实际问题和反比例函数的应用
反比例函数的应用
反比例函数的应用反比例函数是数学中的一种特殊函数形式,也称为倒数函数。
它的形式可以表示为y=k/x,其中k是常数。
在实际生活中,反比例函数有着广泛的应用,本文将探讨几个常见的反比例函数应用场景。
1. 面积与边长的关系在几何学中,矩形的面积与其两条边长之间存在着反比例关系。
假设一个矩形的长为L,宽为W,那么它的面积S可以表示为S=L*W。
由于长度和宽度是矩形两个独立的参数,它们之间存在反比例关系。
当一个参数增加时,另一个参数相应地减小,以保持面积不变。
这种反比例关系可以应用于很多实际问题中,比如房间的面积与家具的数量,农田的面积与种植作物的产量等。
通过理解面积与边长之间的反比例关系,我们可以在实际问题中做出合理的决策。
2. 时间和速度的关系另一个常见的反比例函数应用是时间和速度之间的关系。
在物理学中,速度可以定义为物体在单位时间内所移动的距离。
假设一个物体在时间t内移动的距离为d,则它的速度v可以表示为v=d/t。
根据这个公式,我们可以看到时间和速度之间呈现出反比例关系。
这个关系在实际生活中有很多应用。
比如旅行中的车辆速度与到达目的地所需时间之间的关系,运输货物的速度与到达目的地所需的时间之间的关系等。
这种反比例关系帮助我们计算和预测在不同速度下所需的时间。
3. 电阻与电流的关系在电学中,电阻和电流之间存在着反比例关系。
根据欧姆定律,电流I通过一个电阻R时,产生的电压V可以表示为V=I*R。
由于电阻是电流通过的障碍物,当电阻增加时,电流减小,反之亦然。
这种反比例关系在电路设计和计算中起着重要的作用。
我们可以根据电阻和电流之间的关系来选择合适的电阻值,以控制电路中的电流大小。
此外,这种关系还能帮助我们解决一些实际电路中的问题,比如计算电路中的功率、阻值等。
总结:反比例函数在各个领域中都有广泛的应用。
通过理解反比例关系,我们能够分析和解决实际问题,做出合理的决策。
本文介绍了三个常见的反比例函数应用,包括面积与边长的关系、时间和速度的关系,以及电阻与电流的关系。
反比例函数的实际应用、 实际问题与反比例函数(教案)
26.2 实际问题与反比例函数第1课时反比例函数的实际应用(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.26.2 实际问题与反比例函数第1课时实际问题与反比例函数(1)——面积问题与装卸货物问题一、新课导入1.课题导入前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决问题中所起的作用.这节课我们进一步探讨如何利用反比例函数解决实际问题.2.学习目标(1)掌握常见几何图形的面积(体积)公式.(2)能利用工作总量、工作效率和工作时间的关系列反比例函数解析式.(3)从实际问题中抽象出数学问题,建立函数模型,运用所学的数学知识解决实际问题.3.学习重、难点重点:面积问题与装卸货物问题.难点:分析实际问题中的数量关系,正确写出函数解析式.二、分层学习1.自学指导(1)自学内容:教材P12例1.(2)自学时间:8分钟.(3)自学指导:抓住问题的本质和关键,寻求实际问题中某些变量之间的关系.(4)自学参考提纲:①圆柱的体积=底面积×高,教材P12例1中,圆柱的高即是d,故底面积410Sd .②P12例1的第(2)问实际是已知S=500,求d.③例1的第(3)问实际是已知d=15,求S.④如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m,设AD的长为x m,DC的长为y m.a.求y与x之间的函数关系式;60 yx ⎛=⎫ ⎪⎝⎭b.若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC 的长都是整米数,求出满足条件的所有围建方案.(AD=5 m,DC=12 m;AD=6m,DC=10 m;AD=10 m,DC=6 m.)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否掌握利用面积(体积)公式列反比例函数关系式.②差异指导:辅导关注学困生.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例1的解题思路和解答过程.(2)面积公式与体积公式中的反比例关系.(3)练习:已知某矩形的面积为20 cm2.①写出其长y与宽x之间的函数表达式;②当矩形的长为12 cm时,宽为多少?当矩形的宽为4 cm,长为多少?③如果要求矩形的长不小于8 cm,其宽最多是多少?答案:①20yx=②53cm;5 cm③52cm1.自学指导(1)自学内容:教材P13例2.(2)自学时间:5分钟.(3)自学方法:认真分析例题,积极思考,结合自学参考提纲自学.(4)自学参考提纲:①工作总量、工作时间和工作效率(或速度)之间的关系是怎样的?②教材例2中这艘船共装载货物240吨,卸货速度v(吨/天)与卸货时间t(天)的关系是240 vt =.③如果列不等式求“平均每天至少要卸载多少吨”,你会怎样做?写出你的解答过程.④一司机驾汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.a.当他按原路匀速返回时,汽车速度v(千米/小时)与时间t(小时)有怎样的函数关系?480 vt⎛=⎫ ⎪⎝⎭b.如果该司机必须在4小时之内返回甲地,则返程时的速度不得低于多少?(120千米/小时)c.若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过120千米/小时,最低车速不得低于60千米/小时,试问返程所用时间的范围是多少?(4~8小时)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列函数关系式,是否会根据反比例函数关系解决实际问题.②差异指导:指导学生从形式和自变量的取值范围两个方面对比正比例函数理解反比例函数.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例2的解题思路和解答过程.(2)练习:某学校食堂为方便学生就餐,同时又节约成本,常根据学生多少决定开放多少售饭窗口,假定每个窗口平均每分钟可以售饭给3个学生,开放10个窗口时,需1小时才能对全部学生售饭完毕.①共有多少学生就餐?②设开放x 个窗口时,需要y 小时才能让当天就餐的同学全部买上饭,试求出y 与x 之间的函数关系式;③已知该学校最多可以同时开放20个窗口,那么最少多长时间可以让当天就餐的学生全部买上饭?答案:①1800个;②10y x=;③30分钟. 三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).函数是初中数学的难点之一,当函数遇到实际应用,可谓是难上加难,但也使解题多了几种途径.对于这些实际问题,要善于运用函数的观点去处理.因此在教学过程要注意培养学生的审题能力,理解文字中隐藏的已知条件,合理地建立函数模型,然后根据模型找出实际生活中的数据与模型中的哪些量相对应.将实际问题置于已有的知识背景中,用数学知识重新解释这是什么,可以是什么,逐步培养解决实际问题的能力.一、基础巩固(70分)1.(10分)某轮船装载货物300吨,到港后,要求船上货物必须不超过5日卸载完毕,则平均每天至少要卸载(B )A.50吨B.60吨C.70吨D.80吨2.(10分) 用规格为50 cm×50 cm 的地板砖密铺客厅恰好需要60块.如果改用规格为a cm×a cm 的地板砖y 块也恰好能密铺该客厅,那么y 与a 之间的关系为(A ) A.2150000y a = B.150000y a = C.y=150000a 2 D.y=150000a3.(10分) 如果以12 m 3/h 的速度向水箱注水,5 h 可以注满.为了赶时间,现增加进水管,使进水速度达到Q (m 3/h ),那么此时注满水箱所需要的时间t (h )与Q (m3/h)之间的函数关系为(A)A.60tQ= B.t=60QC.6012tQ=- D.6012tQ=+4.(10分) 如果等腰三角形的底边长为x,底边上的高为y,当它的面积为10时,x与y 的函数关系式为(D)A.10yx= B.5yx= C.20xy= D.20yx=5.(10分) 已知圆锥的体积V=13Sh(其中S表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10 cm时,底面积为30 cm2,则h关于S的函数解析式为300 hS =.6.(10分)小艳家用购电卡购买了1000度电,那么这些电能够使用的天数m 与小艳家平均每天的用电度数n有怎样的函数关系?如果平均每天用电4度,这些电可以用多长时间?解:1000mn=;250天.7.(10分)某农业大学计划修建一块面积为2×106 m2的长方形试验田.(1)试验田的长y(单位:m)关于宽x(单位:m)的函数关系式是什么?(2)如果试验田的长与宽的比为2∶1,则试验田的长与宽分别是多少?解:(1)6210yx⨯=;(2)长:2×103 m,宽:103 m.二、综合应用(20分)8. (10分)某地计划用120~180天(含120天与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万立方米)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000立方米,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?解:(1)360yx=(2≤x≤3);(2)设原计划每天运送土石方x万立方米,实际每天运送土石方(x+0.5)万立方米.