材料力学PPT课件

合集下载

材料力学 ppt课件

材料力学  ppt课件

③应力分析:画危险面应力分布图,叠加;
④强度计算:建立危险点的强度条件,进行强度
计算。
PPT课件
20
2、两相互垂直平面内的弯曲
有棱角的截面
max
Mz Wz

My Wy
[ ]
圆截面
max
M
2 z

M
2 y
[ ]
W
3、拉伸(压缩)与弯曲
有棱角的截面
max

FN ,max A
(4)确定最大剪力和最大弯矩
3、弯曲应力与强度条件
(1)弯曲正应力
My
I PPT课件 z
12
M max Wz
yt,max yc,max
Oz y
PPT课件
t,max

Myt,max Iz
c,max

Myc,max Iz
13
(2)梁的正应力强度条件
M max
Wz

M
2 z

M
2 y
T
2
Mr4
M
2 z

M
2 y

0.75T
2
PPT课件
22
5、连接件的强度条件
剪切的强度条件
FS [ ]
AS
挤压强度条件
bs

Fbs Abs
[ bs ]
PPT课件

M z,max Wz

M y,max Wy
[ ]
圆截面
max
FN ,max A PPT课件

M max W
[ ]
21
4、弯曲与扭转

材料力学课件PPT

材料力学课件PPT

梁的剪力与弯矩
1
梁的剪力
解析剪力对梁的影响和剪切应力。
2
梁的弯曲
讨论梁的弯曲行为和弯曲应力。
3
横截面性能
探索截面形状对梁的强度和刚度的影响。
梁的挠度
1 挠度与刚度
2 梁的支撑条件
3 挠度计算
研究梁的弯曲变形和挠度。
解释梁的不同支撑条件对 挠度的影响。
介绍计算梁挠度的工程方 法。
杆件的稳定性
1
稳定性概念
材料力学课件PPT
材料力学课件PPT是一个全面的教学工具,涵盖了力学基础、应力与变形、杆 件的轴向受力、梁的剪力与弯矩、梁的挠度、杆件的稳定性以及结构稳定裂 解和破坏形态。
力学基础
1
牛顿力学原理
解释物体运动和力的相互作用。
2
力的向量和标量
了解力量的方向和大小。
3
运动和加速度
讨论物体的运动和加速度。
应力与变形
应力
探讨物体所受力的影响。
塑性变形
讲解材料在超出弹性范围时的塑性行为。
弹性变形
解析材料的弹性性质和应变量。
断裂
探索材料的破裂过程和强度。
杆件的轴向受力
拉力
描述由拉力引起的变形和破坏。
压力
研究由压力引起的压缩变形和破坏。
剪力
解释由剪切力引起的变形和破坏。
扭矩
探讨由扭转力引起的变形和破坏。
介绍杆件的稳定性和失稳行为。
2
纯压杆件
研究纯压杆件的稳定性和临界长度。
பைடு நூலகம்
3
压弯杆件
探讨压弯杆件的稳定性和稳定方程。
结构稳定裂解和破坏形态
稳定性裂解
解释结构在突然失去稳定性时的裂解过程。

材料力学课件PPT

材料力学课件PPT

力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能













材料拉伸时的力学性质
材料拉伸时的力学性质
二 低 碳 钢 的 拉 伸
材料拉伸时的力学性质
二 低碳钢的拉伸(含碳量0.3%以下)
e
b
f 2、屈服阶段bc(失去抵抗变 形的能力)
b
e P
a c s
s — 屈服极限
(二)关于塑性流动的强度理论
1.第三强度理论(最大剪应力理论) 这一理论认为最大剪应力是引起材料塑性流动破坏的主要
因素,即不论材料处于简单还是复杂应力状态,只要构件危险 点处的最大剪应力达到材料在单向拉伸屈服时的极限剪应力就 会发生塑性流动破坏。
这一理论能较好的解释塑性材料出现的塑性流动现象。 在工程中被广泛使用。但此理论忽略了中间生应力 2的影响, 且对三向均匀受拉时,塑性材料也会发生脆性断裂破坏的事 实无法解释。
许吊起的最大荷载P。
CL2TU8
解: N AB
A [ ]
0.0242 4
40 106
18.086 103 N 18.086 kN
P = 30.024 kN
6.5圆轴扭转时的强度计算
圆轴扭转时的强度计算
▪ 最大剪应力:圆截面边缘各点处
max
Tr
Ip
max
Wp T
Wp
Ip r

