第13章5动量与能量的综合应用
高中物理动量守恒定律动量守恒与能量守恒的综合应用应用力学的大观点解题物理
(1)物块 C 的质量 mC; (2)墙壁对物块 B 的弹力在 4 s 到 12 s 的时间内对 B 的冲量 I 的大小和方向; (3)B 离开墙后的过程中弹簧具有的最大弹性势能 Ep.
12/13/2021
【解析】 (1)由图知,C 与 A 碰前速度为 v1=9 m/s,碰后 速度为 v2=3 m/s,C 与 A 碰撞过程动量守恒,
12/13/2021
一般来说,用动量观点和能量观点比用力的观点解题简便, 因此在解题时优先选用这两种观点;但在涉及加速度问题时就必 须用力的观点.有些问题,用到的观点不止一个,特别像高考中 的一些综合题,常用动量观点和能量观点联合求解,或用动量观 点与力的观点联合求解,有时甚至三种观点都采用才能求解,因 此,三种观点不要绝对化.
12/13/2021
四、力学“三大观点”灵活选择 研究某一物体所受力的瞬时作用与物体运动状态的关系(或 涉及加速度)时,一般用力的观点解决问题;研究某一物体受到 力的持续作用发生运动状态改变时,一般选用动量定理,涉及功 和位移时优先考虑动能定理;若研究的对象为一物体系统,且它 们之间有相互作用时,优先考虑两大守恒定律,特别是出现相对 路程的则优先考虑能量守恒定律.
★★★★★
题型六:动量、能量、平抛综合
★ห้องสมุดไป่ตู้★
题型七:动量守恒、能量守恒、动能定理综合
★★★★
12/13/2021
题型透析
12/13/2021
动量守恒、能量守恒综合 例 1 质量 m1=1 kg 的木板放在光滑水平地面上,质量 m2 =0.2 kg 的木块置于木板的右端,木板与木块之间的动摩擦因数 μ=0.3.某时刻二者同时开始运动,木板的初速度 v01=3 m/s,水 平向右,木块的初速度 v02=1 m/s,水平向左,如图所示.已知 重力加速度 g=10 m/s2,小木块可视为质点.求:
动量与能量综合专题
动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。
当两个或多个物体相互作用时,它们的总动量保持不变。
这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。
在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。
2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。
3、方向:动量是矢量,具有方向性。
在计算动量的变化时,需要考虑动量的方向。
二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。
这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。
在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。
2、转化与转移:能量的转化和转移是不同的。
转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。
3、方向:能量的转化和转移是有方向的。
在计算能量的变化时,需要考虑能量的方向。
三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。
当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。
因此,在解决复杂问题时,需要综合考虑动量和能量的因素。
例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。
这些情况的发生不仅与物体的动量有关,还与物体的能量有关。
如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。
因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。
四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。
动量与能量的综合应用PPT演示文稿
1 1 2 2 (2m)v2 (2m)v3 (2m) g (2l2 ) 2 2
由动能定理有
3
4
A
4.后A、B开始分离,A单独向右滑到P点停下, 由以上各式,解得
1 2 mv 3 mgl 1 2
v0 g (10l1 16l2 )
B l2
l1
P
2.用轻弹簧相连的质量均为2kg的A、B两物块 都以 的速度在光滑的水平地面 上运动,弹簧处于原长,质量为4kg的物体C 静止在前方,如图3所示,B与C碰撞后二者 粘在一起运动。求:在以后的运动中
研究某一时刻(或某一位置)的动力学 问题应使用牛顿第二定律,研究某一个 过程的动力学问题,若物体受恒力作用, 且又直接涉及物体运动过程中的加速度 问题,应采用运动学公式和牛顿第二定 律求解。
解决动力学问题的基本观点之二:
动量观点(包括动量定理和动量守恒定律) 1、对于不涉及物体运动过程中的加速度而 涉及物体运动时间的问题,特别对于打击一类 的问题,因时间短且冲力随时间变化,则应用 动量定理求解。
W其他=△E W重=-△Ep W弹=-△Ep′
重力的功 弹力的功
弹力势能
考点一 动能定理和动量定理的比较 动能定理反映的是力在空间上的积累,引起的是动能的 变化,是一个标量式;动量定理反映的是力在时间上的积 累,引起的是动量的变化,是一个矢量式,也可以说物体 在 某个方向上受到冲量的作用,则引起的是该方向上的动 量变化量.当然高中物理中一般遇见的是在一维情况下 的问题
考点二 动量守恒定律和机械能守恒定律的比较 两个守恒定律所研究的对象都是相互作用的物体所构成 的系统,且研究的都是某一个物理过程.但两者守恒的条 件不同:系统动量是否守恒,决定于系统所受合外力是否 为零;而机械能是否守恒,则决定于是否有重力以外的力(不 管是内力还是外力)做功.所以,在利用动量守恒定律处理 问题时要着重分析系统的受力情况,是否满足合外力为零; 在利用机械能守恒定律处理问题时,除了分析各力,还得分析各 力的做功情况,看是否有重力以外的力做功.所以对于一个系统所 发生的某一过程, 动量是否守恒、机械能是否守恒,两者没有必然联系,可以 出现各种不同的情况.另外,动量守恒定律为矢量表达式, 应用时必须注意方向,且 有时某个方向上合外力为零则该方向上的动量守恒;机械能 守恒定律则是标量式,对功或能量只是代数和而已.