则360360240.5x x+=+().解得x=2.5.因此,原计划每天运送土石方2.5万立方米,实际每天运送土石方3万立方米.9.(10分)正在新建中的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103 m2.(1)所需瓷砖的块数n与每块瓷砖的面积S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2∶2∶1,则需三种瓷砖各多少块?解:(1)n=5×103S;(2)设需灰、白、蓝三种瓷砖分别为2x、2x、x块.(2x+2x+x)·80=5×103×104x=1.25×105因此,需灰、白、蓝三种瓷砖分别为2.5×105块、2.5×105块、1.25×105块.三、拓展延伸(10分)10.(10分) 水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现这种海产品每天的销售量y(千克)是销售价格x(元/千克)的函数,且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且以后每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)12000y x;不选一次函数是因为y 与x 之间不成正比例关系. (2)30+40+48+12000240+60+80+96+100=504(千克), (2104-504)÷12000150=20(天). (3)(20-15)×12000150÷2=200(千克),12000÷200=60(元/千克).。
反比例函数在实际生活中的四种运用
反比例函数在实际生活中的四种运用一、在电学中的运用在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用。
例1 在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R =5欧姆时,电流I =2安培.(1)求I 与R 之间的函数关系式;(2)当电流I =0.5时,求电阻R 的值.(1)解:设I =R U ∵R =5,I =2,于是 IR U =2×5=10,所以U =10,∴I =R10. (2)当I =0.5时,R =I U =5.010=20(欧姆). 点评:反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础。
用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.二、在光学中运用例2 近视眼镜的度数y (度)与焦距x (m )成反比例,已知400•度近视眼镜镜片的焦距为0.25m .(1)试求眼镜度数y 与镜片焦距x 之间的函数关系式;(2)求1 000度近视眼镜镜片的焦距.分析:把实际问题转化为求反比例函数的解析式的问题.解:(1)设y=k x ,把x=0.25,y=400代入,得400=0.25k , 所以,k=400×0.25=100,即所求的函数关系式为y=100x. (2)当y=1000时,1000=100x ,解得=0.1m . 点评:生活中处处有数学。
用反比例函数去研究两个物理量之间的关系是在物理学中最常见的,因此同学们要学好物理,首先要打好数学基础,才能促进你对物理知识的理解和探索。
三、在排水方面的运用例3 如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?分析:当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例3 所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(2)因为此函数为反比例函数,所以解析式为:V=48000t;(3)若要6h排完水池中的水,那么每小时的排水量为:V=480006=8000(m3);(4)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t=480006=8000(m3)点评:学会把实际问题转化为数学问题,充分体现数学知识来源于实际生活又服务于实际生活这一原理。
初中数学 反比例函数在实际问题中的应用有哪些
初中数学反比例函数在实际问题中的应用有哪些反比例函数在实际问题中有许多应用,下面列举一些常见的应用场景:1. 速度和时间的关系:在物理学和运动学中,速度和时间之间的关系通常可以用反比例函数来描述。
例如,当一个物体以恒定速度运动时,它所用的时间与所走的距离成反比。
反比例函数可以帮助我们计算在给定速度下所需的时间,或者在给定时间内所能达到的距离。
2. 工作和时间的关系:在工程学和生产领域中,工作和时间之间的关系通常可以用反比例函数来描述。
例如,如果一台机器在单位时间内完成的工作量是恒定的,那么完成某项工作所需的时间与工作量成反比。
反比例函数可以帮助我们计算在给定工作量下所需的时间,或者在给定时间内可以完成的工作量。
3. 面积和边长的关系:在几何学中,许多图形的面积和边长之间存在反比例关系。
例如,正方形的面积与边长的平方成反比,圆的面积与半径的平方成反比。
反比例函数可以帮助我们计算在给定面积下的边长,或者在给定边长下的面积。
4. 电阻和电流的关系:在电学中,电阻和电流之间的关系通常可以用反比例函数来描述。
根据欧姆定律,电阻与电流成反比。
反比例函数可以帮助我们计算在给定电阻下的电流,或者在给定电流下的电阻。
5. 质量和密度的关系:在物理学中,物体的质量和密度之间通常存在反比例关系。
根据定义,密度等于物体的质量除以其体积。
因此,当质量增加时,密度会减小,反之亦然。
反比例函数可以帮助我们计算在给定密度下的质量,或者在给定质量下的密度。
6. 投资和收益的关系:在金融领域中,投资和收益之间通常存在反比例关系。
例如,当我们投资的金额增加时,相同的投资收益率下的收益会减少。
反比例函数可以帮助我们计算在给定投资金额下的收益,或者在给定收益率下的投资金额。
这些都是反比例函数在实际问题中的一些常见应用。
通过将实际问题转化为反比例函数的形式,我们可以更好地理解和解决这些问题,并在实际生活中应用数学知识。
反比例函数实际应用
反比例函数实际应用反比例函数是初中数学中一个非常重要的概念,在实际应用中也有着广泛的应用。
本文将从多个角度探讨反比例函数的实际应用。
一、比例尺比例尺是地图上一个重要的概念。
比例尺是表示地图上距离与实际距离之比的关系。
比例尺越大,表示地图上的距离与实际距离之比越小。
比例尺与实际距离的关系是反比例函数关系。
实际应用时,比例尺可以用来计算地图上两个点之间的真实距离,也可以用来计算地球上两个点之间的真实距离。
二、电阻电阻是电路中一个非常重要的概念。
电阻的大小和材料、长度和横截面积等因素有关。
电阻和电流的关系是反比例函数关系。
实际应用时,可以利用电阻来控制电路中的电流大小,从而达到控制电路的目的。
三、比例面积比例面积是建筑工程中一个非常重要的概念。
比例面积是指实际面积与图纸上的面积之比。
比例面积与实际面积的关系是反比例函数关系。
实际应用时,可以利用比例面积来计算建筑物的实际面积,从而控制建筑物的规模。
四、人口密度人口密度是一个地方人口数量与面积之比的关系。
人口密度与面积的关系是反比例函数关系。
实际应用时,可以利用人口密度来评估一个地方的人口密度状况,从而制定相应的人口政策。
五、天文学天文学中,反比例函数的应用非常广泛。
例如天体的距离与亮度之间的关系是反比例函数关系,利用这个关系可以测量天体的距离。
还有天体的质量与轨道周期之间的关系也是反比例函数关系,利用这个关系可以估算天体的质量。
总之,反比例函数在现实生活中有着广泛的应用。
熟练掌握反比例函数的概念和应用,对于提高我们的生活和工作水平具有非常重要的意义。
反比例函数的应用与问题解决
反比例函数的应用与问题解决反比例函数是数学中常见的一种函数形式,其特点是自变量和因变量之间的关系满足倒数关系。
在实际应用中,反比例函数可以用来描述一些与数量和比例有关的问题,同时也可以帮助我们解决一些实际生活中的难题。
本文将介绍反比例函数的基本性质和常见应用,并通过实例来讨论一些与反比例函数相关的问题解决方法。
一、反比例函数的基本性质反比例函数的一般形式为y = k/x,其中k是常数,x和y分别表示自变量和因变量。
反比例函数的基本性质如下:1. 定义域和值域:自变量x的取值范围为除0以外的实数集,当x趋近于0时,函数值趋于无穷大;因变量y的取值范围为除0以外的实数集,当x趋近于无穷大时,函数值趋近于0。
2. 奇偶性:反比例函数不具有奇偶性,即不满足f(-x) = f(x)或f(-x)= -f(x)。
3. 对称轴:反比例函数的图像关于原点对称。
二、反比例函数的应用反比例函数在实际应用中具有广泛的应用,常见的领域包括物理学、经济学和工程学等。
下面将介绍几个常见的反比例函数应用实例:1. 电阻与电流关系:根据欧姆定律,电阻R与通过其的电流I之间的关系为R = U/I,其中U为电压常数。
可以看出,当电流增大时,电阻减小,两者成反比关系。
2. 速度与时间关系:对于匀速直线运动,速度v与时间t之间的关系为v = s/t,其中s为位移常数。
可以看出,当时间增加时,速度减小,两者成反比关系。
3. 药物浓度与体积关系:在化学实验中,溶液的浓度C与溶质在溶剂中的体积V之间的关系为C = n/V,其中n为溶质的量。
可以看出,当体积增大时,浓度减小,两者成反比关系。
三、反比例函数问题的解决方法在实际问题中,与反比例函数相关的问题可能涉及到函数值的计算、变量之间的关系以及最值的求解等。
下面将针对几种常见问题提供解决方法。