抗扭截面模量
3、强化阶段ce(恢复抵抗变形
的能力)
o
b — 强度极限
4、局部径缩阶段ef
明显的四个阶段
1、弹性阶段ob

材料力学全套ppt课件

材料力学全套ppt课件

___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
目录
10
§1.1 材料力学的任务
四、材料力学的研究对象
m F4

m
F3
F4

F3
目录
17
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
18
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
灰口铸铁的显微组织 球墨铸铁的显微组织
目录
12
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
目录
13
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
材料力学
目录
1
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
目录

材料力学教学课件ppt作者范钦珊第一章材料力学概述

材料力学教学课件ppt作者范钦珊第一章材料力学概述

3. 常见组合变形的类型 : (1) 斜弯曲 (2) 拉伸(压缩)与弯曲组合 (3) 偏心拉伸(压缩) (4) 弯扭组合
计算方法 : 组合变形若忽略变形过程中各基本变形间的互相影
响,则可依据叠加原理计算。
1. 叠加原理 :弹性范围小变形情况下,各荷载分别单独 作用所产生的应力、变形等互不影响,可叠加计算。
1.7.2、剪切
(1)受力特点:杆件受到一对大小相等、 方向相反、作用线互相平行且相距很近的横 向力的作用; (2)变形特点:受剪杆件的两部分沿外 力作用方向发生相对错动;
1.7.3、扭转
(1)受力特点:杆件受到一对大小相等、方 向相反、作用面垂直于杆轴的力偶作用;
(2)变形特点:杆件的任意两个横截面发生绕轴线的相对转动。
围绕某点作一个各边分别为 、 、 的正六面体。 正六面体的x方向在力的作用下, 产生了变形 ,线 段ab 沿x方向单位长度的平均变形量为 。
平均变形量的极限:
称为点a沿x方向的的线应变 或简称应变。
由于切应力的作用,正六面体的各棱边还会发生角度的改变,当 和 趋近于零时,ab和ad所夹直角的改变量的极限
3、广义虎克定律 只有 作用时
1.7 杆件受力与变形的基本形式
材料力学的主要研究对象
杆件:长度远大于横截面尺寸的构件。 等直杆:轴线为直线且沿轴线横截面不发生变化的杆件。
杆件变形的基本形式
1.7.1、拉伸或压缩
(1)受力特点:杆件受到一对大小相等、方向相 反、作用线与杆件轴线重合的力的作用。 (2)变形特点:杆件长度方向发生伸长或缩短。
上分布内力 的合力为 ,
上分布内力的平均集度为

当 趋近于零时
的极限
称为点K的全应力。

材料力学(孙训方)PPT课件

材料力学(孙训方)PPT课件

[例3-2-1]已知:一传动轴, n =300r/min,主动轮输P1=500kW,
从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
m2
m3
m1
m4
解:①计算外力偶矩
m1
9.55P1 n
9.55500 300
A
15.9(kN m)
B
C
D
m 2 m 3 9 .5P n 5 2 9. 5 1 35 5 0 4 .0 0 7(8 k m N) m 49 .5P n 5 49. 5 3 25 0 0 6 0 0 .3(7km N)
单元体的四个侧面上只有剪应力而无正应力作用,这 种应力状态称为纯剪切应力状态。
四、剪切虎克定律:
其中:P n
— —
功率,马力(PS) 转速,转/分(rpm)
1PS=735.5N·m/s , 1kW=1.36PS
二、扭矩及扭矩图 1 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。 2 截面法求扭矩
mx 0 T m 0
m
m
T m
3 扭矩的符号规定:
x
m
T
“T”的转向与截面外法线方向满足右手螺旋法则为正, 反之为负。
m2
m3
m1
m4
A
B
C
T
– –
4.78 kNm
9.56 kNm
D
6.37 kNm
x
例 32-2已知 :m12kN m,m2 4kN m,m3
1kN m,m4 1kN m,求:各段扭矩及画扭
解:1——1:
m4 3 m3 2 m2 1 m1
M0 m1T10
T1 m1 2kNm