专题 力学三大观点的综合应用
力学三大观点综合应用高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题1 动量和能量观点在力学中的应用例1 (2014·安徽·24)在光滑水平地面上有一凹槽A,中央放一小物块B,物块与左右两边槽壁的距离如图1所示,L为 m,凹槽与物块的质量均为m,两者之间的动摩擦因数μ为.开始时物块静止,凹槽以v0=5 m/s的初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g取10 m/s2.求:图1(1)物块与凹槽相对静止时的共同速度;(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞的次数;(3)从凹槽开始运动到两者相对静止所经历的时间及该时间内凹槽运动的位移大小.答案(1) m/s (2)6次(3)5 s m解析(1)设两者间相对静止时速度为v,由动量守恒定律得mv0=2mvv= m/s.(2)解得物块与凹槽间的滑动摩擦力F f=μF N=μmg设两者相对静止前相对运动的路程为s1,由功能关系得-F f·s1=12(m+m)v2-12mv20解得s1= m已知L=1 m,可推知物块与右侧槽壁共发生6次碰撞.(3)设凹槽与物块碰前的速度分别为v1、v2,碰后的速度分别为v1′、v2′.有mv1+mv2=mv1′+mv2′1 2mv21+12mv22=12mv1′2+12mv2′2得v1′=v2,v2′=v1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如图所示,根据碰撞次数可分为13段,凹槽、物块的v—t图象在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则v=v0+ata=-μg解得t=5 s凹槽的v—t图象所包围的阴影部分面积即为凹槽的位移大小s2.(等腰三角形面积共分13份,第一份面积为 L ,其余每两份面积和均为L .)s 2=12(v 02)t +,解得s 2= m.1.如图2所示,倾角45°高h 的固定斜面.右边有一高3h2的平台,平台顶部左边水平,上面有一质量为M 的静止小球B ,右边有一半径为h 的14圆弧.质量为m 的小球A 从斜面底端以某一初速度沿斜面上滑,从斜面最高点飞出后恰好沿水平方向滑上平台,与B 发生弹性碰撞,碰后B 从圆弧上的某点离开圆弧.所有接触面均光滑,A 、B 均可视为质点,重力加速度为g .图2(1)求斜面与平台间的水平距离s 和A 的初速度v 0; (2)若M =2m ,求碰后B 的速度;(3)若B 的质量M 可以从小到大取不同值,碰后B 从圆弧上不同位置脱离圆弧,该位置与圆心的连线和竖直方向的夹角为α.求cos α的取值范围.答案 (1) h 2gh (2)23gh (3)23≤cos α≤1解析 (1)设小球A 飞上平台的速度为v 1,小球由斜面顶端飞上平台,可看成以速度v 1反向平抛运动,由平抛运动规律得:12h =12gt 2,s =v 1t ,tan 45°=gtv 1解得:v 1=gh ,s =h由机械能守恒定律得:12mv 20=32mgh +12mv 21解得:v 0=2gh .(2)设碰后A 、B 的速度分别为v A 、v B ,由动量、能量守恒得mv 1=mv A +Mv B12mv 21=12mv 2A +12Mv 2B v B =2m m +M v 1=23gh .(3)由(2)可知,当M ≪m 时v B ≈2gh >gh 从顶端飞离则cos α=1 当M ≫m 时,v B =0,设B 球与圆弧面在C 处分离,则:Mgh (1-cos α)=12Mv 2CMg cos α=M v 2C h ,cos α=23,故23≤cos α≤11.弄清有几个物体参与运动,并划分清楚物体的运动过程. 2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析. 4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题2 应用动力学、能量、动量解决综合问题例2 如图3所示,在光滑的水平面上有一质量为m =1 kg 的足够长的木板C ,在C 上放置有A 、B 两物体,A 的质量m A =1 kg ,B 的质量为m B =2 、B 之间锁定一被压缩了的轻弹簧,弹簧储存的弹性势能E p =3 J ,现突然给A 、B 一瞬时冲量作用,使A 、B 同时获得v 0=2 m/s 的初速度,速度方向水平向右,且同时弹簧由于受到扰动而解除锁定,并在极短的时间内恢复原长,之后与A 、B 分离.已知A 和C 之间的摩擦因数为μ1=,B 、C 之间的动摩擦因数为μ2=,且滑动摩擦力略小于最大静摩擦力.求:图3(1)弹簧与A 、B 分离的瞬间,A 、B 的速度分别是多大(2)已知在C 第一次碰到右边的固定挡板之前,A 、B 和C 已经达到了共同速度,求在到达共同速度之前A 、B 、C 的加速度分别是多大及该过程中产生的内能为多少(3)已知C 与挡板的碰撞无机械能损失,求在第一次碰撞后到第二次碰撞前A 在C 上滑行的距离 审题突破 (1)根据动量守恒和能量守恒列方程组求A 、B 分离时的速度;(2)由牛顿第二定律求三者的加速度,该过程中产生的内能等于系统损失的机械能,只需求出三者达到的共同速度便可以由能量守恒求解;(3)根据牛顿第二定律和运动学公式联立求解. 答案 (1)0 3 m/s (2) J m/s (3) m解析 (1)在弹簧弹开两物体的过程中,由于作用时间极短,对A 、B 和弹簧组成的系统由动量和能量守恒定律可得:(m A +m B )v 0=m A v A +m B v BE p +12(m A +m B )v 20=12m A v 2A +12m B v 2B联立解得:v A =0,v B =3 m/s.(2)对物体B 有:a B =μ2g =1 m/s 2,方向水平向左 对A 、C 有:μ2m B g =(m A +m )a 又因为:m A a <μ1m A g故物体A 、C 的共同加速度为a =1 m/s 2,方向水平向右对A 、B 、C 整个系统来说,水平方向不受外力,故由动量和能量守恒定律可得:m B v B =(m A +m B +m )v Q =12m B v 2B -12(m A +m B +m )v 2 解得:Q = J ,v = m/s.(3)C 和挡板碰撞后,先向左匀减速运动,速度减至0后向右匀加速运动,分析可知,在向右加速过程中先和A 达到共同速度v 1,之后A 、C 再以共同的加速度向右匀加速,B 一直向右匀减速,最后三者达共同速度v 2后做匀速运动.在此过程中由于摩擦力做负功,故C 向右不能一直匀加速至挡板处,所以和挡板再次碰撞前三者已经达共同速度.a A =μ1g =2 m/s 2,a B =μ2g =1 m/s 2 μ1m A g +μ2m B g =ma C ,解得:a C =4 m/s 2 v 1=v -a A t =-v +a C t解得:v 1= m/st = s x A 1=v +v 12t = m ,x C 1=-v +v 12t =- m故A 、C 间的相对运动距离为x AC =x A 1+|x C 1|= m.2.(2014·广东·35)如图4所示,的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿光滑轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案 (1)3 m/s 9 J (2)10 m/s≤v 1≤14 m/s 17 J解析 (1)设P 1和P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:mv 1=2mv 2①解得:v 2=v 12=3 m/s碰撞过程中损失的动能为:ΔE =12mv 21-12×2mv 22②解得ΔE =9 J.(2)P 滑动过程中,由牛顿第二定律知 2ma =-2μmg③可以把P 从A 点运动到C 点再返回B 点的全过程看作匀减速直线运动,根据运动学公式有3L =v 2t +12at2④由①③④式得v 1=6L -at2t①若2 s 时通过B 点,解得:v 1=14 m/s ②若4 s 时通过B 点,解得:v 1=10 m/s 故v 1的取值范围为:10 m/s ≤v 1≤14 m/s设向左经过A 点的速度为v A ,由动能定理知 12×2mv 2A -12×2mv 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时的动能最大,E =17 J.根据题中涉及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果是碰撞并涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律.知识专题练 训练6题组1 动量和能量的观点在力学中的应用1.