1. 计算函数值:根据反比例函数的定义,要计算函数在某一点的值,只需将该点的自变量代入函数表达式中即可。
反比例函数实际应用的七种情况
反比例函数实际应用的七种情况1.电阻与电流之间的关系:根据欧姆定律,电阻与电流成反比例关系,即电阻越大,通过电阻的电流越小。
这个关系在电路设计和计算中非常有用,让我们可以根据所需的电流值来选择合适的电阻。
2.速度与旅行时间之间的关系:在常规的运动中,速度与旅行时间成反比例关系。
例如,如果行驶的速度减小,那么到达目的地所需要的时间将会增加。
这个关系在交通规划中非常重要,可以帮助我们预测旅行时间和选择最佳路线。
3.固定工作量与完成时间的关系:在工作中,如果完成一项任务所需的工作量固定,那么完成任务所需的时间将与工作量成反比例关系。
这个关系可以帮助我们计划工作时间和分配资源,确保在规定时间内完成工作。
4.人均资金和受益人数之间的关系:在社会福利领域,人均资金和受益人数成反比例关系。
例如,如果一些项目的预算不变,那么资金按比例减少时,受益人的数量将会增加。
这个关系可以帮助我们合理分配资源,确保尽可能多的人从社会福利项目中受益。
5.产品价格与需求之间的关系:根据供需理论,产品价格与需求成反比例关系。
如果产品价格上升,需求将减少;反之,如果产品价格下降,需求将增加。
这个关系可以帮助企业制定合理的定价策略和预测市场需求,以最大程度地获得利润。
6.光的强度与距离之间的关系:根据光传播定律,光的强度与距离成反比例关系。
如果距离光源越远,光的强度将越弱。
这个关系在光学中非常重要,可以帮助我们计算光的传播距离和设计照明方案。
7.音量与距离之间的关系:在声学中,音量与距离也成反比例关系。
如果距离声源越远,声音的音量将越低。
这个关系在音响设计和音频工程中非常有用,可以帮助我们调整音乐会场的音效和音量控制系统。
以上是反比例函数实际应用的七种情况,这些情况涉及到不同领域的应用,从物理学到经济学,再到工程学和音响学等。
对于学习和应用反比例函数的人来说,了解这些实际案例可以帮助他们更好地理解和运用反比例函数。
反比例函数的应用
反比例函数的应用反比例函数是一类常见的数学函数,其应用十分广泛。
本文将探讨反比例函数在实际问题中的具体应用,并通过例子进行说明。
一、水池问题水池问题是反比例函数的典型应用之一。
假设一个水池的容量为V,初始时刻水池的水量为Q1,经过一段时间后,水池的水量变为Q2。
那么水池中的水量与时间的关系可以用反比例函数表示。
具体而言,水池中的水量与时间的关系可以表示为:Q = k/V,其中,Q表示水池中的水量,k是一个常数。
由于水的流入和流出是平衡的,因此可以得到:Q1 × t1 = Q2 × t2,其中t1和t2分别表示时间段1和时间段2。
例如,一口深度为4米的水池初始时刻水量为5000升,经过5天后水量变为8000升。
那么可以通过反比例函数求解水池的容量。
根据反比例函数的定义,可以得到:5000 × t1 = 8000 × 5,进一步化简计算,得到t1 = 8。
因此,水池的容量V = k/5000 = 8/5 = 1.6升/天。
二、物体的速度问题反比例函数在物体的速度问题中也有广泛的应用。
例如,一个物体以固定的速度v行驶,在行驶的过程中被施加了一个恒定的阻力F。
那么物体的加速度a与速度v之间的关系可以表示为:a = F/mv,其中m为物体的质量。
通过反比例函数的应用,可以求解物体的质量m。
假设物体的质量为m1,速度为v1,加速度为a1,当物体的质量变为m2时,速度变为v2,加速度变为a2。
根据反比例函数的定义,可以得到:a1 = F/(m1 ×v1),a2 = F/(m2 × v2)。
进一步化简计算,可以得到:m2/m1 = v2/v1 × a1/a2。
因此,可以通过反比例函数求解物体的质量m。
三、光的强度问题光的强度问题也是反比例函数的常见应用。
光的强度I与距离r之间的关系可以用反比例函数表示:I = k/r²,其中k为常数。
反比例函数应用题解法
反比例函数应用题解法反比例函数是数学中常见的一类函数,它的定义式可以表述为y=k/x,其中k为常数。
在实际中,反比例函数可以用来解决很多实际问题,下面就来介绍一些反比例函数的应用题解法。
1. 水缸注水问题题目描述:有一水缸,容积为20升,里面盛有10升的水。
现有一管子,管子每分钟可以注入1升水。
问,如果以最大速度注水,那么需要多长时间才能把水缸装满?解题思路:该问题中注入水的速度是一个固定的值,因而符合反比例函数的特点。
我们设时间为x分钟,那么注入的水应该为 x*1升,而当前水缸中剩余的水为 20-10=10升-x*1升。
由于反比例函数的定义式为 y=k/x,因此我们可以列出如下的式子:x*1=20/(10-x*1)化简后可得:x^2-x+10=0解方程可得 x=3.316或x=0.684由于时间不能为负数,因此我们取大于0的根x=3.316,即水缸注满所需的时间为3.316分钟。
2. 元宝淘金问题题目描述:淘金工人会挖掘出一些元宝,而各个元宝的价值不同。
如果每个元宝价值越高,需要消耗的物力(工人的体力、时间等)就越多,这个关系可以用反比例函数表示。
现在有一组元宝,其价值和消耗值如下表所示:价值(元)| 消耗值(功)---------|---------200 | 10400 | 5800 | 2.51600 | 1.25现在需要找出最有价值的那个元宝,即价值消耗比最大的元宝。
解题思路:由于元宝的价值和消耗值之间呈反比例关系,因此我们可以通过计算各个元宝的价值消耗比来比较各个元宝的价值。
我们可以采用以下的公式计算元宝的价值消耗比:价值消耗比 = 元宝价值 / 元宝消耗值根据这个公式,我们可以得到各个元宝的价值消耗比:元宝1:20元宝2:80元宝3:320元宝4:1280由此可见,元宝4的价值消耗比最大,因此它是最有价值的元宝。
反比例函数是数学中常见的函数之一,它在实际中的应用非常广泛。
通过对反比例函数的认识和应用,在解决实际问题时能更加高效。
反比例函数实际应用
反比例函数实际应用反比例函数是数学中的一个重要概念,它在实际生活中有着广泛的应用。
本文将探讨反比例函数的实际应用,并举例说明其在不同领域的具体用途。
一、什么是反比例函数反比例函数是指函数关系中,当自变量变化时,因变量与自变量的乘积保持不变的函数。
一般表达式为 y = k/x,其中 k 是常数。
当 x 增大时,y 的值减小;当 x 减小时,y 的值增大,呈现反比例关系。
二、反比例函数在实际应用中的例子1. 照明系统设计反比例函数在照明系统设计中有着重要的应用。
考虑到照明强度与照明距离的关系,当光源与被照射物体之间的距离增大时,光照强度会随之减小。
根据反比例函数的特性,可以通过调整灯具的位置和光源的强度来满足照明需求,使得不同距离下的照明质量保持一致。
2. 电阻和电流关系在电路中,电阻和电流之间的关系通常可以用反比例函数来描述。
根据欧姆定律,电流大小与电阻大小成反比例关系。
当电阻增大时,电流减小;当电阻减小时,电流增大。
这种关系在电路设计和电子元件选型中起到了重要的指导作用。
3. 时间与速度关系在运动学中,时间与速度之间的关系可以用反比例函数来表示。
例如,在汽车行驶的过程中,如果保持驱动力和负载不变,车辆行驶的速度与所用时间成反比。
行驶的时间越长,速度越慢;行驶的时间越短,速度越快。
这种关系在交通规划和车辆调度中具有重要意义。
4. 物质浓度与溶液体积关系在化学实验中,物质浓度与溶液体积之间的关系可以用反比例函数来描述。
根据稀释定律,当物质浓度增大时,溶液体积减小;当物质浓度减小时,溶液体积增大。
利用反比例函数的特性,可以根据需求调整溶液的浓度和体积,实现精确的配制和稀释。
5. 传输速率和带宽关系在计算机网络领域,传输速率和带宽之间的关系可以用反比例函数来表达。
根据香农理论,带宽越大,传输速率越快;带宽越小,传输速率越慢。
利用反比例函数的特性,可以优化网络带宽的分配,提高数据传输的效率和可靠性。
三、总结反比例函数作为数学中的一个重要概念,在实际生活中有着广泛的应用。
反比例函数的性质与应用
反比例函数的性质与应用反比例函数是数学中的一种特殊函数形式,它的性质和应用在实际问题中非常重要。
本文将介绍反比例函数的性质,并探讨它在实际生活中的应用。
1. 反比例函数的定义反比例函数是指一个函数,其自变量x和因变量y满足以下关系式:y = k/x其中,k为常数,x ≠ 0。
2. 反比例函数的性质2.1 定义域和值域:反比例函数的定义域为除去0的实数集,值域为除去0的实数集。
这是由于在反比例函数中,除数不能为0。
2.2 反比例函数的图像特点:反比例函数的图像呈现出一种特殊的形状,即从左上方无限逼近于x轴和y轴。
随着自变量x的增大,因变量y呈现逐渐趋近于0的趋势;而随着自变量x的减小,因变量y也逐渐趋近于0。
2.3 反比例函数的对称性:反比例函数的图像关于一条直线对称,该直线过原点并且与y轴和x轴都垂直。
这种对称性使得反比例函数的图像在途中呈现出镜像对称的特点。
3. 反比例函数的应用3.1 物理学中的应用:反比例函数在物理学中具有广泛的应用,如弹簧的伸长和力的关系、电路中电阻和电流的关系等等。
通过研究反比例函数,我们可以更好地理解物理现象,为实际问题的解决提供依据。
3.2 经济学中的应用:在经济学中,反比例函数也有重要的应用。
例如,生产线的吞吐量与工人数量之间的关系,以及企业的销售量与售价之间的关系等。
通过建立反比例函数模型,我们可以更好地了解经济规律,并进行经济决策的优化。
3.3 生活中的应用:反比例函数的应用也可以在日常生活中找到。
例如,汽车行驶过程中的速度和所需要的时间之间的关系,以及购买商品的价格与所能购买的数量之间的关系等。
通过了解反比例函数的性质,我们可以更好地规划日常生活,做出合理的决策。
通过对反比例函数的性质和应用的研究,我们不仅能够深入理解数学中的一个重要概念,还能够将其应用于实际问题的解决中。
