三角函数基础题型归类(一)

合集下载

三角函数题型总结

三角函数题型总结

三角函数题型总结三角函数是数学中的重要分支之一,它在几何学、物理学、工程学和其他领域中都有广泛的应用。

在学习三角函数时,掌握各种题型的解题方法对于提高数学水平非常关键。

本文将针对三角函数的常见题型进行总结,希望对学习三角函数的同学们有所帮助。

一、基本概念题型1. 三角函数的定义三角函数包括正弦函数、余弦函数、正切函数等,它们都是以一个角为自变量的函数。

在求解三角函数的题目时,首先需要熟悉各个三角函数的定义,并且要能够准确地在单位圆上确定角对应的三角函数值。

2. 角度与弧度的转换在三角函数的运算中,经常需要将角度转换为弧度,或者将弧度转换为角度。

学生需要掌握角度与弧度的相互转换的方法,以确保在计算时能够准确无误。

3. 角度的周期性在学习三角函数中,需要注意到三角函数的周期性。

例如正弦函数和余弦函数的周期均为360度或2π。

了解角度的周期性可以帮助学生简化计算过程,提高解题效率。

二、简单的三角函数方程题型1. 解三角函数方程解三角函数方程是三角函数题目中的常见类型,例如sinx=0、cosx=1/2等。

解这类方程的关键是要找到解的范围,并且要考虑周期性对解的影响。

三、复杂的三角函数公式题型1. 三角函数的和差化积三角函数的和差化积是求解三角函数的公式题型中的重要部分。

学生需要学会如何将sin(a±b)、cos(a±b)等形式的式子转化为较为简单的形式,以便于进行后续的计算。

2. 三角函数的积化和差三角函数的积化和差也是三角函数公式题型中的常见形式,例如sinasinb=1/2[cos(a-b)-cos(a+b)]、cosacosb=1/2[cos(a-b)+cos(a+b)]等。

在求解这类题目时,需要运用三角函数的性质和恒等式进行化简,然后再进行计算。

3. 三角函数的倍角公式与半角公式三角函数的倍角公式与半角公式在三角函数的公式题型中也是非常重要的一部分。

学生需要掌握sin2x、cos2x、tan2x等的表示方法,以及它们与角度x的关系,这样可以在计算中更加方便和简化。

三角函数知识点及题型归纳

三角函数知识点及题型归纳

三角函数知识点及题型归纳三角函数是数学中的一个重要分支,在几何、物理、工程等领域都有广泛的应用。

下面我们来详细归纳一下三角函数的知识点和常见题型。

一、三角函数的基本概念1、角的概念角可以分为正角、负角和零角。

按旋转方向,逆时针旋转形成的角为正角,顺时针旋转形成的角为负角,没有旋转的角为零角。

2、弧度制把长度等于半径长的弧所对的圆心角叫做 1 弧度的角。

用弧度作为单位来度量角的制度叫做弧度制。

弧度与角度的换算公式为:180°=π 弧度。

3、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它与原点的距离为 r(r =√(x²+ y²) > 0),则角α的正弦、余弦、正切分别为:sinα = y/r,cosα = x/r,tanα = y/x(x ≠ 0)。

4、三角函数线有正弦线、余弦线、正切线,它们分别是角α的终边与单位圆交点的纵坐标、横坐标、纵坐标与横坐标的比值。

二、同角三角函数的基本关系1、平方关系:sin²α +cos²α = 12、商数关系:tanα =sinα/cosα三、诱导公式诱导公式可以将任意角的三角函数转化为锐角的三角函数。

例如:sin(π +α) =sinα,cos(π α) =cosα 等。

四、三角函数的图象和性质1、正弦函数 y = sin x图象:是一条波浪形曲线,周期为2π,对称轴为 x =kπ +π/2(k∈Z),对称中心为(kπ, 0)(k∈Z)。

性质:在π/2 +2kπ, π/2 +2kπ(k∈Z)上单调递增,在π/2 +2kπ, 3π/2 +2kπ(k∈Z)上单调递减。

2、余弦函数 y = cos x图象:也是一条波浪形曲线,周期为2π,对称轴为 x =kπ(k∈Z),对称中心为(π/2 +kπ, 0)(k∈Z)。

性质:在π +2kπ, 2kπ(k∈Z)上单调递增,在2kπ, π +2kπ(k∈Z)上单调递减。

三角函数知识点及题型归纳

三角函数知识点及题型归纳

三角函数知识点及题型归纳一、三角函数的基本概念三角函数是数学中重要的函数类型,它们在几何、物理等领域有着广泛的应用。

首先,角的概念是基础。

我们把平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形叫做角。

角可以用弧度制或角度制来度量。

弧度制是用弧长与半径之比来度量角的大小,公式为:弧长\(l =r\theta\),其中\(r\)为半径,\(\theta\)为圆心角的弧度数。

接下来是三角函数的定义。

在平面直角坐标系中,设点\(P(x,y)\)是角\(\alpha\)终边上非原点的任意一点,\(r =\sqrt{x^2 +y^2}\),则有正弦函数\(\sin\alpha =\frac{y}{r}\),余弦函数\(\cos\alpha =\frac{x}{r}\),正切函数\(\tan\alpha =\frac{y}{x}(x \neq 0)\)。

二、三角函数的基本性质1、周期性正弦函数和余弦函数的周期都是\(2\pi\),正切函数的周期是\(\pi\)。

2、奇偶性正弦函数是奇函数,即\(\sin(\alpha) =\sin\alpha\);余弦函数是偶函数,即\(\cos(\alpha) =\cos\alpha\)。

3、单调性正弦函数在\(\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi(k \in Z)\)上单调递增,在\(\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi(k \in Z)\)上单调递减;余弦函数在\(2k\pi, \pi +2k\pi(k \in Z)\)上单调递减,在\(\pi + 2k\pi, 2\pi + 2k\pi(k \in Z)\)上单调递增;正切函数在\((\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi)(k \in Z)\)上单调递增。

三角函数题型汇总(附答案)

三角函数题型汇总(附答案)