如图1所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,并恰好回到O 点(A 、B 均视为质点).试求:图1(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,试问:v 为多大时物块A 恰能通过圆弧轨道的最高点答案 (1)123gx 0 (2)14mgx 0 (3)20+43gx 0解析 (1)设A 与B 相碰前A 的速度为v 1,A 与B 相碰后共同速度为v 2由机械能守恒定律得3mgx 0 sin 30°=12mv 21由动量守恒定律得mv 1=2mv 2解以上二式得v 2=123gx 0.(2)设A 、B 相碰前弹簧所具有的弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12·2mv 22=2mgx 0 sin 30°解得E p =14mgx 0.(3)设物块A 与B 相碰前的速度为v 3,碰后A 、B 的共同速度为v 4 12mv 2+3mgx 0 sin 30°=12mv 23 mv 3=2mv 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则12·2mv 24+E p =12·2mv 25+2mgx 0sin 30° 此后A 继续上滑到半圆轨道最高点时速度为v 6,则12mv 25=12mv 26+2mgx 0 sin 30°+mgR (1+sin 60°)在最高点有mg =mv26R联立以上各式解得v =20+43gx 0.2.如图2所示,质量为m 1的滑块(可视为质点)自光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点,A 、B 的高度差为h 1= m .传导轮半径很小,两个轮之间的距离为L = m .滑块与传送带间的动摩擦因数μ=.右端的轮子上沿距离地面高度h 2= m ,g 取10 m/s 2.图2(1)若槽的底端没有滑块m 2,传送带静止不运转,求滑块m 1滑过C 点时的速度大小v ;(结果保留两位有效数字)(2)在m 1下滑前将质量为m 2的滑块(可视为质点)停放在槽的底端.m 1下滑后与m 2发生弹性碰撞,且碰撞后m 1速度方向不变,则m 1、m 2应该满足什么条件(3)满足(2)的条件前提下,传送带顺时针运转,速度为v = m/s.求出滑块m 1、m 2落地点间的最大距离(结果可带根号).答案 (1) m/s (2)m 1>m 2 (3)(6215-3) m解析 (1)滑块m 1滑到B 点有m 1gh 1=12m 1v 2解得v 0=5 m/s滑块m 1由B 滑到C 点有-μm 1gL =12m 1v 2-12m 1v 2解得v = m/s.(2)滑块m 2停放在槽的底端,m 1下滑并与滑块m 2弹性碰撞,则有m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22 m 1速度方向不变即v 1=m 1-m 2m 1+m 2v 0>0则m 1>m 2.(3)滑块经过传送带作用后做平抛运动h 2=12gt 2当两滑块速度相差最大时,它们的水平射程相差最大,当m 1≫m 2时,滑块m 1、m 2碰撞后的速度相差最大,经过传送带后速度相差也最大 v 1=m 1-m 2m 1+m 2v 0=1-m 2m 11+m 2m 1v 0≈v 0= m/sv 2=2m 1m 1+m 2v 0=21+m 2m 1v 0≈2v 0= m/s滑块m 1与传送带同速度,没有摩擦,落地点射程为x 1=v 1t = m滑块m 2与传送带发生摩擦,有-μm 2gL =12m 2v 2′2-12m 2v 22解得v 2′=221 m/s落地点射程为x 2=v 2′t =6215mm 2、m 1的水平射程相差最大值为Δx =(6215-3) m. 题组2 应用动力学观点、能量观点、动量观点解决综合问题3.如图3所示,质量M =4 kg 的平板小车停在光滑水平面上,车上表面高h 1= m .水平面右边的台阶高h 2= m ,台阶宽l = m ,台阶右端B 恰好与半径r =5 m 的光滑圆弧轨道连接,B 和圆心O 的连线与竖直方向夹角θ=53°,在平板小车的A 处有质量m 1=2 kg 的甲物体和质量m 2=1 kg 的乙物体紧靠在一起,中间放有少量炸药(甲、乙两物体都可以看作质点).小车上A 点左侧表面光滑,右侧粗糙且动摩擦因数为μ=.现点燃炸药,炸药爆炸后两物体瞬间分开,甲物体获得5 m/s 的水平初速度向右运动,离开平板车后恰能从光滑圆弧轨道的左端B 点沿切线进入圆弧轨道.已知车与台阶相碰后不再运动(g 取10 m/s 2,sin 53°=,cos 53°=.求:图3(1)炸药爆炸使两物体增加的机械能E ; (2)物体在圆弧轨道最低点C 处对轨道的压力F ; (3)平板车上表面的长度L 和平板车运动位移s 的大小. 答案 (1)75 J (2)46 N ,方向竖直向下 (3)1 m 解析 (1)甲、乙物体在爆炸瞬间动量守恒:m 1v 1-m 2v 2=0E =12m 1v 21+12m 2v 22=75 J.(2)设甲物体平抛到B 点时,水平方向速度为v x ,竖直分速度为v yv y =2g h 1-h 2=4 m/sv x =v ytan θ=3 m/s合速度为:v B =5 m/s物体从B 到C 过程中:m 1gr (1-cos θ)=12m 1v 2C -12m 1v 2BF N -m 1g =m 1v2C rF N =46 N由牛顿第三定律可知:F =F N =46 N ,方向竖直向下. (3)甲物体平抛运动时间:t =v yg= s 平抛水平位移:x =v x t = m > m甲物体在车上运动时的加速度为:a 1=μg =2 m/s 2甲物体在车上运动时间为:t 1=v 0-v xa 1=1 s甲物体的对地位移:x 1=12(v 0+v x )t 1=4 m甲物体在车上运动时,车的加速度为:a 2=μm 1g M=1 m/s 2甲离开车时,车对地的位移:x 2=12a 2t 21= m车长为:L =2(x 1-x 2)=7 m 车的位移为:s =x 2+(x -l )=1 m.4.如图4所示,光滑的水平面AB (足够长)与半径为R = m 的光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点的右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m/s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1=3 kg ,乙的质量为m 2=1 kg ,甲、乙均静止在光滑的水平面上.现固定乙球,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为,重力加速度g 取10 m/s 2,甲、乙两物体可看做质点.图4(1)求甲球离开弹簧时的速度.(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离.(3)甲、乙均不固定,烧断细线以后,求甲和乙能否再次在AB 面上水平碰撞若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因.答案 (1)4 3 m/s (2)12 m (3)甲、乙会再次碰撞,碰撞时甲的速度为2 3 m/s ,方向水平向右,乙的速度为63m/s ,方向水平向左解析 (1)甲离开弹簧时的速度大小为v 0,运动至D 点的过程中机械能守恒: 12m 1v 20=m 1g ·2R +12m 1v 2D , 在最高点D ,由牛顿第二定律,有2m 1g =m 1v2D R联立解得:v 0=4 3 m/s.(2)甲固定,烧断细线后乙的速度大小为v 乙, 由能量守恒:E p =12m 1v 20=12m 2v 2乙,得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙的速度为零时,在传送带滑行的距离最远, 最远距离为: s =v2乙2a=12 m <20 m即乙在传送带上滑行的最远距离为12 m. (3)甲、乙均不固定,烧断细线后, 设甲、乙速度大小分别为v 1、v 2, 甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2 甲、乙弹簧组成的系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22解得:v 1=2 3 m/s ,v 2=6 3 m/s之后甲沿轨道上滑,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h = m < m则甲上滑不到同圆心等高位置就会返回,返回AB 面上时速度大小仍然是v 2=2 3 m/s乙滑上传送带,因v 2=6 3 m/s <12 m/s ,则乙先向右做匀减速运动,后向左匀加速.由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为2 3 m/s ,方向水平向右,乙的速度为6 3 m/s ,方向水平向左.。