反比例函数不仅在学术领域有着丰富的内涵,也在实际生活中发挥着重要的作用。
反比例函数实际应用
反比例函数实际应用反比例函数是数学中常见的一类函数,其表达式可以写为y=k/x,其中k为常数。
这类函数在实际应用中有很多重要的作用,下面将介绍几个反比例函数的实际应用。
1. 物体下落时间与距离的关系在自然界中,一个物体自由落体下落的时间与其下落的距离存在着反比例的关系。
根据物体自由落体的公式:h=1/2*g*t^2,其中h为下落的距离,g为重力加速度,t为下落的时间。
可以通过整理公式得到t的表达式:t=sqrt(2h/g)。
由此可见,物体下落的时间与下落的距离呈反比例关系。
2. 阻力与速度的关系在空气或其他介质中运动的物体受到阻力的影响。
根据流体力学的研究,物体受到的阻力与其运动速度成反比。
具体而言,阻力可以表示为F=k*v,其中F为阻力,k为与介质性质和物体形状有关的常数,v为物体的速度。
这是因为物体速度增大,阻力也随之增大,使得物体的加速度减小。
3. 光线的亮度与距离的关系在光学中,根据光强度的定义,光强度与光源到观察点的距离的平方成反比。
具体而言,光强度可以表示为I=k/d^2,其中I为光的强度,k为常数,d为光源到观察点的距离。
这意味着,距离光源越远,光的强度越小,这也是我们观察到为什么远离光源的地方会显得比较暗的原因。
4. 电阻与电流的关系在电路中,电阻与电流之间存在反比例的关系。
根据欧姆定律的表达式:V=IR,其中V为电压,I为电流,R为电阻。
将该式变形得到I 的表达式:I=V/R。
可以看出,电流与电阻呈反比例关系。
当电阻增大时,电流减小;当电阻减小时,电流增大。
5. 温度与压力的关系在理想气体中,温度与压力之间存在反比例的关系。
根据理想气体状态方程:PV=nRT,其中P为压力,V为体积,n为物质的物质量,R为气体常数,T为温度。
将该式变形得到P与T的关系:P=k/T,其中k为常数。
这意味着在恒定的物质质量和体积下,温度越高,压力越低;温度越低,压力越高。
通过以上几个例子,我们可以看到反比例函数在物理、化学和工程等领域中的广泛应用。
反比例函数的性质与应用
反比例函数的性质与应用反比例函数是数学中一类特殊的函数,其形式为y=k/x,其中k为常数。
反比例函数具有一些特殊的性质和广泛的应用。
本文将探讨反比例函数的性质以及其在实际问题中的应用。
一、反比例函数的性质1. 反比例函数的图像特点:反比例函数的图像呈现出一条双曲线,曲线在坐标系的第一和第三象限中。
当x趋于正无穷或负无穷时,y趋于0,当x为0时,y趋于无穷大或无穷小。
2. 反比例函数的单调性:反比例函数在定义域内是单调的,即如果x1>x2,则k/x1<k/x2或k/x1>k/x2。
3. 反比例函数的对称性:反比例函数具有关于原点的对称性,即对于任意实数x,有k/x=-k/(-x)。
4. 反比例函数的渐近线:反比例函数的图像有两条渐近线,即x轴和y轴,当x趋于正无穷大或负无穷大时,反比例函数的图像趋近于x 轴;当y趋于正无穷大或负无穷大时,反比例函数的图像趋近于y轴。
二、反比例函数的应用反比例函数在实际问题中有着广泛的应用,以下是几个常见的应用领域:1. 电阻与电流关系:欧姆定律可以表示为U=RI,其中U为电压,I 为电流,R为电阻。
当电阻保持不变时,电压与电流成反比例关系;当电流保持不变时,电压与电阻成正比例关系。
2. 时间与速度关系:在旅行中,速度等于路程除以时间,即v=s/t。
当路程保持不变时,速度与时间成反比例关系;当速度保持不变时,速度与路程成正比例关系。
3. 投资收益率:在投资领域,投资的收益率与投资金额成反比例关系。
投资金额越大,收益率越低;投资金额越小,收益率越高。
4. 物体质量与重力关系:牛顿第二定律可以表示为F=ma,其中F 为物体受到的力,m为物体的质量,a为物体的加速度。
当力保持不变时,加速度与物体质量成反比例关系;当加速度保持不变时,力与物体质量成正比例关系。
以上仅是反比例函数的一些常见应用示例,实际上反比例函数在各个科学领域都有广泛的应用,如经济学、物理学、工程学等。
反比例函数的应用举例及实际意义
反比例函数的应用举例及实际意义反比例函数的应用举例及实际意义2023年,反比例函数已经成为了不可缺少的数学工具之一。
从自然科学到社会科学,从经济学到医学,都有着广泛的应用。
反比例函数的实际意义不仅在于解决目前面临的许多问题,同时也为未来的科学研究带来了巨大的潜力和发展空间。
接下来,本文将通过实例阐述反比例函数的应用及其实际意义。
1. 反比例函数在自然科学中的应用反比例函数在自然科学中有着广泛的应用,尤其是在物理学和化学领域。
例如,牛顿第二定律是运动学中的重要概念,它指出运动对象的加速度与所受的力成反比例关系。
这个定律可以表示为:F = ma其中,F是物体所受的力,m是物体的质量,a是物体的加速度。
由此可以得出,加速度与质量成反比例关系。
因此,反比例函数可以用来描述牛顿第二定律的关系。
在化学领域中,反比例函数也有着重要的应用。
例如,当溶液浓度变化时,反应速率的变化可以通过反比例函数来描述。
这种反应速率与浓度的反比例关系被称为“速率方程”,它是现代化学研究的重要基础概念之一。
2. 反比例函数在社会科学中的应用反比例函数在社会科学中的应用也非常广泛。
在经济学中,经济学家常用反比例函数来描述价格弹性和需求弹性。
例如,当商品价格下降时,价格弹性和需求弹性成反比例关系,即价格弹性愈大,需求弹性愈小。
此外,在管理学、市场营销、社会学和心理学领域,反比例函数也有着广泛的应用。
例如,管理学中的知名学者Fayol提出了“建立权力原则”,其中包括“管理单位的规模越大,管理层级的数量就越多,这种数量与管理效率呈反比例关系”。
这一原则指导了现代企业的组织架构和管理模式,成为企业管理领域的重要标志。
3. 反比例函数在医学中的应用反比例函数在医学中也有着重要的应用。
例如,药物代谢速率与药物浓度成反比例关系,这在药物的临床应用中非常重要。
当药物的浓度达到一定水平时,药物的代谢速率就会降低,这意味着需要调整剂量以保持药物在安全范围内的有效浓度。
反比例函数及其应用
反比例函数及其应用反比例函数是一种常见的函数类型,其特点是当自变量x的值增加时,因变量y的值会相应地减小,而当x的值减小时,y的值会增大。
在数学上,反比例函数可以表示为y = k/x,其中k是一个常数。
反比例函数的图像可以呈现出一条曲线,这条曲线以原点为对称中心,与x轴和y轴都有渐近线。
通常,反比例函数的图像在x轴右侧表现为下降的曲线,在x轴左侧表现为上升的曲线。
反比例函数在现实世界中有许多应用。
以下是一些常见的应用领域:1.电路中的电阻和电流:在电路中,电阻与电流之间的关系可以用反比例函数来表示。
根据欧姆定律,电流(I)等于电压(V)除以电阻(R),即I = V/R。
当电阻增加时,电流减小,而当电阻减小时,电流增大。
2.物体的速度和时间:在物理学中,某些情况下物体的速度与时间呈反比例关系。
例如,当一个物体以恒定的速度运动时,它所用的时间与路程成反比。
如果一个物体的速度为v,而它行驶的距离为d,那么时间t可以表示为t = d/v。
3.水桶的注水速度和注水时间:当我们在一个容器中注水时,水桶的注水速度和注水时间呈反比例关系。
如果我们将水桶的注水速度表示为r(单位为升/分钟),而注水时间表示为t(单位为分钟),那么注水的总容量可以表示为r*t。
4.工作人员数量和完成工作所需时间:在某些工作场合,完成一项工作所需的时间与工作人员的数量成反比例关系。
例如,如果一个项目需要20个工人完成,而现在只有10个工人,那么完成该项目所需的时间将是之前的两倍。
5.药物的浓度和溶液体积:在制备溶液时,药物的浓度和溶液体积之间存在反比例关系。
根据浓度公式C1V1 = C2V2,其中C1和V1分别表示初始浓度和初始体积,C2和V2分别表示最终浓度和最终体积。
以上只是反比例函数在现实生活中的一些应用举例,事实上,反比例函数在数学、经济学、工程学等各个领域都有广泛的应用。
通过了解反比例函数的特点和应用,我们可以更好地理解和解决实际问题。
实际问题与反比例函数洋葱数学
实际问题与反比例函数洋葱数学
反比例函数是一种广泛应用的函数形式,可以用来模拟许多实际现象。
洋葱数学就是利用
反比例函数来模拟近距离射击成功率的一个模型。
通常都是应用于战争游戏中,但它也可
以用来解决实际问题,比如说最少时间拜访多个地点的路线规划。
在洋葱数学模型中,每次射击的命中率都会随目标距离的增加而减少,其函数表达式为:
T(d) = 1 / (1 + d),其中d是射击目标和射手之间的距离,T(d)是射击命中率。
可以看到,随着距离增加,攻击命中率越来越低,被攻击者则有越来越高的机会逃脱。
同样,反比例
函数也可以用来解决实际问题,如最短时间拜访多个地点的路线规划问题。
在路线规划的问题中,可以用反比例函数来表示每个节点之间的距离。
在这个模型中,可
以以节点i为起点,计算它到节点j的最短距离,其函数表达式可以写为: D(i, j) = 1 / (1
+ |i - j|),其中|i - j|表示i和j之间的距离。
由于每个节点之间距离都是采用反比例函数来
表示,因此可以有效地避免节点之间重复访问,从而可以减少路线寻址的时间。
总之,反比例函数可以应用于多种实际问题求解,比如洋葱数学中的近距离射击命中率模型,以及路线规划中的节点距离表达式。
通过反比例函数,我们不仅可以解决战争游戏中
的射击成功率问题,而且还可以解决实际问题,比如说最短时间拜访多个地点的路线规划。
反比例函数的应用举例及实际意义
反比例函数的应用举例及实际意义
1.比例电阻器:在电流和电阻之间存在反比例关系。
当电阻增加时,电流减小;当电阻减小时,电流增加。
因此,比例电阻器可以调整电流的大小。
这在电子设备中非常常见,比如调节音量的旋钮。