三角函数训练题(1)一、选择题(本大题共10小题,每小题3分,共30分)1.命题p :α是第二象限角,命题q:α是钝角,则p 是q 的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件D.既非充分又非必要条件2.若角α满足sin αcos α<0,cos α-sin α<0,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.集合M ={x |x =42ππ±k ,k ∈Z }与N ={x |x =4πk ,k ∈Z }之间的关系是( )A.M NB.N MC.M =ND.M ∩N=∅4.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是( )A.(1)、(2)B.(2)、(3)C.(1)、(3)D.(2)、(4)5.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于( )A.52B.-52C.51D.-51 6.若cos(π+α)=-23,21π<α<2π,则sin(2π-α)等于( )A.-23B.23C.21D.±237.已知sin α>sin β,那么下列命题成立的是( )A.若α、β是第一象限角,则cos α>cos βB.若α、β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A.2B.1sin 2C.2sin1D.sin29.如果sin x +cos x =51,且0<x <π,那么cot x 的值是( )A.-34 B.-34或-43 C.-43 D.34或-43 10.已知①1+cos α-sin β+sin αsin β=0,②1-cos α-cos β+sin αcos β=0.则sin α的值为( )A.3101- B.351- C.212- D.221-二、填空题(本大题共4小题,每小题4分,共16分)11.tan300°+cot765°的值是_______.12.已知tan α=3,则sin 2α-3sin αcos α+4cos 2α的值是______.13.若扇形的中心角为3π,则扇形的内切圆的面积与扇形面积之比为______.14.若θ满足cos θ>-21,则角θ的取值集合是______.三、解答题(本题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)设一扇形的周长为C (C >0),当扇形中心角为多大时,它有最大面积?最大面积是多少?16.(本小题满分10分)设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=42x , 求sin α与tan α的值.17.(本小题满分12分)已知sin α是方程5x 2-7x -6=0的根,求)(cos )2cos()2cos()2(tan )23sin()23sin(22απαπαπαπαππα-⋅+⋅--⋅-⋅--的值.18.(本小题满分12分)已知sin α+cos α=-553,且|sin α|>|cos α|,求cos 3α-sin 3α的值.19.(本小题满分12分) 已知sin(5π-α)=2 cos(27π+β)和3cos(-α)=- 2cos(π+β),且0<α<π,0<β<π,求α和β的值.三角函数训练题(2)参考答案:1.解析:“钝角”用集合表示为{α|90°<α<180°},令集合为A ;“第二象限角”用集合表示为{α|k ²360°+90°<α<k ²360°+180°,k ∈Z },令集合为B .显然A B .答案:B2.解析:由sin αcos α<0知sin α与cos α异号;当cos α-sin α<0,知sin α>cos α.故sin α>0,cos α<0.∴α在第二象限.答案:B 3.解法一:通过对k 的取值,找出M 与N 中角x 的所有的终边进行判断.解法二:∵M ={x |x =4π²(2k ±1),k ∈Z },而2k ±1为奇数,∴M N .答案:A4.解析:787°=2³360°+67°,-957°=-3³360°+123°. -289°=-1³360°+71°,1711°=4³360°+271°. ∴在第一象限的角是(1)、(3). 答案:C5.解析:∵r=a a a 5)4()3(22-=+-.α为第四象限. ∴53cos ,54sin ==-==r x r y αα.故sin α+2cos α=52. 答案:A6.解析:∵cos(π+α)=- 21,∴cos α=21,又∵23π<α<2π. ∴sin α=-23cos 12-=-α.故sin(2π-α)=-sin α=23. 答案:B 7.答案:D8.解析:∵圆的半径r =1sin 2,α=2 ∴弧度l=r ²α=1sin 2. 答案:B9.分析:若把sin x 、cos x 看成两个未知数,仅有sin x +cos x =51是不够的,还要利用sin 2x +cos 2x =1这一恒等式.解析:∵0<x <π,且2sin x cos x =(sin x +cos x )2-1=-2524. ∴cos x <0.故sin x -cos x =57cos sin 4)cos (sin 2=-+x x x x ,结合sin x +cos x =51,可得sin x =54,cos x =-53,故co t x =-43.答案:C10.分析:已知条件复杂,但所求很简单,由方程思想,只要由①、②中消去β即可.解析:由已知可得:sin β=ααsin 1cos 1-+,cos β=ααsin 1cos 1--.以上两式平方相加得:2(1+cos 2α)=1-2sin α+sin 2α.即:3sin 2α-2sin α-3=0.故sin α=3101-或sin α=3101+ (舍). 答案:A11.解析:原式=tan(360°-60°)+cot (2³360°+45°)=-tan60°+cot45°=1-3.答案:1-312.分析:将条件式化为含sin α和cos α的式子,或者将待求式化为仅含tan α的式子.解法一:由tan α=3得sin α=3cos α,∴1-cos 2α=9cos 2α.∴cos 2α=101.故原式=(1-cos 2α)-9cos 2α+4cos 2α=1-6cos 2α=52.解法二:∵sin 2α+cos 2α=1.∴原式=52194991tan 4tan 3tan cos sin cos 4cos sin 3sin 222222=++-=++-=++-ααααααααα 答案:5213.分析:扇形的内切圆是指与扇形的两条半径及弧均相切的圆.解析:设扇形的圆半径为R ,其内切圆的半径为r ,则由扇形中心角为3π知:2r +r =R ,即R =3r .∴S 扇=21αR 2=6πR 2,S 圆=9πR 2.故S 扇∶S 圆=23. 答案:23 14.分析:对于简单的三角不等式,用三角函数线写出它们的解集,是一种直观有效的方法.其过程是:一定终边,二定区域;三写表达式.解析:先作出余弦线OM =-21,过M 作垂直于x 轴的直线交单位圆于P 1、P 2两点,则OP 1、OP 2是cos θ=21时θ的终边.要cos θ>-21,M 点该沿x 轴向哪个方向移动?这是确定区域的关键.当M 点向右移动最后到达单位圆与x 轴正向的交点时,OP 1、OP 2也随之运动,它们扫过的区域就是角θ终边所在区域.从而可写出角θ的集合是{θ|2k π-32π<θ<2k π+32π,k ∈Z }.答案:{θ|2k π-32π<θ<2k π+32π,k ∈Z }15.解:设扇形的中心角为α,半径为r ,面积为S ,弧长为l,则:l+2r =C ,即l=C -2r .∴16)4()2(212122C C r r r C lr S +--=⋅-==.故当r =4C时,S max =162C ,此时:α=.2422=-=-=CCC rrC r l∴当α=2时,S max =162C .16.解:由三角函数的定义得:cos α=52+x x ,又cos α=42x , ∴34252±=⇒=+x x x x . 由已知可得:x <0,∴x =-3. 故cos α=-46,sin α=410,ta n α=-315. 17.解:∵sin α是方程5x 2-7x -6=0的根. ∴sin α=-53或sin α=2(舍).故sin 2α=259,cos 2α=⇒2516tan 2α=169. ∴原式=169tan cot )sin (sin tan )cos (cos 222==⋅-⋅⋅-⋅ααααααα.18.分析:对于sin α+cos α,sin α-cos α及sin αcos α三个式子,只要已知其中一个就可以求出另外两个,因此本题可先求出sin αcos α,进而求出sin α-cos α,最后得到所求值.解:∵sin α+cos α=-553, ∴两边平方得:1+2sin αcos α=⇒59sin αcos α=52. 故(cos α-sin α)2=1-2sin αcos α=51.由sin α+cos α<0及sin αcos α>0知sin α<0,cos α<0. 又∵|sin α|>|cos α|,∴-sin α>-cos α cos α-sin α>0.∴cos α-sin α=55. 因此,cos 3α-sin 3α=(cos α-sin α)(1+sin αcos α)=55³(1+52)=2557. 评注:本题也可将已知式与sin 2α+cos 2α=1联解,分别求出sin α与cos α的值,然后再代入计算.19.分析:运用诱导公式、同角三角函数的关系及消元法.在三角关系式中,一般都是利用平方关系进行消元.解:由已知得sin α=2sin β ①3cos α=2cos β ② 由①2+②2得sin 2α+3cos 2α=2. 即:sin 2α+3(1-sin 2α)=2. ∴sin 2α=⇒21sin α=±22,由于0<α<π,所以sin α=22. 故α=4π或43π. 当α=4π时,cos β=23,又0<β<π,∴β=6π, 当α=43π时,cos β=-23,又0<β<π,∴β=65π.综上可得:α=4π,β=6π或α=43π,β=65π.三角函数训练题(2)一、选择题(本大题共10小题,每小题3分,共30分) 1.cos24°cos36°-cos66°cos54°的值等于( ) A.0 B.21 C.23 D.-21 2.在△ABC 中,如果sin A =2sin C cos B .那么这个三角形是( )A.锐角三角形B.直角三角形C.等腰三角形D.等边三角形 3.︒-︒80sin 310sin 1的值是( ) A.1 B.2 C.4 D.41 4.tan20°+4sin20°的值是( )A.1B.2C.3D.336+ 5.tan θ和tan(4π-θ)是方程x 2+px +q =0的两根,则p 、q 之间的关系是( )A.p +q +1=0B.p -q -1=0C.p +q -1=0D.p -q +1=06.设sin x +sin y =22,则cos x +cos y 的取值范围是( ) A.[0,214] B.(- 214,0] C.[-214,214] D.[-21,27]7.M =sin α²tan 2α+cos α,N =tan 8(tan 8ππ+2),则M 与N 的关系是( )A.M >NB.M =NC.M <ND.大小与α有关8.已知sin α+sin β=3 (cos β-cos α),α,β∈(0,2π),那么sin3α+sin3β的值是( )A.1B.23C.21D.09.已知tan α、tan β是方程x 2+33x +4=0的两个根,且α、β∈(-2,2ππ),则α+β的值是( )A.3π B.-32πC. 3π或-32πD.- 3π或32π10.(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值是( ) A.16 B.8 C.4 D.2二、填空题(本大题共4小题,每小题4分,共16分)11.已知tan x =34(π<x <2π).则cos(2x -3π)cos(3π-x )-sin(2x -3π)sin(3π-x )=______.12.sin(θ+75°)+cos(θ+45°)-3cos(θ+15°)的值等于______.13.log 4cos5π+log 4cos 52π的值等于______.14.已知tan(α+β)=52,tan(β-41)4=π,则sin(α+4π)²sin(4π-α)的值为___.三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)求值:212cos 412csc )312tan 3(2-︒︒-︒.16.(本小题满分10分) 已知cot β=βαsin sin ,5=sin(α+β),求cot(α+β)的值.17.(本小题满分12分)已知tan2θ=-22,x <2θ<2π,求)4sin(21sin 2cos 22πθθθ+--的值.18.(本小题满分12分)是否存在锐角α和β,使得(1)α+β=32π;(2)tan 2αtan β=2-3同时成立?若存在,则求出α和β的值;若不存在,说明理由.19.(本小题满分12分)已知△ABC 的三内角A 、B 、C 成等差数列,且BC A cos 2cos 1cos 1-=+,求cos 2CA -的值.三角函数训练题(2)参考答案:1.解析:原式=cos24°cos36°-sin24°sin36°=cos(24°+36°)=cos60°=21.答案:B2.解析:∵A +B +C =π,∴A =π-(B +C ).由已知可得:sin(B +C )=2sin C cos B ⇒sin B cos C +cos B sin C =2sin C cos B ⇒sin B cos C -cos B sin C =0⇒sin(B -C )=0. ∴B =C ,故△ABC 为等腰三角形. 答案:C3.解析:原式=︒︒-︒=︒-︒20sin 2110sin 310cos 10cos 310sin 1420sin 70cos 420sin )1060cos(420sin )10sin 2310cos 21(4=︒︒=︒︒+︒=︒︒-︒=.答案:C4.分析:运用三角变形的通法:化弦法、异角化同角.解析:原式=︒︒︒+︒=︒+︒︒20cos 20cos 20sin 420sin 20sin 420cos 20sin.320cos )20sin 20cos 3(20sin 20cos )2060sin(220sin 20cos 40sin 220sin =︒︒-︒+︒=︒︒-︒+︒=︒︒+︒=答案:C5.解析:由根与系数关系得tan θ+tan(4π-θ)=-p ,tan θ²tan(4π-θ)=q .又4π=θ+(4π-θ) ∴tan4π=tan [θ+( tan-θ)]=qp--1 故p -q +1=0. 答案:D6.解析:设cos x +cos y =t ,又sin x +sin y =22. 两式平方相加得2+2cos(x -y )=t 2+21 即cos(x -y )=4322-t ,由于|cos(x -y )|≤1.故-1≤4322-t ≤1⇒t 2≤21427-⇒≤t ≤214.答案:C7.解析:12s i n212s in 2)2si n 21(2co s 2s i n 22cos2s i n 222=-+=-+⋅=αααααααM .14cos14sin 24cos 124cos 14sin 24cos18cos 4sin8sin )28cos 8sin(8cos8sin22=++-=++-=+=+=πππππππππππππN∴M =N . 答案:B8.分析:先从已知式中求出α与β的关系,然后代入求值. 解析:由已知得:sin α+3cos α=3cos β-sin β.即cos(α-6π)=cos(β+6π) 又α-6π∈(-6π,3π),β+6π∈(6π,32π)故α-6π=β+6π⇒α=β+3π,∴sin3α+sin3β=sin(3β+π)+sin3β=0. 答案:D 9.解析:由韦达定理得:tan α+tan β=-33,tan αtan β=4 ∴tan(α+β)=3tan tan 1tan tan =-+βαβα.又∵α、β∈(-2,2ππ),且tan α+tan β<0,tan αtan β>0. ∴tan α<0,tan β<0.故α、β∈(-2π,0)从而α+β∈(-π,0),∴α+β=-32π.答案:B 10.分析:本题中所涉及的角均为非特殊角,但两角之和为45°特殊角,为此,将因式重组来求.解析:∵tan45°=tan(21°+24°)=︒︒-︒+︒24tan 21tan 124tan 21tan∴1-tan21°tan24°=tan21°+tan24° 即1+tan21°+tan24°+tan21°tan24°=2 即(1+tan21°)(1+tan24°)=2.(同理,由tan45°+tan(22°+23°)可得 (1+tan22°)(1+tan23°)=2.故(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)=4. 答案:C11.解析:原式=cos [(2x -3π)+(3π-x )]=cos x .∵tan x =34>0且π<x <2π,∴π<x <23π.故cos x <0,从而得cos x =-52.答案:-5312.分析:观察所给角易得θ+75°=(θ+15°)+60°,θ+45°=(θ+15°)+30°.考查两角和的正弦余弦公式及换元法的运用.解析:令θ+15°=α,则原式=sin(α+60°)+cos(α+30°)-3cos α=21sin α+23cos α+23cos α-21sin α-3cos α=0.答案:013.解析:∵5sin252cos 5cos 5sin252cos 5cos ππππππ=415sin454sin 5sin 252cos 52sin ===πππππ ∴原式=log 4141log )52cos 5(cos 4-==ππ答案:-114.解析:∵tan(α+4π)=tan [(α+β)-(β-4π)=223,∴原式=sin(α+4π)cos(α+4π)=)4(sin )4(cos )4cos()4sin(22παπαπαπα+++++49366)4(tan 1)4tan(2=+++=παπα. 答案:4936615.分析:本题中函数种类较多,在变换过程中,常用“切割化弦”的基本方法,考查公式的灵活运用.解:原式=)112cos 2(24sin 12cos 312sin 3)112cos 2(212sin 1)312cos 12sin 3(22-︒⋅︒︒-︒=-︒︒⋅-︒︒ ︒⋅︒︒-︒=24cos 24sin )12cos 2312sin 21(323448sin 21)6012sin(32-=︒︒-︒=16.分析:条件式中出现α、β及α+β角,要得到所求三角式的α+β角,显然就需对角α进行变换.即α=(α+β)-β.解:∵βαsin sin =sin(α+β). ∴sin [(α+β)-β]=sin β²sin(α+β).即sin(α+β)cos β-cos(α+β)sin β=sin βsin(α+β). ∴sin(α+β)cos β=sin β[sin(α+β)+cos(α+β)] ∴)sin()cos()sin(sin cos βαβαβαββ++++=即cot β=1+cot(α+β) ∴cot(α+β)=cot β-1=5-1.评注:三角变换的基本原则是化异为同,可以从角及函数名称、式子结构等方面分析思考,逐步实行由异向同的转化.17.分析:求三角函数的值,一般先要进行化简,至于化成哪一种函数,可由已知条件来确定.本题中由已知可求得tan θ的值,所以应将所求的式子化成正切函数式.解:原式=)4sin(2)4sin(2)4sin(2sin cos θπθππθθθ+-=+- ∵2)4()4(πθπθπ=++-∴原式=θθθπθπθπtan 1tan 1)4tan()4cos()4sin(+-=-=--.由已知tan2θ=-22得22tan 1tan 22-=-θθ解得tan θ=-22或tan θ=2. ∴π<2θ<2π,∴2π<θ<π,故tan θ=-22.故原式=223221221+=-+. 评注:以上所给解法,似乎有点复杂,但对于提高学生的三角变换能力大有好处.本题也可将所求式化成θθθθsin cos sin cos +-,注意到此时分子、分母均是关于si n θ、cos θ的齐次式.通过同时除以cos θ,即可化成θθtan 1tan 1+-.18.分析:这是一道探索性问题的题目,要求根据(1)、(2)联解,若能求出锐角α和β,则说明存在,否则,不存在.由于条件(2)涉及到2α与β的正切,所以需将条件(1)变成2α+β=3π,然后取正切,再与(2)联立求解.解:由(1)得:2α+β=3π,∴3tan 2tan 1tan 2tan)2tan(=-+=+βαβαβα将(2)代入上式得tan 2α+tan β=3-3. 因此,tan2α与tan β是一元二次方程x 2-(3-3)x +2-3=0的两根,解之得x 1=1,x 2=2-3.若tan2α=1,由于0<2α<4π.所以这样的α不存在; 故只能是tan 2α=2-3,tan β=1.由于α、β均为锐角,所以α=6π,β=4π故存在锐角α=6π,β=4π使(1)、(2)同时成立.19.解法一:依题意得B =3π,设A =3π+α,C =3π-α,则2CA -=α.同时有:3cos2)3cos(1)3cos(1παπαπ-=-++即22sin 3cos 2sin 3cos 2-=++-αααα023cos 2cos 242sin 3cos cos 2222=-+⇒-=-⇒ααααα ∴cos α=22或cos α=-423 (舍去)即cos222=-C A . 解法二:依题意得C C A C C A C A B -=--=-=+=32,232,32,3ππππ,不妨设cos(C -3π)=x .由已知得CC C C CC CA cos )32cos(cos )32cos(cos 1)32cos(1cos 1cos 1-+-=+-=+πππ∵cos(π32-C )+cos C=cos 32πcos C +sin 32πsin C +cos C=21cos C +23sin C =cos(3π-C ). cos(32π-C )cos C =cos 32πcos 2C+sin 32πsin C cos C)3(cos 43]1)3(cos 2[2141)232cos(21412sin 43)2cos 1(4122C C C C C -+-=--+-=-+-=++-=πππ∴22432-=+-x x 即0232242=-+x x∴x =22或x =-423 (舍去).故222cos=-C A . 解法三:依题意得B =3π,由已知得22cos 1cos 1-=+C A即cos A +cos C =-22cos A cos C利用积化和差及和差化积公式,并注意到A +C =32π,可得2cos22cos 2-=-+CA C A [cos(A +C )+cos(A -C )] 即22cos 22222cos2+--=-CA C A . 即0232cos 22cos 242=--+-CA C A ∴222cos=-C A 或4232cos -=-C A (舍去). 故222cos=-C A . 评注:解法三运用了和差化积及积化和差公式,这组公式虽不要求记忆,但在给出公式的情况下会运用.(3)1.在半经为2米的圆中,120°的圆心角所对的弧长为_____(34π)米。

