08-09上海高考数学模拟试题汇编第13部分算法

合集下载

2009高考数学模拟试题13套数学4

2009高考数学模拟试题13套数学4

试卷类型:B2009年教师命题比赛数学科试题本试卷共4页,21小题,满分150分。

考试用时120分钟1. 点(1, - 1)到直线x — y + 1 = 0的距离是若复数z 满足(•.. 3 - 3i)z = 6i (i 是虚数单位),则z=参考公式:1锥体的体积公式VSh ,其中S 是锥体的底面积,h 是锥体的咼. 3如果事件 A 、B 互斥,那么P(A B) _P(A) • P(B). 如果事件 A 、B 相互独立,那么 P(AB)-P(A)P(B).k kn kP k C p 1 - p满分40分•在每小题给出的四个选项中。

只有一项 一、选择题:本大题共 8小题,每小题5分, 是符合题目要求的。

绝密★启用前2.A.-B.C. 3 .^i2 2 D.3 _13i23 .设1曲1 —ta n 日=3 2、、. 2?则sin2r 的值为(4. 设有三个函数,第一个函数是y=f(x),它的图象与第二个函数关于直线x-y=0对称,而第三个函数与第二个函数的图象关于A. y=-f(x) B . y=f(-x) C y轴对称,那么第三个函数是-1.y=-f (x) D.-1y=f (-x)7•如右图,该程序运行后输出的结果是();8 •如果直线y = kx • 1与圆x 2 y 2 • kx • my - 4 = 0交于 M 、N 两点,且 M 、N 关于直线x ,y =0对称,则不等"kx 一 y +1 H 0式组 kx - my _ 0 ,表示的平面区域的面积是( )y -0 1 1 A •B C . 1 D • 242二、填空题:本大题共 7小题,每小题5分,满分30分•其中13〜15题是选做题,考生只能 选做两题,三题全答的,只计算前两题得分.9.已知f (x) = ax 2 bx 3a b 是偶函数,定义域为[a-1,2a ],则a b = __________________ 10. 若P (2, -1)为圆(x —1)2+y 2=25的弦AB 的中点,则直线 AB 的方程是 _______________________ 。

2008年高考数学试题分类汇编—概率统计

2008年高考数学试题分类汇编—概率统计

2008年普通高等学校招生全国统一考试数学分类解析—概率统计一.选择题:1. (安徽理)(10).设两个正态分布2111()(0)N μσσ>,和2222()(0)N μσσ>,的密度函数图像如图所示。

则有( A ) A . 1212,μμσσ<< B .1212,μμσσ<> C .1212,μμσσ><D .1212,μμσσ>>2.(福建理)(5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是 (B ) A.16625 B. 96625 C. 192625 D. 2566253. (福建文)(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 (C )A.12125 B.16125 C.48125 D.961254. (广东理)(3).某校共有学生2000名,各年级男、女生人数如表1.已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C ) A .24 B .18 C .16 D .12 5.(湖南理) 4.设随机变量ζ服从正态分布N (2,9) ,若P (ζ>c+1)=P (ζ<c -)1,则c =(B)A.1B.2C.3D.46. (江西文)(11).电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 (C )A .1180 B .1288 C .1360D .14807. (辽宁理文)(7).4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C ) A.13 B.12 C.23 D.348.(山东理)(7)在某地的奥运火炬传递活动中,有编为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编能组成3为公差的等差数列的概率为(B ) (A )511(B )681(C )3061(D )40819.(山东理) (8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为(B )(A )304.6 (B )303.6 (C)302.6 (D)301.610.(山东文)9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( B )ABC .3D .8510.(陕西文)().某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .15 11.(重庆理)(5)已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<=(D )(A)15(B)14(C)13(D)1212. (重庆文)(5)某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是(D )(A)简单随机抽样法(B)抽签法(C)随机数表法(D)分层抽样法13.(重庆文)(9)从编为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大码是6的概率为 (B )(A)184(B)121(C)25(D)35二.填空题:1.(广东文) (11).为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品7420136203851192数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85,[)85,95由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[)55,75的人数是 13 .2.(海南宁夏理文)(16).从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352 乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论: ① ; ② .以下任填两个:(1).乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度). (2).甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大). (3).甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm . (4).乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.3. (湖北文)11.一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是 10 . 4.(湖北文)14.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 0.98 .5. (湖南理)15.对有n (n ≥4)个元素的总体{1,2,3,…,n }进行抽样,先将总体分成两个子总体{1,2,…,m }和{m +1、m +2,…,n }(m 是给定的正整数,且2≤m ≤n -2),再从每个子总体中各随机抽取2个元素组成样本,用P i j 表示元素i 和f 同时出现在样本中的概率,则3 1 277 5 5 0 28 4 5 4 2 29 2 5 8 7 3 3 1 30 4 6 79 4 0 31 2 3 5 5 6 888 5 5 3 32 0 2 2 4 7 9 7 4 1 33 1 3 6 734 3 2 35 6 甲 乙P 1m =4()m n m -;所有P if (1≤i <j ≤)n 的和等于 6 .6. (湖南文)(12)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:则该地区生活不能自理的老人中男性比女性约多____60____人。

2010上海高考数学模拟试题汇编第13部分算法.doc

2010上海高考数学模拟试题汇编第13部分算法.doc
1 1 1 M 1 1
输入 a1,a2,a3,a4
n←1,M←a1 n←n+1 M←an an>M 是
记 M 为下列程序框图的输出结果,则行列式 -1 1 M 中元素 否 否
1 的代数余子式的值是(
A. 2 B. 2
) C.
13 2
D.
13 2
n>4 是 输出 M
答案: 答案:A 结束 二.填空题 1. (上海市宝山区 2010 学年高三年级第一次质量调研 11)如果执行下面的程序框图,那么 输出的 S =_________ . 开始 k←1 ← S←0 ← k≤100? ≤ 是 S←S+2k-1 ←S+2kk←k+1 ← 输出S 输出 结束
P > 100

