【数学】2014-2015年江苏省宿迁市钟吾中学七年级下学期数学期末试卷和答案解析PDF

合集下载

钟吾初中七年级(下)数学期末模拟(1)

钟吾初中七年级(下)数学期末模拟(1)

钟吾初中七年级(下)数学期末模拟练习一、仔细选择(每小题3分,共24分。

把唯一正确的答案填入括号内) 01.( )下列计算中,结果是8x 的是A .44x x +B .44()x C .44x x ∙ D .162x x ÷02.( )下列等式从左到右的变形中,是因式分解的是A .623xy x y =∙B .244(2)(2)4x x x x x -+=-++ C .244(4)4x x x x -+=-+ D .2244(2)x x x -+=- 03.( )计算2(1)(1)(1)x x x -++结果是A .14+x B .41x - C .()41-x D .()41+x04.( )若多边形的边数增加1,则其内角和的度数A .增加180ºB .其内角和为360ºC .内角和不变D .其外角和减少05.( )已知2(3)|3|0x x y m ++++=中,y 为负数,则m 的取值范围是A .9m >B .9m <C .9m >-D .9m <- 06.( )如图,CD 平分∠ACB ,DE ∥BC ,∠ADE =62°,∠A =70°, 那么∠BCD 为A .20°B .22°C .24°D .26°ED CBAa DCB07.( )光线a 照射到平面镜CD 上,然后在平面镜AB 和CD 之间来回反射,光线的反射角等于入射角.若已知∠1=46°,∠6=70°,则∠3的度数是 A .48° B .58° C .42° D .52° 08.( )如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD ∥BC ; ②∠ACB=2∠ADB ;③∠ADC=90°-∠ABD ; ④∠BDC=12∠BAC .其中正确的结论有A .1个B .2个C .3个D .4个二、谨慎填空(每小题3分,共24分。

钟吾初中期末数学试卷

钟吾初中期末数学试卷

一、选择题(每题4分,共40分)1. 下列数中,不是有理数的是()A. 2.5B. -3C. √9D. 0.333...2. 下列代数式中,正确的是()A. a^2 = aB. (a + b)^2 = a^2 + b^2C. (a - b)^2 = a^2 - 2ab + b^2D. (a + b)(a - b) = a^2 - b^23. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2D. y = √x4. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)5. 一个长方形的长是10cm,宽是5cm,它的周长是()A. 15cmB. 25cmC. 30cmD. 35cm6. 下列方程中,解得x=2的是()A. x + 3 = 5B. 2x - 1 = 3C. 3x + 2 = 8D. x - 3 = 17. 若a、b、c是等差数列,且a + b + c = 12,则b的值为()A. 4B. 6C. 8D. 108. 下列图形中,是圆的是()A. 正方形B. 等腰三角形C. 梯形D. 圆9. 下列命题中,正确的是()A. 任何两个实数都是等差数列B. 任何两个实数都是等比数列C. 等差数列的公差一定大于0D. 等比数列的公比一定大于010. 下列函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = 1/xD. y = |x|二、填空题(每题4分,共40分)11. (2分)若a + b = 5,a - b = 1,则a = __________,b = __________。

12. (2分)等差数列的前三项分别是3,5,7,则该数列的公差是 __________。

13. (2分)若x^2 - 5x + 6 = 0,则x的值为 __________。

14. (2分)圆的半径为r,则圆的直径是 __________。

钟吾初中七年级数学(下)期末基础复习

钟吾初中七年级数学(下)期末基础复习

钟吾初中七年级数学(下)期末基础复习(1)一、仔细选择(每小题4分,共24分。

把唯一正确的答案填入括号内) 01.( )化简)0(2)2(22≠--a a a 的结果是A .0B .22aC .24a -D .26a - 02.( )计算))((x y y x ---的结果是A .22y x +- B .22y x -- C .22y x - D .22y x +03.( )若1622+-mx x 是完全平方式,则m 的值是A .2B .2±C .4D .4± 04.( )不等式组2133x x +≤⎧⎨>-⎩的解集在数轴上表示正确的是二、谨慎填空(每小题4分,共24分。

) 07.若单项式23mx y -与132n xy -是同类项,那么这两个单项式的积是 .08.当2014x =,2y =-时,代数式()()2x x y x y -+-的值是 . 09.三个连续偶数,若中间一个为2n ,则它们的积是 .10.三条线段长度分别为a 、b 、c (a 、b 、c 为整数,并且c b a <<),若6c =,则以线段a 、b 、c 为边能组成形状不同的三角形 个. 11.已知关于x 的不等式组 520x x a ->⎧⎨->⎩1无解,则a 的取值范围是 . 12.如图,DE ∥AB ,∠CAE=13∠CAB ,∠CDE=75°, ∠B=65°,则∠AEB= .三、完美解答(共9题,记52分.写出必要的步骤)14.(本题10分)分解因式:(1)234x y y -; (2)3322224a b ab a b +-.15.(本题10分)解方程组:EBDCA(1)74317y x x y =+⎧⎨-=⎩; (2)3753719x y x y +=⎧⎨-=⎩.16.(本题6分)解不等式组:331213(1)8x x x x-⎧+>+⎪⎨⎪--≤-⎩并在数轴上把解集表示出来.17.(本题6分)如图,△ABC 中,∠B=500,∠C=700,AD 平分∠BAC . (1)过点A 画△ABC 的高AE ,垂足为E ; (2)求∠EAD 的度数.18.(本题10分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表. (1)如果商店计划销售完这批商品后能获利1100元,请你确定甲、乙两种商品应分别购进多少件? (2)若商店计划投入资金少于4300元,且销售完这批商品后获利不少于1260元,请问有哪几种购货方案?钟吾初中七年级数学(下)期末基础复习(2)一、仔细选择(每小题4分,共24分。

2014-2015学年江苏省宿迁市钟吾初中七年级下学期期末测试数学试卷(带解析)

2014-2015学年江苏省宿迁市钟吾初中七年级下学期期末测试数学试卷(带解析)

绝密★启用前2014-2015学年江苏省宿迁市钟吾初中七年级下学期期末测试数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:105分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个相同长方形的两边长(x >y ),给出以下关系式:①x+y =m ;②x -y =n ;③ xy =.其中正确的关系式的个数有( )A .0个B .1个C .2个D .3个2、李明同学早上骑自行车上学,中途因道路施工需步行一段路,到学校共用时15分钟.他骑自行车的速度是250米/分钟,步行的速度是80米/分钟.他家离学校的距离是2900米.若他骑车和步行的时间分别为x 分钟和y 分钟,则列出的方程组是( )A .B .C .D .3、若,则实数m 的值( )A .B .C .1D .54、把不等式组的解集在数轴上表示正确的是( )5、下列等式从左到右的变形,属于因式分解的是( ) A .a (x -y )=ax -ay B .x 2-1=(x+1)(x -1) C .(x+1)(x+3)=x 2+4x+3D .x 2+2x+1=x (x+2)+16、下列运算正确的是( ) A . B .C .D .7、某红外线波长为0.00 000 094m ,用科学记数法把0.00 000 094m 可以写成( ) A .m B .m C .mD .m8、一个多边形的内角和为360°,则这个多边形是( ) A .三角形B .四边形C .五边形D .六边形第II 卷(非选择题)二、填空题(题型注释)9、若一个三角形的3边长分别是cm 、cm 、cm ,则的取值范围是 .10、已知不等式组有解,则实数的取值范围是 .11、如图,有一块含有60°角的直角三角板的两个顶点放在矩形的对边上.如果∠1=15°,那么∠2的度数是 .12、若,则的值为 .13、已知,y=3是二元一次方程的一个解,则.[来源:学科14、若命题“对于任意实数,的值都是正数”是假命题,则其中一个反例是= .15、若=3,则的值是 .16、若,则用含x 的代数式表示y 为 .17、将多项式分解因式得 .18、不等式的解集是 .三、计算题(题型注释)19、已知,如图,DE ∥BC ,∠A=60°,∠B=50°;(1)求∠1的度数;(2)若FH ⊥AB 于点H ,且∠2=∠3,试判断CD 与AB 的位置关系?并加以证明.20、计算:.四、解答题(题型注释)21、如图,点C 在∠MAN 的边AM 上,CD ⊥AN ,垂足为点D ,点B 在边AN 上运动,∠BCA 的平分线交AN 于点E 。

宿迁钟吾国际学校下学期七年级数学第二次月考试题

宿迁钟吾国际学校下学期七年级数学第二次月考试题

2014-2015学年度第二学期七年级第二次月考数学试卷本卷满分:120分 考试时间:120分钟一、选择题:(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,请将正确选项填在答题纸相应位置.......上) 1.已知1,1x y =⎧⎨=-⎩是方程2x -ay =3的一组解,那么a 的值为 ( ▲ )A .1B .3C .-3D .-152.下列运算正确的是 ( ▲ ) A .a 3·a 2=a 6 B .(x 3)3=x 6 C .x 5+x 5=x 10 D .(-ab )5÷(-ab )2=-a 3b 33.如果m <n <0,那么下列结论错误的是 ( ▲ )A.m -9<n -9B.-m >—nC.n 1>m 1D.nm>15.下列从左到右的变形,是分解因式的是 ( ▲ )A .(a +3)(a -3)=a 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab (a +b )D .x 2+1=x (x +1x) 4. 若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于 ( ▲ )A .0B .1C .2D .36. 如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到 △DEF 的位置,∠B=90°,AB=10,DH=4,平移距离为6,求阴影部分的面积为 ( ▲ )A 、24B 、36C 、40D 、487. 若关于x 的不等式组1240x a x +>⎧⎨-≤⎩无解,则a 的取值范围是 ( ▲ )A .a ≤3B .a ≥3C .a<3D .a >28.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( ▲ )A . 6<m<7B . 6≤m<7C . 6≤m≤7D . 6<m≤7第6题二、填空题:(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题纸相应位置.......上) 9.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.2.5微米等于0.000 002 5米,把0.000 002 5用科学记数法表示为 ▲ .10.如果一个多边形的内角和是720°,那么这个多边形的边数是 ▲ . 11. 若92+-mx x 是一个完全平方式,则m 的值是 ▲ .12. 已知:0432=-+y x ,则yx 84•= ▲ .13. 若关于x 、y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +﹥1,则k 的取值范围是___▲__.14. 如图,在△ABC 中,∠ABC =∠ACB ,∠A =40°,P 是△ABC 内一点,且∠ACP =∠PBC , 则∠BPC = ▲ .15如图,∆ABC 的面积为12,BD=2DC ,AE=EC ,那么阴影部分的面积是___▲____.16. 已知不等式组⎩⎨⎧≤-->-01m x m x 的解集中任意x 的值都不在41≤<x 的范围内,则m 的取值范围是 ▲ .三、解答题:(本大题共10小题,共72分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分8分)计算: (1)()02200614.3211π--⎪⎭⎫ ⎝⎛-+-- (2))21)(12()12(2a a a +-+++18.(本题满分6分)因式分解:(1)axy ax 632+ (2))1(4)1(2m m m -+- 19. (本题满分8分)解方程组:(1) (2)20. (本题满分6分)解不等式组:()320211132x x x x ⎧--≥⎪⎨->-⎪⎩并把它的解集在数轴上表示出来.2325y x x y =⎧⎨-=⎩ 32101123x y x y +=⎧⎪+⎨-=⎪⎩C B A PA D CB FE 第15题第14题21. (本题满分6分)已知方程组713x y ax y a+=--⎧⎨-=+⎩的解x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简32a a -++.22.(本题满分8分)已知:ABC 中,点D 为射线CB 上一点,且不与点B ,点C 重合,DE ∥AB 交直线AC 于点E ,DF ∥AC 交直线AB 于点F 。

宿迁七年级下册数学期末试卷测试题(Word版 含解析)

宿迁七年级下册数学期末试卷测试题(Word版 含解析)