材料力学课件第一章绪论

材料力学课件第一章绪论

§1.3 外力及其分类 3 一、外力 周围物体对构件的作用。 周围物体对构件的作用。 二、外力分类 按作用方式划分: 1.按作用方式划分: 集中力 表面力 外力 线分布力 面分布力 体积力( 重力,惯性力) 体积力(如:重力,惯性力)
2.按作用趋势划分: .按作用趋势划分: 静载荷 主动力, 主动力,又称为载荷 动载荷 外力 约束力
∑ 由:
Fy = 0, F − FN = 0
o
∑M
= 0, Fa− M = 0
FN = F 得:
M = Fa
三、应力(stress) 应力 1 . 定义 截面内某一点处分布内力的集度称为该点的应力。 定义: 截面内某一点处分布内力的集度称为该点的应力。 2 . 定义式: 定义式:
∆F 平均应力: 平均应力: pm = ∆A
§1.6 杆件变形的基本形式
一、杆件(bar)的概念 杆件 的概念 1. 构件类型: 构件类型: 杆: 板: 壳: 块:
2. 杆件的两个要素: 杆件的两个要素: 轴线 3. 杆件分类: 杆件分类: 横截面 等截面直杆,变截面直杆,等截面曲杆,变截面曲杆。 等截面直杆,变截面直杆,等截面曲杆,变截面曲杆。 吊车图
MN → 0
M ′N ′ − MN ∆s = lim MN MN → 0 ∆ x
ቤተ መጻሕፍቲ ባይዱ
γ = lim
ML →0
π − ∠L′M ′N ′ MN →0 2
三、小变形问题的计算 1. 特点: 特点: 位移、变形和应变都是微小量。 位移、变形和应变都是微小量。 2. 采用简化计算: 采用简化计算: 原始尺寸法。 如:原始尺寸法。
∆F lim lim 应力: 应力: p = ∆A→0 pm = ∆A→0 ∆A

材料力学全ppt课件

材料力学全ppt课件
x
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim
x0
s x
g lim ( LM N)
MN0 2
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面,材料力学就是研究构件承载能力 的一门科学。
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度 和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
目录
§1.3 外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
§1.4 内力、截面法和应力的概念
内力:外力作用引起构件内部的附加相互作用力。 求内力的方法 — 截面法
传统具有柱、梁、檩、椽的木 制房屋结构
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800 吨
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
目录
§1.1 材料力学的任务
架的变形略去不计。计算得到很大的简
化。
C
δ1

材料力学PPT课件

材料力学PPT课件
例:左图 左半部分: ∑Fx=0 FP=FN 右半部分:
,,
∑Fx=0 FP =FN
例13-1
已知小型压力机机架受力F的作用,如图,试求立柱截面 m-n上的内力
解: 1、假想从m-n面将机架截 开(如图); 2、取上部,建立如图坐标 系,画出内力FN,MZ (方 向如图示)。
(水平部分/竖直部分的变形?)
3.当: 0≤x3≤a (起点在B点)
FQ3
内力图----弯矩图
❖ 当:0≤x1≤a 时, M11/6为直线
A点: x10M1A0; C点: x1aM1C56qa2
❖ 当:a≤x2≤2a 时,为二次曲线; M2=5qax2-q(x2-a)2/2
C点: x2 a,M2C65q.2a D点: x2 2a,M2D76q.2a
q(x)>0,抛物线,上凹 q(x)<0,抛物线,下凹 FQ =0,抛物线有极值
斜率由突变 图形成折线
有突变 突变量=M
❖ M=3kN.m,q=3kN/m,a=2m
解:求A、B处支反力
FAY=3.5kN;FBY 剪力图:如图,将梁分为三段
AC:q=0,FQC= FAY CB:q<0,FQB BD:q<0,FQB=6kN 弯矩图:
正应力、切应力
应力的概念
❖ 单位面积上内力的大小, 称为应力
❖ 平均应力Pm,如图所示
△F
Pm= △A
正应力σ
单位面积上轴力的大小,称为正应力;
切应力τ
单位面积上剪力的大小,称为切应力
应力单位为:1Pa=1N/m2 (帕或帕斯卡) 常用单位:MPa(兆帕),1MPa=106 Pa=1N/mm2
A—截面面积
❖ 当: 0≤x3≤a时(原点在B点,方 D点x: 3a,M3D7 6qa2M2D

