最新版高考数学上海卷
上海市(新版)2024高考数学统编版真题(综合卷)完整试卷
上海市(新版)2024高考数学统编版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1)下列说法错误错误的是()A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为C.采用三次传输方案,若发送1,则译码为1的概率为D.当时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率第(2)题某市为了解全市12000名高一学生的的体能素质情况,在全市高一学生中随机抽取了1000名学生进行体能测试,并将这1000名的体能测试成绩整理成如下频率分布直方图.根据此频率分布直方图,下列结论中正确的是()A.图中的值为0.020;B.同一组中的数据用该组区间的中点值做代表,则这1000名学生的平均成绩约为80.5;C.估计样本数据的75%分位数为88;D.由样本数据可估计全市高一学生体测成绩优异(80分及以上)的人数约为5000人.第(3)题有下列四个命题:①“若,则互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若,则有实数解”的逆否命题;④“若,则”的逆否命题.其中真命题为()A.①②B.②③C.④D.①②③第(4)题生物中DNA转录为RNA时服从碱基互补配对原则,即:,但许多化学因子能修饰碱基,使其转录出不同的产物,比如X标记处理后的碱基互补配对原则变为:,现在小明将2个A,2个C,2个G,2个T其中1个X标记组成一个DNA分子,则其转录出的RNA有()种A.8400B.6720C.5880D.4200第(5)题设集合,则()A.B.C.D.第(6)题已知集合,,则()A.B.C.D.第(7)题已知实数满足约束条件则的最大值是()A .3B .C .D .第(8)题已知函数,且在区间上单调递增,则的最小值为( )A.0B .C .D .-1二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题在平面四边形中,点D 为动点,的面积是面积的2倍,又数列满足,当时,恒有,设的前项和为,则( )A .为等比数列B .为递减数列C .为等差数列D .第(2)题已知函数(,,)的部分图象如图所示,下列说法错误的是( )A .的图象关于直线对称B .的图象关于点对称C .将函数的图象向左平移个单位长度得到函数的图象D.若方程在上有两个不相等的实数根,则的取值范围是第(3)题已知抛物线的焦点为F ,动直线l 与抛物线C 交于A ,B 两点,分别过A ,B 向直线引垂线,垂足分别为,,点M 在上,且MAMB ,设O 为坐标原点,则下列说法中正确的是( )A .M 为线段的中点B .是与的等比中项C .A ,O ,三点共线D .MA 与抛物线C 有两个公共点三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在平面直角坐标系xOy 中,A ,B 为x 轴正半轴上的两个动点,P (异于原点O )为y 轴上的一个定点.若以AB 为直径的圆与圆x 2+(y -2)2=1相外切,且∠APB 的大小恒为定值,则线段OP 的长为_____.第(2)题若一个长、宽、高分别为4,3,2的长方体的每个顶点都在球的表面上,则此球的表面积为__________.第(3)题已知为单位向量,若,则__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知动圆(为圆心)过定点,且与定直线相切.(1)求动圆圆心的轨迹方程;(2)设过点且斜率为的直线与(1)中的曲线交于、两点,求;(3)设点是轴上一定点,求、两点间距离的最小值.第(2)题以直角坐标系的原点为极点,轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的参数方程为,(为参数,),曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设直线与曲线相交于,两点,当变化时,求的最小值.第(3)题如图,在四棱锥中,底面是菱形,为的中点.(1)求证:平面;(2)若,求证:平面平面.第(4)题在中,角所对边分别为的面积为6.(Ⅰ)求的值;(Ⅱ)求的值.第(5)题如图,在四棱锥中,底面ABCD为正方形,平面ABCD,E为PD的中点,.(1)求证:PB平面AEC;(2)求平面PAC与平面AEC所成角的余弦值.。
上海市(新版)2024高考数学人教版测试(备考卷)完整试卷
上海市(新版)2024高考数学人教版测试(备考卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知集合,,则( )A.B.C.D.第(2)题已知函数相邻两个对称轴之间的距离为,且对于任意的恒成立,则的取值范围是( )A.B.C.D.第(3)题若,则( )A.B.C.D.第(4)题一枚质地均匀的骰子,其六个面的点数分别为.现将此骰子任意抛掷2次,正面向上的点数分别为.设,设,记事件“”,“”,则( )A.B.C.D.第(5)题已知函数f (x )=log 2x-2log 2(x+c ),其中c >0.若对于任意的x ∈(0,+∞),都有f (x )≤1,则c 的取值范围是( )A.B.C.D.第(6)题若函数满足,当时,,当时,的最大值为,则实数a 的值为( )A .3B .eC .2D .1第(7)题函数的单调递增区间为( )A.B.C.D.第(8)题已知正三棱锥的底面边长为3,侧棱长为,点P 为此三棱锥各顶点所在球面上的一点,则点P 到平面SAB 的距离的最大值为( )A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知三棱锥的四个顶点都在球O 的球面上,PA ⊥平面ABC ,在底面△ABC 中,,若球O 的体积为π,则下列说法正确的是( )A .球O的半径为B.C .底面△ABC 外接圆的面积为4πD.第(2)题以下命题是真命题的是( )A .当总体是由差异明显的几个部分组成时,通常采用分层抽样B .若为数据,2,3,,的中位数,则C.回归直线可能不经过样本点的中心D .独立性检验不可以确定两个变量之间是否具有某种关系第(3)题设的内角A ,B ,C 的对边分别为a ,b ,c ,恒成立条件,. 附加条件①的面积取到最大值;附加条件②.下列结论正确的是( )A.B.C.若恒成立条件和附加条件①成立,则D.若恒成立条件和附加条件②成立,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题设向量,且,则_____,和所成角为__________第(2)题已知正方体的棱长为1,除面外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥的体积为__________.第(3)题已知双曲线的左、右焦点分别为,. 点A 在双曲线上,点在轴上,,,则双曲线的渐近线方程为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在四棱锥中,平面平面,,,,.(1)证明:.(2)若为等边三角形,求点C到平面的距离.第(2)题已知抛物线C的顶点在坐标原点,焦点在y轴的正半轴上,直线l:经过抛物线C的焦点.(1)求抛物线C的方程;(2)若直线1与抛物线C相交于A、B两点,过A、B两点分别作抛物线C的切线,两条切线相交于点P.求面积的最小值.第(3)题(1)阅读以下案例,利用此案例的想法化简.案例:考查恒等式左右两边的系数.因为右边,所以,右边的系数为,而左边的系数为,所以=.(2)求证:.第(4)题已知抛物线C:的焦点为F,为C上一点,直线l交C于M,N两点(与点S不重合).(1)若l过点F且倾斜角为60°,(M在第一象限),求C的方程;(2)若,直线SM,SN分别与y轴交于A,B两点,且,判断直线l是否恒过定点?若是,求出该定点;若否,请说明理由.第(5)题如图,在斜三棱柱中,侧面是边长为的菱形,.在平面中,,,为的中点,过,,三点的平面交于点.(1)求证:为中点;(2)求证:平面平面.。
上海市(新版)2024高考数学人教版考试(综合卷)完整试卷