三角函数基本题型及解题方法

三角函数基本题型及解题方法

三角函数基本题型及解题方法三角函数基本题型及解题方法对于三角函数的问题,特别是一些创新型问题,对大多数同学来说可能会感到陌生。

这些问题主要考查学生对于重要数学思想和方法的掌握以及在考试时对自己心态的调整。

但是,我们可以使用特殊化方法来解决这些问题。

特殊化方法的解题依据是,题目所叙述的一般情形成立,则对特殊情形也应该成立。

若不成立,则必然选项是错误的。

特殊化方法一般有赋特殊值、特殊函数等。

一、单调性类问题例11)若A、B是锐角三角形ABC的两个内角,则点P(cosB-sinA。

sinB-cosA)在哪个象限?选项为A、B、C、D。

2)设α、β是一个钝角三角形的两个锐角,下列四个不等式中不正确的是?选项为A、B、C、D。

分析:这是依托基本的几何图形三角形,创新型的考查三角函数的单调性等重要性质的题目。

常规解法运算繁杂,用特殊化方法则可出奇制胜。

对于(1),赋A=B=60°,可知选B;对于(2),赋α=β=30°,可知选D。

例2若A、B、C是△XXX的三个内角,且A<B<C(C≠π/2),则下列结论中正确的是哪个?选项为A、B、C、D。

分析:赋A=30°,B=70°,C=80°,可知B、D错;赋A=30°,B=50°,C=100°,知C错。

故选A。

例3函数y=xcosx-sinx在下面哪个区间内是增函数?选项为A、B、C、D。

分析:所给函数的定义域显然是R,又令f(x)=xcosx-sinx,则f(π/2)=f(3π/2)=-1,f(π)=-π,f(π/6)=1,f(2π)=2π。

如对选项A,x从π/3到2π/3,y从-1,-π到1,不符合题意,同理可排除C、D。

例4函数y=2sin(π/6-2x)(x∈[0,π])为增函数的区间是哪个?选项为A、B、C、D。

分析:只需考虑区间端点处的函数值,有①x=0,y=1;②x=π/12,y=√3/2;③x=π/3,y=-2;④x=5π/6,y=1.可知选项B为正确答案。

三角函数经典题型总结

三角函数经典题型总结

三角函数的经典题型主要包括以下几个方面:
1. 三角函数的基本性质和公式应用:
-三角函数的基本关系:sin²θ+ cos²θ= 1,tanθ= sinθ/cos θ等。