第三章 材料力学课件

第三章 材料力学课件

例题
3.5
一内径d=100mm的空心圆轴如图示,已知圆轴受扭 矩T=5kN·m,许用切应力[τ]=80MPa,试确定空心圆轴 的壁厚。
因不知道壁厚,所以不知道是不是薄壁圆筒。分别按薄壁圆筒 和空心圆轴设计 薄壁圆筒设计 2T T 2 τ= d ≤ δ δ τ +δ τ= 设平均半径 R0=(d+δ)/2 2 2πR0 δ πτ
例题
3.1
=500kW, =150kW, =150kW, P1=500kW,从动轮输出 P2=150kW,P3=150kW, =200kW,试绘制扭矩图。 P4=200kW,试绘制扭矩图。
m2
解:①计算外力偶矩
1
m3
2
m1
3
m4
P 500 3 m = 9.55 1 = 9.55⋅ 1 2 n 1 300 n A B C = 15.9(kN ⋅ m ) P P 2 m4 = 9.55 4 = 9.55 m2 = m3 = 9.55 = n n 200 150 ⋅ = 6.37 (kN⋅ m ) = 4.78 (kN⋅ m ) 9.55⋅ 300 300
τ −45 = 0
0
τ
τ τ
α = 450
σ45 = σmin = −τ
0
σmin
τ
τ 45 = 0
0
σmax
扭转破坏试验
低碳钢试件: 沿横截面断开。 先发生屈服,试件表面横向和纵 向出现滑移。 铸铁试件: 沿与轴线约成45°的螺旋线 断开。
强度条件
τ max ≤ [τ ]
强度计算的三类问题 :
D
②求扭矩(扭矩按正方向设) 求扭矩(扭矩按正方向设)
∑mC = 0 , T + m2 = 0 1 T = −m2 = −4.78kN⋅ m 1 T2 + m2 + m3 = 0 , T2 = −m2 − m3 = −(4.78 + 4.78) = −9.56kN⋅ m T3 − m4 = 0 , T3 = m4 = 6.37kN⋅ m

材料力学ppt课件

材料力学ppt课件

A
B
C
D
F
F F A
(a) y
B
A
B
C
D
F
C ( b) n (c)
n
主要内容结构
应力集中
拉(压)杆的强度 拉(压)杆的变形和位移
拉(压)杆的应力
材料在拉压时的力学性能 拉(压)杆的内力
§2-2 拉(压)杆的内力
〖问题提出〗
1.用手拉伸弹簧时,手臂肌肉会感觉到紧张,弹 簧则有反弹的趋势,为什么? 2.图示等直杆,轴向外力按给定比例同步增加, 哪一段首先发生破坏?
〖工程技术〗
受拉
AB
立柱受拉
〖文学艺术〗白居易:《琵琶行(节选)》 千呼万唤始出来,犹抱琵琶半遮面。 转轴拨弦三两声,未成曲调先有情。 弦弦掩抑声声思,似诉平生不得志。 低眉信手续续弹,说尽心中无限事。 轻拢慢捻抹复挑,初为《霓裳》后《六幺》。 大弦嘈嘈如急雨,小弦切切如私语。 嘈嘈切切错杂谈,大珠小珠落玉盘。 间关莺语花底滑,幽咽泉流水下滩。 水泉冷涩弦凝绝,凝绝不通声渐歇。 别有幽愁暗恨生,此时无声胜有声。 银瓶乍破水浆迸,铁骑突出刀枪鸣。 曲终收拨当心画,四弦一声如裂帛。
注意:在用截面取分离体前,作用于物体上的 外力(荷载)不能任意移动或用静力等效的相 当力系替代。
(a)
(b)
F F
F F
n C n B
m m A
F
C
n n B
Fm
m A
(a)
FN=F m
m A
(d)
F FN=0 (e) F
A m m A
(b) FN=F n
n BFN=FFra bibliotekn n B
F
A
(c)