上海市(新版)2024高考数学人教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题圆x2+y2-4x+6y=0的圆心坐标是 ( )A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)第(2)题设复数z满足,z在复平面内对应的点为(x,y),则A.B.C.D.第(3)题已知集合,则=A.B.C.D.第(4)题若、是非零向量,且,,则函数是A.一次函数且是奇函数B.一次函数但不是奇函数C.二次函数且是偶函数D.二次函数但不是偶函数第(5)题函数的部分图象如图所示,现将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再向下平移1个单位所得图象对应的函数为,则下列结论正确的是()A.函数在区间单调递减B.C .点是函数图象的一个对称中心D .直线是函数的一条对称轴第(6)题阅读如图所示的程序框图,运行相应的程序.若输出的为,则判断框中填写的内容可以是()A.B.C.D.第(7)题在复平面内,复数对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限第(8)题函数=的部分图像如图所示,则的单调递减区间为A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题若圆与圆交于A,B两点,则下列选项中正确的是()A.点在圆内B.直线的方程为C.圆上的点到直线距离的最大值为D.圆上存在两点P,Q,使得第(2)题如图,在四棱锥中,已知底面,底面为等腰梯形,,,记四棱锥的外接球为球,平面与平面的交线为的中点为,则()A.B.C.平面平面D.被球截得的弦长为1第(3)题直线是曲线的切线,则实数的值可以是()A.3πB.πC.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题设为抛物线的焦点,、、为抛物线上不同三点,且,为坐标原点,若、、的面积分别为、、,则___________.第(2)题函数的图象在点处的切线方程为___________.第(3)题的展开式中的系数为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在世界杯期间,学校组织了世界杯足球知识竞赛,有单项选择题和多项选择题(都是四个选项)两种:(1)甲在知识竞赛中,如果不会单项选择题那么就随机猜测.已知甲会单项选择题和甲不会单项选择题随机猜测的概率分别是.问甲在做某道单项选择题时,在该道题做对的条件下,求他会这道单项选择题的概率;(2)甲在做某多项选择题时,完全不知道四个选项正误的情况下,只好根据自己的经验随机选择,他选择一个选项、两个选项、二个选项的概率分别为.已知多项选择题每道题四个选项中有两个或三个选项正确,全部选对得5分,部分选对得2分,有选择错误的得0分.某个多项选择题有三个选项是正确的,记甲做这道多项选择题所得的分数为,求的分布列及数学期望.第(2)题已知点是抛物线上不同三点,直线与抛物线相切.(1)若直线的斜率为2,线段的中点为,求的方程;(2)若为定值,当变动时,判断是否为定值,若为定值,求出该定值;若不为定值,请说明理由.第(3)题如图,圆台的上、下底面圆半径分别为1,2,圆台的高为,是下底面圆的一条直径,点在圆上,且,点在圆上运动(与在的两侧),是圆台的母线,.(1)求的长;(2)求平面与平面夹角的余弦值.第(4)题已知数列的首项,其前项和为,对于任意正整数,,都有.(Ⅰ)求数列的通项公式;(Ⅱ)设数列满足,且.①求证数列为常数列.②求数列的前项和.第(5)题已知函数.(1)证明:当时,;(2)求在区间上的零点个数.。
上海市(新版)2024高考数学人教版真题(综合卷)完整试卷
上海市(新版)2024高考数学人教版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在中,,且交于点,,则()A.B.C.D.第(2)题有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是A.B.C.D.第(3)题已知向量,,则()A.B.C.D.第(4)题将个和个随机排成一行,则个不相邻的概率为()A.0.3B.0.5C.0.6D.0.8第(5)题执行如图所示的程序框图,则输出s的值为()A.B.C.D.第(6)题已知直三棱柱A.B.C.D.第(7)题已知复数,则在复平面内对应的点的坐标为()A.B.C.D.第(8)题已知函数是定义在上的奇函数且在上可导,若恒成立,则()A.B.0C.1D.2二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列说法正确的是()A.命题“,”的否定是“,”B.用二分法求函数在内的零点近似解时,在运算过程中得到,,,则可以将看成零点的近似值,且此时误差小于C.甲、乙、丙、丁四人围在圆桌旁,有种不同的坐法D.已知为平面直角坐标系中一点,将向量绕原点逆时针方向旋转角到的位置,则点坐标为第(2)题《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖臑”.如图在堑堵ABC−A1B1C1中,AC⊥BC,且AA1═AB═2.下列说法正确的是()A.四棱锥为“阳马”、四面体为“鳖臑”.B.若平面与平面的交线为,且与的中点分别为M、N,则直线、、相交于一点.C.四棱锥体积的最大值为.D.若是线段上一动点,则与所成角的最大值为.第(3)题下列函数中最小值为2的是()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题设,若,则的最大值为____________第(2)题若将函数的图象向右平移个单位,所得图象关于轴对称,则的最小正值是_____________.第(3)题若函数的导函数为,且满足,则_________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知双曲线C:,圆,其中.圆与双曲线有且仅有两个交点,线段的中点为.(1)记直线的斜率为,直线的斜率为,求.(2)当直线的斜率为3时,求点坐标.第(2)题某灯具厂分别在南方和北方地区各建一个工厂,生产同一种灯具(售价相同),为了了解北方与南方这两个工厂所生产得灯具质量状况,分别从这两个工厂个抽查了25件灯具进行测试,结果如下:(Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;(Ⅱ)某学校欲采购灯具,同时试用了南北两工厂的灯具各两件,试用500小时后,若北方工厂生产的灯具还能正常使用的数量比南方工厂多,该学校就准备采购北方工厂的灯具,否则就采购南方工厂的灯具,试估计该学校采购北方工厂的灯具的概率.(视频率为概率)第(3)题已知函数.(1)讨论函数在上的单调性;(2)求证:.第(4)题已知函数.(1)若轴为曲线的切线,试求实数的值;(2)已知,若对任意实数,均有,求的取值范围.第(5)题将正奇数数列1,3,5,7,9…的各项按照上小下大、左小右大的原则写成如图的三角形数表.(1)设数表中每行的最后一个数依次构成数列,求数列的通项公式;(2)设,求数列的前n项和.。
2024年高考数学上海卷 (含答案)
2024年普通高等学校招生全国统一考试数学(上海卷)一、 填空题本题共12小题,满分54分。
1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得0分。
1、 设全集{}U 1,2,3,4,5=,集合{}A 24=,,求A =_________________。
2、 已知()01, 0x f x x >=≤ ,()f x =______________。
3、 不等式2230x x −−<的解集为_________________。
4、 已知()3f x x a =+,且()f x 是奇函数,则a =___________________。
5、 已知()2,5a =,()6b k =,,//a b ,则k 的值为________________。
6、 在()1nx +的展开式中,若各项系数和为32,则展开式中2x 的系数为__________。
7、 已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为_______。
8、 某校举办科学竞技比赛,有A,B,C,3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题,小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72,现他从所有的题中随机选一题,正确率是______。
9、 已知虚数z ,其实部为1,且()2z m m R z+=∈,则实数m 为____________。
10、设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,则集合中元素个数的最大值为____________。
11、海上有灯塔O,A,B,货船T,如图,已知A 在O 的正东方向,B 在O 的正北方向,O 到A,B的距离相等,165BTO ∠=°,37ATO ∠=°,则BOT ∠=____________。
上海市市辖区(新版)2024高考数学统编版测试(强化卷)完整试卷