A←2A+1
输出 I
(第 1 题图)
(第 2 题图) (第 3 题图) 2 (上海市静安区 2010 学年高三年级第一次质量调研第 11 题) 执行右面的程序框图,如 答案: 果输入的 k = 50 ,那么输出的 S = ________________.答案: 2548 答案 3 (闵行区 2010 学年第一学期高三质量监控理卷第 8 题)根据右面的框图,打印的最后一 个数据是 . 答案:63 答案:
4 (上海市青浦区 2010 学年高三年级第一次质量调研第 14 题)如果执行右面的程序框图, 那么输出的 s 是 ( ) A. 2550 B. 2550 C. 2548 D. 2552 开始 答案: 答案:C k=1 S=0 =0 k≥-50 是
S=S-2k

输出 S 结束
k=k-1

开始

答案:10000 2.(上海虹口区 08 学年高三数学第一学期期末试卷 13) 如右图所示的程序框图的输出结果是 A. 2 答案:C B. 4 C. 8 D. 16 (

2009高考数学模拟试题13套数学11

2009高考数学模拟试题13套数学11

2009年普通高等学校招生全国统一考试(广东卷)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个 选项中,只有一项是符合要求的. 1 .设 A ={x| y =1 n(1 -x)}, B ={ y | y = e^1},则 A n B 是()A. GB . RC . (0,1)D . (-1,1)2 .已知函数y=ax 2(a=0)在点(1, a )处的切线的倾斜角是450,则a 的值是()A . 1B . -C . 2D . 4 3.若(x 1)5 =£0 ai(x-1) a 2(x _1)2 ... a 5(x-1)5,贝U & =( )已知点P 在焦点为F 1 (5, 0)和F 2 (-5,0),渐近线y=£x 的双曲线上,且3PF 1 P F 2 =0,贝U S PF 1F 2 的值是( )A . 32B . 16C . 18、£、|.:’是两个相交平面,则使“直线a 、b 异面” )6 .在. ABC 中,“ A>B ”是“ sin A sin B ”成立的B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.电视台连续播5个广告(其中有3个不同的公益广告和2个商业广告),现要 求2个商业广告不能连续播放,某两个公益广告必须连续播放,则不同的安 排播放方法共有()种。

A . 120B . 48C . 24D . 208. 已知定义在R 上的函数f(x)满足f(x) - -f (x 弓)且f(_2) =f(_1) - _1, f(0)=2,则f ( 1 ) f ( 2 )f ^3 ) ■ f( 2 0f0 5 )(f2 0 0 6 )=A . 1B . -2C . -1D . 0二、填空题:本大题共7小题,每小题5分,满分30分.其中13~15题是选做 题,考生只能选做二题,三题全答的,只计算前两题得分. 9. 函数 f (a) = 0(6x 2+4ax+a 2)dx 的最小值是 ____________________ ;x 亠y -3 _010.若x,y满足汇:皂,设yg 则k的取值范围是 -------------------------;11.设随机变量•的分布为 P(F=k) =m(2)k (k =0,1,2 且 m - R ),则 P(F=2) = ____________ ;312.在等比数列{ a n}中,已知a1 ■a 2 ■ a3 ^ , a 4 ■ a 5 ■ a ^-2 ,则该数列前15项和A . 32 C . -1 D . -32 5 .设a 、b 是两条不相交的直线, 成立的一个充分条件是(A . a // 用且 b // -C . 丄:•且 B . a // :•且 b L ■:D . a 在:•内的射影与b 在]内的射影平行4. A .充要条件13 .(不等式选讲选做题)X 「1 (x :: 1)设f(x )「込3 (X 二且x=0),则不等式 f (x)_1的解集 .x ” _是 ______________________ ; 14. (坐标系与参数方程选做题)直线;-co^=2上的点M 到圆亍=2sinn 的切线长的最小值是 __________ ; 15. (几何证明选讲选做题)一 1圆O 的两条弦AE 、 CD 相交于圆内一点P,且AP=PB=4, PC=寸pD,则 CD =_______________________ .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和 演算步骤.16. (本小题满分12分)、,A y已知函数 f (x) =2sin 2x+sin 2x —1,x^R (1) 求f (x)取得最大值时x 的集合; 2-(2)在平面直角坐标系中画出函数f (x)在[0,兀]上的图象• - 17. (本小题满分12分)—__已知函数f(x)」g(x+a —2),其中a 为大于零的常数.sx(1) 求函数f(x)的定义域;(2) 若对任意X ・[2, ■::),恒有f(x) 0,试确定a 的取值范围 18. (本小题满分14分)已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,且.DAB =60 ,AD =A A ,F 为棱BB 1的中点,M 为线段AC 1的中点. (1) 求证:直线MF//平面ABCD ;(2) 求证:平面 AFC 1丄平面ACC 1A 1;(3) 求平面AFC 1与平面ABCD 所成二面角的大小19. (本小题满分14分)已知偶函数f (x),对任意X 1,X 2, R , 恒有 f (x^-x 2) f (咅)亠 f (x 2)亠2XM T ,求(1) f (0)的值; (2) f (x)的表达式;(3)令 F(x) =a [f (x)] (a ■ 0且 a = 1),求 F(x)在(0,上的最AB值.20 (本小题满分14分)数列:a n /的各项均为正值,a1 =1,对任意n・N*,a2.-^4a n(a n 1),b n ^log2(a n 1)都成立.(1)求数列?的通项公式;(2)当k 7且k・N*时,证明:对任意n・N*都有丄•亠1—-成b n b n 申b n _|2 b nkJ 2立.21.(本小题满分14分)已知双曲线C的中心在坐标原点,对称轴为坐标轴,离心率.2,一条准线的方程为•一2x 一1 =0.(1)求双曲线C的方程;(2)设直线I过点A(0,1)且斜率为k (k>0 ),问:在双曲线C的右支上是否存在唯一点B,它到直线I的距离等于1。