宿迁七年级下册数学期末试卷测试题(Word 版 含解析)一、解答题1.如图1,AB //CD ,点E 、F 分别在AB 、CD 上,点O 在直线AB 、CD 之间,且100EOF ∠=︒.(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN FNM ∠-∠的值;(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线MN 分别交EG 、FH 分别于点M 、N ,且50FMN ENM ∠-∠=︒,直接写出m 的值.2.已知,AB ∥CD .点M 在AB 上,点N 在CD 上.(1)如图1中,∠BME 、∠E 、∠END 的数量关系为: ;(不需要证明) 如图2中,∠BMF 、∠F 、∠FND 的数量关系为: ;(不需要证明)(2)如图3中,NE 平分∠FND ,MB 平分∠FME ,且2∠E +∠F =180°,求∠FME 的度数;(3)如图4中,∠BME =60°,EF 平分∠MEN ,NP 平分∠END ,且EQ ∥NP ,则∠FEQ 的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ 的度数.3.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)4.已知:AB∥CD,截线MN分别交AB、CD于点M、N.(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°30a(β﹣60)2=0,求∠BEM的度数;(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为(直接写出答案).5.已知AB ∥CD ,线段EF 分别与AB ,CD 相交于点E ,F .(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P 在线段EF 上时,已知∠A =35°,∠C =62°,求∠APC 的度数; 解:过点P 作直线PH ∥AB , 所以∠A =∠APH ,依据是 ; 因为AB ∥CD ,PH ∥AB , 所以PH ∥CD ,依据是 ; 所以∠C =( ),所以∠APC =( )+( )=∠A +∠C =97°. (2)当点P ,Q 在线段EF 上移动时(不包括E ,F 两点): ①如图2,∠APQ +∠PQC =∠A +∠C +180°成立吗?请说明理由;②如图3,∠APM =2∠MPQ ,∠CQM =2∠MQP ,∠M +∠MPQ +∠PQM =180°,请直接写出∠M ,∠A 与∠C 的数量关系.二、解答题6.如图1,点O 在MN 上,90,,AOB AOM m OCQ n ∠=︒∠=︒∠=︒,射线OB 交PQ 于点C ,已知m ,n 满足:220(70)0m n -+-=.(1)试说明MN //PQ 的理由;(2)如图2,OD 平分AON ∠,CF 平分OCQ ∠,直线OD 、CF 交于点E ,则OEF ∠=______︒;(3)若将AOB ∠绕点O 逆时针旋转()090αα<<︒,其余条件都不变,在旋转过程中,OEF ∠的度数是否发生变化?请说明你的结论.7.问题情境(1)如图1,已知//, 125155AB CD PBA PCD ︒︒∠=∠=,,求BPC ∠的度数.佩佩同学的思路:过点P 作//PN AB ,进而//PN CD ,由平行线的性质来求BPC ∠,求得BPC ∠︒;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合90,//,ACB DF CG AB ︒∠=与FD 相交于点E ,有一动点P 在边BC 上运动,连接, PE PA ,记,PED PAC αβ∠=∠∠=∠.①如图2,当点P 在,C D 两点之间运动时,请直接写出APE ∠与,αβ∠∠之间的数量关系;②如图3,当点P 在,B D 两点之间运动时,APE ∠与,αβ∠∠之间有何数量关系?请判断并说明理由.8.如图,已知//AB CD P ,是直线AB CD ,间的一点,PF CD ⊥于点F PE ,交AB 于点120E FPE ∠=︒,.(1)求AEP ∠的度数;(2)如图2,射线PN 从PF 出发,以每秒40︒的速度绕P 点按逆时针方向旋转,当PN 垂直AB 时,立刻按原速返回至PF 后停止运动:射线EM 从EA 出发,以每秒15︒的速度绕E 点按逆时针方向旋转至EB 后停止运动,若射线PN ,射线EM 同时开始运动,设运动间为t 秒.①当20MEP ∠=︒时,求EPN ∠的度数; ②当 //EM PN 时,求t 的值.9.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明; (3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明.10.已知两条直线l 1,l 2,l 1∥l 2,点A ,B 在直线l 1上,点A 在点B 的左边,点C ,D 在直线l 2上,且满足115ADC ABC ∠=∠=o .(1)如图①,求证:AD ∥BC ;(2)点M ,N 在线段CD 上,点M 在点N 的左边且满足MAC BAC ∠=∠,且AN 平分∠CAD ;(Ⅰ)如图②,当30ACD ∠=o 时,求∠DAM 的度数; (Ⅱ)如图③,当8CAD MAN ∠=∠时,求∠ACD 的度数.三、解答题11.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.12.模型与应用.(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.(应用)(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式13.如图,△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于A 1.(1)当∠A 为70°时, ∵∠ACD -∠ABD =∠______ ∴∠ACD -∠ABD =______°∵BA 1、CA 1是∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线 ∴∠A 1CD -∠A 1BD =12(∠ACD -∠ABD )∴∠A 1=______°;(2)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于A 2,∠A 2BC 与A 2CD 的平分线交于A 3,如此继续下去可得A 4、…、A n ,请写出∠A 与∠A n 的数量关系______;(3)如图2,四边形ABCD 中,∠F 为∠ABC 的角平分线及外角∠DCE 的平分线所在的直线构成的角,若∠A +∠D =230度,则∠F =______.(4)如图3,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的角平分线交于Q ,当E 滑动时有下面两个结论:①∠Q +∠A 1的值为定值;②∠Q -∠A 1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值. 14.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决. 小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程: ∵180BDC DBC BCD ∠+∠+∠=︒,(______) ∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质) ∵12180A DBC BCD ∠+∠+∠+∠+∠=︒, ∴12180A DBC BCD ∠+∠+∠=︒-∠-∠, ∴12BDC A ∠=∠+∠+∠.(______) (2)请你按照小丽的思路完成探究过程;(3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.15.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °; ②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .【参考答案】一、解答题1.(1) ;(2)的值为40°;(3). 【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解; (2)过点M 作MK ∥AB ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM解析:(1)260BEO DFO ∠+∠=︒ ;(2)EMN FNM ∠-∠的值为40°;(3)53.【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解;(2)过点M 作MK ∥A B ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM =∠OEM =x ,∠CFN =∠OFN =y ,由∠BEO +∠DFO =260°可求x -y =40°,进而求解;(3)设直线FK 与EG 交于点H ,FK 与AB 交于点K ,根据平行线的性质即三角形外角的性质及50FMN ENM ∠-∠=︒,可得50KFD AEG ∠-∠=︒,结合260AEG n OEG DFK n OFK BEO DFO ∠=∠=∠∠+∠=︒,,,可得11180100AEG AEG KFD KFD n n ∠+∠+︒-∠-∠=︒,即可得关于n 的方程,计算可求解n 值. 【详解】证明:过点O 作OG ∥AB ,∵AB ∥CD , ∴AB ∥OG ∥CD ,∴180180BEO EOG DFO FOG ∠+∠=︒∠+∠=︒,, ∴360BEO EOG DFO FOG ∠+∠+∠+∠=︒, 即360BEO EOF DFO ∠+∠+∠=︒, ∵∠EOF =100°,∴∠260BEO DFO +∠=︒;(2)解:过点M 作MK ∥AB ,过点N 作NH ∥CD ,∵EM 平分∠BEO ,FN 平分∠CFO , 设BEM OEM x CFN OFN y ∠=∠=∠=∠=,, ∵260BEO DFO ∠+∠=︒∴21802260BEO DFO x y ∠+∠=+︒-=︒, ∴x -y =40°,∵MK ∥AB ,NH ∥CD ,AB ∥CD , ∴AB ∥MK ∥NH ∥CD ,∴EMK BEM x HNF CFN y KMN HNM ∠=∠=∠=∠=∠=∠,,, ∴EMN FNM EMK KMN HNM HNF ∠+∠=∠+∠-∠+∠() x KMN HNM y =+∠-∠-=x -y =40°,故EMN FNM ∠-∠的值为40°;(3)如图,设直线FK 与EG 交于点H ,FK 与AB 交于点K ,∵AB ∥CD , ∴AKF KFD ∠=∠,∵AKF EHK HEK EHK AEG ∠=∠+∠=∠+∠, ∴KFD EHK AEG ∠=∠+∠, ∵50EHK NMF ENM ∠=∠-∠=︒, ∴50KFD AEG ∠=︒+∠, 即50KFD AEG ∠-∠=︒,∵AEG n OEG ∠=∠,FK 在∠DFO 内,DFK n OFK ∠=∠.∴1180180CFO DFK OFK KFD KFD n∠=︒-∠-∠=︒-∠-∠ ,1AEO AEG OEG AEG AEG n ∠=∠+∠=∠+∠,∵260BEO DFO ∠+∠=︒, ∴100AEO CFO ∠+∠=︒,∴11180100AEG AEG KFD KFD n n∠+∠+︒-∠-∠=︒,即(180)1KFD AEG n ⎛⎫ ⎪⎝∠⎭+-∠︒=, ∴115080n ⎛⎫ ⎪⨯⎭︒︒⎝+=, 解得53n = .经检验,符合题意,故答案为:53. 【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键. 2.(1)∠BME =∠MEN ﹣∠END ;∠BMF =∠MFN +∠FND ;(2)120°;(3)不变,30°【分析】(1)过E 作EH ∥AB ,易得EH ∥AB ∥CD ,根据平行线的性质可求解;过F 作FH ∥AB解析:(1)∠BME =∠MEN ﹣∠END ;∠BMF =∠MFN +∠FND ;(2)120°;(3)不变,30°【分析】(1)过E 作EH ∥AB ,易得EH ∥AB ∥CD ,根据平行线的性质可求解;过F 作FH ∥AB ,易得FH ∥AB ∥CD ,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME +∠END )+∠BMF -∠FND =180°,可求解∠BMF =60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ =12∠BME ,进而可求解.【详解】解:(1)过E 作EH ∥AB ,如图1,∴∠BME =∠MEH ,∵AB ∥CD ,∴HE ∥CD ,∴∠END =∠HEN ,∴∠MEN =∠MEH +∠HEN =∠BME +∠END ,即∠BME =∠MEN ﹣∠END .如图2,过F 作FH ∥AB ,∴∠BMF =∠MFK ,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=12(∠BME+∠END)﹣12∠END=12∠BME,∵∠BME=60°,∴∠FEQ=12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.3.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ -∠QMN=90°,∴∠APM -∠QMN=90°;当点M,N分别在射线QD,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM -∠QMN=90°;综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.4.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)12【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【详解】解:(1)∵30α-+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:过点E作直线EH∥AB,∵DF平分∠CDE,∴设∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如图3,设MQ与CD交于点E,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q与∠CPM的比值为1,2.故答案为:12【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.5.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.二、解答题6.(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论;(2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由220(70)0m n -+-=可求得m 及n ,从而可求得∠MOC =∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也易得∠COE 的度数,由三角形外角的性质即可求得∠OEF 的度数;(3)不变,分三种情况讨论即可.【详解】(1)∵200m -≥,2(70)0n -≥,且220(70)0m n -+-=∴200m -=,2(70)0n -=∴m =20,n =70∴∠MOC =90゜-∠AOM =70゜∴∠MOC =∠OCQ =70゜∴MN ∥PQ(2)∵∠AON =180゜-∠AOM =160゜又∵OD 平分AON ∠,CF 平分OCQ ∠∴1802DON AON ∠=∠=︒,1352OCF OCQ ∠=∠=︒∵80MOE DON ∠=∠=︒∴10COE MOE MOC ∠=∠-∠=︒∴∠OEF =∠OCF +∠COE =35゜+10゜=45゜故答案为:45.(3)不变,理由如下:如图,当0゜<α<20゜时,∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠MOC =∠OCQ =2x∵∠AON =360゜-90゜—(180゜-2x )=90゜+2x ,OD 平分∠AON∴∠DON =45゜+x∵∠MOE =∠DON =45゜+x∴∠COE =∠MOE -∠MOC =45゜+x -2x =45゜-x∴∠OEF =∠COE +∠OCF =45゜-x +x =45゜当α=20゜时,OD 与OB 共线,则∠OCQ =90゜,由CF 平分∠OCQ 知,∠OEF =45゜ 当20゜<α<90゜时,如图∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠NOC =180゜-∠OCQ =180゜-2x∵∠AON =90゜+(180゜-2x )=270゜-2x ,OD 平分∠AON∴∠AOE =135゜-x∴∠COE =90゜-∠AOE =90゜-(135゜-x )=x -45゜∴∠OEF =∠OCF -∠COE =x -(x -45゜)=45゜综上所述,∠EOF 的度数不变.【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.7.(1)80;(2)①;②【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;解析:(1)80;(2)①APE αβ∠=∠+∠;②APE βα∠=∠-∠【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;②过P 作PQ ∥DF ,依据平行线的性质可得∠β=∠QPA ,∠α=∠QPE ,即可得到∠APE =∠APQ -∠EPQ =∠β-∠α.【详解】解:(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠B +∠BPG =180°,∠C +∠CPG =180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°-125°-155°=80°,故答案为:80;(2)①如图2,过点P作FD的平行线PQ,则DF∥PQ∥AC,∴∠α=∠EPQ,∠β=∠APQ,∴∠APE=∠EPQ+∠APQ=∠α+∠β,∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由:过P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ-∠EPQ=∠β-∠α.【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.8.(1);(2)①或;②秒或或秒【分析】(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;(2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间解析:(1)30;(2)①2803︒或403︒;②185秒或5411或9011秒 【分析】(1)通过延长PG 作辅助线,根据平行线的性质,得到90∠=︒PGE ,再根据外角的性质可计算得到结果;(2)①当20MEP ∠=︒时,分两种情况,Ⅰ当ME 在AE 和EP 之间,Ⅱ当ME 在EP 和EB 之间,由20MEP ∠=︒,计算出EM 的运动时间t ,根据运动时间可计算出FPN ∠,由已知120FPE ∠=︒可计算出EPN ∠的度数; ②根据题意可知,当//EM PN 时,分三种情况,Ⅰ射线PN 由PF 逆时针转动,//EM PN ,根据题意可知15AEM t ∠=︒,40FPN t ∠=︒,再平行线的性质可得AEM AHP ∠=∠,再根据三角形外角和定理可列等量关系,求解即可得出结论;Ⅱ射线PN 垂直AB 时,再顺时针向PF 运动时,//EM PN ,根据题意可知,15AEM t ∠=︒,//ME PN ,15GHP t ∠=︒,可计算射线PN 的转动度数1809015t ︒+︒-︒,再根据PN 转动可列等量关系,即可求出答案;Ⅲ射线PN 垂直AB 时,再顺时针向PF 运动时,//EM PN ,根据题意可知,15AEM t ∠=︒,940()2GPN t ∠=-︒,根据(1)中结论,30PEG ∠=︒,60PGE ∠=,可计算出PEM ∠与EPN ∠代数式,再根据平行线的性质,可列等量关系,求解可得出结论.【详解】解:(1)延长FP 与AB 相交于点G ,如图1,PF CD ⊥,90PFD PGE ∴∠=∠=︒,EPF PGE AEP ∠=∠+∠,1209030AEP EPF PGE ∴∠=∠-∠=︒-︒=︒;(2)①Ⅰ如图2,30AEP ∠=︒,20MEP ∠=︒,10AEM ∴∠=︒,∴射线ME 运动的时间102153t ==(秒),∴射线PN 旋转的角度2804033FPN ︒∠=⨯︒=, 又120EPF ∠=︒,8028012033EPN EPF EPN ︒︒∴∠=∠-∠=︒-=;Ⅱ如图3所示,30AEP ∠=︒,20MEP ∠=︒,50AEM ∴∠=︒,∴射线ME 运动的时间5010153t ==(秒), ∴射线PN 旋转的角度104004033FPN ︒∠=⨯︒=, 又120EPF ∠=︒,4004012033EPN FPN EPF ︒︒∴∠=∠-∠=-︒=; EPN ∴∠的度数为2803︒或403︒;②Ⅰ当PN 由PF 运动如图4时//EM PN ,PN 与AB 相交于点H ,根据题意可知,经过t 秒,15AEM t ∠=︒,40FPN t ∠=︒,//EM PN ,15AEM AHP t ∴∠=∠=︒,又=FPN PGH PHA ∠∠+∠,409015t t ∴︒=︒+︒,解得185t =(秒);Ⅱ当PN 运动到PG ,再由PG 运动到如图5时//EM PN ,PN 与AB 相交于点H ,根据题意可知,经过t 秒,15AEM t ∠=︒,//EM PN ,15GHP t ∴∠=︒,9015GPH t ∠=︒-︒,PN ∴运动的度数可得,18040GPH t ︒+∠=︒, 解得5411t =;Ⅲ当PN 由PG 运动如图6时,//EM PN ,根据题意可知,经过t 秒,15AEM t ∠=︒,40180GPN t ∠=-︒,30AEP ∠=︒,60EPG ∠=︒,1530PEM t ∴∠=︒-︒,24040EPN t ∠=︒-,又//EM PN ,180PEM EPN ∴∠+∠=︒,153040240180t t ∴︒-︒+-︒=︒,解得9011t =(秒), 当t 的值为185秒或5411或9011秒时,//EM PN .【点睛】本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键.9.(1);(2),证明见解析;(3),证明见解析.【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.【分析】(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得; (2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.【详解】解:(1)如图,过点E 作//EF AB ,AEF BAE ∴∠=∠,//AB CD ,//EF CD ∴,CEF DCE ∴∠=∠,AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,又//AB CD ,且点P 运动到线段AC 上,180PAB PCD ∴∠+∠=︒,AE ∵平分PAB ∠,CE 平分PCD ∠, 11,22BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒; (2)猜想2APC AEC ∠=∠,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,2APC AEC ∴∠=∠;(3)2360APC AEC ∠+∠=︒,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 即2PAB PCD AEC ∠+∠=∠,//PQ AB ,180APQ PAB ∴∠+∠=︒,即180APQ PAB ∠=︒-∠,//AB CD ,//PQ CD ∴,180CPQ PCD ∴∠+∠=︒,即180CPQ PCD ∠=︒-∠,APC APQ CPQ ∴∠=∠+∠,180180PAB PCD =︒-∠+︒-∠,()360PAB PCD =︒-∠+∠,3602AEC =︒-∠,即2360APC AEC ∠+∠=︒.【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.10.(1)证明见解析;(2)(Ⅰ);(Ⅱ).【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得 解析:(1)证明见解析;(2)(Ⅰ)5DAM ∠=︒;(Ⅱ)25ACD ∠=︒.【分析】(1)先根据平行线的性质可得65BAD ∠=︒,再根据角的和差可得180BAD ABC ∠+∠=︒,然后根据平行线的判定即可得证;(2)(Ⅰ)先根据平行线的性质可得30BAC ACD ∠=∠=︒,从而可得30MAC ∠=︒,再根据角的和差可得35DAC ∠=︒,然后根据DAM DAC MAC ∠=∠-∠即可得;(Ⅱ)设MAN x ∠=,从而可得8CAD x ∠=,先根据角平分线的定义可得142CAN CAD x ∠=∠=,再根据角的和差可得5BAC MAC x ∠=∠=,然后根据65CAD BAC BAD ∠+∠=∠=︒建立方程可求出x 的值,从而可得BAC ∠的度数,最后根据平行线的性质即可得.【详解】(1)12//,115l l ADC ∠=︒,18065BAD ADC ∴∠=︒-∠=︒,又115ABC ∠=︒,180BAD ABC ∴∠+∠=︒,//AD BC ∴;(2)(Ⅰ)12//,30l l ACD ∠=︒,30BAC ACD ∴∠=∠=︒,MAC BAC ∠=∠,30MAC ∴∠=︒,由(1)已得:65BAD ∠=︒,35DAC BAD BAC ∴∠=∠-∠=︒,35305DAM DAC MAC ∴∠=∠-∠=︒-︒=︒;(Ⅱ)设MAN x ∠=,则8CAD x ∠=, AN 平分CAD ∠,142CAN CAD x ∴∠=∠=, 5MAC CAN MAN x ∴∠=∠+∠=,MAC BAC ∠=∠,5BAC x ∴∠=,由(1)已得:65BAD ∠=︒,65CAD BAC BAD ∴∠+∠=∠=︒,即8565x x +=︒,解得5x =︒,525BAC x ∴∠==︒,又12//l l ,25ACD BAC ∴∠=∠=︒.【点睛】本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键.三、解答题11.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析. 【解析】【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B ,已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×(180°-∠B )=90°-12∠B ;再由三角形的内角和定理可得∠AFD=90°+12∠B;(2)∠AFD=90°-12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠NDE=12∠EDB,即可得∠FDM=∠NDE=12∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=12∠C,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-12∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.12.(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.13.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠A n(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律;(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)当∠A为70°时,∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,∴∠A1CD-∠A1BD=12(∠ACD-∠ABD)∴∠A1=35°;故答案为:A,70,35;(2)∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠A n,故答案为:∠A=2∠A n.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=12(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案为:25°.(4)①∠Q+∠A1的值为定值正确.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD-∠A1BD=12∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,∴∠QEC+∠QCE=12(∠AEC+∠ACE)=12∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-12∠BAC,∴∠Q+∠A1=180°.【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.14.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①85A ∠=︒;②100E ∠=︒;③40A ∠=︒;④2B C E ∠-∠=∠;⑤130︒【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,即可判断BDC ∠与A ∠,1∠,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解;②连接BC ,然后根据(1)中结论,求得ABD ACD ∠+∠的和,进而得到DBC DCB ∠+∠的和,然后根据角平分线求得EBD ECD ∠+∠的和,进而求得80EBC ECB ∠+∠=︒,然后利用三角形内角和定理180E EBC ECB ∠+∠+∠=︒,即可求解;③连接BC ,首先求得18060DBC DCB BDC ∠+∠=︒-∠=︒,然后根据十等分线和三角形内角和的性质得到333180=116CBF BC F F B C =︒-∠︒∠+∠,然后得到ABD ACD ∠+∠的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到BAE ABD E BDE ∠+∠=∠+∠,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到BAC ABD ∠+∠的和,然后根据角平分线的性质得到BAE ABE ∠+∠的和,然后利用三角形内角和性质即可求解.【详解】(1)∵180BDC DBC BCD ∠+∠+∠=︒,(三角形内角和180°)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长BD 交AC 于E ,由三角形外角性质可知,1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,∴12BDC A ∠=∠+∠+∠.(3)①如图①所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=135252585A BDC ABD ACD ∠=∠-∠-∠︒-︒-︒=︒,∴85A ∠=︒;②如图②所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=1406080ABD ACD BDC A ∠+∠=∠-∠︒-︒=︒,∵ABD ∠与ACD ∠的角平分线交于点E , ∴12EBD ABD ∠=∠,12ECD ACD ∠=∠, ∴()11140222EBD ECD ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠=︒, ∵140BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18040DBC DCB BDC ∠+∠=︒-∠=︒,∴80EBC ECB ∠+∠=︒,∵180E EBC ECB ∠+∠+∠=︒,∴100E ∠=︒;③如图③所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∵120BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18060DBC DCB BDC ∠+∠=︒-∠=︒,∵ABD ∠与ACD ∠的十等分线交于点3F , ∴3710DBF ABD ∠=∠,3710DCF ACD ∠=∠, ∴()33777101010DBF DCF ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠, ∴()333371060CBF BCF EBF ECF A DBC D A CB BD CD ∠+∠=+︒∠+∠=∠+∠+∠+∠, ∵333180CBF BCF BF C +∠=︒∠+∠,∴333180=116CBF BC F F B C =︒-∠︒∠+∠,∴80ABD ACD ︒∠+∠=,∴()1208040A BDC ABD ACD ∠=∠-∠+∠=︒-︒=︒,∴40A ∠=︒;④如图④所示,设BD 与AE 的交点为点O ,∵AE 平分BAC ∠,BD 平分BDC ∠, ∴12BAE BAC ∠=∠,12BDE BDC ∠=∠, ∵BOE BAE ABD ∠=∠+∠,BOE E BDE ∠=∠+∠,∴BAE ABD E BDE ∠+∠=∠+∠, ∴()11+22BAC ABD E BAC ABD ACD ∠+∠=∠+∠+∠∠, ∴()1111+2222E BAC ABD ACD BAC ABD ABD ACD ∠=∠+∠∠-∠-∠=∠-∠,即2B C E ∠-∠=∠;⑤∵ABD ∠,BAC ∠的角平分线交于点E , ∴()1502BAE ABE BAC ABD ∠+∠=∠+∠=︒, ∴()180********AEB BAE ABE ∠=︒-∠+∠=︒-︒=︒.【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.15.(1)①70;②∠F=∠BED ,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,∴CD ∥FG ,∴∠ABF=∠BFG ,∠CDF=∠DFG ,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF )=60︒+80︒=140︒,。