动量和能量的综合应用 板块模型课件
原理
动量定理描述了物体动量的变化 与其所受力的关系。
公式
Ft = Δp,其中F表示力的大小,t 表示力的作用时间,Δp表示动量 的变化量。
能量定理的原理和公式
原理
能量定理描述了系统能量的转化和守 恒关系。
公式ห้องสมุดไป่ตู้
E = E0 + ΔE,其中E表示系统的总能 量,E0表示初始能量,ΔE表示能量的 变化量。
动量和能量在板块模型中的综合应用
动量与能量的相互转化
在板块模型中,物体的动量和能量可以 相互转化。例如,在碰撞过程中,物体 的动能可能转化为内能或势能,反之亦 然。通过分析动量和能量的变化,可以 深入了解物体的相互作用过程。
VS
动量和能量的同时分析
在解决板块模型问题时,通常需要同时考 虑动量和能量的综合应用。通过结合动量 定理和能量守恒定律,可以更全面地分析 物体的运动过程和相互作用效果。
04
板块模型的实例分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
实例一:汽车碰撞分析
总结词
汽车碰撞分析是板块模型的重要应用之一,通过分析碰撞过程中动量和能量的变化,可以更好地理解碰撞的物理 机制,为汽车安全设计提供理论支持。
详细描述
在汽车碰撞分析中,板块模型可以用来模拟汽车在碰撞过程中的运动状态和受力情况。通过分析碰撞前后的动量 和能量变化,可以评估碰撞对车辆和乘员的影响,从而优化汽车的结构设计,提高汽车的安全性能。
板块模型可以模拟地震发 生的机制和过程,为地震 预测提供理论支持。
地质构造分析
通过板块模型可以分析地 壳运动和地质构造的形成 与演化,有助于地质学研 究和资源勘探。
气候变化研究
2021高考物理统考二轮复习学案:专题复习篇 专题2 第讲 动量和能量的综合应用
动量和能量的综合应用[建体系·知关联][析考情·明策略]考情分析近几年高考对动量及动量守恒的考查多为简单的选择题形式;而动量和能量的综合性问题则以计算题形式命题,难度较大,常与曲线运动,带电粒子在电磁场中运动和导体棒切割磁感线相联系。
素养呈现1。
动量、冲量、动量定理2。
动量守恒的条件及动量守恒定律3.动力学、能量和动量守恒定律的应用素养落实1。
掌握与动量相关的概念及规律2.灵活应用解决碰撞类问题的方法3。
熟悉“三大观点”在力学中的应用技巧考点1| 动量定理和动量守恒定律冲量和动量定理(1)恒力的冲量可应用I=Ft直接求解,变力的冲量优先考虑应用动量定理求解,合外力的冲量可利用I=F合·t或I合=Δp求解。
(2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选取统一的正方向.[典例1](2020·武汉二中阶段测试)运动员在水上做飞行运动表演,如图所示,他操控喷射式悬浮飞行器将竖直送上来的水反转180°后向下喷出,令自己悬停在空中。
已知运动员与装备的总质量为90 kg,两个喷嘴的直径均为10 cm,重力加速度大小g=10 m/s2,水的密度ρ=1。
0×103kg/m3,则喷嘴处喷水的速度大约为( )A.2.7 m/s B.5.4 m/sC.7。
6 m/s D.10。
8 m/s[题眼点拨] ①“悬停在空中”表明水向上的冲击力等于运动员与装备的总重力。
②“水反转180°”水速度变化量大小为2v。
B [两个喷嘴的横截面积均为S=错误!πd2,根据平衡条件可知每个喷嘴对水的作用力为F=错误!mg,取质量为Δm=ρSvΔt的水为研究对象,根据动量定理得FΔt=2Δmv,解得v=错误!≈5。
4 m/s,选项B正确.]动量和动量守恒定律(1)判断动量是否守恒时,要注意所选取的系统,注意区别系统内力与外力。
系统不受外力或所受合外力为零时,系统动量守恒。
热点专题系列(5) 动力学、动量和能量观点在力学中的应用
热点专题系列(五)动力学、动量和能量观点在力学中的应用热点概述:处理力学问题的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律)。
熟练应用三大观点分析和解决综合问题是本专题要达到的目的。
[热点透析]动量与动力学观点的综合应用1.解动力学问题的三个基本观点(1)力的观点:用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题。
(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题。
(3)动量观点:用动量定理和动量守恒观点解题,可处理非匀变速运动问题。
2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的动力学关系式,可用牛顿第二定律。
(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题。
(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和能量守恒定律(机械能守恒定律)去解决问题,但需注意所研究的问题是否满足守恒的条件。
(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量。
(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换,这种问题由于作用时间都极短,因此用动量守恒定律去解决。
(2020·湖北省七市州教科研协作体高三下学期5月联考)如图甲所示,在光滑水平面上有一小车,其质量M=2 kg,车上放置有质量m A=2 kg的木板A,木板上有可视为质点的物体B,其质量m B=4 kg。
已知木板A与小车间的动摩擦因数μ0=0.3。
A 、B 紧靠车厢前壁,A 的左端与小车后壁间的距离为x =2 m 。
现对小车施加水平向右的恒力F ,使小车从静止开始做匀加速直线运动,经过1 s 木板A 与车厢后壁发生碰撞,该过程中A 的速度—时间图象如图乙所示,已知重力加速度大小g =10 m/s 2,最大静摩擦力等于滑动摩擦力。
动量、动能定理、机械能守恒、能量守恒综合运用
图5-3-1动能、动量、机械能守恒 综合运用 动能定理的理解1.动能定理的公式是标量式,v 为物体相对于同一参照系的瞬时速度.2.动能定理的研究对象是单一物体,或可看成单一物体的物体系.3.动能定理适用于物体做直线运动,也适用于物体做曲线运动;适用于恒力做功,也适用于变力做功;力可以是各种性质的力,既可以同时作用,也可以分段作用.只要求出在作用的过程中各力所做功的总和即可.这些正是动能定理的优越性所在.4.若物体运动过程中包含几个不同的过程,应用动能定理时可以分段考虑,也可以将全过程视为一个整体来考虑.【例1】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G==αsinαμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ动能定理的应用技巧1.一个物体的动能变化ΔE k 与合外力对物体所做的总功具有等量代换关系.若ΔE k >0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k <0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k =0,表示合外力对物体所做的功为0,反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.2.动能定理中涉及的物理量有F 、s 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.3.动能定理解题的基本思路(1)选择研究对象,明确它的运动过程.(2)分析研究的受力情况和各个力的做功情况,然后求出合外力的总功. (3)选择初、末状态及参照系. (4)求出初、末状态的动能E k1、E k2.(5)由动能定理列方程及其它必要的方程,进行求解.【例2】如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W外=0,所以mgR -umgS -W AB =0即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【例3】质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m.质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,并以v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ. 