材料力学--超静定结构ppt课件

材料力学--超静定结构ppt课件
第 十二 章 超静定结构
.
1
第十二章 超静定结构
§12.1 超静定结构概述 §12.2 力法及其正则方程
.
2
§12.1 超静定结构概述
一、定义
用静力学平衡方程无法确定全部约束力和内力的
结构,统称为超静定结构或系统,也称为静不定结构
或系统。
F1
F2
M
F
X
Y
R
在静定系统上增加约束,称为多余约束,并因而产生多
X1
1F
11
ql 7
4)叠加法画弯矩图
M
MC
MC
X1
ql2 7
5 ql 2 14
.
MA
MA
X1
MFA
5ql121 14
例12-2-4 如图所示矩形封闭刚架,设横梁抗弯刚度为
EI1,立柱抗弯刚度为EI2,试作刚架的弯矩图。
EI1 A
EI2 F
C
C
F
A
l1
l2
MC
FsC FNC
MC FsC
FNC
内、外约束力总数与独立静力平衡方程总数之差
即为超静定结构的超静定次数。
即: 超静定次数=未知力数-独立静力平衡方程数
三、基本静定系(静定基)、相当系统
静定基:解除超静定系统的某些约束后得到的静
定系统,称为原超静定系统的基本静定系(简称静定
基),同一问题静定基可以有不同的选择,主要是便
于计算系统的变形和位移。
F
2
Fl 1
1 1E 1 2 1 I l2 2 1 E 1 1 1 I l2 1 1 2 E l22 I2 E l11 I
4
1FE 11 I1 2F 41 ll2 111F E 6 1 21 lI

材料力学(杜云海)主编第一章课件_PPT课件

材料力学(杜云海)主编第一章课件_PPT课件
材料力学
Mechanics of Materials
郑州大学力学与工程科学学院编制
2020/9/18
欢迎各位同学! 希望合作愉快!
2020/9/18
Introdution
2020/9/18
§1. 材料力学的分析任务 §2. 材料力学与工程
2020/9/18
§1 分析对象与任务
( Objectives and Task of Mechanics of Materials )
——帕斯卡
——站在巨人的肩头,想和宇宙对话. 除了其它众所周知的领域,在力学园 地同样有 不朽的建树.
2020/9/18
——光弹实测的先行者,也是电气火车头的设计者. 还是力学教育的实践者—— 所编写的力学教科书影 响了几代人
阿托?莫尔(O.Mohr),1835~1918
——用几何绘图的方法在 应力分析和强度理论方面 打开过一个新的空间.
固体材料
可变形
一.几个基本假设
1. 连续性假设: 物体实体空间密实地充满物质,毫无空隙
( 各力学量可用点坐标的连续函数表示和分析, 可用数学方法:微积分, 代数、微分方程… )
2. 均匀性假设: 物体材料的力学性质各处完全相同
3. 各向同性假设: 物体材料的力学性质沿各方向完全相同
(各向同性材料; 各向异性材料 )
(歼10) T-50、J-20、F-22同角度对比图
2020/9/18
2020/9/18
“力学是数学的乐园,因 为我们在这里获得了数学 的果实.”
———达.芬奇
2020/9/18
——在斜塔上落下铁球,也分析过弯曲

受力;
芬 奇
研究了加速度,也提出了 真理的贮藏所, 又是不确定与错误 的渊源;

材料力学(全套483页PPT课件)-精选全文

材料力学(全套483页PPT课件)-精选全文
三、构件应有足够的稳定性
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假设在固体所占有的空间内毫无空隙的充满了物质
假设材料的力学性能在各处都是相同的。 假设变形固体各个方向的力学性能都相同
均匀性假设

各向同性假设

材料力学的基本知识
材料的力学性能

-----指变形固体在力的作用下所表现的力学性能。
构件的承载能力:
强度---构件抵抗破坏的能力 刚度---构件抵抗变形的能力 稳定性---构件保持原有平衡状态的能力
FQ=FQ(x) Mc=M(x)
典型例题-2
简支梁受力偶作用
1.
求支座反力FAY,FBY得: FAY=- FBY =M/l
AC段X截面处剪力FQ=Fay, 3. 同理可求得BC段剪力与AC 段相同,剪力图如左
2.
4.
AC段弯矩方程M1
M1=FAY·=M · /L x x BC段弯矩方程M2
5.
弯曲梁的内力
弯曲梁的概念及其简化 杆件在过杆轴线的纵向平面内,受到力偶或受到 垂直于轴线的横向力作用时,杆的轴线将由直线 变为曲线,杆件的这种以轴线变弯为主要特征的 变形称为弯曲;以弯曲为主要变形的杆简称为梁。 常见梁的力学模型 简支梁