2015年苏科版七下数学期末试卷及答案(精品)3

2015年苏科版七下数学期末试卷及答案(精品)3

25.(本小题 5 分)
先化简,再求值: (2a + b) 2+ 5a(a + b) - (3a -b) 2,其中 a= 3, b=- 2 . 3
26.(本小题 5 分) 若关于 x、y 的二元一次方程组
2x y 3k 1 的解满足 0<x+y≤ 1,求 k 的取值范围.
x 2y 2
ห้องสมุดไป่ตู้
27.(本小题 5 分) 如图,已知 AB//DE, BF、 EF 分别平分∠ ABC与∠ CED,若∠ BCE= 140°,求∠ BFE的度
B. x>2
C.x<0
D.x<2
9 .如图,∠ 1,∠ 2,∠ 3,∠ 4 是五边形 ABCDE的外角,且∠ 1=∠ 2=∠ 3=∠ 4=70°,
则∠ AED的度数是
A . 80°
B. 100°
C.108°
D.110°
10.甲、乙、丙、丁四人到文具店购买同一种笔记本和钢笔,购买的数量及总价分别如下表
C.∠ C=∠ ABC
D.∠ A=∠ ABE
x y1
4.方程组
的解是
2x y 5
x1 A.
y2
x2 B.
y3
x2 C.
y1
x2 D.
y1
5.已知三角形两边的长分别是 4 和 10,则此三角形第三边的长可能是
A .5
B. 6
C. 11
D. 16
6.用操作计算器的方法计算 (20 5) 2,第 5 个按键是
归纳与证明 拓展与应用
换几个数再试试,你发现了什么?请写出来并证明它是正确的; 求代数式 a2+ b2-6a- 8b+30 的最小值.
30.(本小题 6 分) 如图 1,在 Rt △ABC中,∠ ACB= 90°, D 是 AB上一点,且∠ ACD=∠ B,

钟吾七年级数学试卷

钟吾七年级数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…(循环小数)D. √-12. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 13. 下列运算正确的是()A. (-3)² = -9B. (-2)³ = -8C. (-4)⁴ = 16D. (-5)⁵ = -1254. 若a > b,那么下列不等式中正确的是()A. a + 3 > b + 3B. a - 3 < b - 3C. a + 3 < b + 3D. a - 3 > b - 35. 下列图形中,不是轴对称图形的是()A. 矩形B. 等腰三角形C. 圆D. 梯形6. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,3)C. (-2,-3)D. (2,-3)7. 若一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的面积是()A. 40cm²B. 48cm²C. 50cm²D. 64cm²8. 下列函数中,y是x的一次函数的是()A. y = 2x² + 3B. y = 3x - 5C. y = 4x³ + 2D. y = 5x + 7x9. 下列方程中,解为x = 2的是()A. 2x + 3 = 7B. 3x - 2 = 5C. 4x + 1 = 9D. 5x - 3 = 710. 若一个数的平方根是±2,则这个数是()A. 4B. -4C. ±4D. 0二、填空题(每题3分,共30分)11. 若a² = 9,则a的值为______。

12. 若a = -3,b = 2,则a + b的值为______。

13. 在直角坐标系中,点A(2,3)与点B(-1,-2)的距离是______。

钟吾初中七年级(下)数学期末模拟(2)

钟吾初中七年级(下)数学期末模拟(2)

钟吾初中七年级(下)数学期末模拟练习一、仔细选择(每小题3分,共18分。

把唯一正确的答案填入括号内)01.( )下列计算正确的是A .325()a a = B .326a a a ∙= C .32a a a ÷= D .22(3)6a a =02.( )已知96m =, 32n=,则下列结论正确的是A .2m -n =1B .2m -n =3C .2m +n =3D .2m =3n03.( )若02014a =-,1(0.5)b -=-,232c -⎛⎫=- ⎪⎝⎭,则a 、b 、c 的大小关系为A .a >c >bB .c >b >aC .c >a >bD .a >b >c 04.( )如图,给出下列条件:①∠3=∠4 ②∠1=∠2 ③∠5=∠B ④AD ∥BE ,且∠D=∠B . 其中能说明AB ∥DC 的条件有A .4个B .3个C . 2个D .1个第4题图 第5题图05.( )如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边 形ABFD 的周长为A .10B .12C .14D .1606.( )如图,已知△ABC 中, DE ∥BC ,将△ADE 沿DE 翻折,使得点A 落在平面 内的A′处,若∠B =50°,则∠BDA′的度数是A .90°B .100°C .80°D .70°07.( )若方程组⎩⎨⎧-=++=+a y x a y x 13313的解满足0=+y x ,则A .1a =-B .1a =C .0a =D .2a =- 08.( )若不等式组530x x m -≥⎧⎨-≥⎩有解,则实数m 的取值范围是 第6题图A .53m ≤B .53m <C .53m ≥D .53m >A'E D CBAFE DCBA 54321E DCBA二、谨慎填空(每题3分,共24分。

把答案直接填在题中的横线上) 09.若32+=n m ,则2244m mn n -+的值是 .10.已知2x y n=⎧⎨=⎩是方程组2212x y m x y +=⎧⎨-=⎩的解,则m n -= .11.若032=-+y x ,则y x 42⋅的值为___ _______.12.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为 .13.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是__________.第13题图 第14题图14.如图,△ABC 中,点E 是BC 上的一点,EC=2BE ,点D 是AC 的中点.若△ABC 的面积12=∆ABC S ,则=-∆∆BEF ADF S S .15.大虎计划购买1张餐桌和若干张餐椅,他从甲、乙两个商场了解到:同一型号的餐桌报价每张120元,餐椅报价每把20元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:餐桌椅均按报价的九折销售.大虎至少买 把餐椅,他到乙商场购买才相对优惠一些. 16.已知:21(1)n a n =+,如果记122(1)(1)....(1)n n b a a a =---(n =1,2,3,…).试推断n b 的表达式n b = .(用含n 的代数式表示)三、完美解答(共8题,记72分.解答应写出必要的文字说明或演算步骤)17.(本题8分)计算或化简:(1)1201232-⎛⎫-+-- ⎪⎝⎭; (2)24(2)(23)a a b a b ---.FEDCB A18.(本题8分)解方程组:(1)237342x y x y +=⎧⎨-=⎩; (2)134311232m nm n ⎧-=⎪⎪⎨--⎪-=⎪⎩.19.(本题8分)分解因式:(1)24416x y -; (2)322224a ab a b +-.20.(本题8分)解不等式组,并把不等式的解集在数轴上表示出来:(1)562(3)3143x x x x -≤+⎧⎪-⎨-<⎪⎩; (2)3315x -≤-<.21.(本题满分4分)已知0132=+-x a ,01623=--x b ,且44a b ≤⎧⎨>⎩,求x 的取值范围.22.(本题6分)学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件:第一台按原价收费,其余每台优惠25%; 乙商场的优惠条件:每台优惠20%.(1)分别写出两家商场的收费与所买电脑台数之间的关系式; (2)讨论到哪家商场购买更优惠.23.(本题满分6分)【方法】一般地,二元一次方程的解有无数个,但是有些二元一次方程的正整数解却只有有限个,如求二元一次方程2315x y +=的正整数解,根据程方程各项的特征,发现2和15分别是偶数和奇数,可以确定3y 必然是奇数,即y 是 奇数,再运用特值法代入尝试,即将y =1,3,5,…等奇数代入原方程一次 求出相应的x 的值,从而获得原方程的正整数解只有61x y =⎧⎨=⎩和33x y =⎧⎨=⎩.【理解】盒子里有若干个大小相同的红球和白球,规定从中摸出一个红球的3分,摸到一个白球的4分,假设小华摸到x 个红球和y 个白球,共得34分,请你列出关于x 、y 的方程,并写出这个方程符合实际意义的所有的解.【运用】已知△ABC 的三边m ,n ,p 都是正整数,且△ABC 的周长为15,则符合条件的三角形共有 个. 24.(本题满分8分)如图,在直角三角形ADC 中,∠ADC=90°,点B 在射线AD 上运动,∠BCA 的平分线交AD 于点E .(1)若∠A=30°,∠ABC=100°,则∠ECD= ;若∠A=28°,∠ABC=72°,则∠ECD= ;(2)若∠A=x °,∠ABC=y °,求∠ECD 的度数(用含x ,y 的式子表示).DC ADCA25.(本题满分8分)△ABC 中,∠ABC 与∠ACB 的平分线相交于点P ,过点P 的直线MN 分别与AB 和AC 相交于点M 和N . (1)如图①,如果∠A=50°,MN ∥BC ,求∠MPB+∠NPC 的度数;(2)当MN 与BC 不平行时,如图②, 试探索∠MPB 、∠NPC 、∠A 三者之间的数量关系,并说明你的理由;(3)直线MN 绕点P 旋转,使直线MN 与AB 的交点仍在线段AB 上,而与AC 的交点在AC 的延长线上时,如图③,请直接写出∠MPB 、∠NPC 、∠A 三者之间的数量关系(不必说明理由).图① 图② 图③P NM C B A P NMC B A P N M C B A26.(本题满分8分)(1)如图①,AD 是△ABC 的中线,△ABD 与△ACD 的面积有怎样的数量关系?S △ABD 与S △ACD 的面积关系是 ,请说明理由;图①(2)若三角形的面积记为S ,如图②,△ABC 的中线AD 、CE 相交于点O ,求四边形BDOE 的面积. 方法:利用(1)的结论,解法如下:连接BO ,设S △BEO =x ,S △BDO =y ,由(1)结论可得:S △BCE =S △ABD =12S , S △BCO =2S △BDO =2y , S △BAO =2S △BEO =2x .于是==BEO BCO BCE BAO BDO BAD S S S S S S +⎧⎨+⎩△△△△△△,即12=212=2x y S x y S⎧+⎪⎪⎨⎪+⎪⎩ 所以13x y S +=,即四边形BDOE 的面积是13S . 请仿照上面的方法,解决下列问题:(三角形的面积记为S )①如图③,D 、F 是BC 边上的三等分点,E 、G 是AB 边上的三等分点,AD 、CE 交于点O ,求四边形BDOE 的面积,写出求解的过程; ②如图④,D 是BC 边上的点,BD=1n BC ,E 是AB 边上的点,BE=1nBA , AD 、CE 交于点O ,则四边形BDOE 的面积为 .图③ 图④DCBA x yy xO E D CBA 图②O EDCBAGFO EDCBA。

江苏省宿迁市七年级下学期数学期末考试试卷

江苏省宿迁市七年级下学期数学期末考试试卷

江苏省宿迁市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016七上·蓬江期末) 下列图形中,∠1与∠2是对顶角的有()A .B .C .D .2. (2分)某地上半年每月的平均气温是5℃,8℃,12℃,18℃,24℃,30℃,为了表示出气温变化的情况可以把它绘制成()A . 扇形统计图B . 折线统计图C . 条形统计图D . 以上都可以3. (2分) (2019七下·随县月考) 下列说法中正确的是()A . 过一点有且只有一条直线平行于已知直线B . 两条直线被第三直线所截,同位角相等C . 两条直线有两种位置关系:平行、相交D . 同一平面内,垂直于同一条直线的两条直线平行4. (2分)若a<0,点M(1,a)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分)为了了解本校三个年级学生身高的分布情况,四位同学做了不同的调查:甲、乙、丙三个同学分别向七年级、八年级、九年级的全体同学进行了调查,丁分别向七年级、八年级、九年级的1班进行了调查.你认为调查较科学的是()A . 甲B . 丙C . 丁D . 乙6. (2分)如果直线a、直线b都和直线c平行,那么直线a和直线b的位置关系是()A . 相交B . 平行C . 相交或平行D . 不相交7. (2分)如果a>b,那么下列结论一定正确的是()A . a﹣3<b﹣3B . 3﹣a<3﹣bC . ac2>bc2D . a2>b28. (2分)(2016·兖州模拟) 某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A . 800B . 600C . 400D . 2009. (2分)若方程组的解是,则方程组的解是()A .B .C .D .10. (2分)(2016·温州) 如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A . (0,3)B . (3,0)C . (6,4)D . (1,4)11. (2分)下列命题中的假命题是()A . 对顶角相等B . 内错角相等,两直线互相平行C . 同位角相等D . 平行于同一条直线的两直线互相平行12. (2分)某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A .B .C .D .二、填空题 (共6题;共8分)13. (2分) (2017七下·重庆期中) 在二元一次方程﹣ x+3y=2中,当x=4时,y=________;当y=﹣1时,x=________.14. (1分) (2015八上·句容期末) 用字母表示的实数m﹣2有算术平方根,则m取值范围是________.15. (1分) (2017七下·兰陵期末) 在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为________人.16. (1分)(2019·甘肃) 不等式组的最小整数解是________.17. (1分) (2017七下·睢宁期中) 如图,在△ABC,中,∠BAC=90°,沿AD折叠△ABC,使点B恰好落在AC边上的点E处,若∠C=20°,则∠ADE=________.18. (2分) (2017七下·兴隆期末) 对于X、Y定义一种新运算“*”:X*Y=2X+3Y,等式右边是通常的加法和乘法的运算.已知:3*5=2×3+3×5=21,4*7=2×4+3×7=29,那么1*2=________;2*(﹣3)=________.三、解答题 (共8题;共71分)19. (10分)(2017·市中区模拟) 根据问题进行计算:(1)计算:(x+3)(x﹣3)﹣x(x﹣2)(2)解不等式组:.20. (5分)(2011·衢州) 解不等式,并把解在数轴上表示出来.21. (10分) (2017七下·汶上期末) 综合题:探索发现规律拓展应用题(1)如图①,∠CEF=90°,点B在射线EF上,AB∥CD,若∠ABE=130°,求∠C的度数;(2)如图②,把“∠CEF=90°”改为“∠CEF=120°”,点B在射线EF上,AB∥CD.猜想∠ABE与∠C的数量关系,并说明理由.22. (9分)(2018·邗江模拟) 某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m=________,n=________,并补全条形统计图________;(2)扇形统计图中“C组”所对应的圆心角的度数是________;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.23. (5分) (2017七下·东城期末) 解不等式组:,并把它的解集在数轴上表示出来.24. (12分) (2017九上·德惠期末) 如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3 .(1)△ABC与△A1B1C1的位似比等于________;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为________.25. (10分)(2017·锦州) 某电子超市销售甲、乙两种型号的蓝牙音箱,每台进价分别为240元,140元,下表是近两周的销售情况:销售时段销售数量销售收入甲种型号乙种型号第一周3台7台2160元第二周5台14台4020元(1)求甲、乙两种型号蓝牙音箱的销售单价;(2)若超市准备用不多于6000元的资金再采购这两种型号的蓝牙音箱共30台,求甲种型号的蓝牙音箱最多能采购多少台.26. (10分) (2019七下·阜阳期中) 在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”例如,点P(1,4)的“3级美联点”为Q(3 +4,1+3 ),即Q(7,13).(1)已知点A(一2,6)的“ 级关联点”是点,求点的坐标。