解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段.所以本题必须分三个阶段列方程:子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0= mv +Mv 1……①木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2, 有:22212121Mv Mv MgL -=μ……②木块离开台面后的平抛阶段,ghv s 22=……③ 由①、②、③可得μ=0.50【点悟】从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理.机械能(1)定义:机械能是物体动能、重力势能、弹性势能的统称,也可以说成物体动能和势能之总和.图5-3-2Lhs图5-3-3(2)说明①机械能是标量,单位为焦耳(J ).②机械能中的势能只包括重力势能和弹性势能,不包括其他各种势能.机械能守恒定律内容:在只有重力或弹力做功的物体系统内,动能与重力势能可以相互转化,而总的机械能保持不变. 守恒条件:只有重力或弹力做功,只发生动能和势能的转化.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能,如果只是动能和势能的转化,而没有其它形式的能发生转化,则机械能守恒,如果没有力做功,不发生能的转化,机械能当然也不会发生变化.一、应用机械能守恒定律解题的步骤:1.根据题意选取研究对象(物体或系统);2.分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒;3.确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能;4.根据机械能守恒定律列出方程进行求解注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性.【例1】如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点 多高?通过轨道点最低点时球对轨道压力多大? 【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.图5-5-1【例2】质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图5-5-8所示.物块从钢板正对距离为3 x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物体质量也为m 时,它们恰能回到O 点,若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度,求物块向上运动到最高点与O 点的距离. 物块从3x 0位置自由落下,与地球构成的系统机械能守恒.则有200213.mv x mg =(1) v 0为物块与钢板碰撞时的的速度.因为碰撞板短,内力远大于外力,钢板与物块间动量守恒.设v 1为两者碰撞后共同速m v 0=2m v 1 (2)两者以v l 向下运动恰返回O 点,说明此位置速度为零。
高中物理之动量观点解决力学问题,动量定理的运用、动量守恒定律的应用、动量和能量的综合应用
一、“解题快手”动量定理的应用题点(一) 应用动量定理解释生活中的现象[例1] 如图所示,篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以( )A .减小球的动量的变化量B .减小球对手作用力的冲量C .减小球的动量变化率D .延长接球过程的时间来减小动量的变化量[解析] 选C 篮球运动员接传来的篮球时,不能改变动量的变化量,A 、D 错误;根据动量定理,也不能改变冲量,B 错误;由于延长了作用时间,动量的变化慢了,C 正确。
题点(二) 应用动量定理求作用力和冲量[例2] (2015·重庆高考)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t+mg B.m 2gh t -mg C.m gh t +mg D.m gh t -mg[解析] 选A 方法一:设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,设安全带对人的平均作用力为F ,由牛顿第二定律得F -mg =ma又v =at ,解得F =m 2ght +mg 。
方法二:由动量定理得(mg -F )t =0-m v ,得F =m 2gh t+mg 。
选项A 正确。
题点(三) 动量定理和F -t 图像的综合[例3] [多选](2017·全国卷Ⅲ)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动。
F 随时间t 变化的图线如图所示,则( )A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零[解析] 选AB 法一:根据F -t 图线与时间轴围成的面积的物理意义为合外力F 的冲量,可知在0~1 s 、0~2 s 、0~3 s 、0~4 s 内合外力冲量分别为2 N·s 、4 N·s 、3 N·s 、2 N·s ,应用动量定理I =m Δv 可知物块在1 s 、2 s 、3 s 、4 s 末的速率分别为1 m/s 、2 m/s 、1.5 m/s 、1 m/s ,物块在这些时刻的动量大小分别为2 kg·m/s 、4 kg·m/s 、3 kg·m/s 、2 kg·m/s ,则A 、B 项正确,C 、D 项错误。
2013年广东物理一轮【第十二章第三讲动量与能量的综合应用】
1.机械能守恒定律是能量守恒定律的一种表现形式,它的
条件是只有重力和弹簧的弹力做功,当相互作用的系统 有多个过程时,要注意不同过程的受力情况、力的做功 情况,准确判断物理量的守恒情况. 2.在物体的打击、碰撞过程中,满足动量守恒,但这些过
程中往往要有机械能的损失.机械能守恒时往往在题目
中隐含各处光滑的条件,另外,在弹簧作用的系统内, 没有摩擦阻力情况下,系统的机械能也是守恒的.
物体产生的位移很小,一般可忽略不计,可以认为爆 炸或碰撞后仍然从爆炸或碰撞前的位置以新的动量开 始运动. 3.反冲现象
(1)系统内的不同部分在强大内力作用下向 相反 方向运动,
通常用动量守恒来处理. (2)反冲运动中,由于有其他形式的能转变为机械能,所以 系统的总动能 增加 .
二、研究动力学问题的三个基本观点 1.力的观点 (1)运动学公式
联立②③式得 3mA-mB v2= v mA+mB 0 设小球 B 能上升的最大高度为 h,由运动学公式有 v22 h= 2g 由①④⑤式得 3mA-mB 2 h=( ) H. mA+mB
3mA-mB 2 答案:( )H mA+mB
④
⑤
⑥
[典例启迪]
[例2] 如图12-3-1所示,一质量 为0.99 kg的木块静止在足够长的水 平轨道AB的B端,水平轨道与半径 为10 m的光滑弧形轨道BC相切.现 图12-3-1
所有碰撞都是弹性的,碰撞时间极短.求小球A、B
碰撞后B上升的最大高度.
解析:根据题意,由运动学规律可知,小球 A 与 B 碰撞前的速度 大小相等,设均为 v0.由机械能守恒有 1 mAgH= mAv02 2 ①
设小球 A 与 B 碰撞后的速度分别为 v1 和 v2, 以竖直向上方向为正, 由动量守恒有 mAv0+mB(-v0)=mAv1+mBv2 由于两球碰撞过程中能量守恒,故 1 1 1 1 mAv02+ mBv02= mAv12+ mBv22 2 2 2 2 ③ ②
5力学三大观点的综合应用
4.质量为 M 的小物块 A 静止在离地面高 h 的水平桌面的 边缘,质量为 m 的小物块 B 沿桌面向 A 运动并以速度 v0 与之 发生正碰(碰撞时间极短).碰后 A 离开桌面,其落地点离出发 点的水平距离为 L,碰后 B 反向运动,求 B 后退的距离.已知 B 与桌面间的动摩擦因数为μ,重力加速度为 g.
7.如图 T1-10 所示,质量 m=2 kg 的小球以初速度 v0 沿 光滑的水平面飞出后,恰好无碰撞地进入光滑的圆弧轨道,其
中圆弧 AB 对应的圆心角θ=53°,圆半径 R=0.5 m.若小球离
开桌面运动到 A 点所用时间 t=0.4 s.(sin53°=0.8,cos53°=
0.6, g=10 m/s2)
图 T1-8
解:物块在长木板上向右滑行时做减速运动,长木板做加 速运动,碰撞时物块再传递一部分能量给长木板,以后长木板 减速,物块加速直到速度相同为止.设木块和物块最后共同的 速度为v,由动量守恒定律得mv0=(m+M)v
设全过程损失的机械能为 ΔE,则 ΔE=12mv20-12(m+M)v2 因相对滑动而产生的内能为 Q=μmg·2s,在碰撞过程中损 失的机械能为 ΔE′,由能量守恒定律可得 ΔE=Q+ΔE′ 则 ΔE′=2mm+MMv20-2μmgs 代入数据得 ΔE′=2.4 J.