一端为活动铰链支座,另一端为固定铰 链支座 一端或两端伸出支座支外的简支梁
A点:x1 0 M1A 0; C点:x1 a M1C 5 q a 2 6
C点:x 2 a , M 2C 5 q.a 2 6 D点:x 2 2a , M 2D 7 q.a 2 6
D点:x 3 a , M 3D 7 q a 2 M 2 D 6 B点:x 3 0, M 3B q a 2 M
转动

内力:作用面与横截面重 合的一个力偶,称为扭矩T
T=M
正扭矩的规定:其转向与截面外法向构成右手系
基本变形---弯曲(平面)

载荷特点:在梁的两端作
用有一对力偶,力偶作用 面在梁的对称纵截面内。

变形特点:梁的横截面绕
某轴转动一个角度。 中性轴(面)

内力:作用面垂直横截面的
一个力偶,简称弯矩M
弯矩的正负规定:使得梁的变形为上凹下凸的
弯矩为正。(形象记忆:盛水的碗)
正应力、切应力
应力的概念
单位面积上内力的大小, 称为应力 平均应力Pm,如图所示

△F Pm= △A
正应力σ
单位面积上轴力的大小,称为正应力;
切应力τ
单位面积上剪力的大小,称为切应力
应力单位为:1Pa=1N/m2 (帕或帕斯卡) 常用单位:MPa(兆帕),1MPa=106 Pa=1N/mm2
3、由平衡方程得: ∑Fy=0 FP-FN=0
FN=FP
∑Mo=0 Fp · - Mz=0 Mz =Fp · a a
基本变形—(轴向)拉伸、压缩
载荷特点:受轴向力作用
变形特点:各横截面沿轴
向做平动
内力特点:内力方向沿轴向,简称 轴力FN
FN=P 轴力正负规定:轴力与截面法向相同为正
基本变形---剪切
M 2 FAy x G( x a ) Ga ( l x ) l
典型例题-1(续)
根据以上条件,画出剪力图、
弯矩图

最大剪力Qmax在AC(b>a)(或 CB,a>b)段
Qmax=Gb/l

最大弯矩在C截面处
Mmax=Gab/l

本例中,剪力和弯矩的表达式与截面的位置形式上 构成了一种函数关系,这种关系称为剪力方程和弯 矩方程;即:
即: εx=lim
△x→∞
△u △x
2. a点的横向移动aa’,使得 oa直线产生转角γ,定义 转角γ为切应变γ
γ= aa’ aa’ = oa △x )
胡克定律
实验证明: 当正应力小于某一极限值时,正应力与正应变存在 线性关系, 即:ζ=Εε
称为胡克定律,E为弹性模量,常用单位:Gpa(吉帕)
同理,切应变小于某一极限值时,切应力与切应变
也存在线性关系 即:η=Gγ
此为剪切胡克定律,G为切变模量,常用单位:GPa
钢与合金钢 铝与合金铝 木材 E=200-220GPa E=70-80GPa E=0.5-1GPa G=75-80GPa G=26-30GPa 橡胶 E=0.008GPa
轴向拉压杆件的内力
∑Fx=0 FN1-F1=0 得:FN1=F1=2.5kN
2)求BC段轴力,从2-2截面处截开, 取右段,如图14-1-3所示
∑Fx=0 –FN2-F3=0 得:FN2= - F3=-1.5kN
(负号表示所画FN2方向与实际相反)
3)图14-1-4位AB杆的轴力图
扭转圆轴的内力
扭转变形的定义 横截面绕轴线做相对旋转的变形,称为扭转 以扭转为主要变形的直杆,通常称为轴 本课程主要研究圆截面轴
解:1)由扭矩、功率、转速关系式求得 MA=9459PA/n=9459X36/300=1146N.m MB=MC=350N.m;MD=446N.m 2)分别求1-1、2-2、3-3截面上的扭矩, 即为BC,CA,AD段轴的扭矩(内力)如图 a)、b)、c);均有∑Mx=0 得: T1+MB=0 T1=-MB= -350N.m MB+MC+T2=0 T2=-MB-MC=-700N.m MD-T3=0 T3=MD=446N.m 3)画出扭矩图如 d)