2021年高考数学真题和模拟题分类汇编专题13排列组合与二项式定理含解析

2021年高考数学真题和模拟题分类汇编专题13排列组合与二项式定理含解析
产党成立 100 周年革命歌曲展演.现从《歌唱祖国》《英雄赞歌》《唱支山歌给党听》《毛
主席派人来》4 首独唱歌曲和《没有共产党就没有新中国》《我和我的祖国》2 首合唱歌曲
中共选出 4 首歌曲安排演出,要求最后一首歌曲必须是合唱,则不同的安排方法共有(
A.14
B.48
C.72

D.120
【答案】D.
【解析】根据题意,在 2 首合唱歌曲中任选 1 首,安排在最后,有 2 种安排方法,
专题 13 排列组合与二项式定理
一、选择题部分
1.(2021•河南开封三模•理 T11)某校组织甲、乙两个班的学生到“农耕村”参加社会实践活动,
某天安排有酿酒、油坊、陶艺、打铁、纺织、竹编制作共六项活动可供选择,每个班上午、
下午各安排一项活动(不重复),且同一时间内每项活动都只允许一个班参加,则活动安
令 x=﹣1,则 f(﹣1)=a0﹣a1+a2﹣a3+a4﹣a5+a6﹣a7=(a﹣1)(﹣1﹣1)5=0;②
①﹣②得,2(a1+a3+a5+a7)=64(a﹣1),∴a1+a3+a5+a7=32(a﹣1)=64,
解得 a=3.
3.(2021•河南焦作三模•理 T7)为了加强新型冠状病毒疫情防控,某社区派遣甲、乙、丙、丁、
排方案的种数为(
A.126

B.360
C.600
D.630
【答案】D.
【解析】第一类,上下午共安排 4 个活动(上午 2 个,下午 2 个)分配给甲,乙,故有 A62A42
=360 种,
第二类,上下午共安排 3 个活动,(上午 2 个下午 1 个,或上午 1 个下午 2 个)分配给甲,

2009高考数学模拟试题13套数学8

2009高考数学模拟试题13套数学8

数学(理科)说明:本试卷共6页,21小题,满分150分•考试用时120分钟. 参考公式:如果事件 A, B 互斥,那么P(A B) = P(A) P(B) • 如果事件A, B 相互独立,那么 P(A B)二P(A)・P(B) •2x + y W 40, x +2y W 50,4.若变量x , y 满足则z=3x ・2y 的最大值是()x > 0, J 》0,A .①②B .①③C .①④D .②④6.已知命题p:所有有理数都是实数, 命题q:正数的对数都是负数, 则下列命题中为真命题的是 ()普通高等学校招生全国统一考试(广东模拟卷)2009. 5. 18一、选择题:本大题共 项是符合题目要求的. 8小题,每小题 5分,满分40分.在每小题给出的四个选项中,只有1.1 -i 1 i2 2(1 i) (1-i)B . —i C. 1 D. —12. 3.设x o 是方程In x ,x=4的解,贝U x o 属于区间(A. ( 0,1)B. (1,2)C. (2, 3)3.为了解初中生的身体素质,某地区随机抽取了n 名学生进行跳绳测试,根据所得数据画样本的频 率分布直方图所示,且从左到右第一小组的频 数是100,则n = ___________ 0.0)6- 0XH2■十— 0.008-A . 1000B . 10000 C. 2000 D. 3000D. (3,4)49.5 74J 99.3 124.5 1495⑵(3)⑷ ⑸C • (—p ) (—q )D •R 有大于零的极值点,则(10.已知(1 kx 2)6 ( k 是正整数)的展开式中, x 8的系数小于120,贝U k = _______ 11.抛物线y =-x 2与直线y =5围成的图形的面积是 12 •如下图,第(1)个多边形是由正三角形“扩展“而来,第( 2)个多边形是由正方形“扩展”而来,……,如此类推•设由正n 边形“扩展”而来的多边形的边数为a n ,则a 6 =A • (—p) qB • p q 7.设 a R ,若函数 y =e ax3x , (—p) (—q)) A . a I 、「3B . a :: -32&已知曲线C : y =2x ,点A (0, 1 D. a :: 一3—2)及点B (3, a ),从点A 观察点B ,要使视线不被 住,则实数a 的取值范围是( )A . (4,+^)B . ( — 8, 4)C . (10,+^)D .(―汽 10)二、填空题:本大题共 7小题,考生作答 6小题,每小题5 分, 满分30分.(—)必做题(9--12题)9.执行右边的程序框图,若 p = 4,则输出的S =/输入(注:框图中的赋值符号 也可以写成 ”或“== I 11旳二越+ 1/输出31 r—£ +丄结束218£ —I~a3a4(二)选做题(13—15题,考生只能从中选做两题)13. 以知圆的直径AB=13cm,C是圆周上一点(不同于A, B点),CD _AB于D, CD =6cm,则BD =14、点M ,N分别是曲线Psin日=2和P = 2cos日上的动点,贝U |MN|的最小值是_________ 。