上海市市辖区(新版)2024高考数学统编版测试(强化卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知,分别为双曲线:(,)的左、右焦点,为虚轴的一个端点,为坐标原点,直线与的一条渐近线交于点,若与的面积相等,则的离心率为()A.B.2C.或D.2或第(2)题如图,圆和圆外切于点,,分别为圆和圆上的动点,已知圆和圆的半径都为1,且,则的最大值为()A.2B.4C.D.第(3)题设集合,,则()A.B.C.D.第(4)题棣莫弗公式,(是虚数单位,)是由法国数学家棣莫弗()发现的.根据棣莫弗公式,在复平面内的复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(5)题已知火箭在时刻的速度为(单位:千米/秒),质量为(单位:千克),满足(为常数),、分别为火箭初始速度和质量.假设一小型火箭初始质量千克,其中包含燃料质量为500千克,初始速度为,经过秒后的速度千米/秒,此时火箭质量千克,当火箭燃料耗尽时的速度大约为()(,).A.4B.5C.6D.7第(6)题已知集合,,则()A.B.C.D.第(7)题已知椭圆的焦点为,,过的直线与交于,两点,若,则的离心率为()A.B.C.D.第(8)题已知,且,则()A.0.2B.0.3C.0.7D.0.8二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题在复平面内,O为坐标原点,A为对应的点,则()A.z的虚部为i B.C.D.第(2)题已知函数,方程有两个不等实数根,则下列选项正确的有()A.B.的取值范围是C.D.第(3)题已知函数、的定义域均为.且满足,,,则()A.B.C.的图象关于点对称D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知数列的前项和为,则数列的通项公式为_________.第(2)题是虚数单位,复数______.第(3)题已知F为椭圆的右焦点,P为C上的一点,若,则点P的坐标为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,是的直径,是上的两点,,过点作的切线交的延长线于点,连接交于点.求证:.第(2)题在全民抗击新冠疫情期间,某校开展了“停课不停学”活动,一个星期后,某校随机抽取了100名居家学习的高二学生进行问卷调查,得到学生每天学习时间(单位:)的频率分布直方图如下,若被抽取的这100名学生中,每天学习时间不低于8小时有30人.(1)求频率分布直方图中实数的值;(2)每天学习时间在的7名学生中,有4名男生,3名女生,现从中抽2人进行电话访谈,已知抽取的学生有男生,求抽取的2人恰好为一男一女的概率;(3)依据所抽取的样本,从每天学习时间在和的学生中按比例分层抽样抽取8人,再从这8人中选3人进行电话访谈,求抽取的3人中每天学习时间在的人数分布和数学期望.第(3)题某厂家拟在2021年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元()满足:(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2021年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2021年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家促销费用投入多少万元时,厂家的利润最大?第(4)题设,为抛物线:上不同两点,抛物线的焦点到其准线的距离为4,与的横坐标之和为8.(1)求直线的斜率;(2)若设为抛物线上一点,在点处的切线与直线平行,过点作直线与曲线相交于点,,与轴交于点,且满足,求的面积.第(5)题已知函数满足.(1)求函数的表达式;(2)设函数,若函数与的图象只有一个公共点,求实数b的值,并写出这个公共点的坐标.。
高考数学试题上海题及答案
高考数学试题上海题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的值域为[0, +∞),则该函数的零点个数为:A. 0B. 1C. 2D. 3答案:C解析:函数f(x) = x^2 - 4x + 3可以写成f(x) = (x - 2)^2 - 1,其最小值为-1,因此值域为[-1, +∞)。
由于值域为[0, +∞),所以函数的零点个数为2。
2. 若复数z = a + bi(a, b ∈ R)满足|z| = √2,且z的实部与虚部的和为0,则a和b的值分别为:A. a = 1, b = -1B. a = -1, b = 1C. a = 1, b = 1D. a = -1, b = -1答案:A解析:由|z| = √2,得√(a^2 + b^2) = √2,即a^2 + b^2 = 2。
又因为z的实部与虚部的和为0,即a + b = 0。
解得a = 1, b = -1。
3. 若直线l的倾斜角为45°,则直线l的斜率为:A. 0B. 1D. √2答案:B解析:直线的倾斜角为45°,根据斜率的定义,斜率k = tan(45°) = 1。
4. 若向量a = (3, -2),向量b = (-1, 2),则向量a与向量b的数量积为:A. 1B. -1C. 3D. -3答案:D解析:向量a与向量b的数量积为a·b = 3*(-1) + (-2)*2 = -3 - 4 = -7。
5. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图象是开口向上的抛物线,且f(1) = f(3),则该函数的对称轴为:A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:由于抛物线开口向上,且f(1) = f(3),根据抛物线的对称性,对称轴为x = (1 + 3) / 2 = 2。
6. 若等比数列{an}的前n项和为S_n,且S_3 = 7,S_6 = 28,则该数列的公比q为:B. 4C. 3D. 1/2答案:A解析:设等比数列的首项为a1,公比为q,则S_3 = a1(1 - q^3) / (1 - q) = 7,S_6 = a1(1 - q^6) / (1 - q) = 28。
上海市(新版)2024高考数学统编版测试(综合卷)完整试卷
上海市(新版)2024高考数学统编版测试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知拋物线的准线过双曲线的左焦点,点为双曲线的渐近线和拋物线的一个公共点,若到抛物线焦点的距离为5,则双曲线的方程为()A.B.C.D.第(2)题世界大学生运动会(简称大运会)由国际大学生体育联合会主办,每两年举办一届,是规模仅次于奥运会的世界综合性运动会,第31届大运会将于2023年7月28日至8月8日在成都召开.为办好本届大运会,组委会精心招募了一批志愿者,现准备将甲、乙两名志愿者安排进“东安湖体育公园”,“凤凰山体育公园”,“四川省体育馆”工作,每人只能在一个场馆工作.若每位志愿者被分到各个场馆的可能性相同,则甲,乙两人被安排在同一个场馆的概率为()A.B.C.D.第(3)题若,则()A.B.C.D.第(4)题已知函数的最小值是,则实数的取值范围是()A.B.或C.D.或第(5)题已知函数,当时,恒成立,则的取值范围为()A.B.C.D.第(6)题已知复数是方程的一个根,则实数的值是()A.B.C.D.第(7)题已知,则的值为()A.B.C.D.第(8)题,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知复数,,,则()A.B.的实部依次成等比数列C.D.的虚部依次成等差数列第(2)题某工厂生产甲、乙、丙三种不同型号的产品,产量分别为360、240、120,为检验产品的质量,现需从以上所有产品中抽取一个容量为60的样本进行检验,则下列说法正确的是()A.如果采用系统抽样的方法抽取,不需要先剔除个体B.如果采用分层抽样的方法抽取,需要先剔除个体C.如果采用系统抽样的方法抽取,抽取过程不需要运用简单随机抽样的方法D.如果采用分层抽样的方法抽取时,所有产品被抽中的概率相等第(3)题已知函数,下列命题正确的是()A.若是函数的极值点,则B.若是函数的极值点,则在上的最小值为C.若在上单调递减,则D.若在上恒成立,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,若,,,则实数的取值范围是__________.第(2)题已知集合,.若,则实数的取值范围是______________________________.第(3)题已知菱形的边长为,,.当时, ___________;当取得最小值时,___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)若曲线与有一条斜率为2的公切线,求实数的值;(2)设函数,讨论的单调性.第(2)题已知函数.(1)当时,讨论函数的单调性,并证明:;(2)若函数与的图象恰有三个不同的交点,求实数的取值范围.第(3)题设函数,.(1)若对任意,恒成立,求的取值集合;(2)设,点,点,直线的斜率为求证: .第(4)题已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)当时,证明:对任意的,.第(5)题11分制乒乓球比赛,每赢一球得1分,当某局打成平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为,乙发球时甲得分的概率为,各球的比赛结果相互独立.在某局比赛双方打成平后,甲先发球.(1)求再打2球该局比赛结束的概率;(2)两人又打了个球该局比赛结束,求的数学期望;(3)若将规则改为“打成平后,每球交换发球权,先连得两分者获胜”,求该局比赛甲获胜的概率.。
上海市(新版)2024高考数学部编版考试(综合卷)完整试卷