-诱导公式:sin(α±β),cos(α±β),tan(α±β)等的公式。

-二倍角公式、半角公式、和差化积、积化和差公式等。

2. 解三角形问题:
-正弦定理:a/sinA = b/sinB = c/sinC。

-余弦定理:a²= b²+ c²- 2bc cosA,同理可得其他边和角的关系。

-利用正弦定理和余弦定理解决边角关系问题。

3. 三角函数图像和性质:
-正弦函数、余弦函数、正切函数的图像及其周期性、奇偶性、单调性、对称性等性质。

-利用图像解三角函数方程和不等式。

4. 三角函数的应用问题:
-在物理中的应用,如振动问题、波动问题、光学问题等。

-在地理学中的应用,如地图上的方位角、距离计算等。

-在工程学中的应用,如结构力学、电路分析等。

5. 三角函数的复合与逆运算:
-复合三角函数的运算,如sin(cosx),cos(sinx)等。

-三角函数的反函数,如arcsin(x),arccos(x),arctan(x)等。

6. 三角恒等式的证明:
-利用三角函数的基本关系和公式进行恒等式的变形和证明。

以上就是三角函数的一些经典题型总结,掌握这些题型的解题方法和技巧,可以有效地提高解决三角函数问题的能力。

高考三角函数题型归纳总结

高考三角函数题型归纳总结

高考三角函数题型归纳总结
高考解三角函数题型归纳总结
一、函数值的计算
1.由某个函数的定义求指定的函数值
2.由表达式求某个函数的值
3.由一切三角函数的基本等式求某个函数的值
二、函数的延长
1.函数的延长:对某个函数的符号或值作一定重新定义,以推广原函数的定义域,使原值可以成为新函数的值
2.求函数值时把原函数的值替换新定义的函数的值
三、函数的平移
1.对某个函数作一定的平移变换,使其实轴、值轴都做出一定的平移
2.函数按照平移变换规则,将原函数的值按比例地经过初始点再离开
四、函数的综合运用
1.记住一些常见的组合等式,如:sinα±cosα=sincosα、sin α-cosα=-2sinsinα/2
2.按延长或平移变换,用组合等式解决具体问题
3.用其他三角函数的关系转换,把一种函数转换成另一种,如tanα=sinα/cosα。

- 1 -。

专题4-4 三角函数与解三角形大题综合归类-(原卷 版)

专题4-4 三角函数与解三角形大题综合归类-(原卷 版)

