应用三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积解直角三角形1.1 正弦定理和余弦定理 1.2 应用举例数列2.1 数列 2.2 等差数列 2.3 等比数列不等式3.1 不等关系与不等式 3.2 均值不等式3.3 一元二次不等式及其解法 3.4 不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题人教版高中数学B版选修常用逻辑用语命题与量词第一章1.1 选修1-1 选修1-2 选修4-5 第二章第三章第一章第二章第三章第四章第一章第二章第三章1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式圆锥曲线与方程2.1 椭圆 2.2 双曲线 2.3 抛物线导数及其应用3.1 导数3.2 导数的运算 3.3导数的应用统计案例推理与证明数系的扩充与复数的引入框图不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型数学归纳法与贝努利不等式 3.1 数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式第二篇:高中数学目录必修1第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图信息技术应用用word2002绘制流程图选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一 n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰思考题二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探索与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用选修4-4坐标系与参数方程第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线选修4-5不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修4-6初等数论初步第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥选修4-7优选法与试验设计初步第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9风险与决策第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例第三篇:高中数学目录【人教版】高中数学教材总目录必修一第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象实习作业小结第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型实习作业小结复习参考题必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何小结复习参考题第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修四第一章三角函数.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修五第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2 第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图选修2—1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用 3.2 立体几何中的向量方法选修2—2 第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3 第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合。

2018版高中数学 第二章 数列 2.5 等比数列的前n项和(一) 新人教A版必修5

2018版高中数学 第二章 数列 2.5 等比数列的前n项和(一) 新人教A版必修5
返回
本课结束
第二章 数 列
§2.5 等比数列的前n项和(一)
学习 目标
1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单 问题.
栏目 索引
知识梳理 题型探究 当堂检测
自主学习 重点突破 自查自纠
知识梳理
知识点一 等比数列前n项和公式 1.等比数列前n项和公式
反思与感悟
解析答案
跟踪训练3 在等比数列{an}中,a2=3,a5=81. (1)求an及其前n项和Sn; 解 设{an}的公比为q,依题意得
a1q=3 a1q4=81
,解得aq1==31

因此,an=3n-1,Sn=111--33n=3n-2 1.
解析答案
1 (2)设 bn=1+log3an,求数列bn·bn+1的前 10 项和 T10.
+a5+a6+a7等于( )
11
19
A. 8
B.16
9
3
C.8
D.4
解析答案
12345
3.设等比数列{an}的公比 q=3,前 n 项和为 Sn,则Sa42等于___4_30____. 解析 由题意得 S4=a111--334=40a1,又 a2=3a1, ∴Sa42=430.
解析答案
12345
4.等比数列{an}中,a2=9,a5=243,则{an}的前4项和是___1_2_0___. 解析 ∵a5=a2·q3,∴q3=2943=27. ∴公比q=3,从而a1=3, ∴S4=a111--qq4=311--334=120.
解析答案
12345
5.设数列{an}的前n项和为Sn.若S2=4,an+1=2Sn+1,n∈N*,则a1= ________,S5=________.

