有理数乘除运算测试题
有理数加减乘除混合运算基础试题(含答案)
有理数加减乘除混合运算基础试题(含答案)1. 小明去商店买了一本书,价格为15.5元。
他还买了两包饼干,每包饼干的价格分别为3.2元和2.8元。
请计算小明的总花费。
解答:小明购买书的花费为15.5元,两包饼干的总花费为3.2元 +2.8元 = 6元。
所以小明的总花费为15.5元 + 6元 = 21.5元。
2. 小红在超市买了一条围巾,价格为25.8元。
她付了一张50元的钞票,收到了零钱后她又决定买一盒巧克力,价格为8.5元。
请问小红收到了多少零钱?解答:小红付了50元的钞票,然后购买围巾的价格为25.8元,剩下的钱为50元 - 25.8元 = 24.2元。
小红再买巧克力花费了8.5元,所以最后收到的零钱为24.2元 - 8.5元 = 15.7元。
3. 某电商网站在活动期间推出了一款手机,原价为2399元。
今天是双11,该手机享受8折优惠。
请计算该手机的最终价格。
解答:该手机原价为2399元,打8折后的价格为2399元 * 0.8 = 1919.2元。
所以该手机的最终价格为1919.2元。
4. 甲和乙两个人一起合作完成了一项工程,工程的总付款为8400元。
根据他们的实际贡献,甲应得到总付款的3/5,那么乙应得到多少钱?解答:甲应得到的付款额为8400元 * 3/5 = 5040元。
乙应得到的付款额为总付款减去甲的付款额,即8400元 - 5040元 = 3360元。
所以乙应得到3360元。
5. 一家餐馆购买了10箱鸡蛋,每箱鸡蛋有36个。
餐馆决定将这些鸡蛋平均分给4个厨师,还剩下多少个鸡蛋?解答:这家餐馆购买的鸡蛋总数为10箱 * 36个/箱 = 360个鸡蛋。
如果要平均分给4个厨师,每个厨师得到的鸡蛋数量为360个鸡蛋 / 4 = 90个鸡蛋。
所以剩下的鸡蛋数量为360个鸡蛋 - 90个鸡蛋 * 4 = 360个鸡蛋 - 360个鸡蛋 = 0个鸡蛋。
总结:以上是关于有理数加减乘除混合运算的基础试题及其答案。
有理数的乘除乘方混合运算习题
有理数的乘法、除法、乘方练习一、有理数的乘法运算法则:(一)没有0因数相乘的情况下:1、由负因数的个数确定符号----------+⎧⎨⎩奇数(如1,3,5,)个负因数,积为“—”偶数(如2,4,6,)个负因数,积为“”,可省略,再把绝对值相乘----------(二)有一个以上的0因数相乘,积为0(三)适用的运算律: 1.2.()3.()a b b a a b c a b c a b c d a b a c a d ⨯=⨯⎧⎪ ⨯⨯=⨯⨯⎨⎪ ⨯+-=⨯+⨯-⨯⎩(四)策略:在有理数的乘、除中,碰到小数就 ,碰到带分数就练习:1、(–4)×(–9)= 2、(–52)×81 = 3、(–253)×135= 4、(–12)×2.45×0×9×100 5、10.12512(16)(2)2-⨯⨯-⨯- 6、(-6)×(-4)-(-5)×107、(0.7-103-254+ 0.03)×(-100) 8、(–11)×52+(–11)×953 二、有理数的倒数:(一)定义:如 ,则称a 与b 互为倒数;其中一个是另一个的倒数。
(二)几种情况下的倒数:1、整数:2的倒数是 ;12-的倒数是 ;0没有倒数发现:①互为倒数的两数必然 ;②把整数的分母看成 ,然后分子与分母2、分数:12的倒数是 ;23-的倒数是 ; 112的倒数是 ;223-的倒数是 ; 发现:求倒数时,碰到带分数,必须化为3、小数:0.25的倒数是 ; 1.125-的倒数是 ;发现:求倒数时,碰到小数,必须化为 ,练习:求下列各数的倒数: 4.25-是 235是 1.14-是 三、有理数的除法法则:(a b a b ÷=⨯的 )即看到除法,就转化为 练习:1、(-18)÷(-9)2、-3÷(-31) 3、0÷(–105) 4、(-2)÷(-1.5)×(-3)5、 -0.2÷(-151)×(-261) 6、[65÷(-21-31)+281]÷(-181) 四、乘方:(一)在n a 中,a 称为 ;n 称为 ;n a 称为 。
有理数的乘除算式练习题
有理数的乘除算式练习题1. 计算下列算式:(1) (-2) × (-5)(2) 3.6 × (-4.2)(3) (-7) ÷ 2(4) 10 ÷ (-0.5)(5) (-3.8) × (-0.2)(6) (-15) ÷ (-3)2. 计算下列算式并化简结果:(1) (-8) × (-0.25) ÷ 4(2) 3.6 ÷ 1.2 × (-5)(3) (-9) × 2.5 ÷ (-0.5)(4) (-7) ÷ (-4) × 0.5(5) (-3) × (-1.2) ÷ (-0.3)3. 解决下列问题:(1) 一只螺丝刀用力旋入木板,假设木板的深度为1.5cm,每旋转一圈螺丝刀前进0.2cm,那么螺丝刀需要旋转多少圈才能将螺丝刀完全埋入木板中?(2) 电影院里有24排座位,每排有35个座位。
已经售出的票数是504张,这占总座位的比例是多少?(3) 一辆汽车以每小时60公里的速度匀速行驶,行驶300公里需要多长时间?(4) 校园跑步场地的一圈距离为400米,某学生跑了1200米,相当于跑了多少圈?(5) 一桶水有20升,现在已经使用了5升,占总容量的比例是多少?4. 深化练习:(1) 小杰用9个盒子装苹果,每个盒子装12个苹果,共有多少个苹果?(2) 小红买了5本书,每本书的价格是28元,她一共花了多少钱?(3) 一个三角形的两边长分别是5.2cm和7.6cm,第三边长为2.8cm,请问这个三角形是否存在?(4) 小明用一卷绳子围绕长方形花坛,长方形的长是4.5m,宽是2.8m,绳子的长度需要多少?(5) 一台机器每小时生产12个零件,它生产10个零件需要多少时间?5. 探索挑战:(1) 如果一个火箭速度为每秒1.5千米,飞行了45分钟,它飞行了多远?(2) 一架飞机以每小时800公里的速度飞行,飞行了6小时30分钟,它飞行了多远?(3) 网球比赛中,连续三局双方各得5分,之后A队又得了3分,B队得了4分,那么目前双方的比分是多少?(4) 一桶汽油容量是50升,小明开车购买的汽油是48升,如果他还想加满这桶汽油,他需要购买多少升汽油?以上是有理数的乘除算式练习题,通过解决这些题目可以加深对于有理数乘除运算的理解与掌握。
有理数的加减乘除乘方混合运算专题训练(带答案)【通用】.doc
1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷223 3 22231113、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-35722523、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)331、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+-1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯;(3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ].(1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯.(1)36×23121)-(; (2)12.7÷)(-1980⨯;(3)6342+)(-⨯; (4))(-43×)-+(-31328;(5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯.(1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423];(5))-(8743÷)(-87; (6))+()(-654360⨯;(7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯.(1))-(-258÷)(-5; (2)-33121)(--⨯;(3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3;(7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)423; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25.4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________.4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( )三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16)27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-200230.(3分)-)45()45(5222-÷-⨯⨯31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3)33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值.(2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里 9.32 -141 10.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C四、23.-90 24.1 25.-3 26.41 27.15 28.1 29.-2002 30.1 31.30 32.-49 33.-4 五、34.(1)2000 (2)0。
有理数的乘除法练习题(含答案)