08-09上海高考数学模拟试题汇编第13部分算法

08-09上海高考数学模拟试题汇编第13部分算法

1word 版本可编辑.欢迎下载支持.上海市期末模拟试题分类汇编第13部分算法09年全国名校上学期期末试题分类汇编,由李良老师组织,囊括课标地区的广东 、安徽、浙江、宁夏海南、山东、江苏、辽宁、福建和大纲地区的上海、北京、湖北、四川、重庆、河南、河北、吉林黑龙江等地市级名校的上学期期中期末试题,有以下名师参加了分类汇编:山东高密市凤城中学 李良 78196261 辽宁省朝阳县高中孙长山 408982247 江苏省厉庄高级中学 尹德勇 1057933554 江苏东海县第二中学刘新沂 963988168 河北省沽源一中刘金泉 463446956 山东诸城四中 高四京376745781 江苏镇江市实验高级中学 丁大江 956477642 广东 邓盛 122073222 河南南乐一中 吉晓波 420705580 江苏无锡 李红艳 542070669 北大附中云南实验学校 杨清泉 325782535 升学指导报 周晓艳 200862157 安徽蒙城一中 王训才 12201377 河南内黄一中 王利坡 464474687 山东省禹城综合高中 宁俊玲 441752489 江苏省射阳中学 邓克云 904382530 江苏邳州运河中学 陈汉伟 793350841 河南省济源第一中学 李永前 452325733 山东高密市凤城中学 石金兰 825501126 安徽蚌埠市龙亢农场中学 崔北祥 874528263 江苏省东台市五烈中学 黄良怀 445643251山东省东营市东营区二中常西国876374718山东苍山县第二中学宋克金 徐敏练389543555我们组成了mathres 数学专家小组,胜任各类图书和稿件的编写任务.欢迎各位报社编辑和出版公司约稿.可直接加入 QQ 群: 4504781;也可直接联系各名师QQ 或邮箱.一.选择题1. (上海市黄浦区2008学年高三年级第一次质量调*11133,(2,)n n n a a a n n N a --==-≥∈,记M 为下列程序框图的输出结果,则行列式1 1 M-1 1 M 1 1 11-的代数余子式的值是( )A. 2B.2-C.132 D.答案:A 二.填空题 1.(上海市宝山区2008学年高三年级第一次质量调研11)如果执行下面的程序框图,那么输出的S =_________ .2word 版本可编辑.欢迎下载支持.4 (上海市青浦区2008学年高三年级第一次质量调研第14题)如果执行右面的程序框图,那么输出的s 是 ( )A .2550B .2550-C .2548D .2552-答案:C。

高考数学模拟复习试卷试题模拟卷第1课时等差数列的前n项和2 14

高考数学模拟复习试卷试题模拟卷第1课时等差数列的前n项和2 14

高考模拟复习试卷试题模拟卷第1课时等差数列的前n项和课后篇巩固探究A组1.设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.63解析:S7==49.答案:C2.设Sn是等差数列{an}的前n项和,S5=10,则a3的值为()A. B.1 C.2 D.3解析:∵S5==5a3,∴a3=S5=×10=2.答案:C3.已知数列{an}的通项公式为an=2n37,则Sn取最小值时n的值为()A.17B.18C.19D.20解析:由≤n≤.∵n∈N+,∴n=18.∴S18最小,此时n=18.答案:B4.等差数列{an}的前n项和为Sn(n=1,2,3,…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则下列选项中为定值的是()A.S17B.S18C.S15D.S14解析:由a5+a8+a11=3a8是定值,可知a8是定值,所以S15==15a8是定值.答案:C5.若两个等差数列{an},{bn}的前n项和分别为An与Bn,且满足(n∈N+),则的值是()A. B. C. D.解析:因为,所以.答案:C6.已知{an}是等差数列,Sn为其前n项和,n∈N+.若a3=16,S20=20,则S10的值为.解析:设等差数列{an}的首项为a1,公差为d.∵a3=a1+2d=16,S20=20a1+d=20,∴解得d=2,a1=20,∴S10=10a1+d=0=110.答案:1107.在等差数列{an}中,前n项和为Sn,若a9=3a5,则=.解析:S17=17a9,S9=9a5,于是×3=.答案:8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差等于.解析:设公差为d,则有5d=S偶S奇=3015=15,于是d=3.答案:39.若等差数列{an}的公差d<0,且a2·a4=12,a2+a4=8.(1)求数列{an}的首项a1和公差d;(2)求数列{an}的前10项和S10的值.解(1)由题意知(a1+d)(a1+3d)=12,(a1+d)+(a1+3d)=8,且d<0,解得a1=8,d=2.(2)S10=10×a1+d=10.10.导学号33194010已知数列{an}是首项为23,公差为整数的等差数列,且前6项均为正,从第7项开始变为负.求:(1)此等差数列的公差d;(2)设前n项和为Sn,求Sn的最大值;(3)当Sn是正数时,求n的最大值.解(1)∵数列{an}首项为23,前6项均为正,从第7项开始变为负,∴a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,解得<d<,又d∈Z,∴d=4.(2)∵d<0,∴{an}是递减数列.又a6>0,a7<0,∴当n=6时,Sn取得最大值,即S6=6×23+×(4)=78.(3)Sn=23n+×(4)>0,整理得n(252n)>0,∴0<n<,又n∈N+,∴n的最大值为12.B组1.设数列{an}为等差数列,公差d=2,Sn为其前n项和,若S10=S11,则a1=()A.18B.20C.22D.24解析:因为S11S10=a11=0,a11=a1+10d=a1+10×(2)=0,所以a1=20.答案:B2.(全国1高考)记Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()A.1B.2C.4D.8解析:设首项为a1,公差为d,则a4+a5=a1+3d+a1+4d=24,S6=6a1+d=48,联立可得①×3②,得(2115)d=24,即6d=24,所以d=4.答案:C3.等差数列{an}的前n项和记为Sn,若a2+a4+a15的值为一个确定的常数,则下列各数中也是常数的是()A.S7B.S8C.S13D.S15解析:∵a2+a4+a15=3a1+18d=3(a1+6d)=3a7为常数,∴S13==13a7为常数.答案:C4.导学号33194011若等差数列{an}的通项公式是an=12n,其前n项和为Sn,则数列的前11项和为()A.45B.50C.55D.66解析:∵Sn=,∴=n,∴的前11项和为(1+2+3+…+11)=66.故选D.答案:D5.已知等差数列{an}前9项的和等于前4项的和.若a1=1,ak+a4=0,则k=.解析:设等差数列{an}的公差为d,则an=1+(n1)d,∵S4=S9,∴a5+a6+a7+a8+a9=0.∴a7=0,∴1+6d=0,d=.又a4=1+3×,ak=1+(k1)d,由ak+a4=0,得+1+(k1)d=0,将d=代入,可得k=10.答案:106.已知数列{an}为等差数列,其前n项和为Sn,且1+<0.若Sn存在最大值,则满足Sn>0的n的最大值为.解析:因为Sn有最大值,所以数列{an}单调递减,又<1,所以a10>0,a11<0,且a10+a11<0.所以S19=19×=19a10>0,S20=20×=10(a10+a11)<0,故满足Sn>0的n的最大值为19.答案:197.导学号33194012在等差数列{an}中,a1=60,a17=12,求数列{|an|}的前n项和.解数列{an}的公差d==3,∴an=a1+(n1)d=60+(n1)×3=3n63.由an<0得3n63<0,解得n<21.∴数列{an}的前20项是负数,第20项以后的项都为非负数.设Sn,Sn'分别表示数列{an}和{|an|}的前n项和,当n≤20时,Sn'=Sn==n2+n;当n>20时,Sn'=S20+(SnS20)=Sn2S20=60n+×32×n2n+1260.∴数列{|an|}的前n项和Sn'=8.导学号33194013设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.(1)求数列{an}的通项公式及前n项和公式;(2)设数列{bn}的通项公式为bn=,问:是否存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.解(1)设等差数列{an}的公差为d,因为a5+a13=34,S3=9,所以整理得解得所以an=1+(n1)×2=2n1,Sn=n×1+×2=n2.(2)由(1)知bn=,所以b1=,b2=,bm=.若b1,b2,bm(m≥3,m∈N)成等差数列,则2b2=b1+bm,所以,即6(1+t)(2m1+t)=(3+t)(2m1+t)+(2m1)(1+t)(3+t),整理得(m3)t2(m+1)t=0,因为t是正整数,所以(m3)t(m+1)=0,m=3时显然不成立,所以t==1+.又因为m≥3,m∈N,所以m=4或5或7,当m=4时,t=5;当m=5时,t=3;当m=7时,t=2.所以存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