高中数学第二章数列2.2.1等差数列(第1课时)等差数列的概念及通项公式学案(含解析)新人教B版必修5

高中数学第二章数列2.2.1等差数列(第1课时)等差数列的概念及通项公式学案(含解析)新人教B版必修5

学习目标 1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题.3.掌握等差中项的概念.知识点一 等差数列的概念一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,可正可负可为零. 知识点二 等差中项的概念如果三个数x ,A ,y 组成等差数列,那么A 叫做x 与y 的等差中项,且A =x +y2.思考 下列所给的两个数之间,插入一个什么数后三个数就会成为一个等差数列: (1)2,4;(2)-1,5;(3)0,0;(4)a ,b . 答案 插入的数分别为(1)3,(2)2,(3)0,(4)a +b2.知识点三 等差数列的通项公式若一个等差数列{a n },首项是a 1,公差为d ,则a n =a 1+(n -1)d .此公式可用叠加法证明.1.数列4,4,4,……是等差数列.( √ ) 2.数列3,2,1是等差数列.( √ )3.数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,n +1,n ≥2,则{a n }是等差数列.( × )4.等差数列{a n }中,a 1,n ,d ,a n 任给三个,可求其余.( √ )题型一 等差数列的概念例1 判断下列数列是不是等差数列? (1)9,7,5,3,…,-2n +11,…; (2)-1,11,23,35,…,12n -13,…; (3)1,2,1,2,…; (4)1,2,4,6,8,10,…; (5)a ,a ,a ,a ,a ,….解 由等差数列的定义得(1)(2)(5)为等差数列,(3)(4)不是等差数列.反思感悟 判断一个数列是不是等差数列,就是判断从第二项起该数列的每一项减去它的前一项的差是否为同一个常数,但当数列项数较多或是无穷数列时,逐一验证显然不行,这时可以验证a n +1-a n (n ≥1,n ∈N +)是不是一个与n 无关的常数. 跟踪训练1 数列{a n }的通项公式a n =2n +5(n ∈N +),则此数列( ) A .是公差为2的等差数列 B .是公差为5的等差数列 C .是首项为5的等差数列 D .是公差为n 的等差数列 答案 A解析 ∵a n +1-a n =2(n +1)+5-(2n +5)=2, ∴{a n }是公差为2的等差数列. 题型二 等差中项例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列. 解 ∵-1,a ,b ,c ,7成等差数列, ∴b 是-1与7的等差中项, ∴b =-1+72=3.又a 是-1与3的等差中项,∴a =-1+32=1.又c 是3与7的等差中项,∴c =3+72=5.∴该数列为-1,1,3,5,7.反思感悟 在等差数列{a n }中,由定义有a n +1-a n =a n -a n -1(n ≥2,n ∈N +),即a n =a n +1+a n -12,从而由等差中项的定义知,等差数列从第2项起的每一项都是它前一项与后一项的等差中项. 跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 解 由m 和2n 的等差中项为4,得m +2n =8. 又由2m 和n 的等差中项为5,得2m +n =10. 两式相加,得3m +3n =18,即m +n =6. 所以m 和n 的等差中项为m +n2=3.题型三 等差数列通项公式的求法及应用 例3 在等差数列{a n }中,(1)若a 5=15,a 17=39,试判断91是否为此数列中的项. (2)若a 2=11,a 8=5,求a 10.解 (1)因为⎩⎪⎨⎪⎧a 1+4d =15.a 1+16d =39,解得⎩⎪⎨⎪⎧a 1=7,d =2,所以a n =7+2(n -1)=2n +5. 令2n +5=91,得n =43.因为43为正整数,所以91是此数列中的项.(2)设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+d =11,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=12,d =-1.∴a n =12+(n -1)×(-1)=13-n , 所以a 10=13-10=3.反思感悟 根据已知量和未知量之间的关系,列出方程求解的思想方法,称为方程思想.等差数列{a n }中的每一项均可用a 1和d 表示,这里的a 1和d 就像构成物质的基本粒子,我们可以称为基本量.跟踪训练3 (1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项? 解 (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3, 由n =20,得a 20=8+(20-1)×(-3)=-49.(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1.由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的判定与证明典例1 已知数列{a n }满足a n +1=3a n +3n,且a 1=1. (1)证明:数列⎩⎨⎧⎭⎬⎫a n 3n 是等差数列;(2)求数列{a n }的通项公式.(1)证明 由a n +1=3a n +3n,两边同时除以3n +1,得a n +13n +1=a n 3n +13,即a n +13n +1-a n 3n =13. 由等差数列的定义知,数列⎩⎨⎧⎭⎬⎫a n 3n 是以a 13=13为首项,13为公差的等差数列.(2)解 由(1)知a n 3n =13+(n -1)×13=n3,故a n =n ·3n -1,n ∈N +.典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3). (1)判断数列{a n }是否为等差数列?说明理由; (2)求{a n }的通项公式.解 (1)当n ≥3时,a n =a n -1+2,即a n -a n -1=2, 而a 2-a 1=0不满足a n -a n -1=2(n ≥3), ∴{a n }不是等差数列.(2)当n ≥2时,a n 是等差数列,公差为2. 当n ≥2时,a n =1+2(n -2)=2n -3, 又a 1=1不适合上式,∴{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.[素养评析] (1)证明一个数列是等差数列的基本方法:定义法,即证明a n -a n -1=d (n ≥2,d 为常数)或a n +1-a n =d (d 为常数),若证明一个数列不是等差数列,则只需举出反例即可.(2)证明一个数列是等差数列,主要的推理形式为演绎推理,通过学习,使学生形成重论据、有条理、合乎逻辑的思维品质,培养学生的数学核心素养.1.下列数列不是等差数列的是( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2答案 D2.已知等差数列{a n }的通项公式a n =3-2n (n ∈N +),则它的公差d 为( ) A .2B .3C .-2D .-3 答案 C解析 由等差数列的定义,得d =a 2-a 1=-1-1=-2.3.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( ) A .30°B.60°C.90°D.120° 答案 B解析 因为A ,B ,C 成等差数列,所以B 是A ,C 的等差中项,则有A +C =2B , 又因为A +B +C =180°, 所以3B =180°,从而B =60°.4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( ) A .公差为1的等差数列 B .公差为13的等差数列C .公差为-13的等差数列D .不是等差数列 答案 B解析 由3a n +1=3a n +1,得3a n +1-3a n =1,即a n +1-a n =13.所以数列{a n }是公差为13的等差数列.5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( ) A .92B .47C .46D .45 答案 C解析 d =-1-1=-2,设-89为第n 项,则-89=a 1+(n -1)d =1+(n -1)·(-2),∴n =46.1.判断一个数列是否为等差数列的常用方法 (1)a n +1-a n =d (d 为常数,n ∈N +)⇔{a n }是等差数列; (2)2a n +1=a n +a n +2(n ∈N +)⇔{a n }是等差数列;(3)a n =kn +b (k ,b 为常数,n ∈N +)⇔{a n }是等差数列. 但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量.一、选择题1.设数列{a n }(n ∈N +)是公差为d 的等差数列,若a 2=4,a 4=6,则d 等于( ) A .4B .3C .2D .1 答案 D解析 ∵a 4-a 2=2d =6-4=2.∴d =1.2.已知等差数列-5,-2,1,…,则该数列的第20项为( ) A .52B .62C .-62D .-52 答案 A解析 公差d =-2-(-5)=3,a 20=a 1+(20-1)d =-5+19×3=52. 3.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( ) A .52B .51C .50D .49 答案 A解析 因为2a n +1-2a n =1,a 1=2,所以数列{a n }是首项a 1=2,公差d =12的等差数列,所以a 101=a 1+100d =2+100×12=52.4.若5,x ,y ,z ,21成等差数列,则x +y +z 的值为( ) A .26B .29C .39D .52 答案 C解析 ∵5,x ,y ,z ,21成等差数列,∴y 既是5和21的等差中项也是x 和z 的等差中项. ∴5+21=2y ,∴y =13,x +z =2y =26, ∴x +y +z =39.5.已知在等差数列{a n }中,a 3+a 8=22,a 6=7,则a 5等于( ) A .15B .22C .7D .29 答案 A解析 设{a n }的首项为a 1,公差为d , 根据题意得⎩⎪⎨⎪⎧a 3+a 8=a 1+2d +a 1+7d =22,a 6=a 1+5d =7,解得a 1=47,d =-8.所以a 5=47+(5-1)×(-8)=15.6.等差数列20,17,14,11,…中第一个负数项是( ) A .第7项 B .第8项 C .第9项 D .第10项答案 B解析 ∵a 1=20,d =-3,∴a n =20+(n -1)×(-3)=23-3n , ∴a 7=2>0,a 8=-1<0.故数列中第一个负数项是第8项.7.一个等差数列的前4项是a ,x ,b ,2x ,则a b等于( ) A.14B.12C.13D.23 答案 C解析 ∵b 是x,2x 的等差中项,∴b =x +2x 2=3x2,又∵x 是a ,b 的等差中项,∴2x =a +b ,∴a =x 2,∴a b =13.8.在数列{a n }中,a 2=2,a 6=0,且数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,则a 4等于( ) A.12B.13C.14D.16 答案 A 解析 由题意可得2a 4+1=1a 2+1+1a 6+1,解得a 4=12,故选A. 二、填空题9.若一个等差数列的前三项为a,2a -1,3-a ,则这个数列的通项公式为__________________. 答案 a n =n4+1,n ∈N +解析 ∵a +(3-a )=2(2a -1),∴a =54.∴这个等差数列的前三项依次为54,32,74,∴d =14,a n =54+(n -1)×14=n4+1,n ∈N +.10.现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案6766解析 设此等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,∴⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎪⎨⎪⎧a 1=1322,d =766,∴a 5=a 1+4d =1322+4×766=6766.11.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤83,3解析 设a n =-24+(n -1)d ,则⎩⎪⎨⎪⎧a 9=-24+8d ≤0,a 10=-24+9d >0,解得83<d ≤3.三、解答题12.已知{a n }为等差数列,且a 3=-6,a 6=0,求{a n }的通项公式. 解 设数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0,解得⎩⎪⎨⎪⎧a 1=-10,d =2,所以数列{a n }的通项公式为a n =a 1+(n -1)d =-10+(n -1)×2=2n -12. 13.已知数列{a n }满足a n +1=6a n -4a n +2,且a 1=3(n ∈N +). (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列; (2)求数列{a n }的通项公式. (1)证明 由1a n +1-2=16a n -4a n +2-2=a n +26a n -4-2a n +2=a n +24a n -8=a n -2+44a n -2=1a n -2+14, 得1a n +1-2-1a n -2=14,n ∈N +,故数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列. (2)解 由(1)知1a n -2=1a 1-2+(n -1)×14=n +34, 所以a n =2n +10n +3,n ∈N +.14.已知数列{a n }中,a 1=1,a n -1-a n =a n a n -1(n ≥2,n ∈N +),则a 10=________. 答案110解析 易知a n ≠0,∵数列{a n }满足a n -1-a n =a n a n -1(n ≥2,n ∈N +),∴1a n -1a n -1=1(n ≥2,n ∈N +),故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为1,首项为1,∴1a 10=1+9=10,∴a 10=110.15.已知数列{a n }满足:a 1=10,a 2=5,a n -a n +2=2(n ∈N +),求数列{a n }的通项公式. 解 由a n -a n +2=2知,{a n }的奇数项,偶数项 分别构成公差为-2的等差数列.当n =2k -1时,2k =n +1,a 2k -1=a 1+(k -1)·(-2)=12-2k , ∴a n =12-(n +1)=11-n (n 为奇数).当n =2k 时,a 2k =a 2+(k -1)·(-2)=5-2k +2=7-2k . ∴a n =7-n (n 为偶数).∴a n =⎩⎪⎨⎪⎧7-n ,n 为偶数,11-n ,n 为奇数.。