第一章有理数1.4 有理数的乘除法1.计算12–12×3的结果是A.0 B.1 C.–2 D.–1 2.若等式–2□(–2)=4成立,则“□”内的运算符号是A.+ B.–C.×D.÷3.计算1–(–2)×(–2)÷4的结果为A.2 B.54C.0 D.34-4.|–13|的倒数是A.13B.3 C.–13D.–35.–0.3的倒数是A.10.3B.−10.3C.103D.−1036.2×(–3)=__________.7.计算:523()12 1234+-⨯.8.计算:22 (7)()7-⨯-.9.计算:34(7)(2) 25-÷-⨯+.10.计算:236(3)2(4)-⨯-+⨯-.11.12()2⨯-的结果是A.–4 B.–1 C.14-D.3212.计算:740(16) 2.54÷--÷=A.–1.1 B.–1.8 C.–3.2 D.–3.9 13.下列各数中,与–2的积为1的是A.12B.–12C.2 D.–214.计算11(6)()666⨯-÷-⨯的值为A.1 B.36 C.1-D.+615.计算(1+14+56−12)×12时,下列可以使运算简便的是A.运用乘法交换律B.运用加法交换律C.运用乘法分配律D.运用乘法结合律16.在–3,–2,–1,4,5中取出三个数,把三个数相乘,所得到的最大乘积是__________.17.有三个互不相等的整数a、b、c,如果abc=9,那么a+b+c=__________.18.计算:5 (8)[7(3 1.2)]6-⨯-+-⨯.19.计算:11336()964⨯--.20.计算:11 (1)(9)()32-⨯-÷-.21.(–0.25)×(–79)×4×(–18).22.计算:12112 ()() 3031065-÷-+-.23.计算:(14+512–56)×(–60).24.阅读后回答问题:计算(–52)÷(–15)×(–115)解:原式=–52÷[(–15)×(–115)]①=–52÷1②=–52③(1)上述的解法是否正确?答:__________;若有错误,在哪一步?答:__________;(填代号)错误的原因是:__________;(2)这个计算题的正确答案应该是:25.(2018•陕西)–711的倒数是A.711B.−711C.117D.−11726.(2018•吉林)计算(–1)×(–2)的结果是A.2 B.1 C.–2 D.–3 27.(2018•遂宁)–2×(–5)的值是A.–7 B.7 C.–10 D.10 1.【答案】D【解析】111323===122222-⨯---,故选D.2.【答案】C【解析】–2×(–2)=4.故选C.3.【答案】C【解析】1–(–2)×(–2)÷4=1–4÷4=1–1=0,故选C.4.【答案】B【解析】|–13|=13,13的倒数是3,故选B.5.【答案】D【解析】–0.3=–310,故–0.3的倒数是−103.故选D.6.【答案】–6【解析】根据有理数的乘法法则可得2×(–3)=–6.9.【答案】3 5【解析】3431143(7)(2)()252755-÷-⨯+=-⨯-⨯=.10.【答案】33【解析】236(3)2(4)-⨯-+⨯-2318833=+-=.11.【答案】B【解析】2×(–12)=–(2×12)=–1.故选B.12.【答案】C【解析】原式=575242--÷=572245--⨯=2571010--=3210-=–3.2,故选C.13.【答案】B【解析】∵–2×12=–1,–2×(–12)=1,–2×2=–4,–2×(–2)=4,∴与–2的积为1的是–12.故选B.14.【答案】B【解析】首先确定积的符号,然后将除法转化为乘法再进行计算.原式=16×6×6×6=36.15.【答案】C【解析】∵算式符合乘法分配律的形式,∴运用乘法分配律可以使运算简便.故选C.16.【答案】30【解析】正数大于一切负数,同号得正,异号得负,找出乘积是正数绝对值最大的三个数相乘即可.最大乘积是:(–3)×(–2)×5=3×2×5=30.故答案为:30.19.【答案】–29【解析】11311336()363636462729 964964⨯--=⨯-⨯-⨯=--=-.20.【答案】–24【解析】114(1)(9)()9224323-⨯-÷-=-⨯⨯=-.21.【答案】【解析】原式=–(14×79×4×18)=–14.22.【答案】1 10 -【解析】原式=14114()()30661010-÷+--=151()()3062-÷-=11()()303-÷=1()330-⨯=110-.23.【答案】10【解析】原式=14×(–60)+512×(–60)–56×(–60)=–15+(–25)+50=–40+50=10.24.【答案】(1)不正确;①;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;(2)190.【解析】(1);不正确;错误在第①步;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;25.【答案】D【解析】–711的倒数是–117,故选D.26.【答案】A【解析】(–1)×(–2)=2.故选A.27.【答案】D【解析】(–2)×(–5)=+2×5=10,故选D.。
人教版七年级数学上1.4有理数的乘除法测试题含答案及解析
有理数的乘除法测试时间:60分钟总分:100一、选择题(本大题共10小题,共30.0分)1.若,则下列各式正确的是A. B. C. D. 无法确定2.正整数x、y满足,则等于A. 18或10B. 18C. 10D. 263.若,,且,则等于A. 1或B. 5或C. 1或5D. 或4.算式之值为何?A. B. C. D.5.计算的值是A. 6B. 27C.D.6.若,,且,则的值为A. B. C. 5 D.7.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数8.的倒数与4的相反数的商是A. B. 5 C. D.9.计算等于A. 1B.C.D.10.计算:的结果是A. 1B.C.D.二、填空题(本大题共10小题,共30.0分)11.若,,则ab______ 0;若,,则ab______12.已知,,且,则的值等于______ .13.比大的数是______ ;比小______ ;数______ 与的积为14.14.若“”是一种数学运算符号,并且,,,,则的值为______ .15.计算的结果是______ .16.四个互不相等的整数a、b、c、d,使,则______ .17.______ .18.计算:______.19.化简:______ .20.已知,,且,则的值为______ .三、计算题(本大题共4小题,共24.0分)21.22.运算:23..24..四、解答题(本大题共2小题,共16.0分)25.数学老师布置了一道思考题“计算:”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为,所以.请你判断小明的解答是否正确,并说明理由.请你运用小明的解法解答下面的问题.计算:.26.利用适当的方法计算:.答案和解析【答案】1. C2. A3. B4. D5. D6. B7. D8. C9. B10. C11. ;12. 8或13. ;;14. 10015. 316. 1217.18.19. 320. 或21. 解:原式,.22. 解:原式.23. 解:原式.24. 解:原式,.25. 解:正确,理由为:一个数的倒数的倒数等于原数;原式的倒数为,则.26. 解:原式.【解析】1. 解:,同号两数相乘得正,不等式两边乘以同一个正数,不等号的方向不变.故选C.根据有理数乘法法则:两数相乘,同号得正可得再根据不等式是性质:不等式两边乘或除以同一个负数,不等号的方向改变,解答此题.主要考查了不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变不等式两边乘或除以同一个正数,不等号的方向不变不等式两边乘或除以同一个负数,不等号的方向改变.2. 解:,y是正整数,、均为整数,,或,存在两种情况:,,解得:,,;,解得:;或10,故选A.易得、均为整数,分类讨论即可求得x、y的值即可解题.本题考查了整数的乘法,本题中根据或分类讨论是解题的关键.3. 解:因为,,所以,,因为,所以,,所以;所以,,所以;故选B先由绝对值和平方根的定义求得x、y的值,然后根据分类计算即可.本题主要考查的平方根的定义、绝对值、有理数的加法,求得当时,,当时,是解题的关键.4. 解:原式.故选:D.根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.5. 解:原式,故选:D.利用有理数的乘法法则进行计算,解题时先确定本题的符号.本题考查了有理数的乘法,解题的关键是确定运算的符号.6. 解:,,,,,当,,即当,,;当,,即,,.故选B.首先用直接开平方法分别求出a、b的值,再由可确定a、b同号,然后即可确定a、b的值,然后就可以求出的值.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7. 解:根据题意得,由比例的性质得:...或.故选:D.设这两个数分别为a、b,根据题意得到,从而可得到,从而可判断出a、b之间的关系.本题主要考查的是有理数的除法、平方差公式的应用,得到是解题的关键.8. 解:的倒数是,4的相反数是,.故选C.依据相反数、倒数的概念先求得的倒数与4的相反数,然后根据有理数的除法法则求出它们的商.主要考查相反数、倒数的概念及有理数的除法法则.9. 解:,故选:B.根据有理数的除法法则:除以一个数等于乘以这个数的倒数,可得答案.本题考查了有理数的除法,解题关键是把有理数的除法转化成有理数的乘法.10. 解:,故选:C.根据有理数的除法,即可解答.本题考查了有理数的除法,解决本题的关键是熟记有理数的除法.11. 解:若,,则;若,,则.故答案为:;.利用有理数乘法法则判断即可得到结果.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12. 解:,,且,,或,,则或.故答案为:8或根据题意利用有理数的乘法法则判断x与y异号,再利用绝对值的代数意义求出x与y的值,即可求出的值.此题考查了有理数的乘法与减法,以及绝对值,熟练掌握运算法则是解本题的关键.13. 解:比大的数是:;比小;;故答案为:,,.比大的数是,根据有理数的加法法则即可求解;根据题意列式,列出算式,再进行计算即可;根据除法法则进行计算即可.本题考查了有理数的除法和加减法运算,熟练掌握运算法则是解题的关键;注意题中“大”、“小”的意思.14. 解:.故答案为:100.根据“”的运算方法列出算式,再根据有理数的乘法和有理数的除法运算法则进行计算即可得解.本题考查了有理数的乘法,有理数的除法,读懂题目信息,理解新定义的运算方法是解题的关键.15. 解:原式,故答案为:3.根据有理数的除法和乘法,即可解答.本题考查了有理数的乘法和除法,解决本题的关键是把除法转化为乘法计算.16. 解:四个互不相等的整数,,,的积为25,这四个数只能是1,,5,,,,,,则.故答案为:12.找出25的四个互不相等的因数,即1,,5,.本题主要考查了有理数的乘法及加法,解题的关键是要理解25分成四个互不相等的因数只能是1,,5,.17. 解:原式,故答案为:原式利用除法法则变形,约分即可得到结果.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.18. 解:原式,故答案为:.根据有理数的除法,可得有理数的乘法,根据有理数的乘法,可得答案.本题考查了有理数的除法,利用有理数的除法是解题关键.19. 解:,故答案为:3.根据分数的分子分母同号得正,能约分的要约分,可得答案.本题考查了有理数的除法,分子分母同号得正异号得负,并把绝对值相除.20. 解:,,,,,当时,,,当时,,,故答案为:或.根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.21. 根据有理数的除法法则,先把除法化成乘法,再根据有理数的乘法进行计算即可.本题主要考查对有理数的乘法、除法等知识点的理解和掌握,能熟练地运用法则进行计算是解此题的关键.22. 原式先计算括号中的加减运算,再计算除法运算即可得到结果.此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.23. 原式利用乘法分配律计算即可得到结果.此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.24. 根据乘法算式的特点,可以用括号内的每一项与相乘,计算出结果.在进行有理数的乘法运算时,要灵活运用运算律进行计算.25. 正确,利用倒数的定义判断即可;求出原式的倒数,即可确定出原式的值.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.26. 逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.。