2009高考数学模拟试题13套数学12

2009高考数学模拟试题13套数学12

2009年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷满分150分,考试时间120分钟.互斥,那么 P(A B) P(A) P(B).已知n 是正整数,则a n b n (a b)(a n 1a n 2b则平均产量较高与产量较稳定的分别是 ()A .棉农甲,棉农甲B .棉农甲,棉农乙C .棉农乙,棉农甲D .棉农乙,棉农乙x 24.若 y 2 ,则z x - 2y 的最大值是x y 2A . -4B . -2C . 2D . 45.已知函数f (x) 4sin 2x 4cosx 1 a ,若关于x 的方程f (x) 0在区间[,2 ]上有解,则a 的取值范围是()4 3A. [ 8,0]B.[ 3,5]C.[ 4,5]D.[ 3,2 .21]6.条件p:a 1,条件q: a 1,贝yp 是 q 的( )A •充分非必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要的条件1. 2. 、选择题:本大题共八小题,每小题 目要求的. 5分,共 40分.在每小题给出的四个选项中,只有一项是符合题设复数 已知等差数列 A.11 { a n }中,a 4B.12 C .1~2a 7a 1018,a 6*8 a® 27,右 a k 21,则 k=()C.13D.14(千克/亩)如下表: 参考公式:如果事件n 2 n 1 \ab b ).3. 甲、乙两棉农,统计连续五年的面积产量7.若函数y (2)11 x|m的图象与x轴有公共点,则m的取值范围是A. m<—1C. m> 1 D . 0v m W 1(一) 必做题(9 —12题)199.下图给出的是计算1 2 4 2的值的一个程序框图,则其中空白的判断框内,应填入 __________10•若函数 f(x)满足 f(a b) f(a) f(b),且 f (1)2,则丄0 + 出 + •••+ f(2°°6)f (1) f (3) f(2005)211.函数y log °.7(x 3x 2)的单调递增区间是 ___________________(二) 选做题(13—15题,考生只能从中选做两题)y )(^ a) 9对任意正实数x,y 恒成立,则正实数 a 的最小值为 x y15. ______________________ 底面边长为2的正三棱锥P ABC 中,E 、F 、G 、H 分别是FA 、AC 、BC 、PB 中点,则四边形 的面积取值范围是8•设aR ,若函数y ax e 3x , x11A • a—B • a—33R 有大于零的极值点,则( C • a 3D . a 37小题,考生作答 6小题,每小题5分,共30分.12.若 sin2 av 0, sin —cos > 0,贝U cos1 sin+ sin1 sin13.已知直线的极坐标方程是sin ( -),则极点到该直线的距离是4214.已知不等式(xEFGH、填空题:本大题共三、解答题:本大题共6小题,满分80分•解答需写出文字说明、证明过程和演算步骤16. (本小题满分13分)设0<e <-,曲线x2sin e + y2cos e=1和xJ e-y罰e=1有4个不同的交点(1) 求e的取值范围;(2) 证明这4个交点共圆,并求圆半径的取值范围17. (本小题满分13分)某售货员负责在甲、乙、丙三个柜面上售货,如果在某一个小时内各柜面不需要售货员照顾的概率分别为0.9、0.8、0.7 •假定各个柜面是否需要照顾相互之间没有影响,求在这个小时内:(1) 只有丙柜面需要售货员照顾的概率;(2) 三个柜面最多有一个需要售货员照顾的概率;(3) 三个柜面至少有一个需要售货员照顾的概率.18. (本小题满分14分)ABCD 是如图,四棱锥P ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ADC 60°的菱形,M为PB的中点.(1) 求PA与底面ABCD所成角的大小;(2) 求证:PA平面CDM ;(3) 求二面角D MC B的余弦值.19. (本小题满分14分)20. (本小题满分14分)2 2设函数 f (x) tx 2t x t 1(x R , t 0) • ⑴求f (x)的最小值h(t); 2t m 对t (0,2)恒成立,求实数 m 的取值范围.21. (本小题满分12分)5 2x已知函数f(x)=,设正项数列 a n 满足a 1 =l , a n1f a n .16 8x(1)写出a 2、a 3的值;5(2)试比较a n 与-的大小,并说明理由;已知点A (1, 1)是椭圆2x~2a2爲=1 (a >b >0)上一点,F 1、F 2是椭圆的两焦点,且满足|b 2AF 1 | +AF 2 | =4.(1)求椭圆的两焦点坐标;(2)设点B 是椭圆上任意一点,如果| AB |最大时,求证 A 、B 两点关于原点 0不对称; (3)设点C 、D 是椭圆上两点,直线AC 、AD 的倾斜角互补,试判断直线CD 的斜率是否为定值?⑵若h(t)45 n 1(3)设b n满足b n= —a n,记S n= b i•证明:当n 2 时,S n(2n 1).4 i 1 4一、选择题:DBBC CABD二、填空题:9、i 19 10、2006 11 、 x 1 12、 2 sin(—)213、21 a14、4 解析:(x y)() 1 a 丄 ax 1 a 21 a-、a 1 ,当y x ax 等号成立,x y xy1 a2所以(x y)()的最小值为a 1,.a 21 9, a 4三、解答题2 .x sin16、解:(1 )解方程组2x cos2y cos 2・ y sin1,得1 2 ・x sin 2y coscos sinsincos故两条已知曲线有四个不同的交点的充要条件为,3分cos sin 0(0< 9 < — )0< 9 < — .6 分24(2)设四个交点的坐标为(X i , y i ) (i = 1 , 2, 3, 4), 则:X i 2+ y i 2 = 2cos 9 €( . 2 , 2) (i = 1 , 2, 3, 4) . 10 分 故四个交点共圆,并且这个圆的半径r = 2 cos (4 2,2).13分17、解:设事件A 为“甲柜面不需要售货员照顾”,事件B 为“乙柜面不需要售货员照顾”,事件C 为“丙 柜面不需要售货员照顾”则事件 A 、B 、C 相互独立,且 P(A) = 0.9, P(B) = 0.8, P(C) = 0.7. 