「精品」高中数学 第2章 数列 2.3 等比数列 第2课时 等比数列的性质同步课件 新人教B版必修5-精品资料

「精品」高中数学 第2章 数列 2.3 等比数列 第2课时 等比数列的性质同步课件 新人教B版必修5-精品资料

方程时,可以据后三个成等比用a、q表示四个数,也可以据前
三个成等差,用a、d表示四个数,由于中间两数之积为16,将
中间两个数设为
a q
,aq这样既可使未知量减少,同时解方程也
较为方便.
(2)注意到中间两数的特殊地位,可设第三个数为x,则第
二个数为
16 x
,则第一个数为
32 x
-x,最后一个数为
x3 16
[解析] ∵a7=a3q4,∴q4=aa73=2, ∴a11=a7·q4=6×2=12.
6.(2015·北京文,16)已知等差数列{an}满足a1+a2=10, a4-a3=2.
(1)求{an}的通项公式; (2)设等比数列{bn}满足b2=a3,b3=a7.问:b6与数列{an}的 第几项相等?
[解析] 由已知,可设这三个数为a-d,a,a+d,则a-d +a+a+d=6,∴a=2,
这三个数可表示为2-d,2,2+d, ①若2-d为等比中项,则有(2-d)2=2(2+d),解之得d= 6,或d=0(舍去).此时三个数为-4,2,8. ②若2+d是等比中项,则有(2+d)2=2(2-d),解之得d= -6,或d=0(舍去).此时三个数为8,2,-4. ③若2为等比中项,则22=(2+d)·(2-d), ∴d=0(舍去). 综上可知此三数为-4,2,8.
易错疑难辨析
三个正数能构成等比数列,它们的积是27,平 方和为91,则这三个数为________.
[错解] 1,3,9或-1,3,-9 设三数为aq,a,aq,则
aq·a·aq=27

aq2+a2+a2q2=91

由①得a=3代入②中得q=±3或q=±13. ∴当q=3时,三数为1,3,9;当q=-3时,三数为-1,3, -9;当q=13时三数为9,3,1;当q=-13时,三数为-9,3,-1. 综上可知此三数为1,3,9或-1,3,-9.