有理数的加减乘除乘方混合运算专题训练(带答案)
1.先乘方,再乘除,最后加减;2.令狐采学3. 同级运算,从左到右进行;4.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷ 3、11(22)3(11)+--⨯- 4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、33102(4)8-÷--7、)]21)21[(122--÷8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯--10、23533||()14714-⨯-÷11、—22—(—2)2—23+(—2)3 12、2223116(1)(3)(1)(3)22-⨯---÷-⨯-13、199711(1)(10.5)()312----⨯÷-14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2-(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2]18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯20、0)132()43(2⨯+-+- 21、6)12()4365127(÷-⨯+-22、22)4()5(25.0)4()85(-⨯-⨯--⨯-23、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(- 27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯-30、(-5)×6+(-125) ÷(-5)331、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+-1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯; (3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ].(1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32; (3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯. (1)36×23121)-(; (2)12.7÷)(-1980⨯; (3)6342+)(-⨯;(4))(-43×)-+(-31328; (5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2;(10)16÷)(-)-(-)(-48123⨯. (1)11+(-22)-3×(-11);(2)0313243⨯⨯)-(-)(-;(3)2332-)(-;(4)23÷[ )-(-)(-423]; (5))-(8743÷)(-87; (6))+()(-654360⨯; (7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯. (1))-(-258÷)(-5; (2)-33121)(--⨯; (3)223232)-(-)(-⨯⨯;(4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3; (7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4) 参考答案1、-1/52、-13、224、95、96、 07、-48 8、-1 9、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-2016、23 17、2 18、24 19、-2820、9/1621、1 22、10 23、-1/12 24、104/3 25、926、1427、-3128、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)423; (5)18; (6)0; (7)-4.64; (8)37; (9)8; (10)-25.4、【答案】 (1)22; (2)0; (3)-17; (4)-423;(5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67.6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________. 4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3 ③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( ) 15.(-3)5表示5个-3相乘( ) 三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有 ①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为 ①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是 A .1-910×3 B .(1-910)×3 C .1-(9×3)10 D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是 A .2890 B .2890000 C .28900 D .289000 四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16) 27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-2002 30.(3分)-)45()45(5222-÷-⨯⨯ 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3) 33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a2+a3+……+a2000 (1)若a=1,求A 的值. (2)若a=-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91913-32 4.-81 -161 5.-2323 6.-1.2 7.1800 8.3.6×103平方公里 9.32 -14110.> > > <二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C四、23.-90 24.1 25.-3 26.4127.15 28.1 29.-2002 30.1 31.30 32.-4933.-4 五、34.(1)2000 (2)0。
有理数的乘除法练习题
有理数的乘除法练习题一、选择1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为正B.一定为负C.为零D. 可能为正,也可能为负2.若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定3.下列运算结果为负值的是( )A.(-7)×(-6)B.(-6)+(-4);C.0×(-2)(-3)D.(-7)-(-15) 4.下列运算错误的是( )A.(-2)×(-3)=6B.1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-245.若两个有理数的和与它们的积都是正数,则这两个数( )A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数6.下列说法正确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-17.于0,下列说法不正确的是( )A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数8.下列运算结果不一定为负数的是( )A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积9.下列运算有错误的是( )A.13÷(-3)=3×(-3) B.1(5)5(2)2⎛⎫-÷-=-⨯-⎪⎝⎭C.8-(-2)=8+2D.2-7=(+2)+(-7) 10.下列运算正确的是( )A.113422⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭; B.0-2=-2; C.34143⎛⎫⨯-=⎪⎝⎭; D.(-2)÷(-4)=2二、填空1.如果两个有理数的积是正的,那么这两个因数的符号一定______.2.如果两个有理数的积是负的,那么这两个因数的符号一定_______.3.奇数个负数相乘,结果的符号是_______.4.偶数个负数相乘,结果的符号是_______.5.如果410,0a b>>,那么ab_____0. 6.如果5a>0,0.3b<0,0.7c<0,那么bac____0.7.-0.125的相反数的倒数是________. 8.若a>0,则aa=_____;若a<0,则aa=____.三、解答1.计算:(1)384⎛⎫-⨯⎪⎝⎭; (2)12(6)3⎛⎫-⨯-⎪⎝⎭; (3)(-7.6)×0.5; (4)113223⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭.2.计算. (1) 38(4)24⎛⎫⨯-⨯-- ⎪⎝⎭; (2) 38(4)(2)4-⨯-⨯-; (3) 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭.3.计算111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;4.计算(1)(+48)÷(+6); (2) 213532⎛⎫⎛⎫-÷ ⎪ ⎪⎝⎭⎝⎭; (3)4÷(-2); (4)0÷(-1000).(5) 1213(5)6(5)33⎛⎫⎛⎫-÷-+-÷- ⎪ ⎪⎝⎭⎝⎭.。