宿迁市七年级下册末数学试卷及答案

宿迁市七年级下册末数学试卷及答案

一、填空题1.将1,2,3,6按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.答案:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列 6【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算. 【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1, 1+2+3+4+5+6+3=24, 24÷4=6,则(7,36, 6. 【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.2.如图,将一副三角板按如图放置(60E ∠=︒,45B ∠=︒),则下列结论: ①13∠=∠;②如果230∠=︒,则有//BC AE ; ③如果123∠=∠=∠,则有//BC AE ; ④如果//AB ED ,必有30EAC ∠=︒. 其中正确的有___(填序号).答案:①③④ 【分析】根据三角板的性质以及平行线的判定一一判断即可. 【详解】 解:, ,故①正确, 当时,,, ,故与不平行,故②错误, 当时,可得, ,故③正确, 取与的交点为, ,, , ,解析:①③④ 【分析】根据三角板的性质以及平行线的判定一一判断即可. 【详解】解:90EAD CAB ∠=∠=︒,13∠∠∴=,故①正确,当230∠=︒时,360∠=︒,445∠=︒,34∴∠≠∠,故AE 与BC 不平行,故②错误, 当123∠=∠=∠时,可得3445∠=∠=︒,//BC AE ∴,故③正确,取AC与ED的交点为F,AB ED,E60∠=︒,//∴∠=∠=︒,90FAB EFA∴∠=︒-︒=︒,906030EAC故④正确,故答案是:①③④.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握三角板的性质.3.在平面直角坐标系中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如,三点坐标分别为A(0,3),B(-3,4),C(1,-2),则“水平底”a=4,“铅垂高”h=6,“矩面积”S=ah=24.若D(2,2),E(-2,-1),F(3,m)三点的“矩面积”为20,则m的值为______.答案:或3【分析】根据矩面积的定义表示出水平底”a和铅垂高“h,利用分类讨论对其铅垂高“h进行讨论,从而列出关于m的方程,解出方程即可求解.【详解】∵D(2,2),E(-2,-1),F(3,m)解析:2-或3【分析】根据矩面积的定义表示出水平底”a和铅垂高“h,利用分类讨论对其铅垂高“h进行讨论,从而列出关于m的方程,解出方程即可求解.【详解】∵D(2,2),E(-2,-1),F(3,m)∴“水平底”a=3-(-2)=5“铅垂高“h=3或|1+m|或|2-m|①当h=3时,三点的“矩面积”S=5×3=15≠20,不合题意;②当h=|1+m|时,三点的“矩面积”S=5×|1+m|=20, 解得:m=3或m=-5(舍去);③当h=|2-m|时,三点的“矩面积”S=5×|2-m|=20, 解得:m=-2或m=6(舍去); 综上:m=3或-2 故答案为:3或-2 【点睛】本题考查坐标与图形的性质,解答本题的关键是明确题目中的新定义,利用新定义解答问题.4.在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点.已知点的终结点为,点的终结点为,点的终结点为,这样依次得到、、、、…、…,若点的坐标为,则点的坐标为__________.答案:-3,3 【解析】 【分析】利用点P (x ,y )的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(-3,3),点P4的坐标为(-2,-1),点P5的坐标为(2,0),…,从而得到每4次 解析:【解析】 【分析】利用点P (x ,y )的终结点的定义分别写出点P 2的坐标为(1,4),点P 3的坐标为(-3,3),点P 4的坐标为(-2,-1),点P 5的坐标为(2,0),…,从而得到每4次变换一个循环,然后利用2019=4×504+3可判断点P 2019的坐标与点P 3的坐标相同. 【详解】解:根据题意得点P 1的坐标为(2,0),则点P 2的坐标为(1,4),点P 3的坐标为(-3,3),点P 4的坐标为(-2,-1),点P 5的坐标为(2,0),…,而2019=4×504+3, 所以点P 2019的坐标与点P 3的坐标相同,为(-3,3).故答案为(-3,3). 【点睛】本题考查了几何变换:四种变换方式:对称、平移、旋转、位似.掌握在直角坐标系中各种变换的对应的坐标变化规律,是解决问题的关键.5.如图,一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点()0,0运动到()0,1,然后接着按图中箭头所示方向运动,即()()()()0,00,11,11,0→→→,…,且每秒运动一个单位,到()1,1点用时2秒,到()2,2点用时6秒,到()3,3点用时12秒,…,那么第421秒时这个点所在位置的坐标是____.答案:【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,19,20解析:()【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…,可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,∵20×20=400∴第421秒时这个点所在位置的坐标为(19,20),故答案为:(19,20).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键.6.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0),…,按这样的规律,则点A2021的坐标为 ____________.答案:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解解析:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2021÷6=336…5,∴点A2021的位于第337个循环组的第5个,∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A2021的坐标为(2021,﹣2).故答案为:(2021,﹣2).【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解.7.阅读下列解题过程:计算:232425++++++122222解:设232425S=++++++①122222则232526S=+++++②222222由②-①得,26S=-21运用所学到的方法计算:2330++++⋯⋯+=______________.15555答案:.【分析】设S=,等号两边都乘以5可解决.【详解】解:设S=①则5S=②②-①得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的解析:3151 4-.【分析】设S=233015555++++⋯⋯+,等号两边都乘以5可解决.【详解】解:设S=233015555++++⋯⋯+①则5S=23303155555+++⋯⋯++②②-①得4S=311-5,所以S=3151 4-.故答案是:3151 4-.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决.8.对于有理数a,b,规定一种新运算:a※b=ab+b,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a※b=b※a,则a=b;③方程(x﹣4)※3=6的解为x=5;④(a※b)※c=a※(b※c).其中正确的是_____(把所有正确的序号都填上).答案:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若解析:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确; 左边=(a ※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c 右边=a ※(b ※c )=a ※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c 2 两式不相等,所以④错误. 综上所述,正确的说法有①③. 故答案为①③. 【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.9.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.答案:4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4. 故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.10.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=.例如:(-3)☆2=32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____.答案:8 【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:8 【解析】解:当a >b 时,a ☆b =2a b a b++- =a ,a 最大为8;当a <b 时,a ☆b =2a b a b++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.观察等式:2111==,21342+==,213593++==,21357164+++==,……猜想13572019++++⋅⋅⋅+=______.答案:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n 个奇数的和,据此可解. 【详解】 解:∵从解析:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n 个奇数的和,据此可解. 【详解】解:∵从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…;∴从1开始的连续n 个奇数的和:1+3+5+7+…+(2n-1)=n 2; ∴2n-1=2019; ∴n=1010;∴1+3+5+7…+2019=10102; 故答案是:10102. 【点睛】此题主要考查学生对规律型题的掌握,关键是要对给出的等式进行仔细观察分析,发现规律,根据规律解题.12.对于实数x ,y ,定义一种运算“×”如下,x ×y =ax -by 2,已知2×3=10,4×(-3)=6,那么(-2=________;答案:130 【解析】【分析】已知等式利用题中的新定义化简,求出a 与b 的值,即可确定出原式的值.【详解】根据题中的新定义得: 解得 , 所以, = =130故答案为:130 【点睛】本解析:130 【解析】【分析】已知等式利用题中的新定义化简,求出a 与b 的值,即可确定出原式的值. 【详解】根据题中的新定义得:2910496a b a b -=⎧⎨-=⎩ 解得2149a b =-⎧⎪⎨=-⎪⎩,所以,()()22222a b ⎡⎤-⨯=--⎣⎦=()22142(2)()9⎡⎤-⨯---⨯⎣⎦ =130 故答案为:130【点睛】本题考核知识点:实数运算. 解题关键点:理解新定义运算规则,根据法则列出方程组,解出a,b 的值,再次应用规则,求出式子的值.13.定义一种新运算a b ※,其规则是:当a b >时,2a b a b =-※,当a b =时,a b a b =+※,当a b <时,2a b b a =-※,若()21x -=※,则x =____________.答案:或﹣5 【分析】根据新定义运算法则,分情况讨论求解即可. 【详解】解:当x >﹣2时,则有,解得:,成立; 当x=﹣2时,则有,解得:x=3,矛盾,舍去; 当x <﹣2时,则有,解得:x=﹣5,成立解析:12-或﹣5【分析】根据新定义运算法则,分情况讨论求解即可. 【详解】解:当x >﹣2时,则有()22(2)1x x -=--=※,解得:12x =-,成立; 当x =﹣2时,则有()2(2)1x x -=+-=※,解得:x =3,矛盾,舍去; 当x <﹣2时,则有()22(2)1x x -=⨯--=※,解得:x =﹣5,成立, 综上,x =12-或﹣5,故答案为:12-或﹣5. 【点睛】本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键.14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排行,如(0,1),(0,2),(1,2),(1,3),(0,3),(1,3)-,......根据这个规律探索可得,第93个点的坐标为__________.答案:(-5,14)【分析】从图中可以看出纵坐标为1的有一个点,纵坐标为2的有2个点,纵坐标为3的有3个点,…依此类推纵坐标为n 的有n 个点.题目要求写出第93个点的坐标,我们可以通过加法计算算出第93解析:(-5,14)【分析】从图中可以看出纵坐标为1的有一个点,纵坐标为2的有2个点,纵坐标为3的有3个点,…依此类推纵坐标为n 的有n 个点.题目要求写出第93个点的坐标,我们可以通过加法计算算出第93个点位于第几行第几列,然后对应得出坐标规律,将行列数代入规律式.【详解】在纵坐标上,第一行有一个点,第二行有2个点,…,第n 行有n 个点,并且奇数行点数对称,而偶数行点数x 轴右方比左方多一个,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第93个点在第14行上,所以奇数行的坐标自右而左为(12n -,n ),(112n --,n ),,(12n -,n ), 偶数行的坐标自左而右为(12n -,n ),(22n -,n ),,(2n ,n ), 由加法推算可得到第93个点位于第14行自左而右第2列.∴第93个点的坐标为(-5,14),故答案为:(-5,14).【点睛】本题主要考查了点的规律型,观察得到纵坐标相等的点的个数与纵坐标相同是解题的关键,还要注意纵坐标为奇数和偶数时的排列顺序不同.15.若()220a -=.则a b =______. 答案:1【分析】根据平方数和算术平方根的非负性即可求得a 、b 的值,再带入求值即可.【详解】∵,∴,∴a-2=0, b+1=0,∴a=2,b =-1,∴=,故答案为:1【点睛】本题主要考解析:1【分析】根据平方数和算术平方根的非负性即可求得a 、b 的值,再带入a b 求值即可.【详解】∵()220a -, ∴()220a -==, ∴a -2=0, b +1=0,∴a =2,b =-1,∴a b =2(1)1-=,故答案为:1【点睛】本题主要考查非负数的性质,解题的关键是掌握偶次乘方的非负性和算数平方根的非负性. 16.如图,数轴上点A 的初始位置表示的数为2,将点A 做如下移动:第1次点A 向左移动2个单位长度至点1A ,第2次从点1A 向右移动4个单位长度至点2A ,第3次从点2A 向左移动6个单位长度至点3A ,按照这种移动方式进行下去,点5A 表示的数是__________,如果点n A 与原点的距离等于10,那么n 的值是__________.答案:-4, 8或11【解析】序号为奇数的点在点A 的左边,各点所表示的数依次减少2,分别为0,-2,-4,-6,-8,-10……,序号为偶数的点在点A 的右侧,各点所表示的数依次增加2,分解析:-4, 8或11【解析】序号为奇数的点在点A 的左边,各点所表示的数依次减少2,分别为0,-2,-4,-6,-8,-10……,序号为偶数的点在点A 的右侧,各点所表示的数依次增加2,分别为4,6,8,10……,所以A 5表示的数是-4,当点n A 与原点的距离等于10时,n 为8或11,故答案为-4;n 为8或11.17.31y -312x -x y的值是____. 答案:【分析】首先根据与互为相反数,可得+=0,进而得出,然后用含的代数式表示,再代入求值即可.【详解】解:∵与互为相反数,∴+=0,∴∴∴.故答案为:.【点睛】本题主要考查了实数 解析:12【分析】 31y -312x -31y -312x -,进而得出1120-+-=y x ,然后用含x 的代数式表示y ,再代入求值即可.【详解】解:∵31y -312x - ∴31y -312x -,∴1120-+-=y x∴2y x = ∴1=22x x y x =. 故答案为:12.【点睛】本题主要考查了实数的运算以及相反数,根据相反数的概念求得y 与x 之间的关系是解题关键.18.在平面直角坐标系xOy 中,对于点P(x ,y),如果点Q(x ,'y )的纵坐标满足()()x y x y y y x x y -≥⎧=⎨-<'⎩当时当时,那么称点Q 为点P 的“关联点”.请写出点(3,5)的“关联点”的坐标_______;如果点P(x ,y)的关联点Q 坐标为(-2,3),则点P 的坐标为________. 答案:(3,2); (-2,1)或(-2,-5).【分析】根据关联点的定义,可得答案.【详解】解:∵3<5,根据关联点的定义,∴y′=5-3=2,点(3,5)的“关联点”的坐标(解析:(3,2); (-2,1)或(-2,-5).【分析】根据关联点的定义,可得答案.【详解】解:∵3<5,根据关联点的定义,∴y′=5-3=2,点(3,5)的“关联点”的坐标(3,2);∵点P (x ,y )的关联点Q 坐标为(-2,3),∴y′=y -x=3或x-y=3,即y-(-2)=3或(-2)-y=3,解得:y=1或y=-5,∴点P 的坐标为(-2,1)或(-2,-5).故答案为:(3,2);(-2,1)或(-2,-5).【点睛】本题主要考查了点的坐标,理清“关联点”的定义是解答本题的关键.19.已知直线AB ∥CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按顺时针方向以每秒4°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按顺时针方向每秒1°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为_____;(2)若射线QC先转45秒,射线PB才开始转动,当射线PB旋转的时间为_____秒时,PB′∥QC′.答案:PB′⊥QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;解析:PB′⊥QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;(2)分三种情况:①当0s<t≤45时,②当45s<t≤67.5s时,③当67.5s<t<135s时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】(1)如图1,当旋转时间30秒时,由已知得∠BPB′=4°×30=120°,∠CQC′=30°,过E作EF∥AB,则EF∥CD,∴∠PEF=180°﹣∠BPB′=60°,∠QEF=∠CQC′=30°,∴∠PEQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0s<t≤45时,如图2,则∠BPB′=4t°,∠CQC′=45°+t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即4t=45+t,解得,t=15(s);②当45s<t≤67.5s时,如图3,则∠APB′=4t﹣180°,∠CQC'=t+45°,∵AB∥CD,PB′∥QC′,∴∠APB′=∠PED=180°﹣∠CQC′,即4t﹣180=180﹣(45+t),解得,t=63(s);③当67.5s<t<135s时,如图4,则∠BPB′=4t﹣360°,∠CQC′=t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即4t﹣360=t+45,解得,t=135(s);综上,当射线PB旋转的时间为15秒或63秒或135秒时,PB′∥QC′.故答案为:15秒或63秒或135秒.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.20.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)答案:【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠解析:【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.21.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=52∠DAE,则∠ACD的度数是_____.答案:27°.【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°. 【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD解析:27°.【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-12∠FAD=45°-12(90°-∠AFD)=12∠AFD,因为MN∥PQ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,所以∠ACD=12∠AFD=12(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-25∠BCA=45°-18°=27°.故∠ACD的度数是:27°.【点睛】本题利用平行线、垂直、角平分线综合考查了角度的求解.22.如图,已知AB∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC与∠AEC之间的数量关系是_____________________________答案:4∠AFC=3∠AEC【详解】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【详解】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC═3(x°+y°),即可得出答案.【详解】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∠AEC,∴∠AFC=34即:4∠AFC=3∠AEC,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.23.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.答案:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.解析:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.24.如图,AB∥EF,设∠C=90°,那么x,y,z的关系式为______.答案:y=90°-x+z.【分析】作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90解析:y=90°-x+z.【分析】作CG∥AB,DH∥EF,由AB∥EF,可得AB∥CG∥HD∥EF,根据平行线性质可得∠x=∠1,∠CDH=∠2,∠HDE=∠z,由∠C=90°,可得∠1+∠2=90°,由∠y=∠z+∠2,可证∠y=∠z+90°-∠x即可.【详解】解:作CG ∥AB ,DH ∥EF ,∵AB ∥EF ,∴AB ∥CG ∥HD ∥EF ,∴∠x =∠1,∠CDH =∠2,∠HDE =∠z∵∠BCD =90°∴∠1+∠2=90°,∠y =∠CDH +∠HDE =∠z +∠2,∵∠2=90°-∠1=90°-∠x ,∴∠y =∠z +90°-∠x .即y =90°-x +z .【点睛】本题考查平行线的性质,掌握平行线的性质,利用辅助线画出准确图形是解题关键. 25.如图,将直角三角形ABC 沿AB 方向平移得到三角形4,1,4,3DEF AD EF CH ===,三角形ABC 周长为12.下列结论:①//BH EF ;②AD BE =;③ACB DFE ∠=∠;④四边形ACFE 的周长为14;⑤阴影部分的面积为203.其中正确的是_________.答案:①②③④【分析】①由平移变换可知,因为点B 、H 、C 三点在同一条直线上可得出结论; ②由平移变换可知,可得到,,即可得出结论;③因为平移前后角的度数是不变的,即可得出结论;④由平移变换可知四边解析:①②③④【分析】①由平移变换可知//BC EF ,因为点B 、H 、C 三点在同一条直线上可得出结论;②由平移变换可知DE AB =,可得到AB AD DB =+,DE BE DB =+,即可得出结论; ③因为平移前后角的度数是不变的,即可得出结论;④由平移变换可知四边形ADFC 是平行四边形,四边形ACFE 的周长为:AD CF DE EF AC ++++,求解即可;⑤S 阴影=ADFC HCF SS -,根据条件求解即可. 【详解】①DEF 是由ABC 平移得来的,//,BC EF ∴ 又点B 、H 、C 三点在同一条直线上,∴//BH EF ,∴①正确;②DEF 是由ABC 平移得来的,,,,,DE AB AB AD DB DE BE DB AD BE ∴==+=+∴=∴②正确;③DEF 是由ABC 平移得来的,∴平移前后角的度数是不变的,∴ACB DFE ∠=∠,∴③正确; ④三角形ABC 周长为12,12AB BC AC ∴++=, DEF 是由ABC 平移得来的,∴边的长度不变且//AC DF ,12,12,DE EF DF DE EF AC ∴++=∴++=∴四边形ADFC 是平行四边形,1,AD CF ∴==四边形ACFE 的周长为:AD CF DE EF AC ++++,∴四边形ACFE 的周长为:2+12=14,∴④正确;⑤由④得四边形ADFC 是平行四边形,1CF AD ∴==, S 阴影=ADFC HCF S S -,,,,BC AE BC AD BC CF ⊥∴⊥∴⊥S ∴阴影=12AD EF HC CF -141412324310,3=⨯-⨯⨯=-= ∴⑤错误.故答案为:①②③④.【点睛】本题主要考查了图形的平移变换,平行线的公理,平行四边形的性质,有一定综合性,熟练掌握和运用这些性质是解题的关键.26.如图,四边形ABCD 的长条形纸带,AB //CD ,将长方形沿 EF 折叠,A 、D 分别于A ’、D '对应,若 ∠CFE =2∠CFD ',则∠AEF 的度数是___.答案:72゜【分析】先根据平行线的性质,由AB ∥CD ,得到∠CFE =∠AEF ,再根据翻折的性质可得∠DFE =∠D′FE ,由平角的性质可求得∠CFD′的度数,即可得出答案.【详解】解:∵AB ∥CD ,解析:72゜【分析】先根据平行线的性质,由AB ∥CD ,得到∠CFE =∠AEF ,再根据翻折的性质可得∠DFE =∠D ′FE ,由平角的性质可求得∠CFD ′的度数,即可得出答案.【详解】解:∵AB ∥CD ,∴∠CFE =∠AEF ,又∵∠DFE =∠D ′FE ,∠CFE =2∠CFD ′,∴∠DFE =∠D ′FE =3∠CFD ′,∴∠DFE +∠CFE =3∠CFD ′+2∠CFD ′=180°,∴∠CFD ′=36°,∴∠AEF =∠CFE =2∠CFD ′=72°.故答案为:72°.【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.27.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.答案:(上式变式都正确)【分析】过点E 作,过点F 作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.28.如图,已知//AB CD ,13EAF EAB ∠=∠,13ECF ECD ∠=∠,86AFC ∠=︒,则AEC ∠的度数是__________.答案:【分析】连接AC ,设∠EAF =x ,∠ECF =y ,∠EAB =3x ,∠ECD =3y ,根据平行线性质得出∠BAC +∠ACD =180°,求出∠CAE +∠ACE =180°−(2x +2y ),求出∠AEC =2解析:129︒【分析】连接AC ,设∠EAF =x ,∠ECF =y ,∠EAB =3x ,∠ECD =3y ,根据平行线性质得出∠BAC +∠ACD =180°,求出∠CAE +∠ACE =180°−(2x +2y ),求出∠AEC =2(x +y ),∠AFC ═2(x +y ),即可得出答案.【详解】解:连接AC ,设∠EAF =x ,∠ECF =y ,∠EAB =3x ,∠ECD =3y ,∵AB ∥CD ,∴∠BAC +∠ACD =180°,∴∠CAE+3x+∠ACE+3y=180°,∴∠CAE+∠ACE=180°−(3x+3y),∠FAC+∠FCA=180°−(2x+2y)∴∠AEC=180°−(∠CAE+∠ACE)=180°−[180°−(3x+3y)]=3x+3y=3(x+y),∠AFC=180°−(∠FAC+∠FCA)=180°−[180°−(2x+2y)]=2x+2y=2(x+y),∠AFC=129°.∴∠AEC=32故答案为:129°.【点睛】本题考查了平行线的性质和三角形内角和定理的应用,根据题意作出辅助线,构造出三角形,利用三角形内角和定理求解是解答此题的关键.∠=︒则∠4的度数是___度.29.如图,a∥b,∠2=∠3,140,答案:40【分析】分别作a∥c,a∥d,则a∥b∥c∥d,由题可知根据平行线的性质得出再用等式的性质得出再根据平行线的性质由a∥c,b∥d,得出即可得出.【详解】如图,作a∥c,a∥d,则a∥b∥解析:40【分析】∠+∠=∠+∠根据平行线的性质得出分别作a∥c,a∥d,则a∥b∥c∥d,由题可知5678,67,∠=∠再根据平行线的性质由a∥c,b∥d,得出∠=∠再用等式的性质得出58,∠=∠∠=∠即可得出144015,48,∠=∠=︒.【详解】如图,作a∥c,a∥d,则a∥b∥c∥d,∵∠2=∠3,∠+∠=∠+∠∴5678,又∵c∥d,∠=∠∴67,∠=∠∴58,∵a∥c,b∥d,∠=∠∠=∠∴15,48,∠=∠=︒∴1440,故答案为:40.【点睛】本题考查平行线的判定与性质,解题关键是熟练掌握平行线的判定与性质;两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行.30.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.答案:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周),滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周),滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周),滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π, 故答案为:﹣8π.【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键.31.已知关于x 、y 的方程组254x y ax by +=⎧⎨+=⎩与524bx ay x y +=⎧⎨+=⎩有相同的解,则a b +的值为________.答案:3【分析】由题意可知方程组与有相同的解,由可得x +y =3,再由可得a (x +y )+b (x +y )=9,即可求a +b 的值.【详解】解:∵方程组与有相同的解,∴方程组与的解相同,中①+②得,中解析:3【分析】由题意可知方程组254x y ax by +=⎧⎨+=⎩与524bx ay x y +=⎧⎨+=⎩有相同的解,由2524x y x y +=⎧⎨+=⎩可得x +y =3,再由45ax by bx ay +=⎧⎨+=⎩可得a (x +y )+b (x +y )=9,即可求a +b 的值. 【详解】解:∵方程组254x y ax by +=⎧⎨+=⎩与524bx ay x y +=⎧⎨+=⎩有相同的解, ∴方程组2524x y x y +=⎧⎨+=⎩与45ax by bx ay +=⎧⎨+=⎩的解相同, 2524x y x y +=⎧⎨+=⎩①②中①+②得3x y +=, 45ax by bx ay +=⎧⎨+=⎩③④中,③+④ 得a (x +y )+b (x +y )=9, 将3x y +=代入,得339a b +=,∴3a b +=,故答案为:3.【点睛】本题考查二元一次方程组的解,此题采用整体求解的方法较为简便,求出x +y =3是解题的关键.32.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是_________________.答案:【分析】用含a 的式子表示出不等式的解集,由不等式的正整数解,得到x 的范围,再根据x 与a 的关系列不等式(组)求解.【详解】因为3x -a≤0,所以x≤,因为原不等式的正整数解恰是1,2,3,4解析:1215a ≤<【分析】用含a 的式子表示出不等式的解集,由不等式的正整数解,得到x 的范围,再根据x 与a 的关系列不等式(组)求解.【详解】因为3x -a ≤0,所以x ≤3a , 因为原不等式的正整数解恰是1,2,3,4, 即4353a a ⎧≥⎪⎪⎨⎪<⎪⎩,解得12≤x <15. 故答案为12≤x <15.【点睛】由不等式(组)的整数解确定所含字母的取值范围的解法是:①解不等式(组),用字母系数表示出解集;②由不等式(组)的整数解确定不等式(组)的解集;③综合①②列出关于字母系数的不等式(注意是否可取等于)求解.33.已知不等式组2145x x x m ->+⎧⎨>⎩无解,则m 的取值范围是________. 答案:m≥-3【分析】先求出每个不等式的解集,再根据已知得出关于a 的不等式,求出不等式的解集即可.【详解】解:,∵不等式①的解集是x <−3,。