高中数学 第2章 数列 2.3.2.1 等比数列的概念及通项公式学案 苏教版必修5-苏教版高中必修5

高中数学 第2章 数列 2.3.2.1 等比数列的概念及通项公式学案 苏教版必修5-苏教版高中必修5

第1课时等比数列的概念及通项公式1.理解等比数列的概念,能在具体情景中,发现数列的等比关系.(重点)2.会推导等比数列的通项公式,并能应用该公式解决简单的等比数列问题.(重点)3.会证明一个数列是等比数列.(难点)[基础·初探]教材整理1 等比数列的概念阅读教材P49的有关内容,完成下列问题.如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).判断(正确的打“√”,错误的打“×”)(1)等比数列中,各项与公比均不为零.( )(2)数列a,a,…,a一定是等比数列.( )(3)等比数列{a n}中,a1,a3,a5一定同号.( )【答案】(1)√(2)×(3)√教材整理2 等比数列的通项公式阅读教材P51~P52,完成下列问题.如果数列{a n}是等比数列,首项为a1,公比为q,那么它的通项公式为a n=a1q n-1(a1≠0,q≠0).1.在等比数列{a n}中,已知a1=2,a4=16,则a n=________.【解析】∵a4=a1q3,∴q3=8,∴q=2,∴a n=a1q n-1=2·2n-1=2n.【答案】2n2.在等比数列{a n}中,已知a1=3,q=3,若a n=729,则n=________.【解析】∵a n=a1q n-1,a1=3,q=3,∴729=3·3n -1=3n,∴n =6.【答案】 6教材整理3 等比中项阅读教材P 54第11题,完成下列问题.1.若a ,G ,b 成等比数列,则称G 为a 和b 的等比中项,且满足G 2=ab . 2.若数列{a n }是等比数列,对任意的正整数n (n ≥2),都有a 2n =a n -1·a n +1.1.若22是b -1,b +1的等比中项,则b =________.【解析】 ∵(b -1)(b +1)=(22)2,∴b 2-1=8,∴b 2=9,∴b =±3. 【答案】 ±32.若1,a,4成等比数列,则a =________. 【解析】 ∵1,a,4成等比数列, ∴a 2=1×4=4, ∴a =±2. 【答案】 ±2[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_________________________________________________ 解惑:_________________________________________________ 疑问2:_________________________________________________ 解惑:_________________________________________________ 疑问3:_________________________________________________ 解惑:_________________________________________________[小组合作型]等比数列的判定与证明设数列{a n }满足a 1=1,a n +2a n -1+3=0(n ≥2).判断数列{a n +1}是否是等比数列?【精彩点拨】 只需证明a n +1+1a n +1=非零常数即可.【自主解答】 由题意知a n +1+2a n +3=0(n ≥2)成立,∴a n +1=-2a n -3, ∴a n +1+1a n +1=-2a n -3+1a n +1=-2(常数). 又a 1+1=2,∴数列{a n +1}是以2为首项,以-2为公比的等比数列.要判断一个数列{a n }是等比数列,其依据是a n a n -1=q (q 是非零常数)或a n +1a n=q ,对一切n ∈N *且n ≥2恒成立.[再练一题]1.判断下列数列是否为等比数列. (1)1,-1,1,-1,…; (2)1,2,4,6,8,…; (3)a ,ab ,ab 2,ab 3,….【解】 (1)是首项为1,公比为-1的等比数列. (2)64≠86,不是等比数列. (3)当ab ≠0时,是等比数列,公比为b ,首项为a ; 当ab =0时,不是等比数列.等比数列的通项公式(1)若{a n }为等比数列,且2a 4=a 6-a 5,则公比为________. (2)在等比数列{a n }中,若a 2+a 5=18,a 3+a 6=9,a n =1,则n =________.【导学号:91730035】【解析】 (1)∵a 6=a 4q 2,a 5=a 4q ,∴2a 4=a 4q 2-a 4q ,∴q 2-q -2=0,∴q 1=-1,q 2=2.(2)法一 因为⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18,③a 3+a 6=a 1q 2+a 1q 5=9,④由④③得q =12,从而a 1=32,又a n =1, 所以32×⎝ ⎛⎭⎪⎫12n -1=1,即26-n=20,所以n =6.法二 因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,知a 1=32. 由a n =a 1qn -1=1,知n =6.【答案】 (1)-1或2 (2)6等比数列基本量的求法a 1和q 是等比数列的基本量,只要求出这两个基本量,其他量便可求出来,法一是常规解法,先求a 1,q ,再求a n ,法二是运用通项公式及方程思想建立方程组求a 1和q ,这也是常见的方法.[再练一题]2.(1)若等比数列的前三项分别为5,-15,45,则第5项是________.(2)一个各项均为正数的等比数列,每一项都等于它后面两项的和,则公比q =________.【解析】 (1)∵a 5=a 1q 4,a 1=5,∴q =-3,∴a 5=405. (2)由题意,a n =a n +1+a n +2,即a n =a n q +a n q 2,∴q 2+q -1=0,∴q =-1±52.∵q >0,∴q =5-12.【答案】 (1)405 (2)5-12[探究共研型]等比中项探究1 三个数满足G 2=xy ,则x ,G ,y 成等比数列吗? 【提示】 不一定.如0,0,0这三个数不成等比数列. 探究2 任何两个非零常数都有等比中项吗? 【提示】 不是.只有同号的两个数才有等比中项.在4与14之间插入3个数,使这5个数成等比数列,求插入的3个数.【精彩点拨】 法一:利用等比数列的通项公式求解; 法二:先设出这三个数,再利用等比中项求解.【自主解答】 法一:依题意,a 1=4,a 5=14,由等比数列的通项公式,得q 4=a 5a 1=116,q =±12.因此,插入的3项依次为2,1,12或-2,1,-12.法二:此等比数列共5项,a 3是a 1与a 5的等比中项,因此a 3=±a 1a 5=±1.a 2是a 1与a 3的等比中项,a 4是a 3与a 5的等比中项,因为一个正数和一个负数没有等比中项,所以a 3=1,a 2=±a 1a 3=±2,a 1=±a 3a 5=±12.因此,插入的3项依次为2,1,12或-2,1,-12.注意等比数列中各项的符号特点是隔项符号必须相同.从而,对于数a ,b 的等比中项G ,G 2=ab 一定成立,但G 的符号不一定正负都可取,如等比数列{a n }中,三项分别为a 1,a 4,a 7,则a 4是a 1与a 7的等比中项,此时a 4可取正值,也可取负值;而对于下面的三项a 2,a 4,a 6,也有a 4是a 2与a 6的等比中项,此时a 4只能与a 2和a 6同号.[再练一题]3.已知a ,-32,b ,-24332,c 这五个数成等比数列,求a ,b ,c 的值.【解】 由题意知b 2=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-24332=⎝ ⎛⎭⎪⎫326,∴b =±278.当b =278时,ab =⎝ ⎛⎭⎪⎫-322,解得a =23;bc =⎝ ⎛⎭⎪⎫-243322=⎝ ⎛⎭⎪⎫-3210,解得c =⎝ ⎛⎭⎪⎫327. 同理,当b =-278时,a =-23,c =-⎝ ⎛⎭⎪⎫327. 综上所述,a ,b ,c 的值分别为23,278,⎝ ⎛⎭⎪⎫327或-23,-278,-⎝ ⎛⎭⎪⎫327.[构建·体系]1.下列各组数能组成等比数列的是________(填序号). ①13,16,19;②lg 3,lg 9,lg 27; ③6,8,10;④3,-33,9. 【解析】-333=9-33=- 3. 【答案】 ④2.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数n =________. 【解析】 由等比数列的通项公式,得128=4×2n -1,2n -1=32,所以n =6.【答案】 63.在等比数列{a n }中,a 1=18,q =-2,则a 4与a 10的等比中项是________.【导学号:91730036】【解析】 a 4与a 10的等比中项为a 7,a 7=18×(-2)6=8.【答案】 84.已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q =________. 【解析】 a 4-a 3=a 2q 2-a 2q =a 2(q 2-q )=2(q 2-q )=4,∴q 2-q -2=0, ∴q =2,或q =-1(舍去). 【答案】 25.在243和3中间插入3个数,使这5个数成等比数列,求这3个数. 【解】设插入的三个数为a 2,a 3,a 4,由题意得243,a 2,a 3,a 4,3成等比数列. 设公比为q ,则3=243·q 5-1,解得q =±13.当q =13时,a 2=81,a 3=27,a 4=9;当q =-13时,a 2=-81,a 3=27,a 4=-9.因此,所求三个数为81,27,9或-81,27,-9.我还有这些不足:(1)_________________________________________________ (2)_________________________________________________ 我的课下提升方案:(1)_________________________________________________ (2)_________________________________________________学业分层测评(十) (建议用时:45分钟)[学业达标]一、填空题1.在等比数列{a n }中,a 4=2,a 7=8,则a n =________.【解析】 因为⎩⎪⎨⎪⎧a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2 ①a 1q 6=8 ②由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22n -53.【答案】 22n -532.等比数列x,3x +3,6x +6,…的第四项等于________.【解析】 由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.【答案】 -243.如果-1,a ,b ,c ,-9成等比数列,那么b =________,ac =________.【解析】 ∵b 2=(-1)×(-9)=9,且b 与首项-1同号,∴b =-3,且a ,c 必同号. ∴ac =b 2=9.【答案】 -3 94.在等比数列{a n }中,a 3=3,a 10=384,则公比q =________.【解析】 由a 3=a 1q 2=3,a 10=a 1q 9=384,两式相除得,q 7=128,所以q =2. 【答案】 25.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=________. 【解析】 ∵{a n }为等比数列, ∴a 2+a 3a 1+a 2=q =2. 又∵a 1+a 2=3, ∴a 1=1. 故a 7=1·26=64. 【答案】 646.若{a n }是等比数列,下列数列中是等比数列的所有代号为________.①{a 2n };②{a 2n };③⎩⎨⎧⎭⎬⎫1a n ;④{lg|a n |}.【解析】 考查等比数列的定义,验证第n +1项与第n 项的比是否为常数. 【答案】 ①②③7.在160与5中间插入4个数,使它们同这两个数成等比数列,则这4个数依次为________.【解析】 设这6个数所成等比数列的公比为q ,则5=160q 5,∴q 5=132,∴q =12,∴这4个数依次为80,40,20,10. 【答案】 80,40,20,108.在等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n =________.【导学号:91730037】【解析】 记数列{a n }的公比为q ,由a 5=-8a 2,得a 1q 4=-8a 1q ,即q =-2.由|a 1|=1,得a 1=±1,当a 1=-1时,a 5=-16<a 2=2,与题意不符,舍去;当a 1=1时,a 5=16>a 2=-2,符合题意,故a n =a 1qn -1=(-2)n -1.【答案】 (-2)n -1二、解答题9.在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项,公比.【解】 设该数列的公比为q .由已知,得⎩⎪⎨⎪⎧a 1q -a 1=2,4a 1q =3a 1+a 1q 2,所以⎩⎪⎨⎪⎧a 1q -1=2,q 2-4q +3=0,解得⎩⎪⎨⎪⎧a 1=1,q =3q =1舍去,故首项a 1=1,公比q =3.10.数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列; (2)求a n .【解】 (1)a 2=3a 1-2×2+3=-4,a 3=3a 2-2×3+3=-15.下面证明{a n -n }是等比数列: 由a 2=-4,a 3=-15可知,a n ≠n . ∵a n +1-n +1a n -n=3a n -2n +1+3-n +1a n -n=3a n -3n a n -n=3(n =1,2,3,…).又a 1-1=-2,∴{a n -n }是以-2为首项,以3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1,∴a n =n -2·3n -1.[能力提升]1.在等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于________.【解析】 由题意知a 3是a 1和a 9的等比中项, ∴a 23=a 1a 9,∴(a 1+2d )2=a 1(a 1+8d ), 得a 1=d ,∴a 1+a 3+a 9a 2+a 4+a 10=13d 16d =1316.【答案】13162.已知{a n }是等比数列,a n >0,又知a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5=________. 【解析】 ∵a 2a 4=a 23,a 4a 6=a 25,∴a 23+2a 3a 5+a 25=25,∴(a 3+a 5)2=25,又∵a n >0,∴a 3+a 5=5.【答案】 53.若数列{a n }的前n 项和为S n ,且a n =2S n -3,则{a n }的通项公式是________. 【解析】 由a n =2S n -3,得a n -1=2S n -1-3(n ≥2),两式相减得a n -a n -1=2a n (n ≥2), ∴a n =-a n -1(n ≥2),a na n -1=-1(n ≥2). 故{a n }是公比为-1的等比数列,令n =1,得a 1=2a 1-3, ∴a 1=3,故a n =3·(-1)n -1.【答案】 a n =3·(-1)n -14.互不相等的3个数之积为-8,这3个数适当排列后可以组成等比数列,也可组成等差数列,求这3个数组成的等比数列.【解】 设这3个数分别为a q,a ,aq ,则a 3=-8,即a =-2. (1)若-2为-2q和-2q 的等差中项,则2q+2q =4,∴q 2-2q +1=0,解得q =1,与已知矛盾,舍去; (2)若-2q 为-2q和-2的等差中项,则1q +1=2q ,∴2q 2-q -1=0,解得q =-12或q =1(与已知矛盾,舍去), ∴这3个数组成的等比数列为4,-2,1; (3)若-2q 为-2q 和-2的等差中项,则q +1=2q,∴q 2+q -2=0,解得q =-2或q =1(与已知矛盾,舍去), ∴这3个数组成的等比数列为1,-2,4.故这3个数组成的等比数列为4,-2,1或1,-2,4.。