(舍去)
所以 v1=v0=2 μgl,v2=0.
1.有一传送装置如图 T1-5 所示,水平放置的传送带保持 以 v=2 m/s 的速度向右匀速运动.传送带两端之间的距离 L= 10 m,现有一物件以 v0=4 m/s 的初速度从左端滑上传送带,物 件与传送带之间的动摩擦因数μ=0.2.求物件从传送带的左端运 动到右端所用的时间 (取 g=10 m/s2).
动量与能量的综合运用
再求 矢量 和.
2功 的计算 方法 .
( ) 照 功 的 定 义 式 计 算 , W — Fso a 1按 即 c s.
在 高 中 阶 段 。 公 式 只 适 用 于 恒 力 做 功 . 变 此 对 力 做功不适 用.
从 大 系 统 中 隔 离 出 来 , 好 受 力 分 析 和 运 动 情 做
功 . 注 意 不 同 力 做 功 对 应 不 同 能 量 变 化 的 效 应
、
基本 概念
果 , 如 , 力 做 功对 应 物 体 重 力 势能 的变 化 } 例 重
弹 力 做 功 对 应 弹 簧 弹 性 势 能 的 变 化 ; 子 力 做 分 功 对 应 分 子 势 能 的 变 化 ; 力 做 功 对 应 物 体 动 合 能 的 变 化 ; 重 力 ( 弹 力 ) 其 它 力 对 物 体 做 除 或 外
变 物 体 的 动 量 ; 是 力 对 位 移 的 积 累 , 作 用 功 其 效 果 是 改 变 物 体 的 能 量 .冲 量 是 矢 量 , 是 标 功
量 . 量 与 功 均 为 过 程 量 . 个 恒 力 在 某 一 过 冲 一
程 中可 以 不 做 功 , 其 冲 量 不 为 零 . 但
具 有 一 定 难 度 的 综 合 题 , 于 考 查 学 生 的 理 便 解 、 析 、 理 、 合 等 多 种 能 力 , 此 在 高 考 分 推 综 因 试题 中常 以压轴 题 的形式 出现 . 此 类 综 合 题 常 具 有 以 下 特 点 : 究 对 象 繁 研 多 ( 体 ) 物 理 过 程 复 杂 ( 过 程 ) 已 知 条 件 多 、 多 、
况 分 析 , 清 其 物 理 过 程 , 出 相 互 联 系 , 细 弄 找 仔 考 查 各 子 过 程 的 特 征 . 意 审 题 , 力 挖 掘 隐 注 努
三大力学观点的综合应用
(2)设 A 车的质量为 mA,碰后加速度大小为 aA,根据牛顿 第二定律有
μmAg=mAaA④ 设碰撞后瞬间 A 车速度的大小为 vA′,碰撞后滑行的距离 为 sA,由运动学公式有 vA′2=2aAsA⑤ 设碰撞前的瞬间 A 车速度的大小为 vA。两车在碰撞过程中 动量守恒,有 mAvA=mAvA′+mBvB′⑥ 联立③④⑤⑥式并利用题给数据得 vA=4.3 m/s。⑦
(1)求物块 M 碰撞后的速度大小; (2)若平台表面与物块 M 间的动摩擦因数 μ=0.5,物块 M 与 小球的初始距离为 x1=1.3 m,求物块 M 在 P 处的初速度大小。
[解析] (1)碰后物块 M 做平抛运动,设其平抛运动的初速 度为 v3,平抛运动时间为 t,由平抛运动规律得
h=12gt2① x=v3t② 得:v3=x 2gh=3.0 m/s。③ (2)物块 M 与小球在 B 点处碰撞,设碰撞前物块 M 的速度 为 v1,碰撞后小球的速度为 v2,由动量守恒定律: Mv1=mv2+Mv3④
解析:(1)由题图乙可知: 长木板的加速度 a1=12 m/s2=0.5 m/s2 由牛顿第二定律可知:小物块施加给长木板的滑动摩擦力 Ff= m1a1=2 N 小物块与长木板之间的动摩擦因数:μ=mF2fg=0.2。 (2)由题图乙可知,小物块的加速度 a2=42 m/s2=2 m/s2 由牛顿第二定律可知:F-μm2g=m2a2 解得 F=4 N。
碰后小球从 B 点处运动到最高点 A 过程中机械能守恒,设 小球在 A 点的速度为 vA,则12mv22=12mvA2+2mgL⑤
小球在最高点时有:2mg=mvLA2⑥ 由⑤⑥解得:v2=6.0 m/s⑦ 由③④⑦解得:v1=mv2+MMv3=6.0 m/s⑧ 物块 M 从 P 点运动到 B 点过程中,由动能定理: -μMgx1=12Mv12-12Mv02⑨ 解得:v0= v12+2μgx1=7.0 m/s。 [答案] (1)3.0 m/s (2)7.0 m/s
《理论力学》第13章教案
四川理工学院理论力学教课设计讲课教师课程名称课程种类课程教课梁智权开课系讲课系理论力学专业及班级必修课(√)选修课()机电工程系开课学期0708 学年第 1 学期机械设计及自动化专业20XX 级 01班机械设计及自动化专业20XX 级 02班机械设计及自动化专业20XX 级 10班机械设计及自动化专业20XX 级 11 班查核方式考试(√)考察()总学时数学时分派教材名称参照书目章节名称讲课类型教课目标及要求72学分数 4.5理论课 70学时;实践课 2 学时作者第一版社及第一版时间理论力学哈尔滨工业大学高等教育第一版社理论力学教研室20XX 年第 6 版书名作者第一版社及第一版时间理论力学范钦珊,刘燕,王琪清华大学第一版社20XX 年第 1 版理论力学洪嘉振,杨长俊高等教育第一版社20XX 年第 2 版理论力学,上册,中册清华大学高等教育第一版社理论力学教研组1994 年第 4 版第 13章动能定理13-1力的功 / 13-2质点和质点系的动能13-3动能定理 / 13-4功率·功率方程·机械效率13-5权力场·势能·机械能守恒定律13-6广泛定理的综合应用举例理论课(√);实验课()教课时数6(1)能够娴熟计算重力的功、弹性力的功、定轴转动刚体上作使劲的功、平面运动刚体上力系的功。
(2)掌握计算质点的动能和质点系的动能(平移刚体的动能、定轴转动刚体的动能、平面运动刚体的动能)的方法。
(3)掌握质点的动能定理和质点系的动能定理,能够应用动能定理解题,熟习应用动能定理解题的步骤。
(4)掌握功率的观点,能够应用功率方程计算机械效率。
(5)能够计算重力场中的势能、弹性力场中的势能、万有引力场中的势能。
(6)掌握机械能守恒定律及应用机械能守恒定律解题的步骤。
(7)能够联合运用质点和质点系的广泛定理(动量定理、动量矩定理和动能定理)求解比较复杂的问题。
教课内容概要能量变换与功之间的关系是自然界中各样形式运动的广泛规律,在机械运动中则表现为动能定理。
2024届高考一轮复习物理课件(新教材鲁科版):动量和能量的综合问题
上,A上固定一竖直轻杆,轻杆上端的O点系一条不可拉伸的长为l的细
线,细线另一端系一个可以看作质点的球C,质量也为m.现将C球拉起使
细线水平自然伸直,并由静止释放C球,重力加速度为g.求:
(1)C球第一次摆到最低点时的速度大小;
答案 2
gl 3
1234
对A、B、C组成的系统,由水平方向动量守恒及 系统机械能守恒可得mvC=2mvAB mgl=12mvC2+12×2mvAB2 联立解得 C 球第一次摆到最低点时的速度大小为 vC=2 g3l.