专题4-4 三角函数与解三角形大题综合归类目录一、热点题型归纳【题型一】三角函数求解析式:“识图”................................................................................................. 1 【题型二】图像与性质1:单调性与值域................................................................................................ 3 【题型三】图像与性质2:恒等变形:结构不良型 ................................................................................ 4 【题型四】图像与性质3:恒成立(有解)求参数 ................................................................................ 5 【题型五】图像与性质4:零点与对称轴................................................................................................ 6 【题型六】解三角形1:面积与周长常规................................................................................................ 8 【题型七】解三角形2:计算角度与函数值 ............................................................................................ 9 【题型八】解三角形3:求面积范围(最值) ...................................................................................... 10 【题型九】解三角形4:周长最值 ......................................................................................................... 11 【题型十】解三角形5:巧用正弦定理求“非对称”型 ...................................................................... 11 【题型十一】解三角形6:最值范围综合.............................................................................................. 12 二、真题再现 ............................................................................................................................................ 12 三、模拟测试 .. (14)【题型一】三角函数求解析式:“识图”【典例分析】(2023·全国·高三专题练习)函数()sin(π),R f x A x x ϕ=+∈(其中π0,02A ϕ>≤≤)部分图象如图所示,1(,)3P A 是该图象的最高点,M ,N 是图象与x 轴的交点.(1)求()f x 的最小正周期及ϕ的值;(2)若π4PMN PNM ∠+∠=,求A 的值.1.(2023·全国·高三专题练习)已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将()f x 图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到函数()y g x =的图象,求函数()g x ≥.2.(2022·四川·宜宾市教科所三模(理))已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x ;(2)若2f α⎛⎫= ⎪⎝⎭()0,πα∈,求cos2α的值.3.(2022·全国·高三专题练习)已知函数()()sin ,0,0,2f x A x x R A ωϕωϕπ⎛⎫=+∈>>< ⎪⎝⎭部分图象如图所示.(1)求()f x 的最小正周期及解析式; (2)将函数()y f x =的图象向右平移3π个单位长度得到函数()y g x =的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【题型二】图像与性质1:单调性与值域【典例分析】(2022·浙江·高三开学考试)已知函数()21cos cos 2f x x x x =⋅-. (1)求函数()f x 的单调递增区间; (2)求()f x 在区间[0,2π]上的最值.【变式演练】1.(2022·湖北·高三开学考试)已知函数2()sin cos sin sin 44f x x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期;(2)若[0,]x π∈,求出()f x 的单调递减区间.2.(2022·黑龙江·双鸭山一中高三开学考试)已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.3.(2022·全国·高三专题练习)已知函数()()()2sin cos cos 04f x x x x ππωωωω⎛⎫=--+> ⎪⎝⎭的最小正周期为π.(1)求()f x 图象的对称轴方程;(2)将()f x 的图象向左平移6π个单位长度后,得到函数()g x 的图象,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【题型三】图像与性质2:恒等变形:结构不良型【典例分析】(2023·全国·高三专题练习)在①sin α=①2tan 40αα-=这两个条件中任选一个,补充到下面的问题中,并解答.已知角a 是第一象限角,且___________. (1)求tan α的值;(2)3)cos()cos(3)2πααπαπ+++-的值.注:如果选择多个条件分别解答,按第一个解答计分.【变式演练】1.(2022·北京·二模)已知函数2()cos cos (0,)ωωωω=++>∈R f x x x x m m .再从条件①、条件①、条件①这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件①:函数()f x 的最小正周期为π;条件①:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件①:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.2.(2023·全国·高三专题练习)已知函数()()sin cos 0,0f x a x x a ωωω=>>.从下列四个条件中选择两个作为已知,使函数()f x 存在且唯一确定.条件①:π14f ⎛⎫= ⎪⎝⎭;条件①:()f x 为偶函数;条件①:()f x 的最大值为1;条件①:()f x 图象的相邻两条对称轴之间的距离为π2. 注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.(1)求()f x 的解析式;(2)设()()22cos 1g x f x x ω=-+,求函数()g x 在()0,π上的单调递增区间.3.(2023·全国·高三专题练习)已知函数()()2sin cos f x a x x x x =∈R ,若__________.条件①:0a >,且()f x 在x ∈R 时的最大值为1条件①:6f π⎛⎫= ⎪⎝⎭请写出你选择的条件,并求函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.注:如果选择条件①和条件①分别解答,按第一个解答计分.【题型四】图像与性质3:恒成立(有解)求参数【典例分析】(2023·全国·高三专题练习)已知函数()π2sin()3f x x =+.(1)若不等式()3f x m -≤对任意ππ[,]63x ∈-恒成立,求整数m 的最大值;(2)若函数()π()2g x f x =-,将函数()g x 的图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移12π个单位,得到函数()y h x =的图象,若关于x 的方程()102h x k -=在π5π[,]1212x ∈-上有2个不同实数解,求实数k 的取值范围.【变式演练】1.(2023·全国·高三专题练习)已知平面向量2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =,()f x m n =⋅,其中0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求函数()f x 的单调增区间; (2)将函数()f x 的图象所有的点向右平移12π个单位,再将所得图象上各点横坐标缩短为原来的12(纵坐标不变),再向下平移1个单位得到()g x 的图象,若()g x m =在5,824x ππ⎡⎤∈-⎢⎥⎣⎦上恰有2个解,求m 的取值范围.2.(2023·全国·高三专题练习)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)先将函数()f x 的图象向右平移3π个单位长度,再将所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到()g x 的图象.(i )若0m >,当[0,]x m ∈时,()g x 的值域为[2],求实数m 的取值范围;(ii )若不等式2()(21)()10g x t g x t -+--≤对任意的,32x ππ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.3.(2022·全国·高三专题练习)已知:函数()2sin cos f x x x x =. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间;(3)若函数()()g x f x k =-在π0,4⎡⎤⎢⎥⎣⎦上有两个不同的零点,写出实数k 的取值范围.(只写结论)【题型五】图像与性质4:零点与对称轴【典例分析】(2022·全国·高三专题练习)已知函数()4cos cos 1(0)3f x x x πωωω⎛⎫=⋅-- ⎪>⎝⎭的部分图像如图所示,若288AB BC π⋅=-,B ,C 分别为最高点与最低点.(1)求函数()f x 的解析式;(2)若函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦,上有且仅有三个不同的零点1x ,2x ,3x ,(123x x x <<),求实数m 的取值范围,并求出123 cos (2)x x x ++的值.【变式演练】1.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象.当130,6x π⎡⎤∈⎢⎥⎣⎦时,方程()0g x a -=恰有三个不相等的实数根()123123,,x x x x x x <<,求实数a 的取值范围和1232x x x ++的值.2.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,若方程()0g x m -=在70,3π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根()123123,,x x x x x x <<,求m 的取值范围及()123tan 2x x x ++的值.3.(2023·全国·高三专题练习)已知数2()2sin 1(0)6212x f x x πωπωω⎛⎫⎛⎫=+++-> ⎪ ⎪⎝⎭⎝⎭的相邻两对称轴间的距离为2π. (1)求()f x 的解析式;(2)将函数()f x 的图象向右平移6π个单位长度,再把各点的横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()g x 的值域;(3)对于第(2)问中的函数()g x ,记方程4()3g x =在4,63x ππ⎡⎤∈⎢⎥⎣⎦上的根从小到大依次为12,,n x x x ,若m =1231222n n x x x x x -+++++,试求n 与m 的值.【题型六】解三角形1:面积与周长常规【典例分析】(2022·安徽·高三开学考试)在ABC 中,点,M N 分别在线段,BC BA 上,且,BM CM ACN BCN =∠=∠,3,22AB AM AC ===.(1)求BM 的长;(2)求BCN △的面积.【变式演练】1.(2022·北京·高三开学考试)在ABC 中,角A ,B ,C 的对边分别为,,,sin2sin =a b c C C . (1)求C ∠;(2)若1b =,且ABCABC 的周长.2.(2022·江苏·南京市金陵中学河西分校高三阶段练习)已知ABC 的三个内角,,A B C 所对的边分别为a ,b ,c ,)tan tan tan tan 1+=B C B C . (1)求角A 的大小;(2)若1a =,21)0c b -=,求ABC 的面积.3.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos 0B b A -=. (1)求A ;(2)若c =a =ABC 的面积.【题型七】解三角形2:计算角度与函数值【典例分析】(2022·全国·高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.【变式演练】1.(2021·天津静海·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足()()2sin 2sin 2sin a b A b a B c C -+-=. (1)求角C 的大小;(2)若c =4a b +=,求ABC 的面积.(3)若cos =A ,求()sin 2A C -的值.2.(2022·北京市第二十二中学高三开学考试)已知ABC 的内角,,A B C 所对的对边分别为,,a b c ,周长为1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.3.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)222S a c b =+-. (1)求角B 的大小;(2)若2a c =,求sin C .【题型八】解三角形3:求面积范围(最值)【典例分析】(2022·云南·昆明一中高三开学考试)已知ABC 的内角,,A B C 所对边分别为,,a b c ,且222sin sin sin sin A B C B C -=. (1)求A ;(2)若a =ABC 面积的最大值.【变式演练】1.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若a =ABC 面积的最大值.2.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知ABC 的外接圆半径R =tan tan B C +=.(1)求B 和b 的值;(2)求ABC 面积的最大值.3.(2021·江苏·矿大附中高三阶段练习)ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin cos sin (2cos )A B B A =-.(1)若b c +,求A ;(2)若2a =,求ABC 的面积的最大值.【题型九】解三角形4:周长最值【典例分析】(2022·黑龙江·双鸭山一中高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B C A B +-=. (1)求角C 的大小;(2)若ABCABC 周长的取值范围.【变式演练】1.(2022·广东·深圳外国语学校高三阶段练习)已知ABC 中,内角,,A B C 所对边分别为,,a b c ,若()2cos cos 0a c B b C --=.(1)求角B 的大小;(2)若2b =,求a c +的最大值.2.(2022·湖北·襄阳五中高三开学考试)在锐角ABC 中,角A ,B ,C ,的对边分别为a ,b ,c ,从条件①:3sin cos tan 4A A A =,条件①12=,条件①:2cos cos cos a A b C c B -=这三个条件中选择一个作为已知条件. (1)求角A 的大小;(2)若2a =,求ABC 周长的取值范围.3.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,= (1)求角A ;(2)若4a =,求b c +的取值范围.【题型十】解三角形5:巧用正弦定理求“非对称”型【典例分析】(2022·四川成都·模拟预测(理))①ABC 中,角,,A B C 所对边分别是,,a b c ,tan tan 2tan tan A AB C bc,cos cos 1b C c B +=.(1)求角A 及边a ; (2)求2b c +的最大值.【变式演练】1.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos2B C B C A -=+. (1)求角A 的大小;(2)若a =2b c +的最大值.2..(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin B c a C b c a b -=+-,①23cos cos cos 24A C A C --=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =_______. (1)求角B ﹔(2)求2a c -的范围.【题型十一】解三角形6:最值范围综合【典例分析】(2022·浙江·高三开学考试)记ABC 内角,,A B C 的对边分别是,,a b c ,已知tan tan 2tan tan tan B CB A A=-.(1)求证:2222b c a +=;(2)求2abc 的取值范围.【变式演练】1.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,已cos sin B b C =+. (1)求C 的大小;(2)若ABC 为锐角三角形且c =22a b +的取值范围.2.(2022·湖南湘潭·高三开学考试)设ABC 的内角,,A B C 的对边分别为,,a b c ,A 为钝角,且tan bB a =.(1)探究A 与B 的关系并证明你的结论; (2)求cos cos cos A B C ++的取值范围.1.(2022·天津·高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值. 2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin A C =,求b . 3.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+4.(·浙江·高考真题(理))已知ABC 的内角,,A B C 所对的对边分别为,,a b c 1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.6.(2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.7.(山东·高考真题)已知函数()2sin 2y x ϕ=+,x ∈R ,π02ϕ<<,函数的部分图象如下图,求(1)函数的最小正周期T 及ϕ的值: (2)函数的单调递增区间.8.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =(I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.9.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+.. (1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.10.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件①、条件①这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件①:ABC 的周长为4+条件①:ABC11.(2023·全国·高三专题练习)在ABC 中.3sin cos 64A A π⎛⎫-= ⎪⎝⎭.(1)求角A ;(2)若8AC =,点D 是线段BC 的中点,DE AC ⊥于点E ,且DE =CE 的长.1.(2022·浙江省杭州学军中学模拟预测)已知函数()()sin y f x A x B ωϕ==++(其中A ,ω,ϕ,B 均为常数,且0A >,0>ω,ϕπ<)的部分图像如图所示.(1)求()f x 的解析式;(2)若5()126g x f x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,,02x π⎛⎫∈- ⎪⎝⎭,求()g x 的值域.2.(2022·全国·高三专题练习)已知向量(sin a x =,(1,cos )b x =.(1)若a b ⊥,求sin 2x 的值;(2)令()f x a b =⋅,把函数()f x 的图像上每一点的横坐标都缩短为原来的一半(纵坐标不变),再把所得的图像沿x 轴向左平移6π个单位长度,得到函数()g x 的图像,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3.(2023·全国·高三专题练习)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,再从条件①、条件①、条件①这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定. (1)求()f x 的解析式;(2)设函数()()6g x f x f x π⎛⎫=++ ⎪⎝⎭,求()g x 在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值.条件①:()f x 的最小正周期为π;条件①:()00f =;条件①:()f x 图象的一条对称轴为4x π=. 注:如果选择多组条件分别解答,按第一个解答计分.4.(2023·全国·高三专题练习)已知函数()()()3,sin 26f x x x a a a g x x π⎛⎫=--+∈=+ ⎪⎝⎭R .(1)若()f x 为奇函数,求实数a 的值;(2)若对任意[]10,1x ∈,总存在20,2x π⎡⎤∈⎢⎥⎣⎦,使()()12f x g x =成立,求实数a 的取值范围.5.(2023·全国·高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min 2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值; 6、(2022·安徽·高三开学考试)记ABC 的内角,,A B C 的对边分别为,,a b c ,且23,2b c B C ==.(1)求cos C ;(2)若5a =,求c .7.(2022·广西·模拟预测(文))设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且2cos 2sin c b A b A -=. (1)证明:()sin 2sin sin A B B A -=; (2)若3A B =,求B 的值.8.(2022·全国·高三专题练习)在①2cos cos c b B a A -=;①sin cos 2AA =;()sin a C C =,这三个条件中任选一个,补充在下面的横线上,并加以解答.在ABC 中,角,,A B C 的对边分别是,,a b c ,若__________.(填条件序号) (1)求角A 的大小;(2)若3a =,求ABC 面积的最大值.注:如果选择多个条件分别解答,按第一个解答计分.9.(2021·福建省华安县第一中学高三期中)在①π1cos cos 32B B ⎛⎫-=+ ⎪⎝⎭,①sin (sin sin )sin a A c C A b B +-=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中.问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =______________. (1)求角B ;(2)求a c +的最大值.注:如果选择多个条件分别解答,按第一个解答计分. 10.(2022·山东烟台·三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos cos 2cos b a A C c A =+. (1)求角A ;(2)若4a =,求2c b -的取值范围.11.(2023·全国·高三专题练习)在ABC 中,点D 在边BC 上,3AB =,2AC =. (1)若AD 是BAC ∠的角平分线,求:BD DC ;(2)若AD 是边BC 上的中线,且AD =,求BC .12.(2022·全国·模拟预测(文))在①3cos210cos 10A A +-=,①sin cos A A -=①tan 2A =三个条件中任选一个,补充在下面的问题中,并作答.如果多选,则按第一个解答给分. 已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且______ (1)求cos A ;(2)sin sin B C 的最大值.。

三角函数的概念(基础知识+基本题型)(含解析)

三角函数的概念(基础知识+基本题型)(含解析)

5.2.1 三角函数的概念(基础知识+基本题型)知识点一 任意角的三角函数 1、单位圆的概念在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆叫单位圆. 2、任意角的三角函数的定义如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:y 叫做α的正弦,记作sin α,即sin y α=;②x 叫做α的余弦,记作cos α,即cos x α=; ③y x 叫做α的正切,记作tan α,即()tan 0yx xα=≠. 正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。