最新高中数学第二章数列2.3.1第2课时等比数列的性质同步精选测试新人教B版必修5最新0711318

最新高中数学第二章数列2.3.1第2课时等比数列的性质同步精选测试新人教B版必修5最新0711318

同步精选测试 等比数列性质(建议用时:45分钟)[基础测试]一、选择题1.等比数列{a n }的公比q =-14,a 1=2,则数列{a n }是( )A.递增数列B.递减数列C.常数数列D.摆动数列【解析】 因为等比数列{a n }的公比为q =-14,a 1=2,故a 2<0,a 3>0,…所以数列{a n }是摆动数列.【答案】 D2.对任意等比数列{a n },下列说法一定正确的是( ) A.a 1,a 3,a 9成等比数列 B.a 2,a 3,a 6成等比数列 C.a 2,a 4,a 8成等比数列 D.a 3,a 6,a 9成等比数列【解析】 设等比数列的公比为q ,因为a 6a 3=a 9a 6=q 3,即a 26=a 3a 9,所以a 3,a 6,a 9成等比数列.故选D.【答案】 D3.已知数列{a n }满足log 3a n +1=log 3a n +1(a ∈N +),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A.-5B.-15C.5D.15【解析】 ∵log 3a n +1=log 3a n +1,∴a n +1=3a n , ∴数列{a n }是以3为公比的等比数列, ∴a 2+a 4+a 6=a 2(1+q 2+q 4)=9,∴a 5+a 7+a 9=a 5(1+q 2+q 4)=a 2q 3(1+q 2+q 4)=35, ∴log 1335=-5.【答案】 A4.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6,则成等比数列,则此未知数是( )A.3B.27C.3或27D.15或27【解析】 设此三数为3,a ,b ,则⎩⎪⎨⎪⎧2a =3+b ,a -62=3b ,解得⎩⎪⎨⎪⎧a =3,b =3或⎩⎪⎨⎪⎧a =15,b =27.所以这个未知数为3或27. 【答案】 C5.已知等比数列{a n }满足a n >0,n =1,2,3,…,且a 5·a 2n -5=22n(n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )【导学号:18082097】A.n (2n -1)B.(n +1)2C.n 2D.(n -1)2【解析】 因为{a n }为等比数列,所以a 5·a 2n -5=a 2n . 由a 5·a 2n -5=22n(n ≥3),得a 2n =22n.又因为a n >0,所以a n =2n,所以log 2a 1+log 2a 3+…+log 2a 2n -1=1+3+…+(2n -1)=n 2,故选C.【答案】 C 二、填空题6.在等比数列{a n }中,a 3=16,a 1a 2a 3…a 10=265,则a 7等于________. 【解析】 ∵a 1a 2a 3…a 10=(a 3a 8)5=265, ∴a 3a 8=213.∵a 3=16=24,∴a 8=29=512. 又∵a 8=a 3q 5,∴q =2,∴a 7=a 8q =5122=256.【答案】 2567.在右列表格中,每格填上一个数字后,使每一横行成等差数列,每纵列成等比数列,则x +y +z 的值为________.【解析】 ∵x 2=24,∴x =1.∵第一行中的数成等差数列,首项为2,公差为1,故后两格中数字分别为5,6. 同理,第二行后两格中数字分别为2.5,3.∴y =5·⎝ ⎛⎭⎪⎫123,z =6·⎝ ⎛⎭⎪⎫124. ∴x +y +z =1+5·⎝ ⎛⎭⎪⎫123+6·⎝ ⎛⎭⎪⎫124=3216=2.【答案】 28.某单位某年十二月份的产值是同年一月份产值的m 倍,那么该单位此年的月平均增长率是________.【解析】 由题意可知,这一年中的每一个月的产值成等比数列,求月平均增长率只需利用a 12a 1=m ,所以月平均增长率为11m -1. 【答案】11m -1三、解答题9.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,求p +q 的值.【解】 不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴a >0,b >0,又a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列.∴⎩⎪⎨⎪⎧ab =-22,a -2=2b ,①或⎩⎪⎨⎪⎧2a =b -2,ab =4,②解①得⎩⎪⎨⎪⎧a =4,b =1,解②得⎩⎪⎨⎪⎧a =1,b =4,∴p =5,q =4,∴p +q =9.10.在等比数列{a n }中,a 4=23,a 3+a 5=209.(1)求数列{a n }的通项公式;(2)若数列{a n }的公比大于1,且b n =log 3a n2,求证:数列{b n }为等差数列,并求其前n项和S n .【导学号:18082098】【解】 (1)设等比数列{a n }的公比为q ,则q ≠0,a 4q +a 4q =209.因为a 4=23,所以1q +q =103,解得q =13或q =3.当q =13时,a 1=18,所以a n =18×⎝ ⎛⎭⎪⎫13n-1=2×33-n;当q =3时,a 1=281,所以a n =281×3n -1=2×3n -5.(2)证明:由(1)及数列{a n }的公比大于1, 得q =3,a n =2×3n -5,所以b n =log 3a n2=log 33n -5=n -5,所以b n -b n -1=1(常数). 又因为b 1=log 3a 12=-4,所以数列{b n }是首项为-4,公差为1的等差数列. 所以S n =n b 1+b n2=12n 2-92n . [能力提升]1.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( ) A.±2 B.±4 C.2 D.4 【解析】 ∵T 13=4T 9. ∴a 1a 2…a 9a 10a 11a 12a 13=4a 1a 2…a 9. ∴a 10a 11a 12a 13=4.又∵a 10·a 13=a 11·a 12=a 8·a 15, ∴(a 8·a 15)2=4.∴a 8a 15=±2.又∵{a n }为递减数列,∴q >0.∴a 8a 15=2. 【答案】 C2.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=( )A.16B.14C.4D.49【解析】 ∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27=4a 7-a 27=0, ∵b 7=a 7≠0,∴b 7=a 7=4. ∴b 6b 8=b 27=16. 【答案】 A3.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.【解析】 由题意知,数列{b n }有连续四项在集合{-53,-23,19,37,82}中,说明{a n }有连续四项在集合{-54,-24,18,36,81}中,由于{a n }中连续四项至少有一项为负,∴q <0.又∵|q |>1,∴{a n }的连续四项为-24,36,-54,81. ∴q =36-24=-32,∴6q =-9. 【答案】 -94.在等差数列{a n }中,公差 d ≠0,a 2是a 1与a 4的等比中项.已知数列a 1,a 3,ak 1,ak 2,…,ak n ,…成等比数列,求数列{k n }的通项k n .【解】 依题设得a n =a 1+(n -1)d ,a 22=a 1a 4, ∴(a 1+d )2=a 1(a 1+3d ),整理得d 2=a 1d , ∵d ≠0,∴d =a 1,得a n =nd .∴由已知得d,3d ,k 1d ,k 2d ,…,k n d ,…是等比数列.又d ≠0,∴数列1,3,k 1,k 2,…,k n ,…也是等比数列,首项为1,公比为q =31=3,由此得k 1=9.等比数列{k n }的首项k 1=9,公比q =3,∴k n =9×q n -1=3n +1(n =1,2,3,…),即得到数列{k n }的通项为k n =3n +1.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