2.速度和时间之间的关系:在很多情况下,物体的速度与所花费的时间成反比例关系。
例如,在旅行中,当你以较高的速度行驶时,你所需要的时间就会减少。
这在规划旅行路线、预计到达时间等方面非常有用。
3.燃料消耗和行驶里程:汽车的燃料消耗和行驶里程之间存在反比例关系。
当你以较高的速度行驶时,燃料消耗会增加,行驶里程会减少。
这对于驾驶员来说是很重要的信息,可以帮助他们规划加油站的位置和充分利用燃料。
4.水槽的排水时间:在一个水槽中,水的排水速度与排水时间成反比例关系。
当排水速度增加时,排水时间就会减少。
这对于设计水池和浇灌系统是重要的,可以帮助决定排水口的位置和大小。
5.人口增长和资源消耗:人口增长和资源消耗之间存在反比例关系。
当人口增长速度减慢时,资源消耗会相对减少。
这对于人口政策的制定和可持续发展非常重要,可以帮助平衡资源分配和环境保护。
6.投资回报率:投资回报率与投资额之间存在反比例关系。
当投资额增加时,投资回报率会减少。
这对于投资者来说是重要信息,可以帮助他们判断投资的风险和潜在收益。
以上仅是反比例函数应用的一些例子,实际上反比例函数在许多领域中都有应用。
通过理解反比例函数的实际意义,我们可以更好地理解和解决实际问题,并做出更明智的决策。
6.3.1根据实际问题列反比例函数关系式
根据实际问题列反比例函数关系式1.某玩具厂计划生产一种玩具熊猫,已知每只玩具熊猫的成本为y元,若该厂每月生产x 只(x取正整数),这个月的总成本为5000元,则y与x之间满足的关系为()A.y=B.y=C.y=D.y=【考点】根据实际问题列反比例函数关系式.【分析】根据等量关系“每只玩具熊猫的成本=总成本÷数量”列出关系式即可.【解答】解:由题意得:y与x之间满足的关系为y=.故选C.【点评】本题考查了反比例函数在实际生活中的运用,重点是找出题中的等量关系.2.矩形面积是40m2,设它的一边长为x(m),则矩形的另一边长y(m)与x的函数关系是()A.y=20﹣x B.y=40x C.y=D.y=【考点】根据实际问题列反比例函数关系式.【分析】根据等量关系“矩形的另一边长=矩形面积÷一边长”列出关系式即可.【解答】解:由于矩形的另一边长=矩形面积÷一边长,∴矩形的另一边长y(m)与x的函数关系是y=.故选C.【点评】本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.3.已知力F所作的功是15焦,且有公式:W=Fs.则力F与物体在力的方向上通过的距离s之间的函数关系正确的是()A.F=15s B.F=C.F=D.F=15﹣s【考点】根据实际问题列反比例函数关系式.【分析】将W=15,代入公式:W=Fs,变形即可得出F与s的函数关系式.【解答】解:将W=15,代入公式W=Fs,得Fs=15,即F=.故选C.【点评】本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.4.一个物体对桌面的压力为10N,受力面积为S cm2,压强为P Pa,则下列关系不正确的是()A.P=B.S=C.PS=10D.P=【考点】根据实际问题列反比例函数关系式.【分析】压强=,把相关数值和字母代入所列等式,利用等式性质看哪个式子或变形后的式子不符合即可.【解答】解:∵压强=,压力为10N,受力面积为S cm2,压强为P Pa,∴P=,A正确;∴S=,B正确;∴PS=10,C正确;既然A正确,那么D不正确,故选D.【点评】解决本题的关键是根据压强公式得到相应的变形进行相关判断.5.购买x斤水果需24元,购买一斤水果的单价y与x的关系式是()A.y=(x>0)B.y=(x为自然数)C.y=(x为整数)D.y=(x为正整数)【考点】根据实际问题列反比例函数关系式.【分析】单价=总价÷数量,把相关数值代入即可求解.【解答】解:∵总价为24,数量为x,∴单价y=(x>0),故选:A.【点评】考查列反比例函数关系式,得到单价的等量关系是解决本题的关键.6.某长方体的体积为100cm3,长方体的高h(单位:cm)与底面积S的函数关系式为()A.h=B.h=C.h=100S D.h=100【考点】根据实际问题列反比例函数关系式.【分析】根据等量关系“长方体的高=长方体的体积÷底面积”即可列出关系式.【解答】解:由题意得:长方体的高h(单位:cm)与底面积S的函数关系式为h=.故选B.【点评】本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.7.附城二中到联安镇为5公里,某同学骑车到达,那么时间t与速度(平均速度)v之间的函数关系式是()A.v=5t B.v=t+5C.D.【考点】根据实际问题列反比例函数关系式.【分析】速度=路程÷时间,把相关数值代入即可.【解答】解:∵速度=路程÷时间,∴.故选C.【点评】本题考查了列反比例函数关系式,得到行程问题中速度的等量关系是解决本题的关键.8.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是()体积x(mL)10080604020压强y(kPa)6075100150300A.y=3000x B.y=6000x C.y=D.y=【考点】根据实际问题列反比例函数关系式.【分析】利用表格中数据得出函数关系,进而求出即可.【解答】解:由表格数据可得:此函数是反比例函数,设解析式为:y=,则xy=k=6000,故y与x之间的关系的式子是y=,故选:D.【点评】此题主要考查了根据实际问题列反比例函数关系式,得出正确的函数关系是解题关键.二.填空题(共22小题)9.(2015•青岛)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为s=.【考点】根据实际问题列反比例函数关系式.【分析】利用长方体的体积=圆柱体的体积,进而得出等式求出即可.【解答】解:由题意可得:sh=3×2×1,则s=.故答案为:s=.【点评】此题主要考查了根据实际问题列反比例函数解析式,得出长方体体积是解题关键.10.(2015秋•景洪市校级期末)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行驶完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的函数关系式是t=.【考点】根据实际问题列反比例函数关系式.【分析】根据等量关系“时间=路程÷速度”即可列出关系式.【解答】解:由题意得:汽车行驶完全程所需的时间t与行驶的平均速度v之间的函数关系式是t=.故本题答案为:t=.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.11.(2015春•晋江市期末)已知晋江市的耕地面积约为375km2,人均占有的土地面积S(单位:km2/人),随全市人口n(单位:人)的变化而变化,则S与n的函数关系式是S=.【考点】根据实际问题列反比例函数关系式.【分析】利用耕地总面积以及总人数,进而表示出人均占有的土地面积.【解答】解:∵晋江市的耕地面积约为375km2,人均占有的土地面积S(单位:km2/人),随全市人口n(单位:人)的变化而变化,∴S与n的函数关系式是:S=.故答案为:S=.【点评】此题主要考查了根据实际问题列反比例函数关系式,得出正确等量关系是解题关键.12.(2015秋•克拉玛依校级期中)矩形的面积为20,则长y与宽x的函数关系式为y=.【考点】根据实际问题列反比例函数关系式.【分析】根据矩形的面积公式可得xy=20,进而可得y=.【解答】解:由题意得:xy=20,y=,故答案为:y=.【点评】此题主要考查了由实际问题列反比例函数关系式,关键是掌握矩形的面积公式.13.(2015春•宜兴市校级月考)近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视镜片的焦距为0.2米,则眼镜度数y与镜片焦距x之间的函数关系式是y=.【考点】根据实际问题列反比例函数关系式.【分析】由于近视眼镜的度数y(度)与镜片焦距x(米)成反比例,可设y=,由于点(0.2,400)在此函数解析式上,故可先求得k的值.【解答】解:根据题意近视眼镜的度数y(度)与镜片焦距x(米)成反比例,设y=,由于点(0.2,400)在此函数解析式上,∴k=0.2×400=80,∴y=.故答案为:y=.【点评】考查了根据实际问题列反比例函数关系式的知识,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.14.(2015秋•娄底月考)若梯形的下底长为x,上底长为下底长的,高为y,面积为20,则y与x的函数关系是y=.(不考虑x的取值范围)【考点】根据实际问题列反比例函数关系式.【分析】直接利用梯形面积公式求出y与x的函数关系式即可.【解答】解:∵梯形的下底长为x,上底长为下底长的,高为y,面积为20,∴(x+x)y=20,整理得:y=,∴y与x的函数关系是:y=.故答案为:y=.【点评】此题主要考查了根据实际问题列反比例函数关系式,正确利用梯形面积公式求出是解题关键.15.(2014秋•拱墅区期末)某村利用秋冬季节兴修水利,计划请运输公司用90~150天(含90与150天)完成总量300万米3的土石方运送,设运输公司完成任务所需的时间为y(单位:天),平均每天运输土石方量为x(单位:万米3),请写出y关于x的函数关系式并给出自变量x的取值范围y=(2≤x≤).【考点】根据实际问题列反比例函数关系式.【分析】利用“每天的工作量×天数=土石方总量”可以得到两个变量之间的函数关系.【解答】解:由题意得,y=,把y=90代入y=,得x=,把y=150代入y=,得x=2,所以自变量的取值范围为:2≤x≤,故答案为y=(2≤x≤).