上海市(新版)2024高考数学部编版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题经过第一、二、三象限的直线:与圆:相交于,两点,若,则的最大值是( )A .8B .4C .2D .1第(2)题已知集合,,则( )A .B .C .D .第(3)题已知E ,F 分别是棱长为2的正四面体的对棱的中点.过的平面与正四面体相截,得到一个截面多边形,则下列说法正确的是( )A .截面多边形不可能是平行四边形B .截面多边形的周长是定值C .截面多边形的周长的最小值是D .截面多边形的面积的取值范围是第(4)题已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为( )A .B .C .D .第(5)题已知定义在上的函数满足:,都有,且,当时,恒有,则=( )A.B .C .D .第(6)题设全集,集合,,则( )A .B .C .D .第(7)题已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是( )A.B .C .D .第(8)题已知集合,,则下列式子正确的是A .B .C .D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知、是椭圆:上两个不同的动点(不关于两坐标轴及原点对称),是左焦点,为离心率.则下列结论正确的是( )A .直线的斜率为1时,在轴上的截距小于B .周长的最大值是C .当直线过点,且中点纵坐标的最大值为时,则D.当时,线段的中垂线与两坐标轴所围成三角形面积的取值范围是第(2)题关于函数,,下列说法正确的是( )A .若过点可以作曲线的两条切线,则B .若在上恒成立,则实数的取值范围为C.若在上恒成立,则D.若函数有且只有一个零点,则实数的范围为第(3)题已知函数恰有三个零点,则下列结论中正确的是()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知,其中,为参变数,且.若是一个与无关的定值,则______,______.第(2)题已知复数,的共轭复数为,则________.第(3)题设平面向量,,若与的夹角为,则_____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数的最小正周期为.(I)求函数的解析式;(II)若先将函数的图象向左平移个单位长度,再将其图象上所有点的横坐标伸长为原来的倍(纵坐标不变),得到函数的图象,求在上的零点个数.第(2)题第22届世界杯足球赛在卡塔尔举办,各地中学掀起足球热.甲、乙两名同学进行足球点球比赛,每人点球3次,射进点球一次得50分,否则得0分.已知甲每次射进点球的概率为,且每次是否射进点球互不影响;乙第一次射进点球的概率为,从第二次点球开始,受心理因素影响,若前一次射进点球,则下一次射进点球的概率为,若前一次没有射进点球,则下一次射进点球的概率为.(1)设甲3次点球的总得分为X,求X的概率分布列和数学期望;(2)求乙总得分为100分的概率.第(3)题若函数有两个零点,且.(1)求a的取值范围;(2)若在和处的切线交于点,求证:.第(4)题第十届中国花博会于2021年5月21日在崇明举办,其标志建筑——世纪馆以“蝶恋花”为设计理念,拥有全国跨度最大的自由曲面混凝土壳体,屋顶跨度280米,屋面板只有250毫米,相当于一张2米长的桌子,其桌面板的厚度不到2毫米.图1为馆建成后的世纪馆图:图2是建设中的世纪馆;图3是场馆的简化图.如(图3)是由两个半圆及中间的阴影区域构成的一个轴对称图形,,其中米;圆心距米:半径米:椭圆中心与圆心的距离米,、为直线与半圆的交点,.(1)设,计算的值;(2)计算的大小(精确到1°).第(5)题已知数列的前项和满足:.数列满足,且.(1)求数列和的通项公式;(2)令,记数列的前项积为,证明:.。
上海市(新版)2024高考数学部编版真题(综合卷)完整试卷
上海市(新版)2024高考数学部编版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,(,为实数),若存在实数,使得对任意恒成立,则实数的取值范围是()A.B.C.D.第(2)题在盲拼字卡游戏中,若拼字人不能感知和触摸出卡片上的汉字,则用标有汉字“一、一、心、意”的卡片能正确拼出成语“一心一意”的概率为()A.B.C.D.第(3)题已知实数x,y满足,若直线经过该可行域,则实数k的最小值为()A.-5B.-C.-D.-第(4)题已知关于的方程有4个不同的实数根,分别记为,则的取值范围为()A.B.C.D.第(5)题已知复数z满足,则复数z在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限第(6)题为了得到函数的图象,只需将正弦函数图象上各点()A.横坐标向右平移个单位长度,纵坐标不变B.横坐标向左平移个单位长度,纵坐标不变C .横坐标向左平移个单位长度,纵坐标不变D .横坐标向右平移个单位长度,纵坐标不变第(7)题已知集合,,若,则的取值范围是()A.B.C.D.第(8)题如图,三棱锥中,平面,,为中点,下列说法中(1);(2)记二面角的平面角分别为;(3)记的面积分别为;(4),正确说法的个数为A.0B.1C.2D.3二、多选题:本题共3小题,每小题6分,共18分 (共3题)已知三棱锥的各顶点都在球上,点分别是的中点,平面,,,则下列结论正确的是()A.平面B.球的体积是C.直线与平面所成角的正弦值是D.平面被球所截的截面面积是第(2)题如图,在等腰梯形ABCD中,,E是BC的中点,连接AE,BD相交于点F,连接CF,则下列说法正确的是()A.B.C.D.第(3)题在一个圆锥中,D为圆锥的顶点,O为圆锥底面圆的圆心,P为线段DO的中点,AE为底面圆的直径,是底面圆的内接正三角形,,则下列说法正确的是()A.BE∥平面PACB.PA⊥平面PBCC.在圆锥侧面上,点A到DB中点的最短距离为D.记直线DO与过点P的平面α所成的角为θ,当时,平面α与圆锥侧面的交线为椭圆三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题下面茎叶图记录了甲、乙两班各六名同学一周的课外阅读时间(单位:小时),已知甲班数据的平均数为,乙班数据的中位数为,那么的位置应填__________,的位置应填__________.第(2)题在棱长为1 的正方体中,以A为球心半径为的球面与正方体表面的交线长为___________.第(3)题在直三棱柱中,若,则异面直线与所成的角等于_________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知向量,记函数.(1)求的对称轴和单调递增区间;(2)在锐角中,角A,B,C的对边为a,b,c,若,求的取值范围.第(2)题已知函数,且.(1)求的值;(2)判断函数在上是增函数还是减函数,并证明.下表为年至年某百货零售企业的线下销售额(单位:万元),其中年份代码年份.年份代码线下销售额(1)已知与具有线性相关关系,求关于的线性回归方程,并预测年该百货零售企业的线下销售额;(2)随着网络购物的飞速发展,有不少顾客对该百货零售企业的线下销售额持续增长表示怀疑,某调查平台为了解顾客对该百货零售企业的线下销售额持续增长的看法,随机调查了位男顾客、位女顾客(每位顾客从“持乐观态度”和“持不乐观态度”中任选一种),其中对该百货零售企业的线下销售额持续增长持乐观态度的男顾客有人、女顾客有人,能否在犯错误的概率不超过的前提下认为对该百货零售企业的线下销售额持续增长所持的态度与性别有关?参考公式及数据:.第(4)题设,函数.(1)求不等式的解集;(2)若曲线与直线所围成图形的面积为,求.第(5)题已知向量,,且,其中(1)求的值;(2)若,,求的值.。
上海市(新版)2024高考数学人教版考试(备考卷)完整试卷
上海市(新版)2024高考数学人教版考试(备考卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知双曲线的左、右焦点分别为,,以,为直径的圆依次交双曲线于A,B,C,D四点,直线交双曲线于点C,E,且,则双曲线的离心率为()A.3B.C.D.第(2)题函数的定义域为A.B.C.D.第(3)题在某次考试中,多项选择题的给分标准如下:在每题给出的四个选项中,正确选项为其中的两项或三项,全部选对的得5分,部分选对的得2分,有错选的得0分.甲、乙、丙三人在完全不会做某个多项选择题的情况下,分别选了,,,则三人该题得分的数学期望分别为().A.B.C.D.第(4)题已知集合,,则()A.B.C.D.第(5)题已知集合,,则()A.B.C.D.第(6)题设函数,,,记,则A.B.C.D.第(7)题已知,且,(是虚数单位)是一个实系数一元二次方程的两个根,那么,的值分别是()A.,B.,C.,D.,第(8)题等差数列中,首项和公差都是正数,且,,成等差数列,则数列,,的公差为()A.lg B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列命题正确的是()A.若、均为等比数列且公比相等,则也是等比数列B.若为等比数列,其前项和为,则,,成等比数列C.若为等比数列,其前项和为,则,,成等比数列D.若数列的前项和为,则“”是“为递增数列”的充分不必要条件第(2)题一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,下列结论正确的是()A.圆柱的侧面积为B.圆锥的侧面积为C.圆柱的侧面积与球的表面积相等D.球的体积是圆锥体积的两倍第(3)题下列命题是真命题的有( )A.A,B,M,N是空间四点,若不能构成空间的一个基底,那么A,B,M,N共面B.