2 分(1)设事件D 表示“某一小时内只有丙柜面需要售货员照顾”,则D ABC ,且事件A 、B 、C 相互独15、 解析:用特例法, 当P 点无限远离平面 ABC 时显然所求四边形的面积为无穷;而当 P 点无限接近平面ABC 时(如图所示) ,容易求得面积为••• P(D)= P(A B C ) = P(A) P(B) P( C ) = 0.9X 0.8 X 0.3= 0.216. 4 分(2) 设事件E 表示“某一小时内三个柜面最多有一个需要售货员照顾”,则 E ABC ABC ABC ABC6 分 又ABC 、A B C 、ABC 、AB C 彼此互斥,且 A 、B 、C 、A 、"B 、相互独立 • P(E) P(A B C) P(A B C) P(A B C) P(A B C)=0.9 X 0.8 X 0.7 + 0.1 X 0.8 X 0.7+ 0.9X 0.2 X 0.7+ 0.9 X 0.8X 0.3 = 0.902 9 分(3) 设事件F 表示“某一小时内三个柜面至少有一个需要售货员照顾”,则F ABC10分又A 、B 、C 相互独立P(F) = P(A) P(B) P(C) = 0.9X 0.8 X 0.7 = 0.504• P(F) 1 P(F) = 0.496.13 分18、解:(1)取DC 的中点 O ,由A PDC 是正三角形,有 PO 丄DC .则 NMB 为二面角D MC B 的平面角,在 Rt PAB 中,易得又 平面PDC 丄底面 ABCD , • PO 丄平面 ABCD 于O .连结OA ,则OA 是PA 在底面上的射影.•/ PAO 就是PA 与底面所成角. / ADC=60 °由已知 A PCD 和A ACD 是全等的正三角形,从而求得 OA=OP= 3 . / PAO=45 ° • FA 与底面ABCD 可成角的大小为 45 °⑵ 由底面 ABCD 为菱形且/ ADC=60 ° DC=2, DO=1,有OA 丄DC . 建立空间直角坐标系如图,则 AC 3, 0,0), P(0,0, .3), D(0, 1,0), B( 3, 2, 0)由M 为PB 中点,•Q).(3, 0,ULLTDC (0, 2, 0).uuu LLLLT 3 -PA DM 3 22 LLU ULLT PA DC 0 .3 2 0 0 PA 丄 DM , PA 丄 DC . 3) • PA 丄平面DMC . ⑶ CM (f,0, f), CB (3,1,0).令平面 BMC 的法向量 n (x, y, z), 则n CMP 0,从而x+z=0 ; …由①、②,取x=- 1,则y *.;3, 由⑵知平面CDM 的法向量可取 T cunn PA 2乘 cos n, PA T LLfl- -------------------------- | n || PA | "5 J 6 ••①,z 1 . ILLT PA rn CB 0,从而 3x y 0 . •可取 n ( 1, .3,1). (•3,0, 3), |n||PA法二:(1)方法同上 (2)取AP 的中点N 又 PO CD ,则 CD •所求二面角的余弦值为— ,连接MN 平面APO 1 MN // 丄 AB-2 在 APO 中,AO PO ,则 ON 则PA 平面MCD又在 PAB 中,中位线 6分10分. 14 分5由于 ADC 60°,贝U AO CD , 由(I)知,在菱形 ABCD 中, ,即 CD PA , 1 CO// — AB ,则 MN //CO ,则四边形 OCMN 为 Y ,所以 MC //ON , 2 AP ,故 AP MC 而 MC I CD C , (3)由(n )知 MC 平面PAB,6, PB . PA 2 AB 2、•、、6 22、、10 ,b 2 2.6 3(2)用反证法 假设A 、B 两点关于原点 则B 点坐标为(-1,-1) 此时 |AB | =22取椭圆上一点 M (-2, 0),则|AM | =40| AM | >|AB |从而此时|AB |不是最大,这与|AB |最大矛盾 所以命题成立(1+3k 2) x 2-6k (k-1) x+3k 2-6k-1=0 点A (1 , 1 )在椭圆上3k 2 6k 1 X c=—3k 1cos PBAAB PB .10 5cos NMB cos(PBA)故,所求二面角的余弦值为519、解:(1) 由椭圆定义知:2ax 22 b-1.把(1, 1) 代入得1 b 2=1 b 2,则椭圆方程为2『1(3)设 AC 方程为:y k(x 1)1 y 联立 xk(x 1)2 3 2y4 411消去y 得PA故两焦点坐标为( 2.6 30),O 对称直线AC、AD倾斜角互补同理x23k2 6k19分同理x D3k2又y c k(x c 1)1, y D k(X D1) 110分y c y D k( X c X D) 2k所以k CIy c y D1 D =X c X D3即直线CD的倾斜角为定值14分20、解: (1)Q f (x)2t(x t)t3t1(x R, t 0),当x t时,f (x)取最小值f(t)t3 t 1 ,即h(t)t3 t 1. 4分⑵令g(t) h(t)(2t m)t33t 1 m ,由g(t)3t2 30 得t 1, t1(不合题意,舍去). 6分当t变化时g (t) , g(t)的变化情况如下表:t(0, 1)1(1 , 2)g (t)0g(t)递增极大值1 m递减g(t)在(0,2)内有最大值g(1) 1 m . 10分h(t) 2t m在(0,2)内恒成立等价于g(t) 0在(0,2)内恒成立,即等价于1 m 0,所以m的取值范围为m 1.5 2a 721、解:(1)an1 石忒,因为a1 1,所以a2 汙(2)因为a n 0,a n 1 0,所以16 8a n 0,0a n 1 5 5 2a n4 16 8a n^n 7)32(2 a n)14分a n 2.1 2因为2 a n0,所以a n1与a n5 同号,4 4.5 15555因为a 10 , a ?0, a b -0, a n—0,即 a n4444445 31531(3 )当 n 2时, b na .------------- 1 (- a n 1)b,42 2 an 1 42 2 a n 11b n 1 2b n 1 ,所以 b n 2 b n 1 22 b n 2 L 2n 1b 1 2n所以S n b 1 b 2L S j ㊁4(1 2n )__2_1 n4(21).12分。