【点评】本题考查了根据实际问题列反比例函数关系式,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.16.(2013秋•宝山区校级期末)矩形的长为x,宽为y,面积为9,则y与x之间的函数关系及定义域是y=(x>0).【考点】根据实际问题列反比例函数关系式.【分析】根据矩形的面积得出xy=9,进而得出y与x之间的函数关系及定义域【解答】解:∵矩形的长为x,宽为y,面积为9,∴xy=9,且x>0,则y与x之间的函数关系及定义域是:y=(x>0).故答案为:y=(x>0).【点评】此题主要考查了根据实际问题列反比例函数关系式,利用矩形面积得出是解题关键.17.(2014春•兴化市期末)小明要把一篇24000字的社会调查报告录入电脑.完成录入的时间t(分)与录入文字的速度v(字/分)的函数关系可以表示为t=.【考点】根据实际问题列反比例函数关系式.【分析】根据录入的时间=录入总量÷录入速度即可得出函数关系式.【解答】解:由录入的时间=录入总量÷录入速度,可得t=.故答案为:t=.【点评】本题考查了根据实际问题列函数关系式的知识,比较简单,解答本题的关键是掌握关系式录入的时间=录入总量÷录入速度.18.(2014秋•中山期末)已知一个矩形的面积为2,两条边的长度分别为x、y,则y与x的函数关系式为y=.【考点】根据实际问题列反比例函数关系式.【分析】利用矩形的面积公式得出xy=2,进而求出即可.【解答】解:∵一个矩形的面积是2,两条边的长度分别为x、y,∴xy=2,即y=.故答案为:y=.【点评】此题主要考查了根据实际问题列反比例函数解析式,掌握矩形的面积公式是解题的关键.19.(2014秋•甘州区校级月考)某种大米单价是y元/千克,若购买x千克花费了2.2元,则y与x的表达式是y=.【考点】根据实际问题列反比例函数关系式.【分析】直接利用总钱数÷总质量=单价,进而得出即可.【解答】解:根据题意可得:y=.故答案为:y=.【点评】此题主要考查了根据实际问题列反比例函数解析式,得出反比例函数关系是解题关键.20.(2014秋•张掖校级月考)在某一电路中,保持电压不变,电流I(单位:A)与电阻R(单位:Ω)成反比例,当电阻R=5Ω时,电流I=2A.则I与R之间的函数关系式为I=.【考点】根据实际问题列反比例函数关系式.【分析】设函数解析式为I=,将R=5,I=2代入,计算即可求得k的值.【解答】解:设I=,将R=5,I=2代入,得k=IR=2×5=10,所以I与R之间的函数关系式为I=.故答案为I=.【点评】本题考查了由实际问题列反比例函数解析式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.21.(2014春•海珠区校级月考)已知长方形的面积为4,一条边长为x,另一边长为y,则用x表示y的函数解析式为y=.【考点】根据实际问题列反比例函数关系式.【分析】根据长方形的面积=长×宽,可得另一边的长=面积÷一条边的长,依此可列出关系式.【解答】解:∵长方形的面积为4,一条边长为x,另一边长为y,∴xy=4,∴用x表示y的函数解析式为y=.故答案为:y=.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.22.(2013•阜新)近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知500度的近视眼镜镜片的焦距是0.2m,则y与x之间的函数关系式是y=.【考点】根据实际问题列反比例函数关系式.【分析】因为近视眼镜的度数y(度)与镜片焦距x(m)成反比例,可设出函数式,根据500度的近视眼镜镜片的焦距是0.2m可确定系数,从而求出y与x之间的函数关系式.【解答】解:设y=,∵500度的近视眼镜镜片的焦距是0.2m,∴500=,k=100.∴y=.故答案为:y=.【点评】本题考查根据实际问题列反比例函数式,关键是设出函数式,根据给的数据确定系数,从而求出函数式.23.(2013春•邻水县期末)某农业大学计划修建一块面积为2×106㎡的长方形实验田,该试验田的长y米与宽x米的函数解析式是.【考点】根据实际问题列反比例函数关系式.【分析】根据矩形的面积=长×宽,即可得出长y米与宽x米的函数解析式.【解答】解:由题意得,xy=2×106,故可得y=.故答案为:y=.【点评】本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.24.(2013春•翁源县期末)某商场出售一批进价为2元的贺卡,在市场营销中发现此贺卡的日销售单价x(元)与日销售量y(个)之间有如下关系:日销售单价x(元)…3456…日销售量y(个)…20151210…则y与x之间的函数关系式为.【考点】根据实际问题列反比例函数关系式.【分析】要确定y与x之间的函数关系式,通过观察表中数据,可以发现x与y的乘积是相同的,都是60,所以可知y与x成反比例,用待定系数法求解即可;【解答】解:因为x与y的乘积是相同的,所以可知y与x成反比例,设y=,将(3,20)代入可得:20=,解得:k=60.则y与x之间的函数关系式为y=.【点评】本题考查了根据实际问题抽象反比例函数关系式的知识,解答本题的关键是仔细观察所给数据,确定函数的性质,利用待定系数法求解.25.(2013春•自贡期中)某食用油生产厂要制造一种容积为5升(1升=1立方分米)的圆柱形油桶,油桶的底面面积s与桶高h的函数关系式为.【考点】根据实际问题列反比例函数关系式.【分析】根据等量关系“油桶的底面面积=油桶的体积÷桶高”即可列出关系式.【解答】解:由题意得:油桶的底面面积s与桶高h的函数关系式为S=.故本题答案为:S=.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.26.(2013春•红塔区校级期中)有一面积为120的梯形,其上底是下底长的.若上底长为x高为y,则y与x的函数关系式为y=;当高为10时x=9.6.【考点】根据实际问题列反比例函数关系式.【分析】根据梯形上底是下底长的,上底长为x,则可用x表示出梯形的下底长,再根据梯形的面积公式即可得出y与x的函数关系式.【解答】解:∵梯形上底是下底长的,上底长为x,∴梯形的下底长为x,∵梯形的面积为120,即120=(x+x)y,∴y=,高为10,即y=10时,x==9.6.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.27.(2013春•镇赉县校级期中)已知某工厂有煤1500吨,则这些煤能用的天数y与每天用煤的吨数x之间的函数关系式为y=.【考点】根据实际问题列反比例函数关系式.【分析】这些煤能烧的天数=煤的总吨数÷平均每天烧煤的吨数,把相关数值代入即可.【解答】解:∵煤的总吨数为1500,平均每天烧煤的吨数为x,∴这些煤能烧的天数为y=,【点评】本题考查了根据实际问题列反比例函数关系式的知识,得到这些煤能烧的天数的等量关系是解决本题的关键.28.(2013春•西秀区校级期中)矩形的面积16,那么矩形的长y与宽x(x>0)的函数关系式.【考点】根据实际问题列反比例函数关系式.【分析】根据等量关系“矩形的长=矩形面积÷宽”即可列出关系式.【解答】解:由题意得:矩形的长y关于宽x(x>0)的函数关系式为:y=.故本题答案为:y=.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.29.(2013秋•利辛县校级月考)我校滨湖校区计划劈出一块面积为100m2的长方形土地做花圃,请写出这个花圃的长y(m)与宽x(m)的函数关系式y=.【考点】根据实际问题列反比例函数关系式.【分析】根据等量关系“矩形一边长=面积÷另一边长”即可列出关系式.【解答】解:由题意得:y关于x的函数解析式是y=.故答案为:y=.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键,属于基础题,难度一般.30.(2013春•巢湖校级月考)一定质量的松杆,当它的体积V=2m3时,它的密度p=0.5×103kg/m3,则p与V的函数关系为p=.【考点】根据实际问题列反比例函数关系式.【分析】根据密度=质量÷体积可列出关系式,由于点(2,0.5×103)在此函数解析式上,故可先求得m的值.【解答】解:由题意得:设P=,由于点(2,0.5×103)在此函数解析式上,∴m=2×0.5×103=1000.∴p=.故本题答案为:p=.【点评】根据题意,找到所求量的等量关系是解决问题的关键.除法一般写成分式的形式,除号可看成分式线.1.(2011春•弋阳县校级期中)小华以每分钟x字的速度书写,y分钟写了300字,则y 与x间的函数关系式为()A.y=B.y=C.x+y=300D.y=【考点】根据实际问题列反比例函数关系式.【分析】此题可根据等量关系“300=速度×时间”,把相关数值代入即可求解.【解答】解:由题意得:xy=300,∴y=,故选A.【点评】解决本题的关键是得到书写总量的等量关系,y与x间的函数关系式应用含x的代数式表示出y.2.(2012秋•萧山区校级月考)设每个工人一天能做某种型号的工艺品x个,若某工艺品厂每天生产这种工艺品60个,则需要工人y名,则y关于x的函数解析式为()A.y=60x B.C.D.y=60+x【考点】根据实际问题列反比例函数关系式.【分析】根据每个工人一天能做工艺品的个数×工人总数=工艺品厂每天生产工艺品的总个数,可得xy=60,再将等式两边除以x即可求解.【解答】解:∵每个工人一天能做某种型号的工艺品x个,若某工艺品厂每天生产这种工艺品60个,需要工人y名,∴xy=60,∴y=.故选C.【点评】本题考查了根据实际问题列反比例函数关系式,难度中等.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.3.