直线l的方向向量为,直线m的方向向量为,则l与m垂直C .直线l的方向向量为,平面α的法向量为,则l⊥αD.平面α经过三点,是平面α的法向量,则u+t=1三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知,函数在上是单调增函数,则的最大值是_______.第(2)题已知是定义在上的奇函数,当时,,则___.第(3)题在数列中,,,且满足,则___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,四棱锥中,四边形为直角梯形,在底面内的射影分别为,.(1)求证:;(2)求到平面的距离.第(2)题甲乙两人进行一场比赛,在每一局比赛中,都不会出现平局,甲获胜的概率为().(1)若比赛采用五局三胜制,则求甲在第一局失利的情况下,反败为胜的概率;(2)若比赛采用三局两胜制,且,则比赛结束时,求甲获胜局数的期望;(3)结合(1)(2),比较甲在两种赛制中获胜的概率,谈谈赛制对甲获得比赛胜利的影响.第(3)题已知函数u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函数h(x)的单调区间;(2)令f(x)=u(x)﹣v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1•x2的最大值.第(4)题已知椭圆:的焦距为2,点在椭圆上.(1)求椭圆的方程;(2)已知直线与椭圆相切于点,与抛物线的准线相交于点,若点为平面内一点,且,求点的坐标.第(5)题已知f(x)是定义在[0,+∞)上的函数,满足:①对任意x∈[0,+∞),均有f(x)>0;②对任意0≤x1<x2,均有f(x1)≠f(x2).数列{a n}满足:a1=0,a n+1=a n+,n∈N*.(1)若函数f(x)=(x≥0),求实数a的取值范围;(2)若函数f(x)在[0,+∞)上单调递减,求证:对任意正实数M,均存在n0∈N*,使得n>n0时,均有a n>M;(3)求证:“函数f(x)在[0,+∞)上单调递增”是“存在n∈N*,使得f(a n+1)<2f(a n)”的充分非必要条件.。
2024年上海市高考数学试卷
2024年上海市高考数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.(★)(5分)已知集合U={1,2,3,4,5,6,7,8,9},A={2,3,4,5},B={1,2,3,6,7},则B∩(∁U A)=()A.{1,6}B.{6,7}C.{6,7,8}D.{1,6,7}2.(★)(5分)函数f(x)=+的定义域为()A.[0,2)B.(2,+∞)C.[,2)∪(2,+∞)D.(-∞,2)∪(2,+∞)3.(★★)(5分)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a,b,c∈R且a>b,则下列不等式恒成立的是()A.<B.a2>b2C.a|c|>b|c|D.>4.(★)(5分)若x<0,M=5x2+x+2,N=4x(x+1),则M与N的大小关系为() A.M>N B.M=N C.M<N D.无法确定5.(★★)(5分)若不等式(a-2)x2+2(a-2)x-4<0的解集为R,则a的取值范围是()A.a≤2B.-2<a≤2C.-2<a<2D.a<26.(★)(5分)函数f(x)=x2+x在区间[-1,1]上的最小值是()A.B.0C.D.27.(★★)(5分)对于非空集合P,Q,定义集合间的一种运算“★”:P★Q={x|x∈P∪Q且x∉P∩Q}.如果P={x|-1≤x-1≤1},Q={x|y=},则P★Q=()A.{x|1≤x≤2}B.{x|0≤x≤1或x≥2}C.{x|0≤x≤1或x>2}D.{x|0≤x<1或x>2}8.(★★)(5分)中国南宋大数学家秦九韶提出了“三斜求积术“,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a、b、c,则三角形的面积S可由公式求得,其中p为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足a=3,b+c=5,则此三角形面积的最大值为()A.B.3C.D.二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.(★)(5分)下列四组函数中表示同一个函数的是()A.f(x)=x,g(x)=()2B.f(a)=3a2-2a+3,g(t)=3t2-2t+3C.f(x)=,g(x)=xD.f(x)=0,g(x)=+10.(★★)(5分)下列结论不正确的是()A.“x∈N”是“x∈Q”的充分不必要条件B.“∃x∈N*,x2-3<0”是假命题C.△ABC内角A,B,C的对边分别是a,b,c,则“a2+b2=c2”是“△ABC是直角三角形”的充要条件D.命题“∀x>0,x2-3>0”的否定是“∃x>0,x2-3≤0”11.(★★)(5分)下列说法正确的是()A.若a>b>0,则a>>>bB.当a>0,b>0时,++2≥4C.若a2+b2=2,则a+b的最大值为2D.y=+有最小值212.(★★)(5分)“双11”购物节中,某电商对顾客实行购物优惠活动,规定一次购物付款总额满一定额度,可以给予优惠:(1)如果购物总额不超过50元,则不给予优惠;(2)如果购物总额超过50元但不超过100元,可以使用一张5元优惠券;(3)如果购物总额超过100元但不超过300元,则按标价给予9折优惠;(4)如果购物总额超过300元,其中300元内的按第(3)条给予优惠,超过300元的部分给予8折优惠.某人购买了部分商品,则下列说法正确的是()A.如果购物总额为78元,则应付款为73元B.如果购物总额为228元,则应付款为205.2元C.如果购物总额为368元,则应付款为294.4元D.如果购物时一次性全部付款442.8元,则购物总额为516元三、填空题(本题共4小题,每小题5分,共20分)13.(★)(5分)若集合A={x|-3≤x<a},B={x|x≤b},且A∩B=∅,则实数b取值范围为(-∞,-3).14.(★★)(5分)已知f(+1)=2x+3,则f(x)的解析式为f(x)=2x2-4x+5(x≥1).15.(★)(5分)能够说明“若a,b,c是任意正实数,则”是假命题的一组整数a,b,c的值依次为1,1,1(答案不唯一).16.(★)(5分)一位少年能将圆周率π准确记忆到小数点后面200位,更神奇的是提问小数点后面的位数时,这位少年都能准确地说出该数位上的数字.记圆周率π小数点后第n位上的数字为y,则y是n的函数,设y=f(n),n∈N*.则(1)y=f(n)的值域为{0,1,2,3,4,5,6,7,8,9};(2)函数y=f(n)与函数y=n3的交点有1个.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(★★)(10分)在①A=∅,②A恰有两个子集,③A∩{x|<x<2}≠∅这三个条件中任选一个,补充在下列横线上(要求把你选的条件先写到答题纸上),并求解下列问题.已知集合A={x∈R|mx2-2x+1=0}.(1)若1∈A,求实数m的值;(2)若集合A满足_____,求实数m的取值范围.18.(★★)(12分)已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.(1)当a=3时,求A∩B;(2)若“x∈A”是“x∈∁R B”的充分不必要条件,且A≠∅,求实数a的取值范围.19.(★)(12分)已知不等式ax2+5x-2>0的解集是M.(1)若2∈M且3∉M,求a的取值范围;(2)若,求不等式ax2-5x+a2-1>0的解集.20.(★★)(12分)已知x>0,y>0且+=2,若6x+y≥m2+6m恒成立,求实数m的取值范围.21.(★★)(12分)经调查,某产品在过去两周内的日销售量(单位:千克)与日销售单价(单位:元)均为时间t(天)的函数.其中日销售量为时间t的一次函数,且t=1时,日销售量为34千克,t=10时,日销售量为25千克.日销售单价满足函数.(1)写出该商品日销售额y关于时间t的函数(日销售额=日销售量×销售单价);(2)求过去两周内该商品日销售额的最大值.22.(★★)(12分)已知函数f(x)=ax2-(2a+1)x+c,且f(0)=2.(1)若f(x)<0的解集为{x|2<x<8},求函数的值域;(2)当a>0时,解不等式f(x)<0.。
上海市(新版)2024高考数学统编版考试(提分卷)完整试卷