拓展:(1)任意角的三角函数的定义一般地,设角α的终边上任意一点的坐标为(,)x y ,它与原点的距离为r =,则sin ,cos ,tan (0)y x yx r r xααα===≠ (2)在任意角的三角函数的定义中,应该明确:α是一个任意角,其范围是使函数有意义的实数集. (3)三角函数值是比值,是一个实数,这个实数的大小和(,)P x y 所在中边上的位置无关,而由角α的终边位置决定.(4)要明确sin α是一个整体,不是sin 与α的乘积,它是“正弦函数”的一个记号,就如()f x 表示自变量为x 的函数一样,离开自变量的“sin α”“cos α”“tan α”等式没有意义的.知识点二 三角函数的定义域和函数值的符号1. 正弦函数、余弦函数、正切函数的定义域如下∶2.在各个象限内的符号,如图所示.【拓展】为了便于记忆,我们把三角函数值在各象限内的符号规律概括为下面口诀:“一全正、二正弦、三正切、四余弦”,意思为:第一象限各三角函数值均为正;第二象限只有正弦值为正,其余均为负;第三象限只有正切值为正,其余均为负;第四象限只有余弦值为正,其余均为负.由于从原点到角的终边上任意一点的距离r 是正值,根据三角函数的定义,知 (1)正弦函数的符号取决于纵坐标y 的符号; (2)余弦函数的符号取决于横坐标x 的符号;(3)正切函数的符号是由,x y 的符号共同决定的,即,x y 同号为正,异号为负. 知识点三 诱导公式一公式一:()sin 2sin k παα+⋅= , ()cos 2cos k παα+⋅=, ()tan 2tan k παα+⋅=, 【提示】(1)诱导公式一说明终边相同的角的同一三角函数值相等.(2)任意给定一个角,它的三角函数值是唯一确定的;若给定一个三角函数值,则有无数个角与之对应. (3)利用诱导公式一,可以把求任意角的三角函数值,转化为求0到2π内的角 的三角 函数值.其中 k Z ∈ . 知识点四 三角函数线 1.有向线段带有方向的线段叫做有向线段. 2.三角函数线的定义如图 1.2-4,设任意角α的顶点在原点o (单位圆的圆心),始边与x 轴的非负半轴重合,终边与单位圆相交于点,()P x y ,过点p 作x 轴的垂线,垂足为点M ;过点(1,0)A 作单位圆的切线,设它与角α 的终边(当α位于第一、四象限时)或其反向延长线(当α位于第二、三象限时)相交于点T (因为过切点的半径垂直于圆的切线,所以AT 平行于y 轴 ).于是sin ,cos ,tan y MP AT y MP x OM AT x OM OAααα======== . 我们规定与坐标轴 同向时 ,方向为正向,与坐标轴反向时,方向为负向,则有向线段MP ,OM ,AT 分别叫做角α 的正弦线、余弦线、正切线,它们统称为三角函数线.【提示】(1)三角函数线的意义是可以表示三角函数的值,其长度等于三角函数的绝对值,方向表示三角函数值的正负.(2)因为三角函数线是与单位圆有关的有向线段,所以作角的三角函数线时,一定要先作出单位圆. (3)有向线段的书写:有向线段的起点字母写在前面,终点字母写在后面.考点一 三角函数的定义及函数值符号 【例1】 有下列说法:①终边相同的角的同名三角函数值相等; ②终边不同的角的同名三角函数值不等; ③若sin20α> ,则α 是第一象限角;④若α 是第二象限角,且(,)P x y 是其终边上一点,则cos α= .其中正确说法的个数是 ( ) A.1B.2C.3D.4解析: 对于此类三角函数的题目,需要逐个判断.充分利用三角函数的定义求解是关键.总结: (1)解决此类问题的关键是准确理解任意角的三角函数的定义.(2)注意问题:①对于不同象限的角,求其三角函数值时,要分象限进行讨论;②终边在坐标轴上的角不属于任何象限.考点二 求三角函数的定义域 【例2】 求下列函数的定义域: (1)sin tan y x x =+ ;(2)sin cos tan x xy x+=.解: (1)要使函数有意义, 必须使sin x 与tan x 都有意义, 所以,().2R x k k Z x ππ∈≠+∈⎧⎪⎨⎪⎩ 所以函数sin tan y x x =+的定义域为 2,k x Z x k ππ∈⎧⎫≠+⎨⎬⎩⎭.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠ ,所以,2()Z k x k x k πππ⎧⎪⎨⎪⎩≠+∈≠所以函数sin cos tan x xy x +=的定义域为,2k x x k Z π≠∈⎧⎫⎨⎬⎩⎭. (1)解题时要注意函数本身的隐含条件.(2)求三角函数的定义域,应 熟悉各三角函数在各象限内的符号,并要注意各三角函数的定义域 ,一 般用弧度制表示.考点三 诱导公式一的应用 【例3 】计算下列各式的值:(1) ()()sin 1395cos111cos 1020sin7500︒︒︒︒-+-;(2)1112sin cos tan 465πππ⎛⎫-+ ⎪⎝⎭. 解: (1)原式()()()()sin 454360cos 303360cos 603360sin 302360︒︒︒︒︒︒︒︒=-⨯+⨯+-⨯+⨯ cos30cos60sin30sin 45︒︒︒︒+=1122=⨯14=+=(2)原式()2sin 2cos 2tan 0465πππππ⎛⎫⎛⎫=-+++ ⎪⎪⎝⎭⎝⎭21sincos0652ππ=+⨯= . 利用诱导公式一可把负角的三角函数转化为0~2π 内的角的三角函数,也可把大于2π 的角的三角函数转化为0~2π 内的角的三角函数, 即实现了“负化正 ,大化小”. 要注意记 忆特殊角的三角 函数值.考点四 三角函数线的应用【例4】 利用单位圆中的工角函数线 ,分别确定角θ的取值范围.(1)sin θ(2)1co s 2-≤< .分析: 先作出三角函数在边界时的三角函数线,观察角在什么范围内变化, 再根据范围区域写出θ 的取值范围.解: (1)图①中阴影部分就是满足条件的角θ 的范围, 即,32223k k k Z πππθπ+≤≤∈+ .(2)图②中阴影部分就是满足条件的角θ 的范围,即22362k k πππθπ<--+≤+ 或22,326k k Z k ππθππ<≤+∈+ .解形如()f m α≤ 或()()1f m m α≥< 的式子时,在直角坐标及单位圆中标出满足()f m α= 的两个角的终边(若为正弦函数,则角的终边是直线y m = 与单位圆的两个交点 与原点的连线;若为余弦函数,则角的终边是直线x m = 与单位圆的两个交点与原点的连 线 ;若为正切函数,则角的终边与角的终边的反向延长线表示的正切值相同). 根据三角函数值的大小,先找出α 在0~2π (或 ~ππ- )内 的取值 ,再加上2()k k Z π∈ 即可.。

三角函数典型题型归纳

三角函数典型题型归纳

三角函数典型题型归纳三角函数专题题型全归纳
第七章:三角函数
第一节:三角函数概念及同角三角函数关系
题型一:概念辨析
题型二:象限角及终边相同的角
题型三:扇形的弧长及面积公式
题型四:三角函数的定义及应用
题型五:同角三角函数直接应用
题型六:同角三角函数之弦的齐次式
第二节:诱导公式及恒等变换
题型一:诱导公式的运用
题型二:恒等变换
题型三:角的拼凑
第三节:三角函数的图像及性质
题型一:三角函数的周期
题型二:三角函数的定义域
题型三:三角函数的单调性
题型四:三角函数的对称性
题型五:三角函数的奇偶性
题型六:三角函数的值域
第四节:三角函数的图像变换及综合
题型一:图像变换
题型二:已知图像求解解析式
题型三:三角函数性质综合(多选题专练)题型四:三角函数解答题
题型五:三角函数实际应用
第五节:解三角形
题型一:正余弦定理选择
题型二:边角互换
题型三:与三角形面积有关
题型四:三角形形状判断
题型五:三角形的个数判断
题型六:最值与取值范围
题型七:解三角形在平面图形中的运用
题型八:解三角形的实际应用
题型九:解三角形解答题专练。

三角函数题型分类总结(18篇)

三角函数题型分类总结(18篇)

三角函数题型分类总结第1篇sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]三角函数题型分类总结第2篇诱导公式sin(-α)=-sinαcos(-α)=cosαtan(—a)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtanA=sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA。

sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 三角函数题型分类总结第3篇倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1tan α _cot α=1一个特殊公式(sina+sinθ)_(sina-sinθ)=sin(a+θ)_sin(a-θ)证明:(sina+sinθ)_(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] _2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)_sin(a-θ)坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示, 即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么 i=h/l=tan a.锐角三角函数公式正弦: sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式sin2A=2sinA·cosA(a)-Sin^2(a)(a)(a)-1即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 两角和公式tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ积化和差sinαsinβ =-[cos(α+β)-cos(α-β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)=sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)三角函数题型分类总结第4篇下文《雅思听力考试题型》由出国雅思频道为您整理,供您参考,了解更多考试信息,请收藏本章。