高二数学同步检测 2-3-1《等比数列的概念及通项公式》 新人教B版必修5

高二数学同步检测 2-3-1《等比数列的概念及通项公式》 新人教B版必修5

第2章 2.3 第1课时 等比数列的概念及通项公式一、选择题1.公差不为零的等差数列{a n },a 2,a 3,a 7成等比数列,则它的公比为( ) A .-4 B .-14C.14 D .4[答案] D[解析] 设等差数列{a n }的公差为d ,由题意知d ≠0,且a 23=a 2a 7,即(a 1+2d )2=(a 1+d )(a 1+6d ),化简,得a 1=-23d .∴a 2=a 1+d =-23d +d =13d ,a 3=a 2+d =13d +d =43d ,∴a 3a 2=4,故选D.2.若2a ,b,2c 成等比数列,则函数y =ax 2+bx +c 的图象与x 轴的交点个数是( )A .0B .1C .2D .0或2[答案] B[解析] 由题意,得b 2=4ac ,令ax 2+bx +c =0,∴Δ=b 2-4ac =0,故函数y =ax 2+bx +c 的图象与x 轴相切,故选B. 3.在等比数列{a n }中,a 5·a 6·a 7=3,a 6·a 7·a 8=24,则a 7·a 8·a 9的值等于( )A .48B .72C .144D .192[答案] D[解析] 设公比为q ,则a 6·a 7·a 8=a 5·a 6·a 7·q 3, ∴q 3=243=8.又a 7·a 8·a 9=a 6·a 7·a 8·q 3=24×8=192.4.(2010·全国卷Ⅰ)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( )A .5 2B .7C .6D .4 2[答案] A[解析] 由等比数列的性质知a 1a 2a 3=(a 1a 3)·a 2=a 32=5,a 7a 8a 9=(a 7a 9)·a 8=a 38=10,所以a 2a 8=5013,所以a 4a 5a 6=(a 4a 6)·a 5=a 35=(a 2a 8)3=(5016)3=5 2. 5.(2011·福州高二检测)等比数列{a n }的各项为正数,公比为q ,若q 2=4,则a 3+a 4a 4+a 5的值为( ) A.12 B .±12C .2D .±2[答案] A[解析] 由q 2=4得q =±2, 因为数列{a n }各项为正数,所以q =2, 又因为a 4=a 3q ,a 5=a 4q , ∴a 4+a 5=a 3q +a 1q =(a 3+a 4)q , ∴a 3+a 4a 4+a 5=1q =12. 6.(2011·沈阳高二检测)已知等比数列{a n },若a 1+a 2=20,a 3+a 4=80,则a 5+a 6等于( )A .480B .320C .240D .120[答案] B[解析] ∵a 1+a 2,a 3+a 4,a 5+a 6成等比数列,∴(a 3+a 4)2=(a 1+a 2)·(a 5+a 6),即802=20·(a 5+a 6).∴a 5+a 6=320,故选B.二、填空题7.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7=________.[答案] 18[解析] 由题意得a 4+a 5=2,a 4a 5=34,∵q >1,∴a 5>a 4,解得a 4=12,a 5=32,∴q =3,∴a 6+a 7=a 5(q +q 2)=18.8.若a 1,a 2,a 3,a 4,a 5为等比数列,其公比为2,则2a 2+a 32a 3+a 5=________.[答案] 14[解析] 由已知:a 3=2a 2,a 4=4a 2,a 5=8a 2, ∴2a 2+a 32a 4+a 5=2a 2+2a 28a 2+8a 2=416=14. 三、解答题9.已知{a n }为等比数列,a 3=2,a 2+a 4=203,求{a n }的通项公式.[解析] 设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q =2q,a 4=a 3q =2q ,又∵2q +2q =203,解得q =13或q =3.当q =13时,a 1=18,∴a n =18×(13)n -1=2×33-n ;当q =3时,a 1=29,∴a n =29×3n -1=2×3n -3.10.(2011·宿州高二检测)已知数列{a n }是等比数列,首项a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若数列{a n }是等差数列,且b 3=a 3,b 5=a 5,求数列{b n }的通项公式及前n 项的和.[解析] (1)因为数列{a n }是等比数列且a 1=2,a 4=16,所以q 3=a 4a 1=162=8,故q =2.数列{a n }的通项公式为:a n =a 1·q n -1=2·2n -1=2n . (2)由(1)知:b 3=a 3=23=8,b 5=a 5=25=32, 而数列{b n }是等差数列,故数列{b n }的公差d =b 5-b 35-3=32-82=12.所以{b n }的递项公式b n =b 3+(n -3)d =8+(n -3)·12即b n =12n -28(n ∈N +),又b 1=-16,所以其前n 项的和S n =-16+12n -n2=6n 2-22n .能力提升一、选择题1.(2010·江西文)等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n =( ) A .(-2)n -1 B .-(-2)n -1 C .(-2)n D .-(-2)n[答案] A[解析] 由a 5=-8a 2,a 5>a 2知a 1>0,根据a 5=-8a 2有a 1q 4=-8a 1q 得q =-2.所以a n =(-2)n -1.2.公差不为零的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A .18B .24C .60D .90[答案] C[解析] 由a 24=a 3·a 7,得(a 1+3d )2=(a 1+3d )(a 1+6d ),得2a 1+3d =0, 又∵S 8=8a 1+28d =32, ∴a 1=-3,d =2, ∴S n =10a 1+45d =60. 故选C. 二、填空题3.已知a 、b 、c 成等差数列,且a 、c 、b 成等比数列,则a :b :c =________.(其中a 、b 、c 不相等).[答案] 4:1:(-2) [解析] 由已知,得⎩⎨⎧a +c =2b ①ab =c 2 ②由①,得a =2b -c ,代入②得2b 2-bc -c 2=0,解得b =-12c ,或(b =c 舍去).∴c =-2b .∴a =2b -c =4b . ∴a :b :c =4b :b :(-2b )=4:1:(-2).4.已知各项都为正数的等比数列的任何一项都等于它后面相邻两项的和,则该数列的公比q =________.[答案]-1+52[解析] 设该正项等比数列为{a n },公比为q ,由题意,得a n =a n +1+a n +2=a n q +a n q 2,∴q 2+q -1=0,∵q >0,∴q =-1+52.三、解答题5.(2010·全国Ⅰ文)记等差数列{a n }的前n 项和为S n ,S 3=12,且2a 1,a 2,a 3+1成等比数列,求S n .[解析] 设数列{a n }的公差为d ,依题设有⎩⎨⎧2a 1a 3+=a 22a 1+a 2+a 3=12,即⎩⎨⎧a 21+2a 1d -d 2+2a 1=0a 1+d =4,解得a 1=1,d =3或a 1=8,d =-4, 因此S n =12n (3n -1),或S n =2n (5-n ).6.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求这四个数.[解析] 设四个数依次为a -d ,a ,a +d ,a +d2a ,依题意,得⎩⎪⎨⎪⎧a -d +a +d 2a =16a +a +d =12,解得a =4或9.当a =4时,d =4,这四个数依次为0,4,8,16. 当a =9时,d =-6,这四个数为15,9,3,1. ∴这四个数为0,4,8,16或15,9,3,1.7.设数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n =1,2,3…). 求证:数列{S n n}是等比数列. [解析] ∵a n +1=S n +1-S n ,a n +1=n +2nS n . ∴(n +2)S n =n (S n +1-S n ), 整理得nS n +1=2(n +1)S n . ∴S n +1n +1=2S nn . 故{S n n}是以2为公比的等比数列.8.(2011·江西)已知两个等比数列{a n },{b n },满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3.(1)若a =1,求数列{a n }的通项公式; (2)若数列{a n }唯一,求a 的值. [解析] (1)设{a n }的公比为q ,则b 1=1+a =2,b 2=2+aq =2+q ,b 3=3+aq 2=3+q 2,由b 1,b 2,b 3成等比数列得(2+q )2=2(3+q 2) 即q 2-4q +2=0,解得q 1=2+2,q 2=2- 2 所以{a n }的通项公式为a n =(2+2)n -1 或a n =(2-2)n -1.(2)设{a n }的公比为q ,则由(2+aq )2=(1+a )(3+aq 2),得aq 2-4aq +3a -1=0(*) 由a >0得Δ=4a 2+4a >0,故方程(*)有两个不同的实根. 由{a n }唯一,知方程(*)必有一根为0,代入(*)得a =13.。