有理数的乘除法练习题精选
有理数的乘除法测试题班级:姓名:总分:(150分)分数:一、选择题(每小题3分)1.下列四个运算中,结果最小的是()A.1+(-2) B.1-(-2) C.1×(-2) D.1÷(-2)2. 下列各式中,积为负数的是().(A)(-2)×3×(-6)(B)(-3.2)×(+5.7)×(-3)×(-2)×0(C)-(-5)×(-15)×(-4)(D)6×(-3)×(-6)×(-13)3.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积()A.一定为负数B.为0C.一定为正数D.无法判断4. 若有2009个有理数相乘所得的积为零,那么这2009个数中().(A)最多有一个数为零; (B)至少有一个数为零; (C)恰有一个数为零; (D)均为零5. 下列各对数中互为倒数的是()(A)1-和1 (B)0和0 (C)4-和0.25-(D)34-和1136. 191811515(20)15300191919⨯=-⨯=-,这个运算应用了().(A)加法结合律(B)乘法结合律(C)乘法交换律(D)乘法分配律7.一个有理数和它的相反数相乘,积为()A.正数 B.负数 C.正数或0 D.负数或08.如果ab=0,那么一定有()A.a=b=0 B.a=0 C.b=0 D.a,b至少有一个为09.计算(-1)÷(-10)×110的结果是()A.1 B.-1 C.1100D.-110010. 计算(-12)÷[6+(-3)]的结果是()(A)2 (B)6 (C)4 (D)-411.绝对值不大于4的整数的积是()A.6 B.-6 C.0 D.2412.如果两个有理数的和是零,积也是零,那么这两个有理数( )A.至少有一个为零,不必都是零B.两数都是零C.不必都是零,但两数互为相反数D.以上都不对13.五个数相乘,积为负数,则其中负因数的个数为()A.2B.0C.1D.1,3,514.若两个数的商是2,被除数是-4,则除数是( )A .2B .-2C .4D .-415. 已知整数a ,b 满足6ab =,则a b +的值可能是( ).(A )5 (B )-5 (C )7± (D )5±或7±16.若ab >0,a +b <0,则a 、b 这两个数( )A.都是正数B.都是负数C.一正一负D.不能确定二、填空题(每小题3分)1. 计算:()45-⨯=______,()()57-⨯-=________,1416401373⎛⎫⎛⎫-⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭______.2. 计算:()1124⎛⎫-÷-= ⎪⎝⎭______,7011⎛⎫÷-= ⎪⎝⎭_______,()1.250.25-÷=______. 3.在-2,3,4,-5这四个数中,任取两个数相乘,所得的积最大的是_______.4.+(16)×5911×(-29.4)×0×(-757)=______. 5.-4×125×(-25)×(-8)=________.6.两个因数的积为1,已知其中一个因数为-72,那么另一个因数是_______. 7. 79-的倒数的绝对值是_____________. 8.倒数是它本身的数是_____________.9.若a,b 互为倒数,则ab 的相反数是______________.10.已知a ,b 两数在数轴上对应的点如图2-8-1所示,下列结论正确的是( )A.a >bB.ab <0C.b -a >0D.a+b >011. 规定运算“★”是2a b a b =⨯-★,则(2)3-=★_________.12.大于-8而小于5的所有整数的积是___.013.若有理数m <n <0,则(m +n )(m -n )的符号为___.14.若ab >0,b <0,则a ___0;若ab <0,a >0,则b ___0.15.四个各不相等的整数,它们的积abcd=25,那么a+b+c+d=_____________.16.现有四个有理数3,4,-6,10,运用有理数的四则混合运算写出三种不同方法的运算式,使其结果等于24,运算如下:(1)___ ___,(2)_ ____,(3)__ ____,另有四个有理数,3,-5,7,-13时,可通过运算式(4)__ ______,使其结果等于24.三、计算题(1,2题每题3分,4,5,6,7,8,9每题5分)1.(-245)×(-2.5); 2.-32324÷(-112).3.43×(-75)×(-4)×(-51) 4.(-3.5)÷87×(43-)5.-7÷3-14÷3;6.(215--512)÷323;7.(143-87-127)×(-24). 8.-7×(-722)+19×(-722)-5×(-722);9. 25×43―(―25)×21+25×(-41 )四、解答题1.列式计算:(1)-15的相反数与-5的绝对值的商的相反数是多少?(3分)(2)一个数的413倍是-13,则此数为多少?(3分)2.某冷冻厂的一个冷库室温是2-℃,现有一批食品要在28-℃冷藏,每小时如果能降温4℃,问几个小时后能降到所要求的温度.(3分)3.某学生将某数乘以-1.25时漏乘了一个负号,所得结果比正确结果小0.25,那么正确结果应是多少?(3分)4.我们在计算时经常碰到一题多解的情况,如计算(-130)÷(23-110+16-25)解法一:原式=(-130)÷(56-12)=-130×3=-110.解法二:原式的倒数为(23-110+16-25)÷(-130)=(23-110+16-25)×(-30)=23×(-30)-110×(-30)+16×(-30)+25×30=-20+3-5+12=-10.所以原式=-110.阅读上述材料,并选择合适的方法计算:计算:)1515131()301(--÷-. (6分)。
有理数乘除混合运算 (通用版)(含答案)
有理数乘除混合运算(通用版)试卷简介:主要考查有理数的乘法法则和除法法则,并能够灵活运用乘法分配律和结合律简化运算.一、单选题(共20道,每道5分)1.计算的结果是( )A.2B.C. D.答案:A解题思路:试题难度:三颗星知识点:有理数乘除混合运算2.计算的结果是( )A.6B.C. D.答案:A解题思路:试题难度:三颗星知识点:有理数乘除混合运算3.计算的结果是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:有理数乘除混合运算4.计算的结果是( )A.10B.-10C.40D.-40答案:B解题思路:试题难度:三颗星知识点:有理数乘除混合运算5.计算的结果是( )A.120B.130C.-130D.-8.125答案:C解题思路:试题难度:三颗星知识点:有理数乘除混合运算6.计算的结果是( )A. B.C. D.答案:D解题思路:1.解题思路:本题主要考查乘除混合运算,我们观察到被除数是分母为小数的分数,根据我们一次只做一点点的原则,我们首先根据有理数除法法则,把除法转化成乘法,再将小数转化成分数,每次向前推进一小步.2.解题过程:3.易错点:有的学生在除法转化成乘法,小数转化成分数时会两步同时处理,容易出现错误,这里我们一步只做一点,先把除法转化成乘法,再将小数转化成分数,最后依照有理数乘法法则进行计算.试题难度:三颗星知识点:有理数乘除混合运算7.计算的结果是( )A.-0.3B.0.3C.-3D.3答案:C解题思路:试题难度:三颗星知识点:有理数乘除混合运算8.计算的结果是( )A.0B.240C.20D.260答案:D解题思路:试题难度:三颗星知识点:有理数乘除混合运算9.计算的结果是( )A. B.C.5D.答案:C解题思路:试题难度:三颗星知识点:有理数乘除混合运算10.计算的结果是( )A.27B.-24C.-54D.24答案:B解题思路:试题难度:三颗星知识点:有理数乘除混合运算11.计算的结果是( )A.10B.2C.0D.-10答案:C解题思路:几个有理数相乘,有一个因数为0时,积为0. 故原式=0试题难度:三颗星知识点:有理数乘除混合运算12.计算的结果是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:有理数乘除混合运算13.计算的结果是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:有理数乘除混合运算14.计算的结果是( )A. B.C.-27D.27答案:A解题思路:试题难度:三颗星知识点:有理数乘除混合运算15.计算的结果是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:有理数乘除混合运算16.计算的结果是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:有理数乘除混合运算17.计算的结果是( )A.-4B.-6C.12D.2答案:D解题思路:试题难度:三颗星知识点:有理数乘除混合运算18.计算的结果是( )A.-1B.1C.-36D.36答案:A解题思路:1.解题思路:先观察结构,只有一部分,是乘除混合运算,因此先把除法转化成乘法,每次向前推进一小步.2.解题过程:3.易错点:①有学生在运算的时候顺序出错,看到和的时候就先进行约分,因此得出的错误结果是:②还有的学生在计算的时候符号出错,把除法转化成乘法之后,变成多个有理数相乘,要先看负因数的个数确定符号,然后再进行计算.试题难度:三颗星知识点:有理数乘除混合运算19.计算的结果是( )A.4B.-2.25C.2.25D.-4答案:A解题思路:试题难度:三颗星知识点:有理数乘除混合运算20.计算的结果是( )A.190B.-190C.110D.-34答案:C解题思路:试题难度:三颗星知识点:有理数乘除混合运算。
专题 有理数的乘除法计算题(八大题型共50题)(解析版) -2024-2025学年七年级数学上册同步