高考题型突破精讲《三角函数(一)》

高考题型突破精讲《三角函数(一)》

高考题型归纳总结《三角函数(一)》2013.11.5题型一、考察三角函数的定义例1.(2009北京)若角α的终边经过点(12)P -,,则tan 2α的值为 .与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为105,求sin(2)αβ+的值;作业2.(2013西城二模文)如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且,)62ππ∈(α.将角α的终边按逆时针方向旋转3π,交单位圆于点B .记),(),,(2211y x B y x A . (Ⅰ)若311=x ,求2x ; (Ⅱ)分别过,A B 作x 轴的垂线,垂足依次为,C D .记△AOC 的面积为1S ,△BOD 的面积为2S .若122S S =,求角α的值.例3.求下列三角函数的最值以及取得最值时的x 取值(1)2sin y x =;当x = 时,max y = ;当x = 时,min y = ;(2)22sin ,[,]63y x x ππ=∈;当x = 时,max y = ; 解答过程:当x = 时,min y = ;(3)2sin(2)6y x π=+;当x = 时,max y = ; 解答过程:当x = 时,min y = ;(4)2sin(2),[0,]64y x x ππ=+∈; 当x = 时,max y = ; 解答过程:当x = 时,min y = ;(5)212sin 2sin y x x =--;当sin x = 时,max y = ;解答过程:当sin x = 时,min y = ;作业3.求下列三角函数的最值以及取得最值时的x 取值(1)2sin 3y x =-+;当x = 时,max y = ;当x = 时,min y = ;(2)2sin(2),[0,]32y x x ππ=-∈ 当x = 时,max y = ; 解答过程:当x = 时,min y = ;(3)(2010北京)22cos 2sin 4cos y x x x =+-解:例3.求下列函数的单调递增区间(1)2()sin cos f x x x x = (4)2()sin cos f x x x x =+,[0,]x π∈,(2)2()sin cos f x x x x = (5)2()sin cos f x x x x =,3[0,]2x π∈(3)2()cos cos f x x x x = (6)2()cos cos f x x x x =-,3[0,]2x π∈作业4.已知函数2211()cos sin cos sin 22f x x x x x =--,求)(x f 的单调区间.作业5.(2011北京改编)已知函数()4cos sin()16f x x x π=+-(Ⅰ)求()f x 在3[0,]2x π∈上的单调递增区间; (Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值及取得最值时x 的取值集合.作业6.(2013海淀二模改编)已知函数2()2cos )f x x x =-+ (1)求()f x 的最小正周期;(2)求()f x 的最值以及取得最值时的x 取值集合;(3)求()f x 在区间[0,]π上的最大值和最小值以及取得最值时的x 取值集合; (4)求()f x 的单调递减区间;(5)求()f x 在[0,]x π∈的单调递减区间.。

三角函数题型归类

三角函数题型归类

三角函数题型归类一、三角函数性质1.角度变换:利用三角函数的和差角公式、倍角公式和半角公式进行角度变换,进而求出函数值。

2.函数值的符号:根据角的位置和范围,确定三角函数值的符号。

3.恒等式证明:利用三角函数的恒等式证明一些等式或不等式。

二、三角函数恒等变换1.和差倍角公式:利用和差倍角公式将两个角差的余弦、正切和正弦化成两个角和的余弦、正切和正弦。

2.半角公式:利用半角公式将一个角的余弦、正切和正弦化成两个角度一半的余弦、正切和正弦或反之。

3.积化和差与和差化积公式:利用积化和差与和差化积公式将两个角的正弦、余弦和正切的乘积化成两个角的和与差的三角函数。

三、三角函数图像与性质1.图像绘制:根据三角函数的定义和性质,绘制三角函数的图像。

2.周期性:理解并应用三角函数的周期性,如正弦函数、余弦函数的最小正周期。

3.奇偶性:判断并应用三角函数的奇偶性,如正弦函数、余弦函数为奇函数,正切函数为奇函数。

4.最值:根据三角函数的性质,判断并求出三角函数的最值。

四、三角函数最值问题1.有界性:利用三角函数的有界性,求出最值。

2.配方法:利用配方法将三角函数化成顶点式或二次函数的形式,进而求出最值。

3.恒等变换:利用恒等变换将三角函数化成有确定最值的函数形式,进而求出最值。

五、三角函数应用1.物理应用:利用三角函数解决物理中的一些问题,如振动、波动等问题。

2.几何应用:利用三角函数解决几何中的一些问题,如角度、距离等问题。

3.实际问题:利用三角函数解决一些实际问题,如建筑设计、地球自转等问题。

六、三角函数方程根问题1.求解方程:利用三角函数的性质求解一些关于三角函数的方程。

2.根的分布:利用三角函数的性质判断方程根的分布情况。

3.多解问题:利用三角函数的性质求解一些多解的方程问题。

七、三角函数不等式证明1.利用三角函数的性质证明一些不等式。

2.利用三角函数的恒等式证明一些不等式。

高一数学-三角函数常见题型与解法(1)

高一数学-三角函数常见题型与解法(1)

三角函数的题型和方法、思想方法1、三角函数恒等变形的基本策略。

( 1)常值代换:特别是用“ 1”的代换,如 1=cos 2θ+sin 2θ=tanx · cotx=tan45 °等。

2 2 2 2 2 2sinx+2cos x=(sin x+cos x)+cos x=1+cos x ;配凑角: α=( α+3)降次与升次。

即倍角公式降次与半角公式升次。

4)化弦(切)法。

将三角函数利用同角三角函数基本关系化成弦(切) 5)引入辅助角。

asin θ +bcos θ = a 2 b 2 sin ( θ+ ),这里辅助角所在象限由 a 、b 的符号确定,角的值由 tan = b 确定。

a( 6)万能代换法。

巧用万能公式可将三角函数化成 tan 的有理式。

22、证明三角等式的思路和方法。

(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。

(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。

3、证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦 函数的有界性,利用单位圆三角函数线及判别法等。

4、解答三角高考题的策略。

( 1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析” 。

(2)寻找联系:运用相关公式,找出差异之间的内在联系。

(3)合理转化:选择恰当的公式,促使差异的转化。

二、注意事项对于三角函数进行恒等变形,是三角知识的综合应用,其题目类型多样,变化似乎复杂,处理这类问 题,注意以下几个方面:1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能 低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。

2、三角变换的一般思维与常用方法。

注意角的关系的研究,既注意到和、差、倍、半的相对性,如1( ) ( ) 2 1 2 .也要注意题目中所给的各角之间的关系。

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结题型归纳及思路提示题型1 函数解析式确定函数性质【思路提示】一般所给函数为y =A sin(ω x +φ)或y =A cos(ω x +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。

一、函数的奇偶性例1 f (x )=sin ()x ϕ+〔0≤ϕ<π〕是R 上的偶函数,那么ϕ等于〔 〕A.0 B .4π C .2πD .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()();y A x k k Z ϕϕπ=+=∈(1)若是奇函数,则sin()+();2y A x k k Z πϕϕπ=+=∈(2)若是偶函数,则cos()();2y A x k k Z πϕϕπ=+=+∈(3)若是奇函数,则 cos()();y A x k k Z ϕϕπ=+=∈(4)若是偶函数,则tan()().2k y A x k Z πϕϕ=+=∈(5)若是奇函数,则.()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( )A.0 B .1 C .1- D .1±2.0()cos()()R f x x x R ϕϕϕ∈==+∈变式设,则“”是“为偶函数”的( )A 充分不必要条件B .必要不充分条C .充要条件D .无关条件3.()sin()0()f x x f x ωϕω=+>变式设,其中,则是偶函数的充要条件是( )A.(0)1f = B .(0)0f = C .'(0)1f = D .'(0)0f =2.()sin(2)()()2f x x x R f x π=-∈例设,则是( )A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .2π最小正周期为的奇函数 D .2π最小正周期为的偶函数2()sin 1()()f x x x R f x =-∈变式1.若,则是( )A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数 D .π最小正周期为2的偶函数2.(0,)2ππ变式下列函数中,既在递增,又是以为周期的偶函数的是( )A.cos 2y x = B .|sin 2|y x = C .|cos 2|y x = D .|sin |y x =二、函数的周期性3.sin(2)cos(2)66y x x ππ=++例函数的最小正周期为( )A.2π B .4πC .2πD .π【评注】关于三角函数周期的几个重要结论:sin()b,cos()b,tan()b22,,.||||||y A x y A x y A x ωϕωϕωϕπππωωω=++=++=++(1)函数的周期分别为|sin()|,|cos()|,|tan()|.||y A x y A x y A x πωϕωϕωϕω=+=+=+(2)函数的周期均为2|sin()b |(b 0),|cos()b |(b 0).||y A x y A x πωϕωϕω=++≠=++≠(3)函数的周期均为1.sin(2)cos(2)63y x x ππ=+++变式函数的最小正周期和最大值分别为( )A.,1π B.π C .2,1π D.2π()sin (sin cos ),()f x x x x f x =-变式2.若则的最小正周期是________.()sin 3|sin 3|()f x x x f x =+变式3.若则是( )A.3π最小正周期为的周期函数 B .23π最小正周期为的周期函数 C .π最小正周期为2的周期函数 D .非周期函数三、函数的单调性.sin(2)([0,])6y x x ππ=-∈例4函数的递增区间是( )A.[0,]3π B .7[,]1212ππ C .5[,]36ππD .5[,]6ππ【评注】求三角函数的单调区间:sin()(0,0)y A x A ωϕω=+>>若函数则22()22322()22(3)sin()0,0sin()sin()(4)cos()tan()k x k k Z k x k k Z y A x A y A x y A x y A x y A x πππωϕππππωϕπωϕωωϕωϕωϕωϕ-≤+≤+∈+≤+≤+∈=+><=---=--=+=+(1)函数的递增区间由决定;(2)函数的递减区间由决定;若函数中,可将函数变为则的增区间为原函数的减区间,减区间为原函数的增区间;对于函数和单调性的讨论同上。

三角函数题型总结(1)

三角函数题型总结(1)