上海市(新版)2024高考数学统编版考试(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题设集合,则=A.B.C.D.第(2)题已知是数列的前项和,,,不等式对任意的恒成立,则实数的取值范围为()A.B.C.D.第(3)题在下列函数中,值域为的偶函数是()A.B.C.D.第(4)题已知,,,则、、的大小关系为()A.B.C.D.第(5)题为了得到函数的图象,只需把函数的图象上所有的点A.向左平行移动个单位长度B .向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度第(6)题已知等差数列的前项和为,若,则()A.4B.C.D.6第(7)题已知两个全等的矩形与所在的平面相互垂直,,,点为线段(包括端点)上的动点,则三棱锥的外接球的半径可以为()A.B.C.D.第(8)题已知向量,,若,则()A.B.1C.D.2二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题一块斯里兰卡月光石的截面可近似看成由半圆和半椭圆组成,如图所示,在平面直角坐标系中,半圆的圆心在坐标原点,半圆所在的圆过椭圆的右焦点,椭圆的短轴与半圆的直径重合.若直线与半圆交于点A,与半椭圆交于点,则下列结论正确的是()A.椭圆的离心率是B.线段长度的取值范围是C.面积的最大值是D.的周长存在最大值第(2)题已知定义在上的函数满足:对,且,则以下结论正确的为()A.B.C.D.第(3)题在棱长为1的正方体中,分别为线段上的动点(均不与点重合),则下列说法正确的是()A.存在使得平面B.存在使得C.当平面时,三棱锥与体积之和最大值为D.记与平面所成的角分别为,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知,,,则的最小值为________.第(2)题某专业资格考试包含甲、乙、丙3个科目,假设小张甲科目合格的概率为,乙、丙科目合格的概率均为,且3个科目是否合格相互独立.设小张3科中合格的科目数为X,则___________;___________.第(3)题已知椭圆C:的右顶点为A,经过原点的直线l交椭圆C于P,Q两点,且点P在以OA为直径的圆上,则C的离心率为_____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)求的单调区间;(2)若对任意恒成立,求实数的取值范围.第(2)题已知双曲线的左、右顶点分别为A,B,过点的直线l交双曲线于P,Q两点(不与A,B重合),直线,分别与y轴交于M,N两点.(1)记直线,的斜率分别为,,求;(2)记,的面积分别为,,当时,求直线l的方程.第(3)题已知函数f(x)=2e x(x+1)-x sin x-kx-2,k∈R.(1)若k=0,求曲线y=f(x)在x=0处切线的方程;(2)讨论函数f(x)在[0,+∞)上零点的个数.第(4)题已知数列{a n}是等比数列,S n为数列{a n}的前n项和,a3=3,S3=9.(1)求数列{a n}的通项公式;(2)设,{b n}为递增数列,若,求证:c1+c2+c3+…+c n<1.第(5)题已知平行六面体中,底面和侧面都是边长为2的菱形,平面平面,.(1)求证:四边形是正方形;(2)若,求二面角的余弦值.。
上海市(新版)2024高考数学人教版考试(强化卷)完整试卷
上海市(新版)2024高考数学人教版考试(强化卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题人的心脏跳动时,血压在增加或减少.若某人的血压满足函数式,其中为血压(单位:),为时间(单位:),则此人每分钟心跳的次数为()A.50B.70C.90D.130第(2)题中国最早的天文观测仪器叫“圭表”,最早装置圭表的观测台是西周初年在阳城建立的周公测景(影)台.“圭”就是放在地面上的土堆,“表”就是直立于圭的杆子,太阳光照射在“表”上,便在“圭”上成影.到了周代,使用圭表有了规范,杆子(表)规定为八尺长.用圭表测量太阳照射在竹竿上的影长,可以判断季节的变化,也能用于丈量土地.同一日子内,南北两地的日影长短倘使差一寸,它们的距离就相差一千里,所谓“影差一寸,地差一尺”(1尺=10寸).记“表”的顶部为A,太阳光线通过顶部A投影到“圭”上的点为B.同一日子内,甲地日影长是乙地日影子长的两倍,记甲地中直线AB与地面所成的角为,且.则甲、乙两地之间的距离约为()A.15千里B.14千里C.13千里D.12千里第(3)题已知x,y满足约束条件则目标函数的最大值为()A.4B.7C.2D.6第(4)题已知双曲线的一条渐近线为为右支上任意一点,且到的距离为,到左焦点的距离为,则的最小值为()A.4B.C.D.第(5)题在正四棱台中,,其体积为为的中点,则异面直线与所成角的余弦值为()A.B.C.D.第(6)题已知曲线,曲线C与坐标轴围成封闭图形M以及函数y=x3的部分图象如图所示,若向M内任意投掷一点,则该点落入阴影部分的概率为()A.B.C.D.第(7)题如图,半径为1的圆与轴相切于原点,切点处有一个标志,该圆沿轴向右滚动,当圆滚动到与出发位置时的圆相外切时(记此时圆心为),标志位于点处,圆与轴相切于点,则阴影部分的面积是()A.2B.1C.D.第(8)题已知双曲线的左、右焦点分别为、,为坐标原点,是双曲线上在第一象限内的点,直线、分别交双曲线左、右支于另一点、,,且,则双曲线的离心率为A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知椭圆的左、右焦点分别为,是上的两个动点,则()A.存在点,使得B.若,则的面积为C.记的上顶点为,若轴,则直线AP与AQ的斜率之积为D.若是的上顶点,则的最大值为第(2)题某公司经营五种产业,为应对市场变化,在五年前进行了产业结构调整,优化后的产业结构使公司总利润不断增长,今年总利润比五年前增加了一倍,调整前后的各产业利润与总利润的占比如图所示,则下列结论错误的是()A.调整后传媒的利润增量小于杂志B.调整后房地产的利润有所下降C.调整后试卷的利润增加不到一倍D.调整后图书的利润增长了一倍以上第(3)题正方体中,分别为面对角线与上的点,,则下面结论正确的是()A.平面B.直线与直线所成角的正切值为C.D.直线平面三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知关于的方程有三个不相等的实数根,则实数的取值范围是______.第(2)题已知圆与直线交于A,B两点,则经过点A,B,的圆的方程为______.第(3)题在学习完二项式定理的相关知识后,老师要求同桌之间相互出题进行考查,为了区别于课例中的问题,小明提出如下题干:“已知,基于上述题干,则____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题为进一步保护环境,加强治理空气污染,某市环保监测部门对市区空气质量进行调研,随机抽查了市区100天的空气质量等级与当天空气中的浓度(单位:),整理数据得到下表:的浓度空气质量等级1(优)28622(良)5783(轻度污染)3894(中度污染)11211若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”,根据上述数据,回答以下问题.(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)完成下面的列联表,的浓度空气质量空气质量好空气质量不好(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天的空气质量与当天的浓度有关?附:0.0500.0100.0013.841 6.63510.828第(2)题已知函数.(1)当时,讨论的单调性;(2)若有两个零点,求实数a的取值范围.第(3)题矩形所在平面与等腰梯形所在平面互相垂直,,,直线与平面所成角为,.(1)求平面与平面夹角的余弦值;(2)线段上任意一点到平面的距离是否为定值?如果是,则求出定值,否则说明理由.第(4)题已知函数,,.(Ⅰ)讨论的单调性;(Ⅱ)若的最大值为,存在最小值,且,求证:.第(5)题某班级开展数学能力竞赛,随机抽取5名学生对他们的数学运算能力和数学抽象能力进行检查和评分,其评分情况如下表所示:学生编号12345数学运算能力评分7580859095数学抽象能力评分8587889298(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(2)现从5名学生中任意抽取两名学生组成一组,若这两名学生的数学运算能力和数学抽象能力的评分均不低于85分,则组成“最佳搭档”,求该组被评为“最佳搭档”的概率.参考公式:,;参考数据:,.。
2024年上海高考真题数学(含解析)
2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。
上海高考数学试题及答案
上海高考数学试题及答案一、选择题1. 若函数f(x) = 2x^2 - 4x + 1,则f(1)的值为:A. 2B. 1C. -1D. -2答案:B2. 已知数列{an}是等差数列,且a1 = 3,公差d = 2,则a5的值为:A. 11B. 13C. 15D. 17答案:C3. 若三角形ABC的内角A、B、C满足A + B = 120°,则角C的大小为:A. 30°B. 45°C. 60°D. 90°答案:C4. 已知直线l的方程为y = 2x + 3,若点(1, 5)在直线l上,则该点与直线l的位置关系为:A. 在直线l上B. 在直线l外C. 与直线l垂直D. 与直线l平行答案:A5. 若复数z = 1 + i,则|z|的值为:A. √2B. 2C. √3D. 3答案:A二、填空题6. 已知函数g(x) = x^3 - 3x^2 + 2,求g(2)的值为______。
答案:-27. 计算定积分∫₀¹ (2x - 1) dx的值为______。
答案:1/28. 若向量a = (3, -1),向量b = (2, 4),则向量a与向量b的数量积为______。
答案:59. 已知双曲线的方程为x^2/9 - y^2/16 = 1,求其渐近线方程为______。