(苏科版)七年级上册数学《第二章 有理数》 专题 有理数的乘除法的计算题(50题)1.计算:(1)0×(﹣112);题型一 两个数有理数相乘(2)(﹣0.25)×(−45); (3)85×(−154); (4)(﹣416)×0.2.【分析】根据有理数的乘法运算法则进行计算即可得解. 【解答】解:(1)0×(﹣112)=0;(2)(﹣0.25)×(−45) =14×45 =15;(3)85×(−154)=−85×154 =﹣6;(4)(﹣416)×0.2=−256×15 =−56.【点评】本题考查了有理数的乘法运算,熟记运算法则是解题的关键. 2.计算:(1)(﹣3)×(﹣4); (2)(﹣3.2)×1.5; (3)49×(−32);(4)134×(﹣8).【分析】(1)两数相乘,同号得正,再把绝对值相乘即可求解; (2)两数相乘,异号得负,再把绝对值相乘即可求解; (3)两数相乘,异号得负,再把绝对值相乘即可求解; (4)两数相乘,异号得负,再把绝对值相乘即可求解.【解答】解:(1)原式=3×4=12; (2)原式=﹣(3.2×1.5)=﹣4.8; (3)原式=﹣(49×32)=−23;(4)原式=﹣(74×8)=﹣14.【点评】本题主要考查有理数的乘法,掌握有理数的乘法法则是解题的关键.3.计算:(1)(﹣3)×(﹣4); (2)(+45)×(﹣114);(3)(﹣2022)×0; (4)(﹣0.125)×8; (5)25×(﹣1); (6)(−13)×(﹣3).【分析】(1)根据有理数乘法法则:两数相乘,同号得正,并把绝对值相乘即可求解; (2)根据有理数乘法法则:两数相乘,异号得负,并把绝对值相乘即可求解; (3)根据有理数乘法法则:任何数与0相乘,都得0即可求解;(4)根据有理数乘法法则:两数相乘,异号得负,并把绝对值相乘即可求解; (5)根据有理数乘法法则:两数相乘,异号得负,并把绝对值相乘即可求解; (6)根据有理数乘法法则:两数相乘,同号得正,并把绝对值相乘即可求解. 【解答】解:(1)原式=3×4=12; (2)原式=﹣(45×54)=﹣1;(3)原式=0;(4)原式=﹣(0.125×8)=﹣1; (5)原式=﹣(25×1)=﹣25; (6)原式=13×3=1.【点评】本题主要考查了有理数的乘法,掌握有理数的乘法法则是解题的关键. 4.计算:(1)0×(−5 6);(2)3×(−1 3);(3)(﹣7)×(﹣1);(4)(−16)×(−67).【分析】根据有理理数的乘法法则进行计算即可.【解答】解:(1)原式=0;(2)原式=﹣3×13=−1;(3)原式=7×1=7;(4)原式=16×67=17.【点评】本题考查了有理数的乘法.解题的关键是掌握有理数的乘法法则,特别要注意积的符号.5.(−47)×23×(−114)×12.【分析】根据有理数的乘法法则有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘,都得0,进行计算即可得出答案.【解答】解:原式=[(−47)×(−54)]×(23×12)=57×13=521.【点评】本题主要考查了有理数的乘法,熟练掌握有理数的乘法法则进行计算是解决本题的关键.6.计算:(1)(﹣2)×(−12)×(﹣3);(2)(﹣0.1)×1000×(﹣0.01).【分析】根据有理数的乘法法则进行计算便可.【解答】解:(1)(﹣2)×(−12)×(﹣3)=﹣2×12×3=﹣3;题型二多个有理数相乘(2)(﹣0.1)×1000×(﹣0.01) =+0.1×1000×0.01 =1.【点评】本题主要考查了有理数的乘法,关键是熟记有理数乘法法则. 7.(2022秋•宁远县校级月考)求值:(1)14×(﹣16)×(−45)×(﹣114);(2)(−511)×(−813)×(﹣215)×(−34).【分析】根据有理数乘法法则进行计算便可. 【解答】解:(1)14×(﹣16)×(−45)×(﹣114)=−14×16×45×54 =﹣4;(2)(−511)×(−813)×(﹣215)×(−34)=511×813×115×34 =613. 【点评】本题考查了有理数乘法,关键是熟记和应用有理数法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数与零相乘积为零;几个不为零的数相乘,积的符号由负因数个数决定,负因数的个数为奇数时,积为负,负因数的个数为偶数时,积为正.8.计算: (1)(﹣8)×154×(−13); (2)(−37)×(−89)×(﹣6); (3)23×(−12)×(−45)×(﹣5).【分析】应用有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,进行计算即可得出答案.【解答】解:(1)原式=(﹣30)×(−13)=10;(2)(−37)×(−89)×(﹣6) 原式=821×(﹣6) =−4821; (3)23×(−12)×(−45)×(﹣5) 原式=(−13)×[(−45)×(﹣5)] =(−13)×4 =−43.【点评】本题主要考查了有理数的乘法,熟练掌握有理数的乘法法则进行求解是解决本题的关键. 9.计算下列各题:(1)6)2.0()61()30(⨯-⨯-⨯- (2))98()321(87)53(-⨯-⨯⨯- (3)411)54()16(41-⨯-⨯-⨯ (4))]751([)91()2.1(45--⨯-⨯-⨯- 【分析】根据有理数的乘法计算即可得出答案.【解答】解:(1)原式=6)62.06130(-=⨯⨯⨯- (2)原式=97)98358753(-=⨯⨯⨯-(3)原式=45)54()16(41⨯-⨯-⨯=4)45541641(=⨯⨯⨯+ (4)原式=72)712915645(751)91()2.1(45-=⨯⨯⨯-=⨯-⨯-⨯-【点评】本题考查多个有理数的乘法,正确掌握运算法则是解题的关键.10.计算:(1)3×(﹣1)×(−13). (2)﹣1.2×5×(﹣3)×(﹣4). (3)(−512)×415×(−32)×(﹣6).(4)54×(﹣1.2)×(−19).【分析】根据有理数的乘法法则进行计算便可. 【解答】解:(1)3×(﹣1)×(−13) =+3×1×13=1;(2)﹣1.2×5×(﹣3)×(﹣4) =﹣1.2×5×3×4 =﹣72; (3)(−512)×415×(−32)×(﹣6) =−512×415×32×6 =﹣1;(4)54×(﹣1.2)×(−19)=+54×1210×19 =16.【点评】本题主要考查了有理数的乘法,熟记运算法则与是解题的关键.11.计算:(﹣8)×9×(﹣1.25)×(−19)【分析】根据有理数的乘法法则和乘法的交换律进行计算即可. 【解答】解:(﹣8)×9×(﹣1.25)×(−19) =[(﹣8)×(﹣1.25)]×9[×(−19)] =10×(﹣1) =﹣10.【点评】此题考查了有理数的乘法,掌握有理数的乘法法则是解题的关键,是一道基础题.题型三 利用乘法运算律简便计算12.用简便方法计算:(﹣8)×(−43)×(﹣1.25)×54.【分析】根据有理数的乘法法则,运用乘法交换律和结合律进行简便计算. 【解答】解:原式=[(﹣8)×(﹣1.25)]×[(−43)×54] =10×(−53) =−503.【点评】本题主要考查有理数的乘法,掌握乘法法则,运用乘法交换律和结合律进行简便计算是解题的关键.13.(2022秋•惠城区月考)计算:45×(−25)×78×(−1115)÷14×(−117).【分析】先确定符号.把除法化为化为乘法,带分数化为假分数,最后计算出结果. 【解答】解:45×(﹣25)×78×(−1115)÷14×(﹣117) =﹣(45×25×78×1115×4×87) =﹣(78×87×45×1115×25×4)=﹣3300.【点评】本题考查有理数的混合运算,掌握乘法的交换律和结合律的熟练应用,把除法化为乘法是解题关键.14.计算:(﹣36)×997172【分析】直接利用有理数的乘法运算法则进而得出答案. 【解答】解:原式=(﹣36)×(100−172) =(﹣36)×100﹣(﹣36)×172 =﹣3600+12 =﹣359912.【点评】此题主要考查了有理数的乘法运算,正确掌握相关运算法则是解题关键.15.计算:−(−595960)×60; 【分析】根据有理数的乘法法则以及乘法运算律则计算即可. 【解答】解:原式=595960×60 =(60−160)×60 =60×60−160×60 =3600﹣1 =3599.【点评】本题主要考查了有理数的乘法,熟练掌握乘法运算律是解答本题的关键.16.用简便方法计算 (1)﹣392324×(﹣12) (2)(23−112−115)×(﹣60)【分析】根据乘法分配律,可得答案. 【解答】解:(1)原式=(﹣40+124)×(﹣12)=﹣40×(﹣12)−124×12=480−12=47912; (2)原式=23×(﹣60)+112×60+115×60=﹣40+5+4=﹣31. 【点评】本题考查了有理数的乘法,利用拆项法得出乘法分配律是解题关键. 17.用简便方法计算:(1)﹣13×23−0.34×27+13×(﹣13)−57×0.34 (2)(−13−14+15−715)×(﹣60)【分析】(1)首先应用乘法交换律,把﹣13×23−0.34×27+13×(﹣13)−57×0.34化成 ﹣13×23−13×13−57×0.34﹣0.34×27,然后应用乘法分配律,求出算式的值是多少即可. (2)应用乘法分配律,求出算式(−13−14+15−715)×(﹣60)的值是多少即可. 【解答】解:(1)﹣13×23−0.34×27+13×(﹣13)−57×0.34 =﹣13×23−13×13−57×0.34﹣0.34×27=﹣13×(23+13)﹣(57+27)×0.34=﹣13×1﹣1×0.34 =﹣13﹣0.34 =﹣13.34(2)(−13−14+15−715)×(﹣60)=(−13)×(﹣60)−14×(﹣60)+15×(﹣60)−715×(﹣60) =20+15﹣12+28 =51【点评】(1)此题主要考查了有理数的乘法,要熟练掌握,解答此题的关键是要明确有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘. (2)此题还考查了乘法运算定律的应用,要熟练掌握.18.用乘法运算律,将下列各式进行简便计算:(1)(﹣112)×(﹣7)×23; (2))25.1()541(8)5(-⨯-⨯⨯-(3)(﹣48)×(−34+56−712); (4)0.7×311−6.6×37−1.1×37+0.7×811. (5)﹣392324×(﹣12) (6)4.61×37−5.39×(−37)+3×(−37).【分析】(1)利用乘法的交换律与结合律计算; (2)利用乘法的交换律与结合律计算; (3)利用乘法的分配律计算即可; (4)逆用乘法的分配律,以简化运算即可. (5)利用乘法的分配律计算即可; (6)逆用乘法的分配律,以简化运算即可. 【解答】解:(1)(﹣112)×(﹣7)×23=(−32)×23×(−7) =7;(2))25.1()541(8)5(-⨯-⨯⨯- =)]25.1(8[)]59()5[(-⨯⨯-⨯-=)10(9-⨯=90(3)(﹣48)×(−34+56−712)=−48×(−34)−48×56−48×(−712)=36﹣40+28=24;(4)0.7×311−6.6×37−1.1×37+0.7×811=0.7×(311+811)+37×(−6.6−1.1)=0.7﹣3.3=﹣2.6.