钟吾初中期末数学试卷

钟吾初中期末数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,是负数的是()A. -2B. 0C. 3D. -1.52. 若a > b,那么下列不等式中正确的是()A. a - b > 0B. a + b < 0C. -a < -bD. a - b < 03. 已知三角形的三边长分别为3cm、4cm、5cm,则该三角形是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 梯形4. 下列代数式中,合并同类项后结果是2x的是()A. 3x + 2xB. 3x - 2xC. 2x + 2D. 2x - 25. 若方程2x - 5 = 3x + 1的解为x,则x的值为()A. 2B. 3C. 4D. 56. 下列函数中,y是x的二次函数的是()A. y = 2x + 3B. y = x^2 + 2x - 1C. y = 3x^2D. y = x^3 + 2x^27. 若a、b、c是等差数列的前三项,且a + b + c = 12,则该等差数列的公差是()A. 1B. 2C. 3D. 48. 下列各图中,能正确表示函数y = x^2的是()A.B.C.D.9. 若等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为()A. 22cmB. 24cmC. 26cmD. 28cm10. 下列关于实数x的不等式中,正确的是()A. x^2 > 0B. x^2 ≤ 0C. x^2 < 0D. x^2 = 0二、填空题(每题3分,共30分)11. 已知等腰三角形的底边长为8cm,腰长为6cm,则该三角形的周长为______cm。

12. 若方程2x - 3 = 5的解为x,则x的值为______。

13. 下列代数式中,合并同类项后结果是5x^2的是______。

14. 若函数y = 3x - 2是关于x的一次函数,则该函数的斜率k为______。

15. 若等差数列的第一项为2,公差为3,则该数列的第五项为______。

钟吾初中七年级(下)数学期末模拟(1)

钟吾初中七年级(下)数学期末模拟(1)

钟吾初中七年级(下)数学期末模拟练习一、仔细选择(每小题5分,共25分。

把唯一正确的答案填入括号内)01.( )下列计算中,正确的是A .236()=ab ab B .333(3)9xy x y = C .224(2)4a a -=- D .41)2(2=-- 02.( )如图,把一张长方形的纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,点D 落在点G 处, 如果∠DEF=110°,那么∠BAF=A .30°B .40°C .50°D .60°03.( )为了美化城市,经统一规划,将一正方形草坪的南北方向增加3m ,东西方向缩短3m ,则改造后的长方形草坪面积与原来正方形草坪面积相比A .减少9m 2B .增加9m 2C .保持不变D .增加6m 2 04.( )如图,下列推理及所注明的理由都正确的是A .∵∠A =∠D (已知) ∴AB ∥DE(同位角相等,两直线平行) B .∵∠B =∠DEF(已知) ∴AB ∥DE(两直线平行,同位角相等)C .∵∠A +∠AOE =180°(已知) ∴AC ∥DF(同旁内角互补,两直线平行)D .∵AC ∥DF(已知) ∴∠F +∠ACF =180°(两直线平行,同旁内角互补)05.( )若不等式组302741x a x x +<⎧⎨+>-⎩的解集为0x <,则a 的取值范围为A .0a >B .0a =C .4a >D .4a = 二、谨慎填空(每题5分,共25分。

把答案直接填在题中的横线上)06.已知x 2+4x +y 2+2y +5=0,则y x = .07.三个连续偶数,若中间一个为2n ,则它们的积是 .08.三条线段长度分别为a 、b 、c (a 、b 、c 为整数,并且c b a <<),若6c =,则以线段a 、b 、c 为边能组成形状不同的三角形 个.09.已知关于x 的不等式组 520x x a ->⎧⎨->⎩1无解,则a 的取值范围是 . 10.如图,DE ∥AB ,∠CAE=13∠CAB ,∠CDE=75°, ∠B=65°,则∠AEB= .OFEDCBAGFEDCBAEBD CA三、完美解答(共8题,记50分.解答应写出必要的文字说明或演算步骤)13.(本题10分)化简:(1)233325()(2)x y x y y +-∙; (2)2()()()x y x y y x --+-. 18.(本题10分)因式分解:(1)m m m 16823+-; (2)222()(1)x x x +-+.19.(本题10分)解方程组或不等式组:(1)6234()5()2x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩; (2)()5931311122x x x x ⎧-<-⎪⎨-≤-⎪⎩.22.(本题满分8分)已知,关于x 、y 的方程组325x y a x y a -=+⎧⎨+=⎩解满足0x y >>.(1)求a 的取值范围; (2)化简2a a --.23.(本题满分10分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%. (1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株? (2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低,并求出最低费用.24.(本题满分12分)如图①的图形,像我们常见的风筝.我们不妨把这样图形叫做“筝形”,观察“筝形”,探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由;请你直接利用以上结论........,解决以下问题: 图① (1)如图②,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ恰好经过点B 、C ,若∠A=50°,则∠ABX+∠ACX =__________°; (2)如图③, 如果DC 平分∠ADB ,EC 平分∠AEB ,探索∠DAE ,∠DBE ,∠DCE 之间数量关系; 图② 图③(3)如图④,△ABC 中,∠A=x °,∠ABC 和∠ACB 的n 等分线从上至下依次相交于点O 1、O 2…、O n-1.请用x 和n 分别表示出∠BO 1C 、∠BO 2C 和∠B O图④DCBA EDCBAZYXCB A C。

苏科版数学七年级下册宿迁市钟吾初级中学—第二学期

苏科版数学七年级下册宿迁市钟吾初级中学—第二学期

宿迁市钟吾初级中学 2014 — 2015 学年度第二学期初一年级第二次数学调研试卷一、 (每 3分,合 30 分)1. 甲型 H1N1 流感病毒的直径大0.00000008 米,用科学 数法表示 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( ▲ )A .×10-7米B .8×10 -8米 C .8×10-9米 D .8×10-7米2. 以下等式由左 到右 的 形中,属于因式分解的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(▲ )A . x 2 +5x -1=x(x +5)- 1B .x 2-4 +3x =(x + 2)(x -2) + 3xC . x 2-9=(x + 3)(x -3)D .(x +2)(x -2) = x 2-4313. 12,③ a 8÷a 8= 1 ( a ≠0 ),④ (a - b )3= a 3 - b 3,算式①,② a 2+ 2a - 1 = (a -1)28此中正确的有:⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(▲ )A .1 个B .2 个C .3 个D .4 个4. 以以下各 段 ,能 成三角形的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(▲ )A . 1cm ,2cm , 4 cmB . 8 crn , 6cm ,4cmC . 12 cm , 5 cm ,6 cmD .2 cm , 3 cm, 6 cm5. 如 ,以下推理及所注明的原因都正确的选项是 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯▲( )A .∵∠A =∠D(已知) ∴AB ∥DE( 同位角相等,两直 平行 )B .∵∠B =∠DEF( 已知 ) ∴AB ∥DE( 两直 平行,同位角相等)C .∵∠A +∠AOE = 180 °(已知)∴AC ∥DF( 同旁内角互 ,两直 平行 )D .∵AC ∥DF( 已知 ) ∴∠F +∠ACF =180 °(两直 平行,同旁内角互 )6. 小明、小 两人 跑步,假如小 先跑10 米, 小明跑6秒便可追上乙; 假如小 先跑 2 秒,小 明跑 4 秒便可追上乙。

七年级下册宿迁数学期末试卷测试题(Word版 含解析)

七年级下册宿迁数学期末试卷测试题(Word版 含解析)