答案:y = ±(4/3)x10. 若圆的方程为(x - 2)^2 + (y + 1)^2 = 9,求圆心坐标为______。
答案:(2, -1)三、解答题11. 已知函数f(x) = x^2 - 4x + 3,求f(x)的最小值。
答案:f(x)的最小值为f(2) = -1。
12. 已知椭圆的方程为x^2/25 + y^2/9 = 1,求椭圆的离心率。
答案:椭圆的离心率为√6/5。
13. 已知三角形ABC的三边长分别为a = 7,b = 8,c = 9,求三角形ABC的面积。
上海市(新版)2024高考数学统编版真题(提分卷)完整试卷
上海市(新版)2024高考数学统编版真题(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数,若函数有3个不同的零点,则实数的取值范围为()A.B.C.D.第(2)题已知向量和,在上的投影为正数,p:,q:或,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件第(3)题若关于的方程有三个不相等的实数解,且,其中,为自然对数的底数,则的值为()A.1B.C.D.第(4)题将4个A和2个B随机排成一行,2个B不相邻的概率为()A.B.C.D.第(5)题,下列说法正确的是()①为偶函数;②的最小正周期为;③在区间上先减后增;④的图象关于对称.A.①③B.①④C.③④D.②④第(6)题已知函数在区间上单调递增,则的取值范围是()A.B.C.D.第(7)题已知全集,集合,,则()A.B.C.D.第(8)题电影《你好,李焕英》于年月日在中国内地上映,创造了连续多日的单日票房冠军.某新闻机构想了解全国人民对《你好,李焕英》的评价,决定从某市个区按人口数用分层抽样的方法抽取一个样本.若个区人口数之比为,且人口最少的一个区抽出人,则这个样本的容量等于()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知,且,则()A.当时,必有B.复平面内复数所对应的点的轨迹是以原点为圆心、半径为的圆C.D.第(2)题如图,正方体的棱长为3,点E、F,G分别在棱,,上,满足,,记平面与平面的交线为l,则()A.,平面B.平面截正方体所得截面图形为六边形的充分不必要条件是C.时,三棱锥的外接球表面积为D.时,直线l与平面所成角的正弦值为第(3)题对于函数,下列说法正确的是()A.函数的单调递减区间为B.C.若方程有6个不等实数根,则D.对任意正实数,且,若,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知圆锥的侧面展开图是一个半径为4,面积为的扇形,则该圆锥的体积为___________.第(2)题已知圆柱的两个底面的圆周都在表面积为的球面上,若该圆柱的高是底面半径的2倍,则该圆柱的侧面积为________.第(3)题已知函数,的部分图像如下图,则=____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知椭圆C:的离心率为,且过点.(1)求的方程:(2)点,在上,且,,为垂足.证明:存在定点,使得为定值.第(2)题已知均为正实数,且.证明:(1);(2).第(3)题已知正整数数列满足:,,.(1)已知,,求和的值;(2)若,求证;(3)求的取值范围.第(4)题篮球是中考体育加试项目之一,某校为满足学生日常需要,购置一批篮球设施.图1是某校购置的符合最新国际标准的篮球架,既符合大众的审美,还能最大程度保证学生们在锻炼时的安全,图2是该篮球架的侧面图,该篮球架由篮板EF、篮筐点E、平衡杆CE、支撑臂BC、辅助臂BD、主支架OA组成.其中MN为水平地面,主支架于O,支撑臂BC过点A,平衡杆水平地面MN,篮板于点E,辅助臂BD的另一端点D固定在地面MN上经测量,辅助臂BD长1.5米且与水平的倾斜角为60°,支撑壁BC长2.9米且与水平面的倾斜角为37°,请根据上述数据求篮筐点E与地面的距离.(最后结果精确到0.01米,其中,,,)第(5)题已知是自然对数的底数,函数的导函数为.(1)求曲线在点处的切线方程;(2)若对任意,都有,求实数的取值范围.。
普通高等学校招生全国统一考试 数学(上海卷)
普通高等学校招生全国统一考试(上海卷)数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式的值为2.双曲线的渐近线方程为______3.的二项展开式中的系数为(结果用数值表示)4.设常数,函数,若的反函数的图像经过点,则=5.已知复数满足,(是虚数单位),则6.记等差数列的前项和为,若,则7.已知.若函数为奇函数,且在上递减,则8.在平面直角坐标系中,已知点是轴上的两个动点,且,则最小值为9.有编号互不相同的五个砝码,期中5克,3克,1克砝码各两个,从中随机挑选三个,则这三个砝码的总质量为9克的概率为___________(结果用最简分数表示)10.设等比数列的通项公式为,前项和为,若,则___________11.已知常数,函数的图像经过点,若,则=12.已知实数1212,,,x x y y 满足:22221122121211,1,2x y x y x x y y +=+=+=,则+的最大值为_____二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设p 是椭圆22153x y +=上的动点,则p 到该椭圆的两个焦点的距离之和为()A. B. C. D.14.已知a R ∈,则“1a >”是“11a<”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。
上海市(新版)2024高考数学统编版考试(自测卷)完整试卷
上海市(新版)2024高考数学统编版考试(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知数列的前n项和,且,对一切正整数n都成立,记的前n项和为,则数列中的最大值为 A.B.C.D.第(2)题已知函数的图象在点处的切线与圆心为的圆相切,则圆的面积是()A.B.C.D.第(3)题“”是“是奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第(4)题过点的直线l与函数的图象交于M,N两点,若O为坐标原点,,则()A.B.C.D.第(5)题已知集合,则()A.B.C.D.第(6)题圆的任何一对平行切线间的距离总是相等的,即圆在任意方向都有相同的宽度,具有这种性质的曲线叫做“等宽曲线”.事实上存在着大量的非圆等宽曲线,以工艺学家鲁列斯(Reuleaux)命名的鲁列斯曲边三角形,就是著名的非圆等宽曲线.它的画法(如图1):画一个等边三角形为圆心,边长为半径,作圆弧,这三段圆弧围成的图形就是鲁列斯曲边三角形.它的宽度等于原来等边三角形的边长.等宽曲线都可以放在边长等于曲线宽度的正方形内(如图2).在图2中的正方形内随机取一点,则这点落在鲁列斯曲边三角形内的概率是A.B.C.D.第(7)题复数为纯虚数,则实数的值是()A.-1B.1C.0或-1D.0或1第(8)题已知则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,则下列说法正确的是()A.曲线在处的切线与直线垂直B.在上单调递增C.的极小值为D.在上的最小值为第(2)题过椭圆的中心任作一直线交椭圆于P,Q两点,,是椭圆的左、右焦点,A,B是椭圆的左、右顶点,则下列说法正确的是()A.周长的最小值为18B.四边形可能为矩形C.若直线PA斜率的取值范围是,则直线PB斜率的取值范围是D.的最小值为-1第(3)题已知,则()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题曲线在点处的切线方程为______.第(2)题函数的图像在点处的切线的斜率为______.第(3)题函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则φ=____________;ω=____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题设是等差数列,是各项均为正数的等比数列,.(1)求数列与的通项公式;(2)的前项和为,求证:;(3)求.第(2)题已知点是椭圆与抛物线的交点,且、分别为的左、右顶点.(1)若,且椭圆的焦距为2,求的准线方程;(2)设点是和的一个共同焦点,过点的一条直线与相交于两点,与相交于两点,,若直线的斜率为1,求的值;(3)设直线,直线分别与直线交于两点,与的面积分别为,若的最小值为,求点的坐标.第(3)题已知函数,,.(1)若函数在上单调递减,求实数a的取值范围;(2)若函数存在单调递减区间,求实数a的取值范围.第(4)题在平面直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若点的极坐标为为曲线上的动点,为的中点,求点到直线的距离的最小值.第(5)题在数列的第项与第项之间插入个1,称为变换.数列通过变换所得数列记为,数列通过变换所得数列记为,以此类推,数列通过变换所得数列记为(其中).(1)已知等比数列的首项为1,项数为,其前项和为,若,求数列的项数;(2)若数列的项数为3,的项数记为.①当时,试用表示;②求证:.。
上海市(新版)2024高考数学部编版测试(综合卷)完整试卷