(5)原式=(﹣40+124)×(﹣12)=﹣40×(﹣12)−124×12 =480−12=47912; (6)原式=4.61×37+5.39×37−3×37=37×(4.61+5.39﹣3)=37×7=3.【点评】本题主要考查有理数的运算,关键是使用运算律可使运算简便.19.计算:(1)(﹣6.5)÷(﹣0.5);(2)4÷(﹣2);(3)0÷(﹣1 000);(4)(﹣2.5)÷5 8.【分析】(1)先判断出符号,再绝对值相除即可;(2)先判断出符号,再绝对值相除即可;(3)零除以任何一个不为零的数,商为零,(4)先判断出符号,再绝对值相除,既有分数,又有小数,一般把小数化为分数直接约分即可;【解答】解:(1)(﹣6.5)÷(﹣0.5)=6.5÷0.5=13;(2)4÷(﹣2)=﹣4÷2=﹣2(3)0÷(﹣1 000)=0;(4)(﹣2.5)÷58=−2.5÷58=−52×85=−4;【点评】此题是有理数的除法,主要考查了有理数除法的法则,进行计算时,先判断符号,再绝对值相除.20.计算:(1)0÷(﹣2022);(2)(﹣27)÷9;(3)(−43)÷43;(4)−32÷1.5【分析】(1)0除以任何数都为0;(2)根据九九乘法表计算;(3)根据有理数的除法运算进行计算;(4)换算成小数进行计算;题型四两个有理数的除法【解答】解:(1)0÷(﹣2022)=0;(2)(﹣27)÷9=﹣3;(3)(−43)÷43=﹣1;(4)−32÷1.5=﹣1;【点评】本题考查了有理数的除法运算,解题关键在于熟知除以一个数等于乘以它的倒数.21.计算:(1)(﹣68)÷(﹣17);(2)(﹣0.75)÷0.25;(3)(−78)÷(﹣1.75);(4)312÷(﹣7) 【分析】(1)直接利用有理数的除法运算法则计算得出答案;(2)直接利用有理数的除法运算法则计算得出答案;(3)直接利用有理数的除法运算法则计算得出答案;(4)直接利用有理数的除法运算法则计算得出答案.【解答】解:(1)(﹣68)÷(﹣17)=4;(2)(﹣0.75)÷0.25=﹣0.75×4=﹣3;(3)(−78)÷(﹣1.75)=78×47=12;(4)312÷(﹣7) =72×(−17)=−12.【点评】此题主要考查了有理数的乘除运算,正确掌握相关运算法则是解题关键.(1)(+48)÷(+6);(2)(−323)÷(512);(3)4÷(﹣2);(4)0÷(﹣1000).【分析】原式各项利用除法法则计算即可得到结果.【解答】解:(1)原式=8;(2)原式=−113×211=−23;(3)原式=﹣2;(4)原式=0.【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.23.计算:(1)(−47)÷(−314)÷(−23);(2)(﹣0.65)÷(−57)÷(﹣213)÷(+310).【分析】根据有理数的乘除法则和混合运算顺序进行计算便可.【解答】解:(1)(−47)×(−143)÷(−23)=−47×143×32=﹣4;(2)(﹣0.65)÷(−57)÷(﹣213)÷(+310).=−65100×75×37×103=﹣1.3.【点评】本题主要考查了有理数乘除法,关键是熟记有理数乘除法法则和混合运算顺序.题型五多个有理数的除法(1)(﹣24)÷(﹣2)÷(﹣115); (2)﹣27÷214÷94÷(﹣24).【分析】(1)先确定符号再把绝对值相除;(2)先确定符号再把绝对值相除或相乘,最后把除法化为乘法计算.【解答】解:(1)(﹣24)÷(﹣2)÷(﹣115) =12÷(﹣115) =﹣10;(2)﹣27÷214÷94÷(﹣24)=27÷94×49÷24=27×49×49×124=29.【点评】本题主要考查了有理数除法、乘法,掌握有理数的除法、乘法法则,符号的确定是解题关键.25.计算:(1)(−35)÷(﹣27)÷(﹣114)÷3; (2)(﹣8)÷23÷(﹣23)÷(﹣9). 【分析】各式利用除法法则把除法转化成乘法运算,通过约分即可得到结果.【解答】解:(1)(−35)÷(﹣27)÷(﹣114)÷3=−35×72×45×13=−1425; (2)(﹣8)÷23÷(﹣23)÷(﹣9)=﹣8×32×32×19=−2. 【点评】此题考查了有理数的乘除法,熟练掌握乘除法则是解本题的关键.26.计算:(1)﹣3÷(−34)÷(−34);(2)(﹣12)÷(﹣4)÷(﹣115); (3)(−23)÷(−87)÷0.25;(4)(﹣212)÷(﹣5)÷(﹣310).【分析】(1)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(2)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(3)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;(4)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案.【解答】解:(1)原式=﹣3×(−43)×(−43)=−163;(2)原式=(﹣12)×(−14)×(−56)=−52;(3)原式=(−23)×(−78)×4=73;(4)原式=(−52)×(−15)×(−103)=−53.【点评】此题主要考查了有理数的除法运算,正确掌握相关运算法则是解题关键.27.计算:(1)(−23)÷(−85)÷(﹣0.25);(2)(﹣81)÷94÷94÷(﹣16);(3)(﹣6.5)÷(−12)÷(−25)÷(﹣5).【分析】应用有理数除法法则:有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a ÷b =a •1b (b ≠0),有理数乘法法则:(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘. (2)任何数同零相乘,都得0,(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.进行计算即可得出答案.【解答】解:(1)原式=(−23)×(−58)×(﹣4) =﹣(23×58×4)=−53;(2)原式=(﹣81)×49×49×(−116)=(﹣16)×(−116) =1;(3)(﹣6.5)×(﹣2)÷(−25)÷(﹣5).原式=13×(−52)×(−15)=13×(52×15) =13×12=132.【点评】本题主要考查了有理数乘法及有理数除法,熟练掌握有理数乘法及有理数除法法则进行求解是解决本题的关键.28.计算:59÷20×185.【分析】根据有理数的除法运算以及乘法运算即可求出答案.【解答】解:原式=59×120×185=110.【点评】本题考查有理数的乘除运算,解题的关键是熟练运用有理数的乘除运算法则,本题属于基础题型.题型六 有理数乘除混合运算29.(2022秋•榆树市期中)计算:(﹣54)÷34×43÷(﹣32).【分析】先确定符号,再把除法化为乘法,根据有理数乘法法则计算.【解答】解:原式=54×43×43×132=3.【点评】本题主要考查了有理数的乘法、除法,掌握有理数乘法、除法法则,符号的确定是解题关键.30.(2022秋•丰台区校级期中)计算:(−35)×(−27)÷37.【分析】根据有理数除法法则把有理数除法转化为乘法,再按照有理数乘法法则进行计算便可.【解答】解:(−35)×(−27)÷37=35×27×73=25.【点评】本题考查的是乘除混合运算,掌握“同级运算按照从左往右的顺序进行运算”是解本题的关键.31.计算:(﹣223)×1516÷(﹣1.5) 【分析】化有理数除法为乘法,然后计算有理数乘法.【解答】解:(﹣223)×1516÷(﹣1.5), =(−83)×1516÷(−32),=(−83)×1516×(−23),=8×15×23×16×3, =53.【点评】本题考查了有理数的乘除法,熟记计算法则即可解题,属于基础题.32.计算:(﹣81)÷214×49÷(﹣16)【分析】原式从左到右依次计算即可得到结果.【解答】解:原式=81×49×49×116=1.【点评】此题考查了有理数的乘除法,熟练掌握有理数乘除法则是解本题的关键.33.(2022秋•香洲区校级月考)计算:(1)(−5)×6×(−45)×14;(2)−9÷(−0.1)÷(−335 ).【分析】(1)利用有理数的乘法法则原式即可;(2)将有理数的除法转化成乘法后,利用有理数的乘法法则原式即可.【解答】解:(1)原式=5×6×45×14=6;(2)原式=﹣9×(﹣10)×(−5 18)=﹣9×10×5 18=﹣25.【点评】本题主要考查了有理数的乘、除法,正确利用有理数的乘除法则运算是解题的关键.34.计算:(1)(﹣32)÷4×(−1 16);(2)(−23)×(−85)÷(﹣178).【分析】根据有理数的乘除法则进行计算便可.【解答】解:(1)(﹣32)÷4×(−1 16)=+32×14×116=12;(2)(−23)×(−85)÷(﹣178)=−23×85×815=−128225.【点评】本题考查了有理数乘除法,熟记有理数乘除法则是解题的关键.35.计算:(1)(﹣134)×(﹣112)÷(﹣118). (2)(﹣1.25)×54×(﹣8)÷(−34).【分析】(1)先确定结果的符号,再计算乘除法;(2)先确定结果的符号,再计算乘除法.【解答】解:(1)原式=﹣134×112÷118 =−74×32×89=−73;(2)原式=﹣1.25×54×8÷34=−54×54×8×43=−503. 【点评】本题考查了有理数乘除法,有理数的除法要分情况灵活选择法则,若是整数与整数相除一般采用“同号得正,异号得负,并把绝对值相除”.如果有了分数,则采用“除以一个不等于0的数,等于乘这个数的倒数”,再约分.乘除混合运算时一定注意两个原则:①变除为乘,②从左到右.36.计算:(1)(−35)×(﹣312)÷(﹣114)÷3; (2)(﹣8)÷23×(﹣112)÷(﹣9). 【分析】各式利用除法法则把除法转化成乘法运算,通过约分即可得到结果.【解答】解:(1)(−35)×(﹣312)÷(﹣114)÷3=−35×72×45×13=−1425; (2)(﹣8)÷23×(﹣112)÷(﹣9)=﹣8×32×32×19=−2. 【点评】此题考查了有理数的乘除法,熟练掌握乘除法则是解本题的关键.37.计算:(1)(−517)×(−34)÷9×(﹣325); (2)(−72)÷(﹣114)÷3×(−35);(3)(−320)×246÷910×(−341). 【分析】(1)先将带分数化成假分数,再根据有理数的乘法法则和除法法则求解即可;(2)先将带分数化成假分数,再根据有理数的乘法法则和除法法则求解即可;(3)根据有理数的乘法法则和除法法则求解即可.