(2)求B与A的挡板碰撞后瞬间平板A的动能; 答案 2 J
B、C分离后,B向左做匀减速直线运动,A静止不
动,设A、B碰撞前瞬间B的速度为vB1,对物块B, 由动能定理得-μmBgL=12mBvB12-12mBvB2 A、B发生弹性碰撞,取水平向左为正方向,碰撞过程中系统动量守
恒、机械能守恒,则有mBvB1=mBvB2+mAvA, 12mBvB12=12mBvB22+12mAvA2 且 EkA=12mAvA2 联立解得vB1=2 m/s,vB2=0,vA=2 m/s,EkA=2 J.
(3)求平板A在桌面上滑行的距离.
答案
3 8m
A、B碰撞后,A向左做匀减速直线运动,B向左做匀加速直线运动,
则对B有μmBg=mBaB 对A有μmBg+μ(mB+mA)g=mAaA 解得aA=6 m/s2,aB=2 m/s2 设经过时间t,两者共速,则有v=aBt=vA-aAt 解得 v=12 m/s,t=14 s 此过程中A向左运动距离 x1=vA+2 vt=2+2 12×14 m=156 m
1234
(1)质量为m1的物块到达B点时的速度大小vB; 答案 5 m/s
1234
高中物理解题高手:专题13动量守恒和能量守恒
高中物理解题高手:专题13动量守恒和能量守恒动量守恒和能量守恒[重点难点提示]动量和能量是高考中的必考知识点,考查题型多样,考查角度多变,大部分试题都与牛顿定律、曲线运动、电磁学知识相互联系,综合出题。
其中所涉及的物理情境往往比较复杂,对学生的分析综合能力,推理能力和利用数学工具解决物理问题的能力要求均高,常常需要将动量知识和机械能知识结合起来考虑。
有的物理情景设置新颖,有的贴近于学生的生活实际,特别是多次出现动量守恒和能量守恒相结合的综合计算题。
在复习中要注意定律的适用条件,掌握几种常见的物理模型。
一、解题的基本思路:解题时要善于分析物理情境,需对物体或系统的运动过程进行详细分析,挖掘隐含条件,寻找临界点,画出情景图,分段研究其受力情况和运动情况,综合使用相关规律解题。
⑴由文字到情境即是审题,运用D图象语言‖分析物体的受力情况和运动情况,画出受力分析图和运动情境图,将文字叙述的问题在头脑中形象化。
画图,是一种能力,又是一种习惯,能力的获得,习惯的养成依靠平时的训练。
⑵分析物理情境的特点,包括受力特点和运动特点,判断物体运动模型,回忆相应的物理规律。
⑶决策:用规律把题目所要求的目标与已知条件关联起来,选择最佳解题方法解决物理问题。
二、基本的解题方法:阅读文字、分析情境、建立模型、寻找规律、解立方程、求解验证⑴分步法(又叫拆解法或程序法):在高考计算题中,所研究的物理过程往往比较复杂,要将复杂的物理过程分解为几步简单的过程,分析其符合什么样的物理规律再分别列式求解。
这样将一个复杂的问题分解为二三个简单的问题去解决,就化解了题目的难度。
⑵全程法(又叫综合法):所研究的对象运动细节复杂,但从整个过程去分析考虑问题,选用适合整个过程的物理规律,如两大守恒定律或两大定理或功能关系,就可以很方便的解决问题。
⑶等效法(又叫类比法):所给的物理情境比较新颖,但可以把它和熟悉的物理模型进行类比,把它等效成我们熟知的情境,方便的解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
立足教育 开创未来
3.对子弹射木块模型的讨论 对子弹射木块模型的讨论 一颗质量为m的子弹以水平速度 的子弹以水平速度v 一颗质量为 的子弹以水平速度 0射 入一放在光滑水平面上质量为M的木块 入一放在光滑水平面上质量为 的木块 最终子弹木块一起运动. 中,最终子弹木块一起运动 对系统动量守恒: ①对系统动量守恒:mv0=(m+M)v 1 1 2 对子弹: ②对子弹: f ( d + x ) = mv mv0 2, 木 块对子弹的作用力f对子弹做负功 是子 块对子弹的作用力 对子弹做负功(x是子 对子弹做负功 弹穿木块时的位移, 是子弹进入木块的 弹穿木块时的位移,d是子弹进入木块的 深度). 深度
2
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
立足教育 开创未来
1.动能和动量 动能和动量 动能和动量都是由质量和速度共同决
1 E 定的物理量,它们的大小关系是: 定的物理量,它们的大小关系是:k = mv 2 2 p2 = 2m 或p= 2mEk .动能和动量都是用 动能和动量都是用
8
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
立足教育 开创未来
(2)动量定理反映了力对时间的累积效 动量定理反映了力对时间的累积效 应 , 适合于不涉及物体运动过程中的加速 位移,而涉及运动时间的问题.特别对 度 、 位移 , 而涉及运动时间的问题 特别对 冲击类问题, 因时间短且冲力随时间变化, 冲击类问题 , 因时间短且冲力随时间变化 , 应采用动量定理求解. 应采用动量定理求解 (3)动能定理反映了力对空间的累积效 动能定理反映了力对空间的累积效 应 , 对不涉及物体运动过程中的加速度和 时间, 而涉及力和位移、 速度的问题, 时间 , 而涉及力和位移 、 速度的问题 , 无 论是恒力还是变力,一般用动能定理求解. 论是恒力还是变力,一般用动能定理求解
立足教育 开创未来
1.子弹射木块问题 子弹射木块问题 如图13-5-1,质量为 的木块固定在光 如图 ,质量为M的木块固定在光 滑的水平面上, 有一质量为m的子弹以初 滑的水平面上 , 有一质量为 的子弹以初 速度v 水平射向木块, 并能射穿, 速度 0 水平射向木块 , 并能射穿 , 设木块 的厚度为d,木块给子弹的平均阻力恒为f. 的厚度为 d, 木块给子弹的平均阻力恒为 f. 若木块可以在光滑的水平面上自由滑动, 若木块可以在光滑的水平面上自由滑动 , 子弹以同样的初速度水平射向静止的木块, 子弹以同样的初速度水平射向静止的木块 , 假设木块给子弹的阻力与前一情况一样, 假设木块给子弹的阻力与前一情况一样 , 试问在此情况下要射穿该木块, 试问在此情况下要射穿该木块 , 子弹的初 图13-5-1 动能应满足什么条件? 动能应满足什么复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
立足教育 开创未来
力对木块做正功,使其动能增大 力对木块做正功,使其动能增大.