第五章 三角函数1.(1)求终边与30α=重合的角的集合;(2)求终边与直线y x =重合的角的集合;2.已知α是第二象限角,则2α为第几象限;3.(1)分别求25,,333πππ的正弦、余弦、正切值(此题用单位圆和诱导公式两种方法做)(2)角α的终边经过点()3,4--,求角α的正弦、余弦、正切值;4.若一扇形的圆心角为72,半径为20cm ,则扇形的弧长、面积;5.利用诱导公式(一——四)化简,并求具体的值(1)sin 390 24cos6π 25tan 6π 5sin 3π⎛⎫-⎪⎝⎭47sin 6π⎛⎫- ⎪⎝⎭(2)4sin3π 7cos 6π 5tan 4π (3)sin 6π⎛⎫- ⎪⎝⎭ cos 6π⎛⎫- ⎪⎝⎭ tan 6π⎛⎫- ⎪⎝⎭(4)2sin3π 5cos 6π3tan 4π 6.利用同角三角函数的基本关系求解(默写平方关系及其变式和商数关系) (1)已知3sin 5α=,且α为第二象限角,求cos ,tan αα;(2)已知3sin 5α=,求cos ,tan αα;(3)已知()1sin 2πα-=-,计算()sin 5πα-、sin 2πα⎛⎫+ ⎪⎝⎭、3cos 2πα⎛⎫- ⎪⎝⎭、sin 2πα⎛⎫- ⎪⎝⎭;7、已知sin a α=,求下列各值(重要凑角法:相加或相减等于2π的倍数,α同号相减,α异号相加); (1)当2παβ+=,求cos β的值;(2)当2πβα-=,求cos β的值;(3)当αβπ+=,求sin β的值;(4)当βαπ-=,求sin β的值; 已知sin 3a πα⎛⎫+=⎪⎝⎭,分别求cos 6πα⎛⎫- ⎪⎝⎭、cos 6πα⎛⎫- ⎪⎝⎭、5cos 6πα⎛⎫+ ⎪⎝⎭、2cos 3πα⎛⎫- ⎪⎝⎭、4sin 3πα⎛⎫+ ⎪⎝⎭;8、已知tan 2α=,求:2sin cos 3sin cos αααα+- 22222sin cos 3sin cos αααα+- sin cos αα 2cos 2sin 2αα+ sin 2α cos 2α9、画图可根据图像的“伸缩平移”,也可以“五点法”作图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 - α , 例 1. (1)求值: cos600 ;(2)化简: cos 2(π精品资料 欢迎下载三角函数基础题型归类(一)1、运用诱导公式化简与求值:要求:掌握 2k π + α , π + α , -α , π - α ,ππ2 + α 等诱导公式. 记忆口诀:奇变偶不变,符号看象限.π -α )+cos 2( +α )441 3π练 1 (1)若 cos(π +α )= - ,2 2<α <2π , 则 sin(2π -α )等于 . (2)若 f (cos x) = cos3 x ,那么 f (sin30 ︒) 的值为 .17(3)sin( - π )的值为 .6(4)2、运用同角关系化简与求值:sin α 要求:掌握同角二式( s in 2 α + cos 2 α = 1 , tan α =),并能灵活运用. 方法:平方法、切弦互化.cos α例 2 (1)化简 sin x 1 + sin x 1- ; (2)已知 sinx+cosx = , 且 0<x <π , 求 tanx 的值.tan x - tan x s in x cos x 51 π π练 2 (1)已知 sin α ·cos α = ,且 <α < ,则 cos α -sin α 的值为.8 4 2 1 + 2sin α cos α(2)已知 tan α =3, 计算:(i ) ; (ii )sin 2α -3sin α cos α +4cos 2α .sin 2 α - cos 2 α3、运用和差角、倍角公式化简与求值:要求:掌握和差角公式、倍角公式,能够顺用、逆用、活用,掌握基本方法(平方、1 的妙用、变角、切 弦互化、方程思想、整体思想).π例 3 (1)已知 tan ( +α )=2,求 sin2α +sin 2α +cos2α 的值.4π 3π π3 3π 5(2)已知 0 < β < < α < , cos( - α ) = ,sin( + β ) = ,求 cos(2α + 2β ) 的值4 4 45 4 13(6)已知 cos α + cos β = , sin α + sin β = ,则 cos (α -β ) 的值为.(10)已知 sin (α +β )= ,sin (α -β )= ,求 的值.12 时取得最大值4。

(3)若( α + )= ,求 s in α.练 3 (1)若 sin (π 2 精品资料 欢迎下载 3-α )= ,则 cos2α = .5πππ(2)已知 tan( - θ) + tan( + θ ) = 4, 且 -π < θ< - , 则 sin θ =.4 4 2 2 (3)如果 tan(α + β ) = ,tan( β -5 π 1 π) = ,那么 tan(α + )= .4 4 4 (4)如果 cos2 x = 3 5,那么 sin 4x +cos 4x = .1 1(5)已知α ,β ∈(0,π )且 tan(α - β ) = , tan β = - ,则 2α - β 的值为.2 73 45 5(7)(8)(9)2 1 tan α3 5 tan β(11)(本小题满分 l4 分)已知函数f (x ) = A s in (3x + ϕ )( A >0,x ∈ (-∞, +∞ ),<ϕ<π),在x =(1)求f (x)的最小周期 (2)求f (x)的解析式2 π 12f 3 12 5π(12)(本小题满分12分)已知向量 a = (sin θ , -2)与b = (1,cos θ ) 互相垂直,其中θ ∈ (0, π2 ) .(1)求 sin θ和cos θ 的值;(2)若 sin(θ - ϕ ) = 10 π,0 < ϕ < ,求 cos ϕ 的值.10 2(13)(12 分) 已知函数 f ( x ) = 2 s in x - ⎪ , x ∈ R . (1)求 f ⎪ 的值;π ⎫ 6 ⎭ α , β ∈ ⎡⎢0, ⎤⎥ , f ⎛ 3α + ⎪ = , f (3β + 2π ) = ,求 cos (α + β )的值。

(15)△ABC 中,已知 sinA = 3 .⎛ 1 ⎛ 5π ⎫⎝ 3 ⎝ 4 ⎭(2)设π ⎣ 2 ⎦ ⎝π ⎫ 10 6 2 ⎭ 13 5(14)若 f(sinx)=3-cos2x ,则 f(cosx)=(A )3-cos2x(B )3-sin2x (C )3+cos2x (D )3+sin2x5, cosB = , 则 sin(A +B)的值为.5 134、结合三角变换研究三角函数性质:要求:熟练进行三角变换,将 a s in x + b c os x 化为一个三角函数后研究性质. 方法:降次、化一、整体. 例 4 已知函数 f ( x ) = 2sin 2 x + 2sin x cos x - 1, x ∈ R. .(i )求 f ( x ) 的最小正周期及 f ( x ) 取得最小值时 x 的集合;(ii )在平面直角坐标系中画出函数 f ( x ) 在一个周期内的图象; (iii )说明 f ( x ) 的图象如何由 y = sin x 变换得到;(iv )求 f ( x ) 的单调区间、对称轴方程.练 4 (1)若函数 y=2sinx + a cosx +4 的最小值为 1,则 a = .1 - tan2 2 x x x(2)函数 的最小正周期为 ;函数 y = sin + sin(60 - ) 的最大值是 .1 + tan2 2 x 2 25(3)已知函数 f ( x ) = 5sin x ⋅ cos x - 5 3cos 2 x + 3 ( x ∈ R) . 求 f ( x ) 的最小正周期、单调区间、图象的2对称轴,对称中心.5、运用单位圆及三角函数线:要求:掌握三角函数线,利用它解简单的三角方程与三角不等式 方法:数形结合.例 5 (1)已知π< θ <4π2,则 sin θ 、 cos θ 、 tan θ 的大小顺序为 .(2)函数 f ( x ) = log (sin x - cos x) 的定义域为.1 21练 5 (1)若 cos α > - , 则角α的取值集合为____________.2(2)在区间(0,2 π )内,使 sinx <cosx 成立的 x 的取值范围.例 7 (1)角α 的终边过点 P (-8m ,-6cos60°)且 cos α =- ,则 m 的值是 .13 46、弧度制与扇形弧长、面积公式:要求:掌握扇形的弧长与面积计算公式,掌握弧度制. 方法:方程思想.例 6 某扇形的面积为 1 cm 2,它的周长为 4 cm ,那么该扇形圆心角的弧度数为 . 练 6 (1)终边在直线 y = 3x 上的所有角的集合为 ,其中在-2π ~2π 间的角有.(2)若α 为第三象限角,那么-α , α2、2α 为第几象限的角?7、三角函数的定义、定义域与值域:要求:掌握三角函数定义(单位圆、终边上点),能求定义域与值域. 方法:定义法、数形结合、整体.45(2)当 x ∈[- π , π] 时,函数 f ( x ) = sin x + 3 cos x 的值域为2 2.练 7 (1)函数 f ( x ) = - tan(2 x -π3) + 1 的定义域为____________.(2)函数 y = 4 2 sin x ⋅ cos x + cos 2 x 的值域为.ππ (3)把函数 y =sin(2x + )的图像上各点的横坐标变为原来的 ,再把所得图像向右平移 ,得到.3 88、 三角函数的图象与性质:要求:掌握五点法作图、给图求式,由图象研究性质. 方法:五点法、待定系数法、数形结合、整体.例 8 (1)已知函数 f ( x ) = tan(2 x +π6 ) + 2 .求 f ( x) 的最小正周期、定义域、单调区间.(2)已知函数 y = 3sin(2 x +π4) . (i )求此函数的周期,用“五点法”作出其在长度为一个周期的闭区间上的简图. (ii )求此函数的最小值及取最小值时相应的 x 值的集合练 8(1)函数 y = A s in(ω x + ϕ) ( A > 0, ω > 0, ϕ < π ) 最高点 D 的坐标是 (2, 2) , 由最高点运动到相邻的最低点时,函数图象与x 轴的交点坐标是(4,0),则函数 的表达式是 .(2)如图,它表示电流 I = A s in(ωt + ϕ) ( A > 0,ω > 0) 在一个周期内的图象. 则 其解析式为 . π(3)函数 y = log sin(2 x + ) 的单调减区间为.1 2(4)函数 y = 2cos x, x ∈[0,2 π ] 的图象和直线 y =2 所围成的封闭图形的面积为.(5)画出函数 y = 3sin(2 x +π3 ) ,x ∈R 的简图. 并有图象研究单调区间、对称轴、对称中心.。

相关文档
最新文档