上海市(新版)2024高考数学部编版测试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知集合,集合为整数集,则A.B.C.D.第(2)题观察下列各式:则的末四位数字为A.3125B.5625C.0625D.8125第(3)题平面直角坐标系中,点、是方程表示的曲线上不同两点,且以为直径的圆过坐标原点,则到直线的距离为( )A.2B.C.3D.第(4)题设,则是为纯虚数的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件第(5)题已知i是虚数单位,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件第(6)题若,则()A.1B.C.D.5第(7)题复数().A.B.C.D.第(8)题观察下列各式:a+b=1.a2+b2=3,a3+b3=4 ,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28B.76C.123D.199二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列关于复数的命题中,正确的是()A.若,则B.若,则C.若,则D.若,则第(2)题已知直三棱柱中,且,直线与底面所成角的正弦值为,则()A.线段上存在点,使得B.线段上存在点,使得平面平面C.直三棱柱的体积为D.点到平面的距离为第(3)题如图,在正方体中,为线段的中点,为线段上的动点.则下列结论正确的是()A.存在点.使得B.存在点,使得平面C.三棱锥的体积不是定值D.存在点.使得三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在等差数列中,,则______.第(2)题已知集合,若,则实数的值可以是________.(写出一个满足条件的值即可)第(3)题已知平面直角坐标系xOy中向量的旋转和复数有关,对于任意向量=(a,b),对应复数z=a+ib,向量x逆时针旋转一个角度,得到复数,于是对应向量.这就是向量的旋转公式.根据此公式,已知正三角形ABC的两个顶点坐标是A(1,2),B(3,4),则C的坐标是___________.(任写一个即可)四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)求函数的极值;(2)当时,若函数有三个不同的零点,求实数的取值范围.第(2)题已知函数,.(1)若对于任意,都满足,求的值;(2)若存在,使得成立,求的取值范围.第(3)题已知函数.(1)讨论的单调性;(2)若恒成立,求实数的取值范围.第(4)题为回馈顾客,某商场拟通过摸球兑奖的方式对500位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为45元,其余3个均为15元,求顾客所获的奖励额为60元的概率;(2)商场对奖励总额的预算是30000元,为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请从如下两种方案中选择一种,并说明理由.方案一:袋中的4个球由2个标有面值15元和2个标有面值45元的两种球组成;方案二:袋中的4个球由2个标有面值20元和2个标有面值40元的两种球组成.第(5)题如图,四边形为矩形,四边形为菱形,且平面⊥平面,D,E分别为边,的中点.(1)求证:⊥平面;(2)求证:DE∥平面.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)
绝密★启用前
2019年普通高等学校招生全国统一考试(上海卷)
数 学
本试卷满分150分,考试时间120分钟.
第Ⅰ卷(选择题 共36分)
一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知集合{1,2,3,4,5}A =,{356}B =,,,则A B =I .
2.计算2
2231lim 41
n n n n n →∞-+=-+ .
3.不等式|1|5x +<的解集为 . 4.函数2()(0)f x x x =>的反函数为 .
5.设i 为虚数单位,365z i i -=+,则||z 的值为
6.已知2
221
4x y x a y a +=-⎧⎨+=⎩
,当方程有无穷多解时,a 的值为 . 7
.在6
x ⎛
⎝
的展开式中,常数项等于 .
8.在ABC △中,3AC =,3sin 2sin A B =,且1
cos 4
C =
,则AB = . 9.首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有 种(结果用数值表示)
10.如图,已知正方形OABC ,其中(1)OA a a =>,函数23y x =交BC 于点P ,函数1
2
y x -=交AB 于点Q ,当||||AQ CP +最小时,则a 的值为 .
11.在椭圆22
142
x y +=上任意一点P ,Q 与P 关于x 轴对称,若有121F P F P ⋅u u u r u u u u r …,则1F P
uuu r 与2F Q 的夹角范围为 .
12.已知集合[,1]U[4,9]A t t t t =+++,0A ∉,存在正数λ,使得对任意a A ∈,都有A a
λ
∈,
则t 的值是 .
二、选择题(本大题共4题,每题5分,共20分) 13.下列函数中,值域为[0,)+∞的是
( ) A .2x
y =
B .1
2
y x = C .tan y x =
D .cos y x = 14.已知,a b R ∈,则“22a b >”是“||||a b >”的
( )
A .充分非必要条件
B .必要非充分条件
C .充要条件
D .既非充分又非必要条件
15.已知平面αβγ、、两两垂直,直线a b c 、、满足:a α⊆,b β⊆,c γ⊆,则直线
a b c 、、不可能满足以下哪种关系
( ) A .两两垂直
B .两两平行
C .两两相交
D .两两异面
16.以()1,0a ,()20,a 为圆心的两圆均过(1,0),与y 轴正半轴分别交于()1,0y ,()2,0y ,
且满足12ln ln 0y y +=,则点1211,a a ⎛⎫
⎪⎝⎭
的轨迹是
( ) A .直线
B .圆
C .椭圆
D .双曲线
三、解答题(本大题共5题,共14+14+14+16+18=76分)
17.如图,在正三棱锥P ABC -
中,2,PA PB PC AB BC AC ====== (1)若PB 的中点为M ,BC 的中点为N ,求AC 与MN 的夹角; (2)求P ABC -的体积.
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
-------------在
--------------------此--------------------
卷--------------------
上--------------------
答--------------------
题--------------------
无--------------------效---
-------------
数学试卷 第3页(共6页) 数学试卷 第4页(共6页)
18.已知数列{}n a ,13a =,前n 项和为n S . (1)若{}n a 为等差数列,且415a =,求n S ;
(2)若{}n a 为等比数列,且lim 12n n S →∞
<,求公比q 的取值范围.
19.改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现在支出、社会支出、政府支出,如表为2012年—2015年我国卫生货用中个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占
(数据来源于国家统计年鉴)
(1)指出2012年到2015年之间我国卫生总费用中个人现金支出占比和社会支出占
比的变化趋势:
(2)设1t =表示1978年,第n 年卫生总费用与年份之间拟合函数
6.44200.1136357876.6053
()1t
f t e -=
+研究函数()f t 的单调性,并预测我国卫生总费用首次超过
12万亿的年份.
20.已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物
线的交点,定义:||
()||
PF d P FQ =.
(1)当81,3P ⎛
⎫-- ⎪⎝
⎭时,求()d P ;
(2)证明:存在常数a ,使得2()||d P PF a =+;
(3)123,,P P P 为抛物线准线上三点,
且1223PP P P =,判断()()13d P d P +与()22d P 的关系.
21.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合
{}*|,n S x x b n N ==∈.
(1)若120,3
a d π
==,求集合S ; (2)若12
a π
=
,求d 使得集合S 恰好有两个元素;
(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可
能的值.
t
谢谢观赏
谢谢观赏
数学试卷第5页(共6页)数学试卷第6页(共6页)。