七年级下册宿迁数学期末试卷测试题(Word 版 含解析)一、选择题1.36的平方根是() A .6- B .6 C .6± D .4± 2.在下列图形中,不能..通过其中一个三角形平移得到的是( ) A .B .C .D .3.在平面直角坐标系中,在第三象限的点是( ) A .(-3,5)B .(1,-2)C .(-2,-3)D .(1,1)4.下列命题是假命题的是( )A .两个角的和等于平角时,这两个角互为补角B .内错角相等C .两条平行线被第三条直线所截,内错角相等D .对顶角相等5.如图,直线////AB CD EF ,点O 在直线AB 上,下列结论正确的是( )A .12390∠+∠-∠=︒B .12390∠+∠+∠=︒C .321180∠+∠-∠=︒D .132180∠+∠-∠=︒ 6.下列计算正确的是( ) A .93=±B .382-=C .2(7)5=D .222=7.如图,AB ∥CD ,将一块三角板(∠E =30°)按如图所示方式摆放,若∠EFH =25°,求∠HGD 的度数( )A .25°B .30°C .55°D .60°8.如图,动点P 在平面直角坐标系xOy 中,按图中箭头所示方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()20,,第3次接着运动到点()3,1,第4次接着运动到点()4,0,……,按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2二、填空题9.36的平方根是______,81的算术平方根是______. 10.点()2,3P -关于x 轴对称的点的坐标为_________.11.如图,已知在四边形ABCD 中,∠A =α,∠C =β,BF ,DP 为四边形ABCD 的∠ABC 、∠ADC 相邻外角的角平分线.当α、β满足条件____________时,BF ∥DP .12.如图将一张长方形纸片沿EF 折叠后,点A 、B 分别落在A ′、B ′的位置,如果∠2=70°,则∠1的度数是___________.13.把一张对边互相平行的纸条折成如图所示,EF 是折痕,若38EFB ∠=︒,则BFD ∠=______.14.已知57a ,57b ,则2019()a b +=________. 15.点()2,1P -关于y 轴的对称点Q 的坐标是_______.16.在平面直角坐标系中,111,4P ⎛⎫ ⎪⎝⎭,()22,1P ,393,4P ⎛⎫ ⎪⎝⎭,()44,4P ,5255,4P ⎛⎫⎪⎝⎭,…,按照此规律排列下去,点10P 的坐标为________.三、解答题17.(1)计算:16125-(2)计算: 3223-- (3)计算:310.0484+--(4)计算:16122+-- 18.求下列各式中的x :(1)3641250x -=; (2)3(1)8x +=; (3)3(21)270x -+=. 19.如图,已知3A ∠=∠,DE BC ⊥,AB BC ⊥,求证:DE 平分CDB ∠.证明:DE BC ⊥,AB BC ⊥ (已知)90DEC ABC ∴∠=∠=︒(垂直的定义)//DE AB ∴( ) 23∴∠=∠( )1∠= (两直线平行,同位角相等) 又3A ∠=∠(已知)∴ ( )DE ∴平分CDB ∠(角平分线的定义)20.如图,ABC 的三个顶点坐标分别为()2,3A -,()0,1B ,()2,2C .(1)在平面直角坐标系中,画出ABC ;(2)将ABC 向下平移4个单位长度,得到111A B C △,并画出111A B C △,并写出点1A 的坐标.21.已知55-的整数部分为a ,小数部分为b . (1)求a ,b 的值:(2)若c 是一个无理数,且乘积bc 是一个有理数,你能写出数c 的值吗?并说明理由.二十二、解答题22.如图,在99⨯网格中,每个小正方形的边长均为1,正方形ABCD 的顶点都在网格的格点上.(1)求正方形ABCD 的面积和边长;(2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标.二十三、解答题23.已知,//AB CD .点M 在AB 上,点N 在CD 上.(1)如图1中,BME ∠、E ∠、END ∠的数量关系为: ;(不需要证明);如图2中,BMF ∠、F ∠、FND ∠的数量关系为: ;(不需要证明)(2)如图 3中,NE 平分FND ∠,MB 平分FME ∠,且2180E F ∠+∠=,求FME ∠的度数;(3)如图4中,60BME ∠=,EF 平分MEN ∠,NP 平分END ∠,且//EQ NP ,则FEQ ∠的大小是否发生变化,若变化,请说明理由,若不变化,求出么FEQ ∠的度数.24.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.25.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON =60°,在射线OM 上取一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (点C 不与O 、B 重合),若∠ACB =80°.判定△AOB 、△AOC 是否是“梦想三角形”,为什么?(3)如图2,点D 在△ABC 的边上,连接DC ,作∠ADC 的平分线交AC 于点E ,在DC 上取一点F ,使得∠EFC +∠BDC =180°,∠DEF =∠B .若△BCD 是“梦想三角形”,求∠B 的度数.26.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒; (2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.【参考答案】一、选择题 1.C 解析:C 【分析】根据平方根的定义求解即可. 【详解】 解:∵2(6)36=±, ∴36的平方根是6±, 故选:C . 【点睛】此题考查的是求一个数的平方根,掌握平方根的定义是解决此题的关键.2.D 【分析】根据平移的性质即可得出结论. 【详解】解:A 、能通过其中一个三角形平移得到,不合题意; B 、能通过其中一个三角形平移得到,不合题意;C 、能通过其中一个三角形平移得到,不合题意; D解析:D 【分析】根据平移的性质即可得出结论. 【详解】解:A 、能通过其中一个三角形平移得到,不合题意; B 、能通过其中一个三角形平移得到,不合题意; C 、能通过其中一个三角形平移得到,不合题意;D 、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意. 故选:D . 【点睛】本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键. 3.C 【分析】根据第三象限点的特征0x <,0y <依次判断即可. 【详解】解:A :0x <,0y >,因此在第二象限,故错误; B :0x >,0y <,,因此在第四象限,故错误; C :0x <,0y <,,因此在第三象限,故正确; D :0x >,0y >,,因此在第一象限,故错误; 故答案为:C 【点睛】本题主要考查了平面直角坐标系象限的特征,熟悉掌握各象限的横纵坐标的取值范围是解题的关键. 4.B 【分析】根据内错角、对顶角、补角的定义一一判断即可. 【详解】解:A 、两个角的和等于平角时,这两个角互为补角,为真命题; B 、两直线平行,内错角相等,故错误,为假命题; C 、两条平行线被第三条直线所截,内错角相等,为真命题; D 、对顶角相等,为真命题; 故选:B . 【点睛】本题考查命题与定理、内错角、对顶角、补角的定义等知识,解题的关键是熟练掌握基本概念,属于基础题.【分析】根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°.【详解】解:∵AB∥EF,∴∠1+∠AOF=180°,∵CD∥AB,∴∠3=∠AOC,又∵∠AOF=∠AOC−∠2=∠3-∠2,∴∠1+∠3-∠2=180°.故选:D.【点睛】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.6.D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A3=,此项错误;B2=-,此项错误;C、27=≠D2==,此项正确;故选:D.【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.7.C【分析】先根据三角形外角可求∠EHB=∠EFH+∠E=55°,根据平行线性质可得∠HGD=∠EHB=55°即可.【详解】解:∵∠EHB为△EFH的外角,∠EFH=25°,∠E=30°,∴∠EHB=∠EFH+∠E=25°+30°=55°,∵AB∥CD,∴∠HGD=∠EHB=55°.故选C.【点睛】本题考查三角形外角性质,平行线性质,掌握三角形外角性质,平行线性质是解题关键.【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0…,每4次一轮这一规律,进而求出即可.【详解】解:由图可知:横坐标1,2,3,4…依解析:D【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0…,每4次一轮这一规律,进而求出即可.【详解】解:由图可知:横坐标1,2,3,4…依次递增,则第2021个点的横坐标为2021;纵坐标2,0,1,0,2,0,1,0…4个一循环,2021÷4=505…1,∴经过第2021次运动后,P(2021,2).故选D.【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.二、填空题9.±6 9.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.解析:±6 9.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.10.【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点关于轴对称点的坐标为:,故答案为.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握 解析:()2,3--【分析】关于x 轴对称,横坐标不变,纵坐标互为相反数,进而可求解. 【详解】解:由点()2,3P -关于x 轴对称点的坐标为:()2,3--, 故答案为()2,3--. 【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.11.α=β 【详解】 试题解析:当BF ∥DP 时, 即: 整理得: 故答案为解析:α=β 【详解】试题解析:360.ABC ADC A C ∠+∠+∠+∠= 360.ABC ADC CBM CDN ∠+∠+∠+∠= .CBM CDN A C αβ∴∠+∠=∠+∠=+当BF ∥DP 时, ()1,2C PDC FBC CDN CBM ∠=∠+∠=∠+∠ 即:()1,2βαβ=+ 整理得:.αβ= 故答案为.αβ=12.55° 【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案. 【详解】∵四边形ABCD 是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.13.【分析】需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解.【详解】,,是折痕,折叠后,,,,,故答案为:.【点睛】本题考查了平行解析:104︒【分析】需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解.【详解】∠=︒,'//',38AC BD EFB∴∠=︒-∠=︒-︒=︒,'180********EFD EFBEF 是折痕,折叠后,'142EFD ∠=︒,'142EFD EFD ∴∠=∠=︒, 38EFB ∠=︒,14238104BFD EFD EFB ∴∠=∠-∠=︒-︒=︒,故答案为:104︒. 【点睛】本题考查了平行线的性质,折叠问题,体现了数学的转化思想,模型思想.14.1 【分析】根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a 用5+减去其整数部分即可,同理可得b 的值,再将a ,b 的值代入所求式子即可得出结果. 【详解】解析:1 【分析】根据4<7<9可得,2<3,从而有7<<8,由此可得出7,小数部分a 用b 的值,再将a ,b 的值代入所求式子即可得出结果. 【详解】 解:∵4<7<9,∴23,∴-3<<-2,∴7<<8,2<3,∴7,2,∴,∴2019()a b +=12019=1. 故答案为:1. 【点睛】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.15.【分析】根据点关于轴的对称点的坐标的特征,即可写出答案. 【详解】解:∵点关于轴的对称点为, ∴点的纵坐标与点的纵坐标相同, 点的横坐标是点的横坐标的相反数, 故点的坐标为:, 故答案为:.解析:()2,1--【分析】根据点关于y 轴的对称点的坐标的特征,即可写出答案. 【详解】解:∵点()2,1P -关于y 轴的对称点为Q , ∴点Q 的纵坐标与点P 的纵坐标相同, 点Q 的横坐标是点P 的横坐标的相反数, 故点Q 的坐标为:()2,1--, 故答案为:()2,1--. 【点睛】本题考查了与直角坐标系相关的知识,理解点关于y 轴的对称点的坐标的特征(纵坐标相等,横坐标是其相反数)是解题的关键.16.【分析】观察前面几个点的坐标得到的横坐标为,纵坐标为,即可求解. 【详解】解:观察前面几个点的坐标得到的横坐标为,纵坐标为, 将代入得 ∴故答案为: 【点睛】此题考查了平面直角坐标系中点坐 解析:()10,25【分析】观察前面几个点的坐标得到n P 的横坐标为n ,纵坐标为24n,即可求解.【详解】解:观察前面几个点的坐标得到n P 的横坐标为n ,纵坐标为24n,将10n =代入得2254n =∴10(10,25)P 故答案为:()10,25 【点睛】此题考查了平面直角坐标系中点坐标规律的探索,根据已知点找到规律是解题的关键.三、解答题17.(1);(2);(3);(4)(1)根据算术平方根的求法计算即可; (2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解; (4)先化简绝对值和二次根式,解析:(1)35;(2)3)2310-;(4)3【分析】(1)根据算术平方根的求法计算即可; (2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解; (4)先化简绝对值和二次根式,再合并即可. 【详解】解:(1==35=(2)==(310.222=--2205)(1010+=- 2310=-(414=3=【点睛】本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识.18.(1);(2)1;(3)-1.(1)根据立方根的定义解方程即可; (2)根据立方根的定义解方程即可; (3)根据立方根的定义解方程即可. 【详解】 解:(1), ∴ , ∴, ∴; (2解析:(1)54;(2)1;(3)-1.【分析】(1)根据立方根的定义解方程即可; (2)根据立方根的定义解方程即可; (3)根据立方根的定义解方程即可. 【详解】解:(1)3641250x -=, ∴ ()334=5x ,∴4=5x , ∴5=4x ; (2)3(1)8x += ∴33(1)2x += ∴12x += ∴1x =;(3)3(21)270x -+=, ∴()33(21)3x -=-,∴213x -=-, ∴1x =-. 【点睛】本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键.19.见解析 【分析】应用平行线的判定与性质进行求解即可得出答案. 【详解】解:证明:∵DE⊥BC,AB⊥BC(已知),∴∠DEC=∠ABC=90°(垂直的定义).∴DE∥AB(同位角相等,两直线解析:见解析【分析】应用平行线的判定与性质进行求解即可得出答案.【详解】解:证明:∵DE⊥BC,AB⊥BC(已知),∴∠DEC=∠ABC=90°(垂直的定义).∴DE∥AB(同位角相等,两直线平行).∴∠2=∠3(两直线平行,内错角相等),∠1=∠A(两直线平行,同位角相等).又∵∠A=∠3(已知),∴∠1=∠2(等量代换).∴DE平分∠CDB(角平分线的定义).【点睛】本题主要考查了平行线的判定与性质,熟练应用平行线的判定与性质进行求解是解决本题的关键.20.(1)见解析;(2)见解析,A1(-2,-1).【分析】(1)先根据坐标描出A、B、C三点,然后顺次连接即可;(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐解析:(1)见解析;(2)见解析,A1(-2,-1).【分析】(1)先根据坐标描出A、B、C三点,然后顺次连接即可;(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到111A B C△,最后直接读出A 点坐标即可.【详解】解:(1)如图:△ABC即为所求;(2)如图:111△即为所求,点A1的坐标为(-2,-1).A B C【点睛】本题主要考查了坐标与图形、图形的平移等知识点,根据坐标描出图形是解答本题的关键.21.(1);(2)或【分析】(1)先判断在哪两个整数之间,再得出整数部分和小数部分.(2)由的值,由平方差公式,得出的有理化因式即为.【详解】解:(1),,;(2),或.【点睛】本解析:(1)2,35==2)3535a b--【分析】(1555(2)由b的值,由平方差公式,得出b的有理化因式即为c.【详解】解:(1)253<,∴2553<,∴2,35==a b(2)35b=-∴35c=35c=-【点睛】本题考查了估计无理数的大小和有理数乘以无理数,是基础知识要熟练掌握.二十二、解答题22.(1)面积为29,边长为;(2),,,,图见解析. 【分析】(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标解析:(1)面积为29,边长为29;(2)(0,5)A ,(2,0)B ,(7,2)C ,(5,7)D ,图见解析. 【分析】(1)面积等于一个77⨯大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标即可. 【详解】解:(1)正方形的面积217425292ABCD S =-⨯⨯⨯=正方形, 正方形边长为29S =; (2)建立如图平面直角坐标系, 则(0,5)A ,(2,0)B ,(7,2)C ,(5,7)D .【点睛】本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键.二十三、解答题23.(1)∠BME =∠MEN−∠END ;∠BMF =∠MFN +∠FND .(2)120°(3)∠FEQ 的大小没发生变化,∠FEQ =30°. 【分析】(1)过E 作EHAB ,易得EHABCD ,根据平行线的性质解析:(1)∠BME =∠MEN −∠END ;∠BMF =∠MFN +∠FND .(2)120°(3)∠FEQ 的大小没发生变化,∠FEQ=30°.【分析】(1)过E作EH//AB,易得EH//AB//CD,根据平行线的性质可求解;过F作FH//AB,易得FH//AB//CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解;∠BME,进而可求解.(3)根据平行线的性质及角平分线的定义可推知∠FEQ=12【详解】解:(1)过E作EH//AB,如图1,∴∠BME=∠MEH,∵AB//CD,∴HE//CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN−∠END.如图2,过F作FH//AB,∴∠BMF=∠MFK,∵AB//CD,∴FH//CD,∴∠FND=∠KFN,∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF−∠FND=180°,∴2∠BME+2∠END+∠BMF−∠FND=180°,即2∠BMF+∠FND+∠BMF−∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ//NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN−∠NEQ=12(∠BME+∠END)−12∠END=12∠BME,∵∠BME=60°,∴∠FEQ=12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.24.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A (−2,0),B(2,0),C(2,2),即可计算出解析:(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B (2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=12×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=12x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.【详解】解:(1)由题意知:a=−b,a−b+4=0,解得:a=−2,b=2,∴ A(−2,0),B(2,0),C(2,2),∴S△ABC=1AB BC=42;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD ∥AC ,∴BD ∥AC ∥EF ,∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED =∠1+∠2=12×90°=45°;(3)存在.理由如下:设P 点坐标为(0,t ),直线AC 的解析式为y =kx +b ,把A (−2,0)、C (2,2)代入得: -2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线AC 的解析式为y =12x +1,∴G 点坐标为(0,1),∴S △PAC =S △APG +S △CPG =12|t−1|•2+12|t−1|•2=4,解得t =3或−1,∴P 点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.25.(1)36°或18°;(2)△AOB 、△AOC 都是“梦想三角形”,证明详见解析;(3)∠B =36°或∠B =.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°, 解析:(1)36°或18°;(2)△AOB 、△AOC 都是“梦想三角形”,证明详见解析;(3)∠B =36°或∠B =5407︒(). 【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.(2)△AOB、△AOC都是“梦想三角形”证明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB为“梦想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“梦想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“梦想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=5407︒().【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.26.(1)110(2)(90 +n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平解析:(1)110(2)(90 +12n)(3)201712×90°+20182018212-n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分别是∠ABC与∠ACB的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=12(180°﹣n°)=90°﹣12n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+12n°.故答案为:(90+12n);(3)由(2)得∠O=90°+12n°,∵∠ABO的平分线与∠ACO的平分线交于点O1,∴∠O 1BC =34∠ABC ,∠O 1CB =34∠ACB , ∴∠O 1=180°﹣34(∠ABC +∠ACB )=180°﹣34(180°﹣∠A )=14×180°+34n °, 同理,∠O 2=18×180°+78n °, ∴∠O n =112n +×180°+11212n n ++- n °, ∴∠O 2017=201812×180°+20182018212-n °, 故答案为:201712×90°+20182018212-n °. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.。

钟吾初中七下数学试卷

钟吾初中七下数学试卷

一、选择题(每题5分,共50分)1. 已知一个等腰三角形的底边长为10cm,腰长为8cm,那么这个三角形的周长是()A. 24cmB. 26cmC. 28cmD. 30cm2. 若一个数的平方是100,那么这个数是()A. 10B. -10C. ±10D. ±1003. 在平面直角坐标系中,点A(2,3)关于y轴的对称点是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)4. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么它的体积是()A. 8cm³B. 12cm³C. 24cm³D. 36cm³5. 已知一个角的度数为60°,那么它的补角的度数是()A. 60°B. 120°C. 180°D. 240°6. 在下列各式中,正确的是()A. a² + b² = c²(a、b、c为任意实数)B. a² + b² = c²(a、b、c为任意正数)C. a² + b² = c²(a、b、c为任意正整数)D. a² + b² = c²(a、b、c为任意非负数)7. 下列函数中,是二次函数的是()A. y = 3x² + 2x + 1B. y = x³ + 2x² + 1C. y = x² + 2x + 1D. y = x³ + 2x + 18. 下列图形中,不是正多边形的是()A. 正方形B. 正三角形C. 正六边形D. 长方形9. 在下列各式中,正确的是()A. 2a + 3b = 5a - 2bB. 2a + 3b = 5a + 2bC. 2a + 3b = 5a - 3bD. 2a + 3b = 5a + 3b10. 下列各式中,正确的是()A. a² - b² = (a + b)(a - b)B. a² - b² = (a - b)(a + b)C. a² + b² = (a + b)(a - b)D. a² + b² = (a - b)(a + b)二、填空题(每题5分,共50分)11. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是________cm。