【解答】解:(1)原式=−517×(−34)×19×(−175)=[(−517)×(−175)]×[(−34)×19]=1×(−112)=−112; (2)原式=(−72)×(−45)×13×(−35)=﹣(72×45×13×35) =−1425; (3)原式=(−320)×246×109×(−341) =320×109×341×246=16×341×246=3246×246 =3.【点评】本题主要考查了有理数的乘除混合运算,掌握有理数的乘法和除法法则是解题的关键,注意运算顺序.38.(−73)÷(−79)+54×(−85).【分析】根据除以一个数等于乘以这个数的倒数,可把除法转化成乘法,根据有理数的乘法,可得答案.【解答】解:原式=(−73)×(−97)+54×(−85)=3+(﹣2)=1.【点评】本题考查了有理数的除法,先转化成乘法,再进行乘法运算,注意两数相乘同号得正,异号得负,再把绝对值相乘.39.计算:113×(−212+34)÷(−213).【分析】直接利用二次根式的乘除运算法则进行计算得出答案.【解答】解:原式=43×(−52+34)÷(−73)=43×(−104+34)×(−37) =43×(−74)×(−37)=1.40.计算:1.25×(25−215)+125÷6.【分析】把小数化为分数,利用乘法分配律计算,把除法转化为乘法,利用有理数的乘法法则计算,最后算加减即可.【解答】解:原式=54×25−54×215+125×16=12−16+25=1115.【点评】本题考查了有理数的混合运算,掌握乘法分配律a(b+c)=ab+ac是解题的关键,注意运算顺序.41.计算:(−73)÷(−76)+34×(−83).题型七有理数加减乘除混合运算【分析】首先将除法转化为乘法,然后按照有理数的乘法法则计算即可.【解答】解;原式=(−73)×(−67)+34×(−83)=2+(﹣2)=0.【点评】本题主要考查的是有理数的乘除运算,掌握有理数的乘法和除法法则是解题的关键.42.计算:(−72)×(16−12)×314÷(−12) 【分析】根据除以一个数等于乘以这个数的倒数,可转化成乘法运算,再根据乘法运算法则,可得答案.【解答】解:原式=(−72)×(−13)×314×(−2) =−12.【点评】本题考查了有理数的除法运算,除以一个数等于乘以这个数的倒数是解题关键.43.计算:(1)[1124−(38+16−34)×24]×(−15)(2)−5×(−115)+11×(−115)−3×(−225).【分析】(1)先把括号里面的利用乘法分配律进行计算,然后再次利用乘法分配律进行计算即可得解;(2)先把第三项整理,然后逆运用乘法分配律进行计算即可得解.【解答】解:(1)[1124−(38+16−34)×24]×(−15), =[1124−(38×24+16×24−34×24)]×(−15), =[2524−(9+4﹣18)]×(−15),=(2524+5)×(−15), =2524×(−15)+5×(−15), =−524−1,=−2924;(2)﹣5×(−115)+11×(−115)﹣3×(−225),=﹣5×(−115)+11×(−115)﹣6×(−115),=(﹣5+11﹣6)×(−11 5),=0.【点评】本题考查了有理数的乘法,利用运算定律可以使计算更加简便,难点在于(2)的整理.44.计算:(1)−1÷(−18)−3÷(−12);(2)−81÷13−13÷(−19).(3)−1+5÷(−16)×(−6);(4)(13−12)÷114÷110.【分析】(1)(2)(3)根据除以一个数等于乘以这数的倒数把除法转化为乘法运算,然后根据有理数的乘法运算法则和加法运算法则进行计算即可得解;(4)先算小括号里面的,再根据除以一个数等于乘以这数的倒数把除法转化为乘法运算并把带分数化为假分数,然后根据有理数的乘法运算法则进行计算即可得解.【解答】解:(1)﹣1÷(−18)﹣3÷(−12)=﹣1×(﹣8)﹣3×(﹣2)=8+6=14;(2)﹣81÷13−13÷(−19)=﹣81×3−13×(﹣9)=﹣243+3=﹣240;(3)﹣1+5÷(−16)×(﹣6)=﹣1+5×(﹣6)×(﹣6)=﹣1+180=179;(4)(13−12)÷114÷110=−16×45×10=−43.【点评】本题考查了有理数的除法,有理数的乘法,有理数的加减法运算,熟记运算法则和运算顺序是解题的关键,计算时要注意运算符号的处理.45.计算.(1)1.25÷(−0.5)÷(−212);(2)(−45)÷[(−13)÷(−25)];(3)(13−56+79)÷(−118);(4)−32324÷(−112). 【分析】(1)先把小数化为分数,再把除法运算化为乘法运算,然后约分即可;(2)要算中括号内的除法运算;(3)先把除法运算化为乘法运算,然后利用乘法的分配律计算;(4)先确定符合,再把带分数写成整数与真分数的和,然后利用乘法的分配律计算.【解答】解:(1)原式=54×(﹣2)×(−25)=1;(2)原式=﹣45÷(13×52) =﹣45÷56=﹣45×65=﹣54;(3)原式=(13−56+79)×(﹣18) =13×(﹣18)−56×(﹣18)+79×(﹣18)=﹣6+15﹣14=﹣5;(4)原式=(3+2324)×12 =3×12+2324×12 =36+232 =36+1112 =4712. 【点评】本题考查了有理数除法:除以一个不等于0的数,等于乘这个数的倒数.46.计算:(1)75×(13−12)×37÷54; (2)(56−37+13−914)÷(−142).【分析】(1)先计算括号中的运算,以及除法化为乘法运算,约分即可得到结果;(2)原式先将除法运算化为乘法运算,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=75×(−16)×37×45=−225; (2)原式=(56−37+13−914)×(﹣42)=﹣35+18﹣14+27=﹣4. 【点评】此题考查了有理数的乘法与除法,熟练掌握运算法则是解本题的关键.题型八 利用“倒数法”解决问题47.数学老师布置了一道思考题“计算:(−112)÷(13−56)”,小明仔细思考了一番,用了一种不同的方法解决了这个问题. 小明的解法:原式的倒数为(13−56)÷(−112)=(13−56)×(﹣12)=﹣4+10=6, 所以(−112)÷(13−56)=16. (1)请你判断小明的解答是否正确,并说明理由.(2)请你运用小明的解法解答下面的问题.计算:(−124)÷(13−16+38). 【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【解答】解:(1)正确,理由为:一个数的倒数的倒数等于原数;(2)原式的倒数为(13−16+38)÷(−124)=(13−16+38)×(﹣24)=﹣8+4﹣9=﹣13, 则(−124)÷(13−16+38)=−113. 【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.48.请你认真阅读下列材料计算:(−130)÷(23−110+16−25) 解法1:原式=(−130)÷[23+16−(110+25)]=(−130)÷(56−12)=(−130)×3=−110 解法2:将原式的除数与被除数互换(23−110+16−25)÷(−130)=(23−110+16−25)×(﹣30)=﹣20+3﹣5+12=﹣10 故原式=−110根据你对所提供的材料的理解,选择适当的方法计算下面的算式:(−142)÷(−16−314+23−47)【分析】法1:原式先计算括号中的加减运算,再计算除法运算即可得到结果;法2:将原式除数与被除数互换求出值,即可确定出原式的值.【解答】解:法1:原式=(−142)÷[23−16−(314+47)]=(−142)÷(12−1114)=(−142)÷(−27) =(−142)×(−72)=112; 法2:将原式的除数与被除数互换,(−16−314+23−47)÷(−142) =(−16−314+23−47)×(﹣42) =7+9﹣28+24=12,则原式=112.【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.49.(2022秋•徐州月考)认真阅读材料后,解决问题:计算:130÷(23−110+16−25). 分析:利用通分计算23−110+16−25的结果很麻烦,可以采用以下方法进行计算. 解:原式的倒数是(23−110+16−25)÷130 =(23−110+16−25)×30 =(23×30−110×30+16×30−25×30=20﹣3+5﹣12=10,故原式=110. 仿照阅读材料计算:(−120)÷(−14−25+910−32).【分析】仿照所给的求解方式进行运算即可.【解答】解:原式的倒数是:(−14−25+910−32)÷(−120)=(−14−25+910−32)×(﹣20)=14×20+25×20−910×20+32×20 =5+8﹣18+30=25,故原式=125. 【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.50.阅读材料:计算130÷(23−110+16−25) 分析:利用通分计算23−110+16−25的结果很麻烦,可以采用以下方法进行计算 解:原式的倒数是:=(23−110+16−25)×30 =(23−110+16−25)×30 =23×30−110×30+16×30−25×30=10故原式=110请你根据对所提供材料的理解,选择合适的方法计算:148÷(112−316+524+23) 【分析】仿照阅读材料中的方法求出原式的值即可.【解答】解:原式的倒数是:(112−316+524+23)÷148 =(112−316+524+23)×48=4﹣9+10+32=37,故原式=137. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
2019—2020年人教版七年级数学第一学期《有理数的乘除法》同步测试题及答案.docx