外伸梁


悬臂梁

一端为固定端,另一端为自由端的梁。
梁内力的正负规定
梁的内力 剪力FQ 弯矩MC

梁内力的正负规定
内力方向

梁的变形
弯曲梁的内力—例
例14-3 简支梁如左图,已知a、 q、M=qa2;求梁的内力
解:1)求得A、B处反力FAY,FBY;
F Y A
5 6
1
2 3
M2=FAY · -M=M(x - L)/L x
典型例题-3
悬臂梁作用均布载荷q,画出 梁的剪力图和弯矩图

写出A点x处截面的剪力 方程和弯矩方程 FQ q x M 1 q x 2 剪力图、弯矩图如右,最 大剪力、弯矩均发生在B 点,且

FQ max ql M max
1 2
2.当:a≤x2≤2a 时,即CD段
FQ2=11q.a/6-q.x2 ,直线 x2 =a;FQ2 = 5q.a/6 (= FQ1 ) x2 =2a;FQ2 = -q.a/6 (= FQ3 )
3.当: 0≤x3≤a (起点在B点)
FQ3=-q.a/6
内力图----弯矩图

当:0≤x1≤a 时, M1=5q.a.x1/6为直线 当:a≤x2≤2a 时,为二次曲线; M2=5qax2-q(x2-a)2/2 当: 0≤x3≤a时(原点在B点,方 向向左),M3为直线 M3=qa2+q.a.x3/6;
材料力学的基本知识
变形
构件在载荷作用下,其形状和尺寸发生变化的现
象;变形固体的变形通常可分为两种:


弹性变形---载荷解除后变形随之消失的变形 塑性变形---载荷解除后变形不能消失的变形
材料力学研究的主要是弹性变形,并且只限于弹
性小变形,即变形量远远小于其自身尺寸的变形
变形固体的基本假设 连续性假设
功率、转速和扭矩的关系
P M=9549 n
其中: M为外力矩(N.m) P为功率(kW) n转速(r/min)
扭矩图 仿照轴力图的画法,画出扭矩沿轴线的变化,就 是扭矩图。
例2 扭矩图
如图,主动轮A的输入功率PA=36kW,从动轮B、C、D
输出功率分别为PB=PC=11kW,PD=14kW,轴的转速 n=300r/min.试画出传动轴的扭矩图
定义
以轴向伸长或缩短为主要特征的变形形式,称为
轴向拉伸或压缩
内力的计算 截面法

如左图
内力的表示 轴力图----形象表示轴力沿轴线变化的情况
轴力图
例14-1 F1=2.5kN,F3=1.5kN, 画杆件轴力图。
解:1)截面法求AC段轴力,沿截
面1-1处截开,取左段如图14-1-2 所示
• FNx使杆件延x方向产生轴向拉压变形,称为轴力 • FQy,FQz使杆件延y,z方向产生剪切变形,称为剪力 • Mx 使杆件绕x轴发生扭转变形,称为扭矩 • My、Mz使得杆件分别绕y z轴产生弯曲变形,称为弯矩
横截面上内力计算--截面法
截面法求内力步骤 将杆件在欲求内力的截面处假想的切开; 取其中任一部分并在截面上画出相应内力; 由平衡条件确定内力大小。


典型例题-1
已知:G,a,b,l,画梁AB内力图
解:1〉求A,B支座反力( a+b=l )
FAy
Gb l
FBy
Ga l
2〉求x截面内力 a) 0<x<a
FQ1 FAy Gb l
b) a<x<l
M1 FAy x Gb x l
FQ2 FAy G Gb G Ga l l
qa
F BY
1 6
qa
FAy
FBy
2)1-1截面内力:(0≤x1 ≤ a)
FQ1 FAy 5 q a 6
M1 FAY x1 5 q a x1 6
3)2-2截面内力: (a≤x2<2a)
11 q a q x2 6 1 5 1 M 2 FAY x 2 - q (x 2 a) 2 q a x 2 - q (x 2 a) 2 2 6 2 FQ2 FAY q作用下,其变形的大小用位移和应变
相关文档
最新文档