【数学】2014-2015年江苏省宿迁市泗阳县七年级下学期数学期末试卷和答案解析PDF

【数学】2014-2015年江苏省宿迁市泗阳县七年级下学期数学期末试卷和答案解析PDF

2014-2015学年江苏省宿迁市泗阳县七年级(下)期末数学试卷一、选择题(每题2分,共20分.)1.(2分)如图,点A、D在射线AE上,直线AB∥CD,∠CDE=140°,那么∠A 的度数为()A.140°B.60°C.50°D.40°2.(2分)已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.133.(2分)一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形4.(2分)下列运算正确的是()A.x•x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x45.(2分)下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b) D.(2x ﹣1)(﹣2x+1)6.(2分)2015年2月1日宿迁市最高气温是8℃,最低气温是﹣2℃,则当天宿迁市气温变化范围t(℃)是()A.t>8 B.t<2 C.﹣2<t<8 D.﹣2≤t≤87.(2分)下列语句中,属于定义的是()A.两点确定一条直线B.平行线的同位角相等C.两点之间线段最短D.直线外一点到直线的垂线段的长度,叫做点到直线的距离8.(2分)如图所示,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是()A.10 B.20 C.30 D.409.(2分)如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤810.(2分)利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm二、填空题(每题3分,共30分)11.(3分)分解因式:a3﹣9a=.12.(3分)用科学记数法表示0.000031,结果是.13.(3分)把方程2x+y=3改写成用含x的式子表示y的形式,得y=.14.(3分)已知是方程2x+ay=6的解,则a=.15.(3分)如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为.16.(3分)对顶角相等的逆命题是命题(填写“真”或“假”).17.(3分)(﹣0.25)11×(﹣4)12=.18.(3分)如图,△ABC中,点E是BC上的一点,EC=2BE,点D是AC的中点.若=12,则S△ADF﹣S△BEF=.△ABC的面积S△ABC19.(3分)如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC 外,若∠2=20°,则∠1的度数为度.20.(3分)如图,数轴上,点A的初始位置表示的数为1,现A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,对于点A n,当n=2015时,这个点表示的数是.三、解答题(本题共9个小题,共70分)21.(6分)()﹣3﹣22×0.25﹣|﹣6|+(π﹣3.14)0.22.(6分)解方程组.23.(7分)解不等式:2(x﹣1)<x+1,并求它的非负整数解.24.(6分)解不等式组:.25.(8分)将下列证明过程补充完整:已知:如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=∠2,∠A=∠F.求证:∠C=∠D.证明:因为∠1=∠2 (已知).又因为∠1=∠ANC (),所以(等量代换).所以∥(同位角相等,两直线平行).所以∠ABD=∠C ().又因为∠A=∠F (已知),所以∥().所以(两直线平行,内错角相等).所以∠C=∠D ().26.(8分)学生问老师:“您今年多大?”老师风趣地说:“我像你这么大时,你才2岁;你到我这么大时,我已经38岁了.”老师今年多大了?27.(9分)关于x的不等式组有21个整数解,则a的取值范围是.28.(10分)如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC交CD于E,DF平分∠ADC交AB于F.(1)若∠ABC=60°,则∠ADC=°,∠AFD=°;(2)求证:BE∥DF.29.(10分)(1)有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需15元,如果购甲1件、乙2件、丙3件共需25元,那么购甲、乙、丙各1件共需多少元?(2)已知2a+b+3c=15,3a+b+5c=25,则a+b+c=;(3)已知2a+b+xc=15,3a+b+yc=25,要想求出a+b+c的值,x与y必须满足的关系是?2014-2015学年江苏省宿迁市泗阳县七年级(下)期末数学试卷参考答案与试题解析一、选择题(每题2分,共20分.)1.(2分)如图,点A、D在射线AE上,直线AB∥CD,∠CDE=140°,那么∠A 的度数为()A.140°B.60°C.50°D.40°【解答】解:延长CD,∵∠CDE=140°,∴∠EDF=40°.∵AB∥CD,∴∠A=∠EDF=40°.故选:D.2.(2分)已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.13【解答】解:根据三角形的三边关系,得第三边大于5,而小于13.故选:C.3.(2分)一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形【解答】解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选:C.4.(2分)下列运算正确的是()A.x•x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x4【解答】解:A、x•x2=x3同底数幂的乘法,底数不变指数相加,故本选项错误;B、(xy)2=x2y2,幂的乘方,底数不变指数相乘,故本选项错误;C、(x2)3=x6,幂的乘方,底数不变指数相乘,故本选项正确;D、x2+x2=2x2,故本选项错误.故选:C.5.(2分)下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b) D.(2x ﹣1)(﹣2x+1)【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选:B.6.(2分)2015年2月1日宿迁市最高气温是8℃,最低气温是﹣2℃,则当天宿迁市气温变化范围t(℃)是()A.t>8 B.t<2 C.﹣2<t<8 D.﹣2≤t≤8【解答】解:由题意得﹣2≤t≤8.故选:D.7.(2分)下列语句中,属于定义的是()A.两点确定一条直线B.平行线的同位角相等C.两点之间线段最短D.直线外一点到直线的垂线段的长度,叫做点到直线的距离【解答】解:A.两点确定一条直线,这是一个命题;B.平行线的同位角相等,这是一个命题;C.两点之间线段最短,这是一个命题;D.直线外一点到直线的垂线段的长度,叫做点到直线的距离不是命题,这是一个定义;故选:D.8.(2分)如图所示,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是()A.10 B.20 C.30 D.40【解答】解:S阴影部分=S△BCD+S正方形CEFG﹣S△BGF=•a•a+b2﹣•b•(a+b)=a2+b2﹣ab﹣b2=[(a2+b2)﹣ab]=[(a+b)2﹣3ab],当a+b=10,ab=20时,S阴影部分=[102﹣3×20]=20.故选:B.9.(2分)如果不等式组无解,那么m的取值范围是()A.m>8 B.m≥8 C.m<8 D.m≤8【解答】解:因为不等式组无解,即x<8与x>m无公共解集,利用数轴可知m≥8.故选:B.10.(2分)利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm【解答】解:设长方体长xcm,宽ycm,桌子的高为acm,由题意,得,解得:2a=152,∴a=76.故选:D.二、填空题(每题3分,共30分)11.(3分)分解因式:a3﹣9a=a(a+3)(a﹣3).【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).12.(3分)用科学记数法表示0.000031,结果是 3.1×10﹣5.【解答】解:0.000 031=3.1×10﹣5.故答案为:3.1×10﹣5.13.(3分)把方程2x+y=3改写成用含x的式子表示y的形式,得y=3﹣2x.【解答】解:把方程2x+y=3移项得:y=3﹣2x,故答案为:y=3﹣2x.14.(3分)已知是方程2x+ay=6的解,则a=2.【解答】解:∵是方程2x+ay=6的解,∴代入方程可得4+a=6,解得a=2,故答案为:2.15.(3分)如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为16.【解答】解:∵将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,∴BE=AD=2,EF=BC=4,DF=AC=4,∴四边形ABFD的周长=AD+AB+BE+EF+FD=2+4+2+4+4=16.故答案为16.16.(3分)对顶角相等的逆命题是假命题(填写“真”或“假”).【解答】解:“对顶角相等”的逆命题是:相等的角是对顶角,它是假命题.故答案为:假.17.(3分)(﹣0.25)11×(﹣4)12=﹣4.【解答】解:原式=[(﹣)×(﹣4)]11×(﹣4)=1×(﹣4)=﹣4.故答案为:﹣4.18.(3分)如图,△ABC中,点E是BC上的一点,EC=2BE,点D是AC的中点.若△ABC的面积S=12,则S△ADF﹣S△BEF=2.△ABC【解答】解:∵点D是AC的中点,∴AD=AC,∵S=12,△ABC∴S=S△ABC=×12=6.△ABD∵EC=2BE ,S △ABC =12,∴S △ABE =S △ABC =×12=4,∵S △ABD ﹣S △ABE =(S △ADF +S △ABF )﹣(S △ABF +S △BEF )=S △ADF ﹣S △BEF ,即S △ADF ﹣S △BEF =S △ABD ﹣S △ABE =6﹣4=2.故答案为:2.19.(3分)如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C 落在△ABC 外,若∠2=20°,则∠1的度数为 100 度.【解答】解:如图,∵∠A=65°,∠B=75°,∴∠C=180°﹣∠A ﹣∠B=180°﹣65°﹣75°=40°;又∵将三角形纸片的一角折叠,使点C 落在△ABC 外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°﹣80°=100°.故答案为100.20.(3分)如图,数轴上,点A 的初始位置表示的数为1,现A 做如下移动:第1次点A 向左移动3个单位长度至点A 1,第2次从点A 1向右移动6个单位长度至点A 2,第3次从点A 2向左移动9个单位长度至点A 3,…,按照这种移动方式进行下去,对于点A n ,当n=2015时,这个点表示的数是 ﹣3023 .【解答】解:A1表示的数是﹣2,A2表示的数是4,A3表示的数是﹣5,A4表示的数是:﹣5+12=7,A5表示的数是:7﹣15=﹣8,A6表示的数是:﹣8+18=10,…,∵A3﹣A1=﹣5﹣(﹣2)=﹣3,A5﹣A3=﹣8﹣(﹣5)=﹣3,…,∴A1,A3,A5,…,构成以﹣2为首项,以﹣3为公差的等差数列,∵A4﹣A2=7﹣4=3,A6﹣A4=10﹣7=3,…,∴A2,A4,A6,…,构成以4为首项,以3为公差的等差数列,∵(2015+1)÷2=1008,∴当n=2015时,这个点表示的数是:﹣2+(1008﹣1)×(﹣3)=﹣2﹣3021=﹣3023故答案为:﹣3023.三、解答题(本题共9个小题,共70分)21.(6分)()﹣3﹣22×0.25﹣|﹣6|+(π﹣3.14)0.【解答】解:()﹣3﹣22×0.25﹣|﹣6|+(π﹣3.14)0=8﹣1﹣6+1=2.22.(6分)解方程组.【解答】解:,②×2﹣①得:7y=7,即y=1,把y=1代入②得x=2,∴原方程组的解为.23.(7分)解不等式:2(x﹣1)<x+1,并求它的非负整数解.【解答】解:去括号得,2x﹣2<x+1,故它的非负整数解为0,1,2.24.(6分)解不等式组:.【解答】解:∵由①得,x<2,由②得,x>﹣1,∴不等式组的解集为﹣1<x<2.25.(8分)将下列证明过程补充完整:已知:如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=∠2,∠A=∠F.求证:∠C=∠D.证明:因为∠1=∠2 (已知).又因为∠1=∠ANC (对顶角相等),所以∠2=∠ANC(等量代换).所以DB∥EC(同位角相等,两直线平行).所以∠ABD=∠C (两直线平行,同位角相等).又因为∠A=∠F (已知),所以DF∥AC(内错角相等,两直线平行).所以∠D=∠ABD(两直线平行,内错角相等).所以∠C=∠D (等量代换).【解答】证明:∵∠1=∠2 (已知).又∵∠1=∠ANC (对顶角相等),∴∠2=∠ANC(等量代换).∴∠ABD=∠C (两直线平行,同位角相等)又∵∠A=∠F(已知),∴DF∥AC(内错角相等,两直线平行),∴∠D=∠ABD(两直线平行,内错角相等).∴∠C=∠D(等量代换).26.(8分)学生问老师:“您今年多大?”老师风趣地说:“我像你这么大时,你才2岁;你到我这么大时,我已经38岁了.”老师今年多大了?【解答】解:设学生x岁,老师y岁,由题意得,解得.答:老师今年26岁了.27.(9分)关于x的不等式组有21个整数解,则a的取值范围是<a≤1.【解答】解:,解①得:x<21,解②得:x>2﹣3a,则不等式的解集是2﹣3a<x<21,又∵不等式组有21个整数解,∴﹣1≤2﹣3a<0,解得:<a≤1.故答案是:<a≤1.28.(10分)如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC交CD于E,【解答】解:(1)∵∠A=∠C=90°,∠ABC=60°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=120°,∵DF平分∠ADC交AB于F,∴∠FDA=ADC=60°,∴∠AFD=90°﹣∠ADF=30°;故答案为120,30;(2)BE∥DF.理由如下:∵BE平分∠ABC交CD于E,∴∠ABE=∠ABC=×60°=30°,∵∠AFD=30°;∴∠ABE=∠AFD,∴BE∥DF.29.(10分)(1)有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需15元,如果购甲1件、乙2件、丙3件共需25元,那么购甲、乙、丙各1件共需多少元?(2)已知2a+b+3c=15,3a+b+5c=25,则a+b+c=5;(3)已知2a+b+xc=15,3a+b+yc=25,要想求出a+b+c的值,x与y必须满足的关系是?【解答】解:(1)设购甲,乙,丙三种商品各一件需要x元、y元、z元.根据题意,得,两方程相加,得4x+4y+4z=40,①×2﹣②得4a﹣3a+2b﹣b+6c﹣5c=a+b+c=5,解得:a+b+c=5;(3)解得:a=(x﹣y)c+10,b=(2y﹣3x)c﹣5,a+b+c=(y﹣2x+1)c+5,当y﹣2x+1=0时,a+b+c的值是5,所以y与x的关系是:y=2x﹣1.故答案为:5.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa+b-aa45°A BE 挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DABFEDCF。