高考数学模拟复习试卷试题模拟卷第01节 集合的概念及其基本运算1 3

高考数学模拟复习试卷试题模拟卷第01节 集合的概念及其基本运算1 3

高考模拟复习试卷试题模拟卷第01节 集合的概念及其基本运算A 基础巩固训练1.【高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )22.【高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =()A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 3.【福州市三中模拟】已知集合,,若,则实数的取值范围是() A .B .C .D .4.【冀州中学高三上学期第一次月考,文1】若集合{}0P y y =≥,P Q Q =,则集合Q 不可能是( )A .∅B .{}2,R y y x x =∈C .{}2,R xy y x =∈D .{}2log ,0y y x x =>5.【重点中学高三上学期第三次月考,理1】已知全集{}1,2,3,4,5,6,7,8,9U = 集合{}1,2,3,4,5,6A = 集合{}3,4,5,6,7,8B =,则集合B C A C U U ⋂为( )A . {}3,4,5,6B . {}1,2,7,8,9C . {}1,2,3,4,5,6,7,8D . {}9 B 能力提升训练1.定义集合A 与B 的运算“*”为:{A B x x A *=∈或x B ∈,但}x A B ∉.设X 是偶数集,{1,2,3,4,5}Y =,则()X Y Y **=( ) A.X B.Y C.XY D.X Y2.下列四个集合中,是空集的是( )A .{}3|3x x +=B .22{|}x y y x x y R =∈(,)﹣,, C .21{|0}x x x x R +=∈﹣, D .2{|}0x x ≤3.设集合{}1,0,2A =-,集合{}2B x x A x A =-∈-∉且,则B =( ) (A ){}1 (B ){}2- (C ){}1,2-- (D ){}1,0-4.【·海安中学模拟】已知集合A ={(x ,y)|x2+y2=1},B ={(x ,y)||x|+|y|=λ},若A ∩B ≠∅,则实数λ的取值范围是________.5.已知集合A ={x|4≤x2≤16},B =[a ,b],若A ⊆B ,则实数a -b 的取值范围是( ) A. (-∞,-2]B.[)+∞-,2 C. (-∞,2]D.[)+∞,2 C 思维拓展训练1.【湖北八校联考文】已知M=3(,)|3,{(,)|20}2y x y N x y ax y a x -⎧⎫==++=⎨⎬-⎩⎭且M N =∅,则a =( )A .6或2B .6C .2或6D .22.【广东汕头市二模】设非空集合M 同时满足下列两个条件: ①{}1,2,3,,1M n ⊆⋅⋅⋅⋅⋅⋅-;②若a M ∈,则n a M -∈,(2,)n n N +≥∈.则下列结论正确的是( ) A .若n 为奇数,则集合M 的个数为122n - B .若n 为奇数,则集合M 的个数为122n +C .若n 为偶数,则集合M 的个数为22n D .若n 为偶数,则集合M 的个数为221n - 3.设数集M 同时满足条件①M 中不含元素1,0,1-,②若a M ∈,则11aM a+∈-. 则下列结论正确的是 ( )(A )集合M 中至多有2个元素; (B )集合M 中至多有3个元素; (C )集合M 中有且仅有4个元素; (D )集合M 中有无穷多个元素. 4.【其中总动员】设集合(){}(){},|||||1,,()()0A x y x y B x y y x y x =+≤=-+≤,M AB =,若动点(,)P x y M ∈,则22(1)x y +-的取值范围是( )A .15[,]22B .25[,]22 C .110[,]22 D .210[,]225.已知集合()(){},M x y y f x ==,若对于任意()11,x y M∈,存在()22,x y M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①()1,M x y y x ⎧⎫==⎨⎬⎩⎭; ②(){},sin 1M x y y x ==+; 则以下选项正确的是()(A)①是“垂直对点集” ,②不是“垂直对点集” (B)①不是“垂直对点集”,②是“垂直对点集” (C)①②都是“垂直对点集” (D) ①②都不是“垂直对点集”高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学