(2011春•河西区期中)一个三角形的面积是12cm2,则它的底边y(单位:cm)是这个底边上的高x(单位:cm)的函数,它们的函数关系式(其中x>0)为()A.B.y=6x C.D.y=12x【考点】根据实际问题列反比例函数关系式.【分析】根据等量关系“三角形的面积=×底边×底边上的高”即可列出底边y(单位:cm)是这个底边上的高x(单位:cm)的函数关系式.【解答】解:由题意得y=2×12÷x=.故选C.【点评】本题考查了反比例函数在实际生活中的应用,根据三角形面积公式找出等量关系是解决此题的关键.4.(2010春•郯城县校级期中)一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=【考点】根据实际问题列反比例函数关系式.【分析】先求得路程,再由等量关系“速度=路程÷时间”列出关系式即可.【解答】解:由于以80千米/时的平均速度用了6小时到达目的地,那么路程为80×6=480千米,∴汽车的速度v(千米/时)与时间t(小时)的函数关系为v=.故选:A.【点评】本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.5.(2010秋•泰顺县期中)电路上在电压保持不变的条件下,电流I(A)与电阻R(Ω)成反比例关系,I与R的函数图象如图,I关于R函数解析式是()A.B.C.D.【考点】根据实际问题列反比例函数关系式.【分析】根据电压=电流×电阻得到稳定电压的值,让I=即可.【解答】解:∵当R=20,I=11时,∴电压=20×11=220,∴.故选A.【点评】考查列反比例函数关系式,关键是根据题中所给的值确定常量电压的值.6.(2010秋•福安市校级月考)某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款4000元,后期每个月分期付一定的数额,则每个月的付款额y(元)与付款月数x之间的函数关系式是()A.y=(x取正整数)B.y=C.y=D.y=8000x【考点】根据实际问题列反比例函数关系式.【分析】根据购买的电脑价格为1.2万元,交了首付4000元之后每期付款y元,x个月结清余款,得出xy+4000=12000,即可求出解析式.【解答】解:∵购买的电脑价格为1.2万元,交了首付4000元之后每期付款y元,x个月结清余款,∴xy+4000=12000,∴y=(x取正整数).故选A.【点评】此题主要考查了根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,注意先根据等量关系得出方程,难度一般.7.(2009•鄂尔多斯)某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图所示的是该电路中电流I与电阻R之间的函数关系的图象,则用电阻R表示电流I的函数解析式为()A.I=B.I=C.I=D.I=【考点】根据实际问题列反比例函数关系式.【分析】观察图象,函数经过一定点,将此点坐标代入函数解析式(k≠0)即可求得k 的值.【解答】解:设反比例函数的解析式为(k≠0),由图象可知,函数经过点B(3,2),∴2=,得k=6,∴反比例函数解析式为y=.即用电阻R表示电流I的函数解析式为I=.故选D.【点评】用待定系数法确定反比例函数的比例系数k,求出函数解析式.8.(2009春•番禺区期末)已知广州市的土地总面积约为7434km2,人均占有的土地面积S (单位:km2/人)随全市人口n(单位:人)的变化而变化,则S与n的函数关系式为()A.S=7434n B.S=C.n=7434S D.S=【考点】根据实际问题列反比例函数关系式.【分析】根据等量关系“人均占有的土地面积=”,把相关数值代入即可.【解答】解:根据题意可得:人均占有的土地面积=,即S=.故选B.【点评】本题考查了反比例函数在实际生活中的运用,重点是找出题中的等量关系.9.(2009春•盐城校级期末)如果以12m3/h的速度向水箱进水,5h可以注满.为了赶时间,现增加进水管,使进水速度达到Q(m3/h),那么此时注满水箱所需要的时间t(h)与Q(m3/h)之间的函数关系为()A.t=B.t=60Q C.t=12﹣D.t=12+【考点】根据实际问题列反比例函数关系式.【分析】以12m3/h的速度向水箱进水,5h可以注满,求出水箱的容量,然后根据注满水箱所需要的时间t(h)=可得出关系式.【解答】解:由题意得:水箱的容量=12m3/h×5h=60m3.∴注满水箱所需要的时间t(h)与Q(m3/h)之间的函数关系为t=.故选A.【点评】本题考查了根据实际问题列反比例函数关系式,属于应用题,难度一般,解答本题的关键是首先得出水箱的容量.10.(2006•郴州)某闭合电路中,电源电压不变,电流I(A)与电阻R(Ω)成反比例,如图表示的是该电路中电流I与电阻R之间函数关系的图象,图象过M(4,2),则用电阻R 表示电流I的函数解析式为()A.B.C.D.【考点】根据实际问题列反比例函数关系式.【分析】把已知点的坐标代入可求出k值,即得到反比例函数的解析式.【解答】解:观察图象,函数经过一定点(4,2),将此点坐标代入函数解析式I=(k≠0)即可求得k的值,2=,∴K=8,函数解析式I=.故选A.【点评】用待定系数法确定反比例函数的比例系数k,求出函数解析式.11.(2006•襄阳)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,如图所示,则用气体体积V表示气压p的函数解析式为()A.p=B.p=﹣C.p=D.p=﹣【考点】根据实际问题列反比例函数关系式.【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V和气压p的函数解析式.【解答】解:设P=,那么点(0.8,120)在此函数解析式上,则k=0.8×120=96,∴p=.故选C.【点评】解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.12.(2006•双流县)蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R(Ω)成反比例,其函数图象如图所示,则电流I与电阻R之间的函数关系式为()A.B.C.D.【考点】根据实际问题列反比例函数关系式.【分析】设函数解析式为I=,由于点(4,6)在函数图象上,故代入可求得k的值.【解答】解:设所求函数解析式为I=,∵(4,6)在所求函数解析式上,∴k=4×6=24.故选A.【点评】本题考查了由实际问题列反比例函数解析式,点在函数图象上,就一定适合这个函数解析式.13.(2006•连云港)用规格为50cm×50cm的地板砖密铺客厅恰好需要60块.如果改用规格为acm×acm的地板砖y块也恰好能密铺该客厅,那么y与a之间的关系为()A.B.C.y=150000a2D.y=150000a【考点】根据实际问题列反比例函数关系式.【分析】客厅面积为:50×50×60=150000,那么所需地板砖块数=客厅面积÷一块地板砖的面积.【解答】解:由题意设y与a之间的关系为,y=,由于用规格为50cm×50cm的地板砖密铺客厅恰好需要60块,则k=50×50×60=150000,∴.故选:A.【点评】本题考查了由实际问题列反比例函数的解析式,由题意找到所求量的等量关系是解决问题的关键.14.(2005•岳阳)在某一电路中,电压U=5伏,则电流强度I(安)与电阻R(欧)的函数关系式是()A.I=5R B.I=C.I=D.I=【考点】根据实际问题列反比例函数关系式.【分析】此题可根据等量关系“电流强度=电压÷电阻”列出关系式即可.【解答】解:由于电流强度=电压÷电阻,那么I=.故选B.【点评】根据题意,找到所求量的等量关系是解决问题的关键,本题用到了物理上的电流、电压、电阻的关系.15.(2004•厦门)一定质量的干松木,当它的体积V=2m3时,它的密度ρ=0.5×103kg/m3,则ρ与V的函数关系式是()A.ρ=1000V B.ρ=V+1000C.ρ=D.ρ=【考点】根据实际问题列反比例函数关系式.【分析】根据等量关系“密度=质量÷体积”即可列出ρ与V的函数关系式.。
反比例函数的应用
一、反比例函数的应用反比例函数在实际生活和科学领域都有广泛的应用,我们通过对题目的阅读理解,抽象出实际问题中的函数关系,将文字转化为数学语言,再利用反比例函数的思想方法来解决实际问题.1.用反比例函数解决实际问题的方法和步骤(1)审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系;(2)根据常量与变量之间的关系,设出函数的关系式,待定的系数用字母来表示;(3)有题目中的已知条件列出方程,求出待定系数.(4)写出函数关系式,并注意关系式中的变量的取值范围.(5)用函数关系去解决实际问题.2.运用反比例函数模型解实际问题时,要掌握一些基本的模型(1)当体(面)积为定值时,底面积(边长)与高成反比例函数关系.(2)当工程总量为定值时,工作时间与工作效率成反比例函数关系.(3)当力F所作的功一定时,力F与物体在F方向通过的距离s成反比例函数关系;(4)杠杆定律:力×力臂=定值(5)压强公式:P=F÷S,其中p为压强,F为压力,S为受力面积;3.用反比例函数解决实际问题时应注意几个问题:(1)设未知量要恰当.恰当地设未知量可以使运算简单,解题过程简单,计算准确率高,否则将会带来不必要的麻烦.(2)求出函数关系式后,要注意字母(或自变量)的取值范围:一般在实际问题中,①自变量的取值范围都是非负的.②有的取值范围只能是某一些范围内的数.(3)求出问题的解,既要符合题目中的方程,还要符合问题中的实际意义.