1 fx = Mv 2, 对木块: ③对木块: 子弹对木块的作用 2 1 1 2 由②和③得:fd = mv0 ( m + M ) v 2, 则 2 2
木块对子弹的作用力f与穿入的深度 相对 木块对子弹的作用力 与穿入的深度d(相对 与穿入的深度 位移)的乘积等于系统动能的减少量, 位移 的乘积等于系统动能的减少量,这就 的乘积等于系统动能的减少量 是转化为内能的部分. 是转化为内能的部分
15
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
12
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
立足教育 开创未来
第三是方向性问题, 第三 是方向性问题,运用动量定理 是方向性问题 或动量守恒定律求解时, 或动量守恒定律求解时,都要选定一个 正方向,然后对力、 正方向,然后对力、速度等矢量以正负 号代表其方向, 号代表其方向,代入相关的公式中进行 运算.另外 对于碰撞问题, 另外, 运算 另外 , 对于碰撞问题 , 要注意碰 撞的多种可能性, 撞的多种可能性,作出正确的分析判断 再针对不同情况进行计算, 后,再针对不同情况进行计算,避免出 现漏洞. 现漏洞
4
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
立足教育 开创未来
2.动能定理与动量定理 动能定理与动量定理 物体在力的作用下, 物体在力的作用下,在一段时间内速度 发生变化, 发生变化 , 这类问题属于动量定理应用问 而物体在力的作用下, 题;而物体在力的作用下,在 一段位移 内 速度发生变化, 速度发生变化 , 这类问题属于动能定理应 用问题, 可见它们的差异在于: 用问题 , 可见它们的差异在于 : 前者涉及 时间;后者涉及位移(或路程 或路程). 时间;后者涉及位移 或路程
17
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
立足教育 开创未来
mv0=(m+M)v 对系统应用动能定理得 由上两式消去v可得 由上两式消去 可得
1 1 2 fd = mv0 ( M + m ) v 2, 2 2
mv0 2 1 1 2 fd = mv0 ( m + M ) ( ) 2 2 m+M
本课件主要使用工具为office2003,Mathtype5.0, 几何画板 , 几何画板4.0, flashplayer10.0 本课件主要使用工具为
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
立足教育 开创未来
第十三章
动量守恒定律
5 动量与能量的综合应用
11
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
立足教育 开创未来
2.怎样分析解答动量和能量问题 怎样分析解答动量和能量问题 应用动量和能量知识时,第一是研 应用动量和能量知识时 , 第一 是研 究过程的合理选取,不管是动能定理、 究过程的合理选取,不管是动能定理、 动量定理还是机械能守恒定律或动量守 恒定律,都有一个过程的选取问题; 恒定律,都有一个过程的选取问题;第 是要抓住摩擦力做功的特征、 二是要抓住摩擦力做功的特征、摩擦力 做功与动能变化的关系以及物体在相互 作用时能量的转化关系; 作用时能量的转化关系;
5
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
立足教育 开创未来
3.机械能守恒条件和动量守恒条件 机械能守恒条件和动量守恒条件 的比较 守恒, 机械能是否 守恒, 决定 于 是 否 做功; 有 重力和弹簧弹力以外的力做功;而动 量是否守恒, 决定于是否有外力作用. 量是否守恒 , 决定于是否有外力作用 . 所以, 所以,在利用机械能守恒定律处理问题 情况, 时要着重分析力的做功 情况,看是否有 重力和弹力以外的力做功; 重力和弹力以外的力做功;
3 , 变为原来的 5
且子弹射穿A木块损失的动 且子弹射穿 木块损失的动
能是射穿B木块损失的动能的 倍 求 能是射穿 木块损失的动能的2倍.求:系统 木块损失的动能的 运动过程中弹簧的最大弹性势能. 运动过程中弹簧的最大弹性势能
19
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
16
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
立足教育 开创未来
若木块在光滑水平面上能自由 滑动,此时子弹若能恰好打穿木块, 滑动,此时子弹若能恰好打穿木块,那么 子弹穿出木块时(子弹看为质点 子弹看为质点), 子弹穿出木块时 子弹看为质点 , 子弹和 木块具有相同的速度, 木块具有相同的速度,把此时的速度记为 v, 把子弹和木块当作一个系统 , 在它们 , 把子弹和木块当作一个系统, 作用前后系统的动量守恒, 作用前后系统的动量守恒,即
6
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
立足教育 开创未来
在利用动量守恒定律处理问题时着重 情况(不管是否做功 不管是否做功), 分析系统的 受力 情况 不管是否做功 ,并 着重分析是否有外力作用或外力之和是 否为零.应特别注意 系统动量守恒时, 应特别注意: 否为零 应特别注意 : 系统动量守恒时 , 机械能不一定守恒; 机械能不一定守恒 ; 同样机械能守恒的 系统, 动量不一定守恒, 系统 , 动量不一定守恒 , 这是两个守恒 定律的相互条件不同的必然结论. 定律的相互条件不同的必然结论
整理得
1 m+M 2 mv0 = fd 2 M 1 m 2 即: mv0 = (1 + ) fd . 2 M
18
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
立足教育 开创未来
光滑水平面上有两个小木块A和 , 光滑水平面上有两个小木块 和 B,其 质量m 质量 A=1kg、 mB=4kg,它们中间用一根轻 、 它们中间用一根轻 质弹簧相连.一颗水平飞行的子弹质量为 质弹簧相连 一颗水平飞行的子弹质量为 m=50g,以v0=500m/s的速度在极短时间内射 以 的速度在极短时间内射 穿两木块, 已知射穿A木块后子弹的速度 穿两木块 , 已知射穿 木块后子弹的速度
7
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(
立足教育 开创未来
1.力学规律的优选策略 力学规律的优选策略 (1)牛顿第二定律揭示了力的瞬时效应, 牛顿第二定律揭示了力的瞬时效应, 牛顿第二定律揭示了力的瞬时效应 在研究某一物体所受力的瞬时作用与物体 运动的关系时,或者物体受恒力作用, 运动的关系时,或者物体受恒力作用,且 直接涉及物体运动过程中的加速度时, 直接涉及物体运动过程中的加速度时,应 采用运动学公式和牛顿第二定律. 采用运动学公式和牛顿第二定律
9
高中新课标总复习(第1轮) 物理 湖南 人教版 高中新课标总复习(