1.4有理数的乘除法同步测试题一、选择题1.下列说法正确的是( )A .若ab>0,则a>0,b>0B .若ab =0,则a =0,b =0C .若ab>0,且a +b>0,则a>0,b>0D .若a 为任意有理数,则a(-a)<02.两个有理数的商是负数,则这两个数一定是( )A .都是负数B .都是正数C .两数异号D .两数同号3.若a <c <0<b ,则abc 与0的大小关系是( )A .abc <0B .abc =0C .abc >0D .无法确定4.如图,数轴上a ,b 两点所表示的两数的商为( )A .1B .-1C .0D .25.计算1357×316,最简便的方法是( ) A .(13+57)×316 B .(14-27)×316C .(16-227)×316 D .(10+357)×3166.下列说法正确的是( )A .零除以任何数都等于零B .1除以一个数就等于乘这个数的倒数C .一个不等于零的有理数除以它的相反数等于-1D .两数相除,商一定小于被除数7.如果ab =0,那么一定有( )A .a =b =0B .a =0C .a ,b 中至少有一个为0D .a ,b 中最多一个为08.下列各式中积的符号为正的有( )①(-17)×16;②(-0.03)×(-1.8);③45×(+1.1);④(-183)×(-21);⑤(-2016)×0.A .2个B .3个C .4个D .5个9.若a 为有理数,且|a|a=-1,则a 为( ) A .正数 B .负数 C .非正数 D .非负数10.下列说法错误的有( )①几个不等于零的有理数相乘,其积一定不是零;②几个有理数相乘,只要其中有一个因数是零,其积一定是零;③几个有理数相乘,积的符号由负因数的个数决定;④三个有理数相乘,积为负,则这三个数都是负数.A .0个B .1个C .2个D .3个11.下列计算:①-21÷3=-7;②13÷(-5)=3×(-5)=-15;③-2÷(-6)=13;④(-0.75)÷(-0.25)=-3.其中正确的有( )A .1个B .2个C .3个D .4个12.如果a +b <0,b a>0,那么下列结论正确的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >013.如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是( )A .ab >0B .a +b <0C .(b -1)(a +1)>0D .(b -1)(a -1)>0二、填空题14.若a >0,b >0,则ab____0;若a >0,b <0,则ab____0;若a <0,b >0,则ab____0;若a <0,b<0,则ab____0.15.若a >0,则|a|a =____,若a <0,则|a|a=______. 16.有理数a ,b ,c ,d 在数轴上对应的点的位置如图所示,则abc________0,abcd________0.(填“>”或“<”)17. (-47)×(-35)×(-23)×(-12)积的符号是_______ _.18.在算式每一步后面填上这一步应用的运算律:[(8×4)×125-5]×25=[(4×8)×125-5]×25(____________)=[4×(8×125)-5]×25(____________)=4 000×25-5×25.(____________)19.在如图所示的运算流程中,若输入的数为3,则输出的数为________.20.计算:(1-2)×(2-3)×…×(2 013-2 014)×(2 014-2 015)=________.三、解答题(1)14×(-16)×(-45)×(-114);(2)(-81)÷214×49÷(-16);(3)(-12)×(-23)×(-3);(4)317×(317÷713)×722÷1121.22.已知|a|=4,|b|=5,且ab <0,求a +b 的值.23.若a ,b 都是非零的有理数,则a |a|+b |b|+ab |ab|的值是多少?参考答案一、选择题1.下列说法正确的是( C )A .若ab>0,则a>0,b>0B .若ab =0,则a =0,b =0C .若ab>0,且a +b>0,则a>0,b>0D .若a 为任意有理数,则a(-a)<02. 两个有理数的商是负数,则这两个数一定是( C )A .都是负数B .都是正数C .两数异号D .两数同号3.若a <c <0<b ,则abc 与0的大小关系是( C )A .abc <0B .abc =0C .abc >0D .无法确定4.如图,数轴上a ,b 两点所表示的两数的商为( B )A .1B .-1C .0D .25. 计算1357×316,最简便的方法是( C ) A .(13+57)×316 B .(14-27)×316C .(16-227)×316 D .(10+357)×3166. 下列说法正确的是( C )A .零除以任何数都等于零B .1除以一个数就等于乘这个数的倒数C .一个不等于零的有理数除以它的相反数等于-1D .两数相除,商一定小于被除数7.如果ab =0,那么一定有( C )A .a =b =0B .a =0C .a ,b 中至少有一个为0D .a ,b 中最多一个为08.下列各式中积的符号为正的有( B )①(-17)×16;②(-0.03)×(-1.8);③45×(+1.1);④(-183)×(-21);⑤(-2016)×0.A .2个B .3个C .4个D .5个9.若a 为有理数,且|a|a=-1,则a 为( B ) A .正数 B .负数 C .非正数 D .非负数10.下列说法错误的有(B )①几个不等于零的有理数相乘,其积一定不是零;②几个有理数相乘,只要其中有一个因数是零,其积一定是零;③几个有理数相乘,积的符号由负因数的个数决定;④三个有理数相乘,积为负,则这三个数都是负数.A .0个B .1个C .2个D .3个11.下列计算:①-21÷3=-7;②13÷(-5)=3×(-5)=-15;③-2÷(-6)=13;④(-0.75)÷(-0.25)=-3.其中正确的有( B )A .1个B .2个C .3个D .4个12.如果a +b <0,b a>0,那么下列结论正确的是( B ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >013.如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是( C )A .ab >0B .a +b <0C .(b -1)(a +1)>0D .(b -1)(a -1)>0二、填空题14.若a >0,b >0,则ab__>__0;若a >0,b <0,则ab__<__0;若a <0,b >0,则ab__<__0;若a <0,b <0,则ab__>__0.15.若a >0,则|a|a =__1__,若a <0,则|a|a=__-1____.16.有理数a ,b ,c ,d 在数轴上对应的点的位置如图所示,则abc___>_____0,abcd____>____0.(填“>”或“<”)17. (-47)×(-35)×(-23)×(-12)积的符号是____+___ _.18.在算式每一步后面填上这一步应用的运算律:[(8×4)×125-5]×25=[(4×8)×125-5]×25(__乘法交换律__________)=[4×(8×125)-5]×25(____乘法结合律________)=4 000×25-5×25.(_______乘法分配律_____)19.在如图所示的运算流程中,若输入的数为3,则输出的数为___-2_____.20. 计算:(1-2)×(2-3)×…×(2 013-2 014)×(2 014-2 015)=____1____.[三、解答题(1)14×(-16)×(-45)×(-114); 解:原式=-(14×16×45×54)=-4.(2)(-81)÷214×49÷(-16);解:原式=81×49×49×116=1.(3)(-12)×(-23)×(-3); 解:原式=-(12×23×3)=-1.(4)317×(317÷713)×722÷1121. 解:原式=227×37×722×2122=922.22.已知|a|=4,|b|=5,且ab <0,求a +b 的值.解:∵|a|=4,|b|=5,∴a =±4,b =±5,∵ab <0,∴a =4,b =-5或a =-4,b =5,∴a +b =4+(-5)=-1或a +b =(-4)+5=1,即a +b 的值为-1或123.若a ,b 都是非零的有理数,则a |a|+b |b|+ab |ab|的值是多少? 当a>0,b<0时,原式=a a +b b +ab ab=1+1+1=3; 当a>0,b>0时,原式=a a +b -b +ab -ab=1+(-1)+(-1)=-1; 当a<0,b>0时,原式=a -a +b b +ab -ab=-1+1+(-1)=-1; 当a<0,b<0时,原式=a -a +b -b +ab ab=-1+(-1)+1=-1. 即a |a|+b |b|+ab |ab|的值为3或-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的运算测试题
一、填空题:
1、5
22-的倒数是 ;-0.2的倒数是 ,负倒数是 。
2、若0<a b ,0<b ,则a 0。
若0<c ab ,0>ac ,则b 0。
3、一个数的相反数是-5,则这个数的倒数是 。
4、若a ·(-5)=5
8,则a = 5、绝对值大于1,小于4的所有整数的积是______;绝对值不大于5的所有负整数的积是_____
6、如果5a>0, 3b<0, 7c<0,那么abc ____0.
二、选择题
1、下列说法正确的是( )
A 、有理数a 的倒数是
B 、0乘以任何数都得0
C 、0除以任何数都等于0
D 、倒数等于本身的数是1 2、下列运算有错误的有( )
A 、2–8=2+(–8)
B 、–5÷(–2
1)=–5×(–2) C 、71÷(–7)=7×(–7) D 、37÷4×41=37×41×4
1 3、下列结论错误的是( )
A 、0没有倒数
B 、绝对值和倒数都是它本身的数是1
C 、互为相反数的两数相乘,积为负数
D 、 互为倒数的两个数同号
4、下列说法正确的是( )
A .异号两数相乘,取绝对值较大的因数的符号
B .同号两数相乘,符号不变
C .两数相乘,如果积为负数,那么这两个因数异号
D .两数相乘,如果积为正数,那么这两个因数都是正
5、已知两个有理数a,b ,如果ab <0,且a+b <0,那么( )
A 、a >0,b >0
B 、a <0,b >0
C 、a,b 异号
D 、a,b 异号且负数的绝对值较大
6.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )
A.一定为正
B.一定为负
C.为零
D. 可能为正,也可能为负
7.如果三个数的积为正数,和也为正数,那么这三个数不可能是( )
A .三个都为正数
B .三个数都是负数
C .一个是正数,两个是负数
D .不能确定
8.五个数相乘,积为负数,则其中正因数的个数为( )
A .0
B .2
C .4
D .0,2或4
三、解答题: ⑴)5(252449-⨯ ⑵12
5)5.2()2.7()8(⨯-⨯-⨯-
(3(-81)÷(+314)×(-49)÷(-1113
)
(4)–601÷(31+41–51) (5) )48()6
143361121(-⨯-+--。
(6)34.075)13(317234.03213⨯--⨯+⨯-⨯-
6、若a,b 互为相反数,c,d 互为倒数,m 的绝对值是1,求m cd b a 2009)(-+的值。
8.某地气象统计资料表明,高度每增加1000米,气温就降低大约6℃,现在地面气温是37℃.求10000米高空气温.。