苏科版数学七年级下册江苏省-第二学期初一期末复习综合试卷(2)含答案

苏科版数学七年级下册江苏省-第二学期初一期末复习综合试卷(2)含答案

2014-2015 学年第二学期初一数学期末复习综合试卷( 2 )命题:汤志良;审查:杨志刚;一、:(本共 10 小,每小 3 分,共 30 分)1 .以下算中,果的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. aga2 a3;B. x6 x2 x4;C. ab 2 3ab2;D. a a3;2 .在以下色食品、回收、能、水四个志中,是称形的是⋯⋯⋯⋯⋯⋯⋯()A. B. C. D.3 .以下命中,真命的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A .相等的两个角是角;B.若 a>b ,a > b;C.两条直被第三条直所截,内角相等; D .等腰三角形的两个底角相等;1 214.若a 2,b 3 2,c ;d ,它的大小关系是⋯⋯⋯⋯()3 3A. a b c d;B. b a d c ;C. a d c b ;D. c a d b ;x 1 05. (2014 ? 雅安)不等式1 x 的最小整数解是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()1 02A.1;B.2;C.3;D.4;6 .如, AB = DB ,∠1 =∠2,你增添一个适合的条件,使△ABC≌△DBE,增添下面哪个条件不可以判断△ABC ≌△DBE 的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A. BC = BE;B. AC = DE;C. ∠A =∠D ;D. ∠ACB =∠DEB ;第6题图第 7题图第10题图7 .如图,已知AB ∥CD,则∠a 、∠B 和∠y 之间的关系为()A .α+β-γ=180 °;B.α+γ=β;C.α+β+γ=360 °;D.α+β-2 γ=180°;8. 若不等式组5 3x ≥ 0有实数解,则实数m 的取值范围是()x m≥ 0A .m≤5B.m 5 C.m 5 D.m≥5 3 3 3 39.假如x q x 1x 项,那么q等于()的即中不含5A. 1; C.1;;;5 510 .如图,∠ AOB = 30 °,点P 是∠AOB 内的一个定点, OP = 20cm ,点 C、D 分别是 OA 、OB 上的动点,连结CP、DP 、 CD ,则△CPD 周长的最小值为()A .10 cm B. 15 cm C.20cm D .40cm二、填空题:(此题共 8 小题,每题 3 分,共 24 分)11. 某种细菌的存活时间只有0.000 012 秒,若用科学记数法表示此数据应为秒.12 1∠B=1..在△ABC 中,若∠ A =∠C,则该三角形的形状是2 313 .一个 n 边形的内角和是1260 °,那么 n=.14 .如图,在△ABC 中,AB=BC ,∠B=120 °,AB 的垂直均分线交AC 于点 D .若 AC=6cm ,则 AD=cm .第14题图15 .若x2 4x b x 2 x a ,则 a b 的值是_______.3m 2n 4 m 4 n= .16. 当时,则g17.( 2013 ? 贺州)如图, A、B、C 分别是线段A1B,B1C,C1A的中点,若△ ABC 的面积是 1 ,那么VA1B1C1的面积.18 .已知 AD 是△ABC 的中线,∠ADC=45 °,把△ADC 沿 AD 所在直线对折,点 C 落在点 E 的地点(如图),则∠EBC 等于度.三、解答题:(此题满分76 分)19. (此题满分8 分)2(1) 1 0 2011 (2)( x+ 2) 2- ( x+ 1)( x- 1) + (2 x52011 ;10-1)( x- 2)20 .(此题满分 6 分)因式分解(1) x2 x y y x ;(2) 2a3 8a ;x 2121.(此题满分 5 分)解不等式组3,并把不等式组的解集在数轴上表示出来.2 1 x 522.(此题满分 5 分)先化简,再求值: a a b 2 a 2b a 2ba 1 b2 2,此中 a1, b 2 .223. (此题 4 分)已知 3 9m 27m 316 ,求m2 3 m3·m2的值.24.(本小题 6 分)如图,已知∠ 1 +∠2 = 180 °,∠A =∠C,且 DA 均分∠FDB .求证:(1)AE//FC ;(2)AD//BC;(3)BC 均分∠DBE .25 .(此题满分6 分)如图, AB ∥ED , BC∥EF,AF = CD ,且 BC =6 .(1)求证:△ABC ≌△DEF;(2)求 EF 的长度.26.(此题满分 6 分)如图,在△ ABC 中, AB=AC , AB 的垂直均分线MN交AC于点D,交AB于点E.(1)求证:△ ABD 是等腰三角形;(2)若∠A=40 °,求∠DBC 的度数;(3)若 AE=6 ,△CBD 的周长为 20 ,求△ABC 的周长.27 . (此题 6 分 )图 (1) 是一个长为2m 、宽为 2n 的长方形,沿图中的虚线用剪刀均匀分红四小块长方形,而后按图(2) 的形状拼成一个正方形.(1) 图 (2) 中的暗影部分的面积为 __ _____;( 用含 m 、 n 式子表示 )(2) 察看图 (2) 请你写出三个代数式:2 2m n 、 m n 、 mn 之间的等量关系是_____;(3) 若 m n 7 , mn 12 ,则m n =_________;(4)实质上有很多代数恒等式能够用图形的面积来表示,如图(3),它表示了2m n m n 2m23mn n2.试画一个几何图形,使它的面积能表示为m n m 3n m2 4mn 3n2.28.( 此题 7 分 )已知方程组x y 1 3ax y 7 的解 x 是非正数,y为负数.a(1 )求 a 的取值范围;(2 )化简: a 1 a 2 ;(3 )若实数 a 知足方程 a 1 a 2 4 ,则a= .29.(此题满分 8 分)在“五 ? 一”时期,某企业组织 318 名职工到雷山西江千户苗寨旅行,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8 名导游,现打算同时租甲、乙两种客车,此中甲种客车每辆载客45 人,乙种客车每辆载客30 人.(1 )请帮助旅行社设计租车方案.(2 )若甲种客车租金为800 元 / 辆,乙种客车租金为600 元/ 辆,旅行社按哪一种方案租车最省钱?此时租金是多少?(3 )旅行前,旅行社的一名导游因为有特别状况,旅行社只好安排7 名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65 座、 45 座和 30 座的大小三种客车,出发时,所租的三种客车的座位恰巧坐满,请问旅行社的租车方案怎样安排?30 .(此题满分9 分)已知,△ ABC 是边长 3cm 的等边三角形.动点P 以 1cm/s的速度从点 A 出发,沿线段AB 向点 B 运动.(1 )如图 1 ,设点 P 的运动时间为t ( s),那么 t= ( s)时,△PBC 是直角三角形;(2 )如图 2 ,若另一动点Q 从点 B 出发,沿线段BC 向点 C 运动,假如动点 P、 Q 都以1cm/s 的速度同时出发.设运动时间为t ( s),那么 t 为什么值时,△ PBQ 是直角三角形?(3 )如图 3 ,若另一动点Q 从点 C 出发,沿射线BC 方向运动.连结 PQ 交 AC 于 D .如果动点 P、 Q 都以 1cm/s 的速度同时出发.设运动时间为t ( s),那么 t 为什么值时,△DCQ是等腰三角形?(4 )如图 4 ,若另一动点Q 从点 C 出发,沿射线BC 方向运动.连结PQ 交 AC 于 D ,连接 PC.假如动点 P、Q 都以 1cm/s 的速度同时出发.请你猜想:在点 P、Q 的运动过程中,△PCD 和△QCD 的面积有什么关系?并说明原因.2014-2015学年第二学期初一数学期末复习综合试卷( 2 )参照答案一、选择题:1.C ;2.A ;3.D ;4.B ;5.C ;6.B ;7.A ;8.A ;9.C ;10.A ;二、填空题:11. 1.2 10 5;12. 直角三角形; 13.9 ;;15.-2 ;16.16 ; 17.7 ;18.45 °;三、解答题:19. (1)100 ;(2 )2x2 x 7 ;20. ( 1) x y x 1 x 1 ;( 2) 2a a 2 a 2 ;21. ( 1) 3 x 1;22. 2a231b2;2 423.-3 ;24.解:(1 )∵∠1+ ∠2=180 °,∠1+ ∠DBE=180 ,∴∠2= ∠DBE ,∴AE∥FC;(2)∵AE∥FC,∴∠A+ ∠ADC=180 °,∵∠A= ∠C,∴∠C+ ∠ADC=180 °,∴AD ∥BC ;(3)∵AD ∥BC,∴∠ADB= ∠CBD ,∠ADF= ∠C,∵AE ∥FC,∴∠C=∠CBE,∴∠CBE= ∠ADF ,∵DA 均分∠FDB ,∴∠ADF= ∠ADB ,∴∠CBE= ∠CBD ,∴BC 均分∠DBE .25.证明:( 1)∵AF=CD ,∴AF+CF=CD+CF,即AC=DF,∵AB∥ED,∴∠A=∠D,∵BC∥EF,∴∠ACB= ∠DFE ,在△ACB 和△DFE 中,A DAC DF ,∴△≌△ ;DEF ABCACB DFE(2)∵△DEF ≌△ABC , BC=6 ,∴EF=BC=6 .26.解:(1 )证明:∵AB 的垂直均分线 MN 交 AC 于点 D ,∴DB=DA ,∴△ABD 是等腰三角形;( 2)∵△ABD 是等腰三角形,∠ A=40 °,∴∠ABD= ∠A=40 °,∠ABC= ∠C= (180 °-40 °)÷2=70 °,∴∠BDC= ∠ABC- ∠ABD=70 °-40 °=30 °;( 3)∵AB 的垂直均分线 MN 交 AC 于点 D ,AE=6 ,∴AB=2AD=12 ,∵△CBD 的周长为 20 ,∴AC+BC=20 ,∴△ABC 的周长 =AB+AC+BC=12+20=32.27. ( 1)m n 2;(2) m n 2m n 24mn ;(3)1;(4)略28.(1)-2<a≤3;( 2 )当 -2 < a < -1 时,原式 =-a-1-a+2=-2a+1;当 -1 ≤a ≤2 时,原式 =a+1-a+2=3;当 2 < a ≤3 时,原式=a+1+a-2=2a-1;( 3 )当 -2 < a < -1 时,原式 =-a-1-a+2=-2a+1=4,解得a=3 ;211 / 12当 -1 ≤a ≤2 时,原式 =a+1-a+2=3, a 不存在;当 2 < a ≤3 时,原式 =a+1+a-2=2a-1=4,解得 a=5 229. 解:(1 )设租甲种客车 x 辆,则租乙种客车( 8-x )辆, 依题意,得 45x+30 ( 8-x )≥318+8 ,解得 x 511,∵打算同时租甲、乙两种客车,∴ x <8 ,即 51115≤x <8 ,15x=6 ,7 ,有两种租车方案:租甲种客车 6 辆,则租乙种客车 2 辆, 租甲种客车 7 辆,则租乙种客车 1 辆;( 2)∵6×800+2 ×600=6000 元, 7 ×800+1 ×600=6200 元,∴租甲种客车 6 辆;租乙种客车 2 辆,所需付费最少为 6000 (元);( 3)设同时租 65 座、 45 座和 30 座的大小三种客车各 x 辆, y 辆,(7-x-y )辆,依据题意得出: 65x+45y+30 (7-x-y )=318+7 ,整理得出: 7x+3y=23 ,1≤x <7 ,1 ≤y <7 ,1 ≤7-x-y <7 , 故切合题意的有: x=2 , y=3 , 7-x-y=2 ,租车方案为:租 65 座的客车 2 辆, 45 座的客车 3 辆, 30 座的 2 辆.30. 解:( 1)当△PBC 是直角三角形时, ∠B=60 °∠,BPC=90 °,因此 BP=1.5cm ,因此 t= 3(2 分)2( 2)当∠BPQ=90 °时,BP=0.5BQ , 3-t=0.5t ,因此 t=2 ;当∠BQP=90 °时,BP=2BQ ,3-t=2t ,因此 t=1 ;因此 t=1 或 2 ( s )(4 分)( 3)因为∠DCQ=120 °,当△DCQ 是等腰三角形时, CD=CQ ,因此∠PDA= ∠CDQ= ∠CQD=30 °,又因为∠A=60 °,因此 AD=2AP ,2t+t=3,解得 t=1 (s );(2 分)( 4)相等,如下图:作 PE 垂直 AD ,QG 垂直 AD 延伸线,则 PE ∥QG ,因此,∠G= ∠AEP ,因为∠G =∠AEP ,∠APE =∠CQG , AP = CQ ,因此△EAP ≌△GCQ (AAS ),因此 PE=QG ,因此,△PCD 和△QCD 同底等高,因此面积相等.金戈铁制卷初中数学试卷金戈铁制卷12 / 12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年江苏省宿迁市钟吾中学七年级(下)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,以下各题有四个选项,其中只有一个是正确的,请将正确选项填入下面表格中)1.(3分)如果一个多边形的内角和为360°,那么这个多边形为()A.三角形B.四边形C.五边形D.六边形2.(3分)某红外线波长为0.00 000 094m,用科学记数法把0.00 000 094m可以写成()A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m3.(3分)下列运算正确的是()A.a8÷a2=a4B.a3+a3=a6 C.(a3)3=a6D.(﹣a)2•(﹣a)3=﹣a54.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2﹣1=(x+1)(x﹣1)C.(x+1)(x+3)=x2+4x+3 D.x2+2x+1=x(x+2)+15.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)若(x+3)(2x﹣m)=2x2+x﹣15,则实数m的值()A.﹣5 B.﹣1 C.1 D.57.(3分)李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.8.(3分)如图,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个相同长方形的两边长(x>y),给出以下关系式:①x+y=m;②x﹣y=n;③xy=.其中正确的关系式的个数有()A.0个 B.1个 C.2个 D.3个二、填空题(本题共10小题,每小题3分,共30分)9.(3分)不等式3x﹣2>4的解是.10.(3分)将多项式y2﹣4y+4分解因式得.11.(3分)若x+y=8,则用含x的代数式表示y为.12.(3分)若a+b=3,则7﹣2a﹣2b的值是.13.(3分)若命题“对于任意实数x,x2+3x的值都是正数”是假命题,则其中一个反例是x=.14.(3分)已知是二元一次方程ax+y=5的一个解,则a=.15.(3分)若3x=4,3y=2,则3x+2y的值为.16.(3分)如图,有一块含有60°角的直角三角板的两个顶点放在矩形的对边上.如果∠1=15°,那么∠2的度数是.17.(3分)已知不等式组有解,则实数m的取值范围是.18.(3分)若一个三角形的3边长分别是xcm、(x+4)cm、(12﹣2x)cm,则x 的取值范围是.三、解答题(19题6分,20-24题每题8分,25-26题每题10分,共66分,写出必要的计算过程或推演步骤)19.(6分)计算:()﹣1+()2×(﹣2)3﹣(π﹣3)0.20.(8分)先化简,再求值:(a﹣b)2+b(a+b)﹣a2﹣2b2,其中a=﹣,b=3.21.(8分)解不等式组,并写出它的所有整数解.22.(8分)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A1B1C1;(2)画出△ABC的AB边上的中线CD,并求△BCD的面积.23.(8分)若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.24.(8分)已知,如图,DE∥BC,∠A=60°,∠B=50°;(1)求∠1的度数;(2)若FH⊥AB于点H,且∠2=∠3,试判断CD与AB的位置关系?并加以证明.25.(10分)某校准备组织七年级400名学生参加北京夏令营,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人;(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若学校计划租用小客车x辆,大客车y辆,一次送完,且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金4000元,大客车每辆需租金7600元,请选出最省钱的租车方案,并求出最少租金.26.(10分)如图,点C在∠MAN的边AM上,CD⊥AN,垂足为点D,点B在边AN上运动,∠BCA的平分线交AN于点E.(1)若∠A=30°,∠B=70°,求∠ECD的度数;(2)若∠A=α,∠B=β,求∠ECD的度数(用含α,β的式子表示).2014-2015学年江苏省宿迁市钟吾中学七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,以下各题有四个选项,其中只有一个是正确的,请将正确选项填入下面表格中)1.(3分)如果一个多边形的内角和为360°,那么这个多边形为()A.三角形B.四边形C.五边形D.六边形【解答】解:设多边形的边数是n,则(n﹣2)•180=360,解得:n=4.故选:B.2.(3分)某红外线波长为0.00 000 094m,用科学记数法把0.00 000 094m可以写成()A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m【解答】解:0.00 000 094m=9.4×10﹣7,故选:A.3.(3分)下列运算正确的是()A.a8÷a2=a4B.a3+a3=a6 C.(a3)3=a6D.(﹣a)2•(﹣a)3=﹣a5【解答】解:A、a8÷a2=a6,原式计算错误,故本选项错误;B、a3+a3=2a3,原式计算错误,故本选项错误;C、(a3)3=a9,原式计算错误,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,原式计算正确,故本选项正确.故选:D.4.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2﹣1=(x+1)(x﹣1)C.(x+1)(x+3)=x2+4x+3 D.x2+2x+1=x(x+2)+1【解答】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B正确;C、整式的乘法,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:B.5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:根据题意正确的是B.故选:B.6.(3分)若(x+3)(2x﹣m)=2x2+x﹣15,则实数m的值()A.﹣5 B.﹣1 C.1 D.5【解答】解:∵(x+3)(2x﹣m)=2x2+(6﹣m)x﹣3m=2x2+x﹣15,∴﹣3m=﹣15,解得:m=5.故选:D.7.(3分)李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x、y分钟,列出的方程是()A.B.C.D.【解答】解:他骑车和步行的时间分别为x分钟,y分钟,由题意得:,故选:D.8.(3分)如图,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个相同长方形的两边长(x>y),给出以下关系式:①x+y=m;②x﹣y=n;③xy=.其中正确的关系式的个数有()A.0个 B.1个 C.2个 D.3个【解答】解:由图形可得:①大正方形的边长=长方形的长+长方形的宽,故x+y=m 正确;②小正方形的边长=长方形的长一长方形的宽,故x﹣y=n正确;③大正方形的面积一小正方形的面积=4个长方形的面积,故xy=正确.所以正确的个数为3.故选:D.二、填空题(本题共10小题,每小题3分,共30分)9.(3分)不等式3x﹣2>4的解是x>2.【解答】解:移项得,3x>4+2,合并同类项得,3x>6,把x的系数化为1得,x>2.故答案为:x>2.10.(3分)将多项式y2﹣4y+4分解因式得(y﹣2)2.【解答】解:y2﹣4y+4=(y﹣2)2.故答案为:(y﹣2)2.11.(3分)若x+y=8,则用含x的代数式表示y为y=﹣x+8.【解答】解:方程x+y=8,解得:y=﹣x+8,故答案为:y=﹣x+812.(3分)若a+b=3,则7﹣2a﹣2b的值是1.【解答】解:∵a+b=3,∴原式=7﹣2(a+b)=7﹣6=1.故答案为:1.13.(3分)若命题“对于任意实数x,x2+3x的值都是正数”是假命题,则其中一个反例是x=0.【解答】解:命题“对于任意实数x,x2+3x的值都是正数”是假命题,则其中一个反例是x=0.故答案为0.14.(3分)已知是二元一次方程ax+y=5的一个解,则a=1.【解答】解:把代入二元一次方程ax+y=5得:2a+3=5,解得:a=1,故答案为:1.15.(3分)若3x=4,3y=2,则3x+2y的值为16.【解答】解:3x+2y=3x•32y=3x•(3y)2=4×4=16.故答案为:16.16.(3分)如图,有一块含有60°角的直角三角板的两个顶点放在矩形的对边上.如果∠1=15°,那么∠2的度数是15°.【解答】解:如图:∵在△ACB中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∵∠1=15°,∴∠DBA=15°,∵DE∥FG,∴∠2=∠DBA=15°,故答案是:15°.17.(3分)已知不等式组有解,则实数m的取值范围是m>1.【解答】解:已知不等式组有解,则实数m的取值范围是m>1,故答案为:m>1.18.(3分)若一个三角形的3边长分别是xcm、(x+4)cm、(12﹣2x)cm,则x 的取值范围是2<x<4.【解答】解:由题意得,解得:2<x<4,故答案为:2<x<4.三、解答题(19题6分,20-24题每题8分,25-26题每题10分,共66分,写出必要的计算过程或推演步骤)19.(6分)计算:()﹣1+()2×(﹣2)3﹣(π﹣3)0.【解答】解:原式=3﹣2﹣1=0.20.(8分)先化简,再求值:(a﹣b)2+b(a+b)﹣a2﹣2b2,其中a=﹣,b=3.【解答】解:(a﹣b)2+b(a+b)﹣a2﹣2b2=a2﹣2ab+b2+ab+b2﹣a2﹣2b2=﹣ab,当a=﹣,b=3时,原式=﹣(﹣)×3=1.21.(8分)解不等式组,并写出它的所有整数解.【解答】解:,由①得:x≤2,由②得:x>﹣1,原不等式组的解集为:﹣1<x≤2,所以整数解为0,1,2.22.(8分)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC向右平移4个单位后得到的△A 1B1C1;(2)画出△ABC的AB边上的中线CD,并求△BCD的面积.【解答】解:(1)所作图形如图所示:(2)所作图形如图所示:S△BCD=×4×4﹣×1×3﹣×1×3﹣1=4.23.(8分)若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.24.(8分)已知,如图,DE∥BC,∠A=60°,∠B=50°;(1)求∠1的度数;(2)若FH⊥AB于点H,且∠2=∠3,试判断CD与AB的位置关系?并加以证明.【解答】解:(1)∵DE∥BC∴∠ADE=∠B=50°∴∠1=180°﹣∠ADE﹣∠A=70°;(2)CD⊥AB.∵DE∥BC,∴∠BCD=∠2.∵∠2=∠3,∴∠BCD=∠3,∴CD∥HF.∵FH⊥AB,∴CD⊥AB.25.(10分)某校准备组织七年级400名学生参加北京夏令营,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人;(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若学校计划租用小客车x辆,大客车y辆,一次送完,且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金4000元,大客车每辆需租金7600元,请选出最省钱的租车方案,并求出最少租金.【解答】解:(1)设每辆小客车能坐a名学生,每辆大客车能坐b名学生根据题意,得解得答:每辆小客车能坐20名学生,每辆大客车能坐45名学生.(2)①根据题意,得20x+45y=400,∴y=,∵x、y均为非负数,∴,,∴租车方案有3种.方案1:小客车20辆,大客车0辆;方案2:小客车11辆,大客车4辆;方案3:小客车2辆,大客车8辆.②方案1租金:4000×20=80000(元)方案2租金:4000×11+7600×4=74400(元)方案3租金:4000×2+7600×8=68800(元)∵80000>74400>68800∴方案3租金最少,最少租金为68800元.26.(10分)如图,点C在∠MAN的边AM上,CD⊥AN,垂足为点D,点B在边AN上运动,∠BCA的平分线交AN于点E.(1)若∠A=30°,∠B=70°,求∠ECD的度数;(2)若∠A=α,∠B=β,求∠ECD的度数(用含α,β的式子表示).【解答】解:(1)如图,在△ABC中,∵∠A=30°,∠B=70°,∴∠ACB=80°,∵CE平分∠ACB,∴∠ECB=40°,在△BCD中,∵CD⊥AN,∠B=70°,∴∠DCB=20°,∴∠ECD=∠ECB﹣∠DCB=20°;(2)情况一:β>α,①β<90°时,∠ECD=β﹣α,②β=90°时,∠ECD=β﹣α,③β>90°时,∠ECD=β﹣α;情况二:β<α时,∠ECD=α﹣β;情况三:β=α时,∠ECD=0°;综上所述,.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321A1FB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bb x-aa 45°D Ba +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求△AMN 的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF ,BE ,DF 之间的数量关系.ABFEDCF。

相关文档
最新文档