高中数学人教B版必修5 2.3 素材 《2.3.1等比数列》等比数列的通项公式推导方法(人教B)

高中数学人教B版必修5 2.3 素材 《2.3.1等比数列》等比数列的通项公式推导方法(人教B)

可得
a3 q a2
……
an 1 q an 2 an q an 1
an1 an2 d an an1 d
由此等差数列的通项公式可得:
由此等比数列的通项公式可得:
an a1 (n 1)d
an a1q
n 1
等比数列的通项公式
如果等比数列{an}的首项是a1,公比是q,那么根 据等比数列的定义得到
等比数列的通项公式: 递推法:
等 差 数 列
a2 a1 d
a3 a1 2d 类比
a4 a1 3d ……
等 比 数 列
a3 2 q a3 a2 q a1q a2
a4 q a4 a3q a1q 3 a3
a2 q a2 a1q a1
由此归纳等差数列
等比数列的通项公式为
an a1 q
n 1
拓展: 等差数列 等比数列
an a1 (n 1)d
am a1 (m 1)d
类比
an a1q
am a1q
n 1
m1
an am (n m)d
可得
an amq nm
an am (n m)d
……
的通项公式可得:
由此归纳等比数列的通项公式可得:
an a1 (n 1)d
an a1q
n 1
等比数列的通项公式:
叠加法: 等 a2 a1 d 叠乘法:
差 数 列
a3 a2 d
a4 a3 d
类比
a
……
等 比 数 列
a2 q a1
a4 q a3

a5 q a4

高中数学 第二章 数列 2.3.1 等比数列(二)课件 新人教

高中数学 第二章 数列 2.3.1 等比数列(二)课件 新人教
解 方法一 设四个数依次为 a-d,a,a+d, a ,
由条件得a-d+a+a d2=16, a+a+d=12,
a=4, a=9,
解得

d=4
d=-6.
2.3.1 等比数列(二)
12
预课当所习堂以导讲检,学义测当a=4,d=4时,所求栏四目个索数引为0,4,8,16; 挑重当战点堂自难训我点练,点个体点个验落击成实破功 CONTENTS PAGE
2.3.1 等比数列(二)
4
预课当[预习堂习导讲检学义测导引]
栏目索引
CONTENTS PAGE
1.等比数列的第二通项公式
挑重当战点堂自难训我点练,点个体点个验落击成实破功
等比数列的通项公式为:an= a1qn-1 ,推广形式为:an=am·_q_n_-_m_
(n,m∈N+).
2.等比数列的性质
(1)如果m+n=k+l,则有 am·an=ak·al .
2.3.1 等比数列(二)
6
预课当习堂导讲检学义测
栏目索引
要点一 等比数列性质的应CON用TENTS PAGE
挑重当战点堂自难训我点练,点个体点个验落击成实破功
例1 已知数列{an}为等比数列. (1)若an>0,且a2a4+2a3a5+a4a6=36,求a3+a5的值; 解 ∵a2a4+2a3a5+a4a6=36, ∴a23+2a3a5+a25=36, ∴(a3+a5)2=36,又∵an>0,∴a3+a5=6.
1.灵活应用等比数列的定义及通项公式.
2.熟悉等比数列的有关性质.
3.系统了解判断成等比数列的方法.
2.3.1 等比数列(二)
2
预课当习堂导讲检学义测
栏目索引

《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修5【配套备课资源】第二章2.3.1(二)