一、反比例函数的应用【例1】某种灯的使用寿命为1000小时,它的可使用天数y与平均每天使用的小时数x之间的关系式为.【例2】近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式为.【例3】已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是()反比例函数的应用【例4】 下图左,在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,()5,1P 在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米.【例5】 上图右,某闭合电路中,电源电压不变,电流I(A)与电阻()R Ω成反比例,如下图表示的是该电路中电流I 与电阻R 之间函数关系的图象,则用电阻R 表示电流I 的函数解析式为( )A.8I R = B.8I R =-C.4I R = D.2I R=【例6】 某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于120kPa 时,气球将爆炸.为了安全起见,气球的体积应( )A .不大于54m 3B .大于54m 3C .不小于45m 3D .小于45m 3【例7】 已知甲、乙两地相距S (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (/km h )的函数关系图象大致是( )D .C .B .A .OOOt/hv/(km/h)t/ht/ht/hv/(km/h)OO P (5,1)S (米)F (牛O M R (欧姆)I (安培)【例8】 某汽车的功率P 为一定值,汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时? (3)果限定汽车的速度不超过30米/秒,则F 在什么范围内?【例9】 一人站在平放在湿地上的木板上,当人和木板对湿地的压力一定时,随着木板面积()2S m 的变化,人和木板对地面的压强()p Pa 将如何变化?如果人和木板对湿地地面的压力为600N ,回答下列问题:(1)用含S 的代数式表示P .P 是S 的反比例函数吗?为什么? (2)当木板面积为20.2m 时,压强是多少?(3)如果要求压强不超过6000Pa ,木板面积至少要多大? (4)画出相应的函数图象.【例10】 某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,求服药一次治疗疾病有效的时间.y=ktyt14321y=m tO【例11】 为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系为ay t=(a 为常数).如图所示,据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米和含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?y【例12】 某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x 元与日销售量y 之(1(2)猜测并确定y 与x 之间的函数关系式,并画出图象;(3)设经营此卡的销售利润为W 元,试求出W 与x 之间的函数关系式,若物价局规定此卡的售价最高不超过10元/个,请你求出当日销售单价定为多少元时,才能获得最大日销售利润?【例13】如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点.训练时要求A B,两船始终关于O点对称.以O为原点,建立如图所示的坐标系,x轴,y轴的正方向分别表示正东、正北方向.设A B,两船可近似看成在双曲线4yx=上运动.湖面风平浪静,双帆远影优美.训练中当教练船与A B,两船恰好在直线y x=上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45方向上,A船测得AC与AB的夹角为60,B船也同时测得C船的位置(假设C船位置不再改变,A B C,,三船可分别用A B C,,三点表示).(1)发现C船时,A B C,,三船所在位置的坐标分别为(______)(______)A B,,,和(______)C,;(2)发现C船,三船立即停止训练,并分别从A O B,,三点出发船沿最短路线同时..前往救援,设A B,两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由.【例14】/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据装货速度×装货时间 货物的总量 货物的总量, 根据装货速度×装货时间=货物的总量, 装货速度 可以求出轮船装载货物的总量; 可以求出轮船装载货物的总量;再根 据卸货速度=货物的总量 卸货时间, 货物的总量÷ 据卸货速度 货物的总量÷卸货时间, 得到v与 的函数式 的函数式。 得到 与t的函数式。
思考 一个圆台形物体的上底面积是下底面积的2/3, 一个圆台形物体的上底面积是下底面积的 ,如图 放在桌面的压强是200Pa,若翻过来放,对桌面的压 放在桌面的压强是 ,若翻过来放, 强是多少? 强是多少?
某蓄水池的排水管每小时排8m 练1、某蓄水池的排水管每小时排8m3 6h可将满池水全部排空。 6h可将满池水全部排空。 可将满池水全部排空
⑴蓄水池的容积是多少? 蓄水池的容积是多少?
,
⑵如果增加排水管,使每小时排水量达到Q(m3), 如果增加排水管,使每小时排水量达到Q 将满池水排空所需时间t 将满池水排空所需时间t(h), 之间的函数关系式; 求Q与t 之间的函数关系式; (3)如果准备在5小时内将满池水排空, (3)如果准备在5小时内将满池水排空,那么 如果准备在 每小时的排水量至少为多少? 每小时的排水量至少为多少?
公元前3世纪 古希腊科学家阿基米德发现了著名的 公元前 世纪,古希腊科学家阿基米德发现了著名的 世纪 杠杆定律” 若两物体与支点的距离反比于重量 若两物体与支点的距离反比于重量,则 “杠杆定律”:若两物体与支点的距离反比于重量 则 杠杆平衡.通俗一点可以描述为 通俗一点可以描述为: 杠杆平衡 通俗一点可以描述为
气球充满了一定质量的气体, 气球充满了一定质量的气体, 当温度不变时,气球内的气压P(kPa)是气球 当温度不变时,气球内的气压 是气球 体积V的反比例函数 当气球体积是0.8m3 的反比例函数。 体积 的反比例函数。当气球体积是 气球内的气压为120 kPa 。 时,气球内的气压为 (1)写出这一函数表达式。 )写出这一函数表达式。 气压是多少? (2)当气体体积为 3时,气压是多少? )当气体体积为1m (3)当气球内气压大于 )当气球内气压大于192 kPa时,气球 时 将爆炸。为安全起见, 将爆炸。为安全起见,气球体积应小于 多少? 多少?
阻力×阻力臂=动力×动力臂 动力× 阻力×阻力臂 动力
阻力 阻力臂 动力臂 动力
阻力×阻力臂 动力 动力× 阻力×阻力臂=动力×动力臂
阻力 阻力臂 动力臂 动力
小伟欲用撬棍撬动一块大石头,已知阻力和 例2.小伟欲用撬棍撬动一块大石头 已知阻力和 小伟欲用撬棍撬动一块大石头 阻力臂不变,分别为 分别为1200牛顿和 米. 牛顿和0.5米 阻力臂不变 分别为 牛顿和 (1)动力 与动力臂力 米时,撬动石头至少需要多大的力 撬动石头至少需要多大的力? 力臂为 1.5 米时 撬动石头至少需要多大的力 (2)若想使动力 不超过题 中所用力的一半 若想使动力F不超过题 中所用力的一半, 若想使动力 不超过题(1)中所用力的一半 则动力臂至少加长多少? 加长多少 则动力臂至少加长多少
阻力×阻力臂 动力 动力× 阻力×阻力臂=动力×动力臂
阻力 阻力臂 动力臂 动力
思考: 思考
用反比例函数的知识解释:在我们使用撬棍时 用反比例函数的知识解释 在我们使用撬棍时, 在我们使用撬棍时 为什么动力臂越长求越省力? 为什么动力臂越长求越省力
用电器的输出功率P(瓦 、两端的电压U( U(伏 用电器的输出功率 瓦)、两端的电压U(伏) 及用电器的电阻R(欧姆)有如下关系: R(欧姆 及用电器的电阻R(欧姆)有如下关系: PR=U2.
U2 这个关系也可写为 P= ─── R 2 U 或R= ──
P
,
一个用电器的电阻是可调节的,其范围 例3.一个用电器的电阻是可调节的 其范围 欧姆,已知电压为 为 110~220欧姆 已知电压为 220 伏,这个 ~ 欧姆 这个 用电器的电路图如图所示. 用电器的电路图如图所示 (1)输出功率 与 电阻 有怎样的函数关系 输出功率P 电阻R 有怎样的函数关系? 输出功率 (2)用电器输出功率的范围多大 用电器输出功率的范围多大? 用电器输出功率的范围多大 U
某校科技小组进行野外考察, 例4.某校科技小组进行野外考察,途中遇到一片 十几米宽的烂泥湿地,为了安全、迅速通过湿地, 十几米宽的烂泥湿地,为了安全、迅速通过湿地, 他们沿着前进路线铺垫了若干木板, 他们沿着前进路线铺垫了若干木板,构筑成一条临 时通道,从而顺利完成了任务, 时通道,从而顺利完成了任务, (1)你能理解这样做的道理吗? 你能理解这样做的道理吗? (2)若人和木板对湿地地面的压力合计600牛,那 若人和木板对湿地地面的压力合计600牛 600 么如何用含S 木板面积)的代数式表示P 压强)? 么如何用含S(木板面积)的代数式表示P(压强)? 压强P多大? (3)当木板面积S为0.2m2时,压强P多大? 当木板面积S 6000Pa时 木板面积多大? (4)当压强是6000Pa时,木板面积多大? 当压强是6000Pa 压强P=压力 压强P=压力 / P= 面积