高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学

高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。

1.1212ii+=-() A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是()4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=()A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,>的离心力为3,则其渐近线方程为()A .2y x =±B .3y x =±C .2y x =±D .3y x =± 6.在ABC △中,5cos2C =,1BC =,5AC =,则AB =() A .42B .30 C .29 D .257.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入()A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是() A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A .15BCD10.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是()A .4πB .2πC .43πD .π 11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=()A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为() A .23B .12C .13D .14 二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。

2024届高三数学仿真模拟卷(上海卷)(考试版)

2024届高三数学仿真模拟卷(上海卷)(考试版)

2024年上海高考数学第三次模拟考试(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷由选择题、填空题和解答题三大题组成,共21题。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回。

一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.方程2(1)0x p x q --+=的解集为A ,方程2(1)0x q x p +-+=的解集为B ,已知{2}A B =- ,则A B =.2.复数z 满足(2)|34|i z i -=+,则z =.3.若(1,2)n =-是直线l 的一个法向量,则直线l 的倾斜角大小为.4.已知随机变量X 服从正态分布(1N ,2)(0)σσ>,若(0)0.9P X >=,则(12)P X <<=.5.某研究所收集、整理数据后得到如下列表:x23456y3791011由两组数据可以得到线性回归方程为ˆˆ1.9yx a =+,则ˆa =.6.底面半径都是3且高都是4的圆锥和圆柱的全面积之比为.7.若多项式344321234(1)(1)x x x a x a x a x a -++=++++,则123a a a ++=.8.高三年级某8位同学的体重分别为45,50,55,60,70,75,76,80(单位:)kg ,现在从中任选3位同学去参加拔河,则选中的同学中最大的体重恰好为这组数据的第70百分位数的概率是.9.已知数列{}n a 是等比数列,且2254a a =.设2log n n b a =,数列{}n b 的前n 项和为n S ,则7S =.10.已知函数()sin()(0,||2f x x πωϕωϕ=+><,若()()1g x f x ⋅=,且函数()g x 的部分图象如图所示,则ϕ等于.11.人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术.在人脸识别中,主要应用距离测试检测样本之间的相似度,常用测量距离的方式有曼哈顿距离和余弦距离.设1(A x ,1)y ,2(B x ,2)y ,则曼哈顿距离1212(,)||||d A B x x y y =-+-,余弦距离(e A ,)1cos(B A =-,)B ,其中cos(,)cos ,(A B OA OB O =〈〉为坐标原点).已知点(2,1)M ,(,)1d M N =,则(,)e M N 的最大值为.12.已知实数x ,y 满足223x y +=,则2214(2)(2)x y x y ++-的最小值为.二、选择题(本大题共有4题,满分18分,第13~14题每题4分,第15~16题每题5分)每题有且仅有一个正确选项,考生应在答题纸相应编号位置将代表正确选项的小方格涂黑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

09届上海市期末模拟试题分类汇编第13部分算法
一.选择题
1. (上海市黄浦区2008学年高三年级第一次质量调研16)已知数列{}n a 满足
*111
33,(2,)n n n a a a n n N a --==-
≥∈,
记M 为下列程序框图的输出结果,则行列式1 1 M
-1 1 M 1 1 1
中元素
1-的代数余子式的值是( )
A. 2
B.2-
C.
132 D.132
- 答案:A 二.填空题 1.(上海市宝山区2008学年高三年级第一次质量调研11)如果执行下面的程序框图,那么
输出的S =_________ .
答案:10000
2.(上海虹口区08学年高三数学第一学期期末试卷13)
如右图所示的程序框图的输出结果是 ( ) A. 2 B. 4 C. 8 D. 16 答案:C
开始 k ←1 S ←0 k ≤100? S ←S+2k-1 k ←k+1
结束
输出S 否
是 n >4
M ←a n
开始
输入a 1,a 2,a 3,a 4
n ←1,M ←a 1 n ←n+1
输出M
结束 a n >M



否 k ≤n
开始 S ←1,k
←1 结束

否 S ←S ×2 输出S k ←k+1
输入n=3
开始 结束
是 否 A <35 A ←1 A ←2A +1 打印 1(嘉定区2008~2009第一次质量调研第9题)运行如图所示的程序流程图,则输出I 的值 为_________________.答案:7
(第2题图) (第3题图) 2 (上海市静安区2008学年高三年级第一次质量调研第11题) 执行右面的程序框图,如果输入的50k =,那么输出的S =________________.答案:2548
3 (闵行区2008学年第一学期高三质量监控理卷第8题)根据右面的框图,打印的最后一
个数据是 . 答案:63
4 (上海市青浦区2008学年高三年级第一次质量调研第14题)如果执行右面的程序框图,那么输出的s 是 ( )
A .2550
B .2550-
C .2548
D .2552-
答案:C
P ←P ×I I ←I+2 P ←1,I ←1
开始
100>P 输出I 是
否 结束
(第1题图) n ≤k 开始
输入正整数k n ←-1,S ←0 S ←S+2n 输出S 结束 是 否 n ←n+1
k ≥-50
开始 k=1 S =0
结束 是 否 S=S-2k 输出S k=k-1。

相关文档
最新文档