《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修5【配套备课资源】第二章2.3.1(二)
本 课 时 栏 目 开 关
解 每一轮被感染的计算机台数构成一个首项为a1=80,公比为 q=20的等比数列.
则a5=a1q4=80×204=1 280×104 =1 280(万台).
答 到第5轮可以感染到1 280万台计算机.
练一练·当堂检测、目标达成落实处
2.3.1(二)
1.已知各项均为正数的等比数列{an}中,lg(a3a8a13)=6,则
本 课 时 栏 目 开 关
a1·15的值为 a A.100 C.10 000
解析
( C ) B.-100 D.-10 000
3 ∵lg(a3a8a13)=lg a8=6,
∴a3=106⇒a8=102=100. 8
又a1a15=a2=10 000. 8
练一练·当堂检测、目标达成落实处
2.3.1(二)
研一研·问题探究、课堂更高效
2.3.1(二)
跟踪训练1 设{an}是由正数组成的等比数列,公比q=2,且 a1·2·3· a30=215,求a2·5·8· a29的值. a a „· a a „·
解 a1·2·3· a30=(a1a30)· 2a29)· (a15·16)=(a1a30)15=215, a a „· (a „· a
公比为2,首项为2. ∴an+1=2n.∴an=2n-1. 小结 an + 1 利用等比数列的定义 =q(q≠0)是判定一个数列是等比 an
数列的基本方法.要判断一个数列不是等比数列,举一组反例 即可,例如a2≠a1a3. 2
研一研·问题探究、课堂更高效
2.3.1(二)
跟踪训练2 设{an}、{bn}是公比不相等的两个等比数列,cn=an +bn,证明数列{cn}不是等比数列.
本 课 时 栏 目 开 关
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.1 等比数列(一)[学习目标] 1.通过实例,理解等比数列的概念并学会简单应用.2.掌握等比中项的概念并会应用.3.掌握等比数列的通项公式了解其推导过程.[知识链接]下列判断正确的是________.(1)从第2项起,每一项与它前一项的差等同一个常数的数列是等差数列; (2)从第2项起,每一项与它前一项的比等同一个常数的数列是等差数列; (3)等差数列的公差d 可正可负,且可以为零; (4)在等差数列中,a n =a m +(n -m )d (n ,m ∈N +). 答案 (1)(3)(4) [预习导引] 1.等比数列的概念如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数q (q ≠0),那么这个数列叫做等比数列. 2.等比中项如果三个数a 、G 、b 组成等比数列,则G 叫做a 与b 的等比中项.根据定义得G 2=ab ,G =±ab ,只有同号的两个数才有等比中项,等比中项有两个,它们互为相反数这一点与等差数列不同.3.等比数列的通项公式等比数列{a n }的通项公式为a n =a 1qn -1,其中a 1与q 均不为0.要点一 等比数列通项公式的基本量的求解 例1 在等比数列{a n }中, (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n ; (3)a 3=2,a 2+a 4=203,求a n .解 (1)∵⎩⎪⎨⎪⎧a 4=a 1q 3,a 7=a 1q 6,∴⎩⎪⎨⎪⎧ a 1q 3=2,a 1q 6=8.①②由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,∴a n =a 1q n -1=3522-n .(2)方法一 ∵⎩⎪⎨⎪⎧ a 2+a 5=a 1q +a 1q 4=18,a 3+a 6=a 1q 2+a 1q 5=9,③④由④③得q =12,从而a 1=32,又a n =1 ∴32×(12)n -1=1,即26-n =20,∴n =6.方法二 ∵a 3+a 6=q (a 2+a 5),∴q =12.由a 1q +a 1q 4=18,知a 1=32.由a n =a 1qn -1=1,知n =6.(3)设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q=2q,a 4=a 3q =2q ,∴2q +2q =203,解得q 1=13,q 2=3. 当q =13时,a 1=18,∴a n =18×(13)n -1=2×33-n .当q =3时,a 1=29,∴a n =29×3n -1=2×3n -3.综上,当q =13时,a n =2×33-n ;当q =3时,a n =2×3n -3.规律方法 a 1和q 是等比数列的基本量,只要求出这两个基本量,其他量便可迎刃而解.此类问题求解的通法是根据条件,建立关于a 1和q 的方程(组),求出a 1和q . 跟踪演练1 (1)若等比数列{a n }的首项a 1=98,末项a n =13,公比q =23,求项数n .(2)在等比数列{a n }中,已知a 5-a 1=15,a 4-a 2=6,求a n . 解 (1)由a n =a 1·qn -1,得13=98(23)n -1,即(23)n -1=(23)3,得n =4.(2)因为⎩⎪⎨⎪⎧ a 5-a 1=a 1q 4-a 1=15,a 4-a 2=a 1q 3-a 1q =6,①②由①②得q =12或q =2. 当q =12时,a 1=-16;当q =2时,a 1=1.∴a n =-16·(12)n -1或a n =2n -1.要点二 等比中项的应用例2 在等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于多少?解 由题意知a 3是a 1和a 9的等比中项, ∴a 23=a 1a 9,∴(a 1+2d )2=a 1(a 1+8d ),得a 1=d , ∴a 1+a 3+a 9a 2+a 4+a 10=13d 16d =1316.规律方法 由等比中项的定义可知:G a =b G⇒G 2=ab ⇒G =±ab .这表明只有同号的两项才有等比中项,并且这两项的等比中项有两个,它们互为相反数.反之,若G 2=ab ,则G a =b G,即a ,G ,b 成等比数列.所以a ,G ,b 成等比数列⇔G 2=ab (ab ≠0).跟踪演练2 已知a ,-32,b ,-24332,c 这五个数成等比数列,求a ,b ,c 的值.解 由题意知b 2=(-32)×(-24332)=(32)6,∴b =±278.当b =278时,ab =(-32)2,解得a =23;bc =(-24332)2=(-32)10,解得c =(32)7. 同理,当b =-278时,a =-23,c =-(32)7.综上所述,a ,b ,c 的值分别为23,278,(32)7或-23,-278,-(32)7.要点三 等比数列的判定例3 数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列; (2)求a n .解 (1)a 2=3a 1-2×2+3=-4,a 3=3a 2-2×3+3=-15. 下面证明{a n -n }是等比数列:a n +1-n +a n -n=3a n -n ++3-n +a n -n=3a n -3n a n -n=3(n =1,2,3,…). 又a 1-1=-2,∴{a n -n }是以-2为首项,以3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1,∴a n =n -2·3n -1.规律方法 判断一个数列是否是等比数列的常用方法有: (1)定义法:a n +1a n=q (q 为常数且不为零)⇔{a n }为等比数列. (2)等比中项法:a 2n +1=a n a n +2(n ∈N +且a n ≠0)⇔{a n }为等比数列. (3)通项公式法:a n =a 1qn -1(a 1≠0且q ≠0)⇔{a n }为等比数列.跟踪演练3 已知数列{a n }的前n 项和S n =2a n +1,求证{a n }是等比数列,并求出通项公式. 解 ∵S n =2a n +1,∴S n +1=2a n +1+1.∴a n +1=S n +1-S n =(2a n +1+1)-(2a n +1)=2a n +1-2a n .∴a n +1=2a n , 又∵S 1=2a 1+1=a 1,∴a 1=-1≠0. 又由a n +1=2a n 知a n ≠0, ∴a n +1a n=2,∴{a n }是等比数列. ∴a n =-1×2n -1=-2n -1.要点四 由递推公式构造等比数列求通项例4 已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. (1)证明 ∵a n +S n =n , ① ∴a n +1+S n +1=n +1.②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12, ∵首项c 1=a 1-1,又a 1+a 1=1.∴a 1=12,∴c 1=-12,又c n =a n -1,∴q =12.∴{c n }是以-12为首项,公比为12的等比数列.(2)解 由(1)可知c n =(-12)·(12)n -1=-(12)n,∴a n =c n +1=1-(12)n.∴当n ≥2时,b n =a n -a n -1=1-(12)n -[1-(12)n -1]=(12)n -1-(12)n =(12)n.又b 1=a 1=12代入上式也符合,∴b n =(12)n.规律方法 (1)已知数列的前n 项和,或前n 项和与通项的关系求通项,常用a n 与S n 的关系求解.(2)由递推关系a n +1=Aa n +B (A ,B 为常数,且A ≠0,A ≠1)求a n 时,由待定系数法设a n +1+λ=A (a n +λ)可得λ=BA -1,这样就构造了等比数列{a n +λ}.跟踪演练4 在数列{a n }中,a 1=1,a n +1=52-1a n ,b n =1a n -2,求数列{b n }的通项公式.解 a n +1-2=52-1a n -2=a n -22a n ,1a n +1-2=2a n a n -2=4a n -2+2,即b n +1=4b n +2,b n +1+23=4(b n +23).又a 1=1,故b 1=1a 1-2=-1, 所以{b n +23}是首项为-13,公比为4的等比数列,所以b n +23=-13×4n -1,b n =-4n -13-23.1.在等比数列{a n }中,a 1=8,a 4=64,则a 3等于( ) A .16 B. 16或-16 C. 32 D. 32或-32答案 C解析 由a 4=a 1 q 3,得q 3=8,即q =2,所以a 3=a 1q 2=8×4=32.2.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为( ) A .4 B .6 C .5 D .32答案 B解析 由等比数列的通项公式,得128=4×2n -1,2n -1=32,所以n =6.3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( ) A .64 B .81 C .128 D .243 答案 A解析 ∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q =2.又a 1+a 2=3,∴a 1=1.故a 7=1·26=64. 4.45和80的等比中项为________. 答案 -60或60解析 设45和80的等比中项为G ,则G 2=45×80, ∴G =±60.5.一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项. 解 设这个等比数列的第1项是a 1,公比是q ,那么⎩⎪⎨⎪⎧a 1q 2=12, ①a 1q 3=18. ②②÷①,得q =32,将q =32代入①,得a 1=163.因此,a 2=a 1q =163×32=8.综上,这个数列的第1项与第2项分别是163与8.1.等比数列定义的理解(1)由于等比数列的每一项都可能作分母,故每一项均不能为零,因此q 也不可能为零. (2)a n +1a n均为同一常数,由此体现了公比的意义,同时应注意分子、分母次序不能颠倒. (3)如果一个数列不是从第2项起,而是从第3项或第4项起每一项与它的前一项之比是同一个常数,那么这个数列不是等比数列. 2.等比中项的理解(1)当a ,b 同号时,a ,b 的等比中项有两个;当a ,b 异号时,没有等比中项.(2)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项.(3)“a ,G ,b 成等比数列”等价于“G 2=ab ”(a ,b 均不为0),可以用它来判断或证明三个数是否成等比数列. 3.等比数列的通项公式(1)已知首项a1和公比q,可以确定一个等比数列.(2)在公式a n=a1q n-1中有a n,a1,q,n四个量,已知其中任意三个量,可以求得第四个量.。

相关文档
最新文档