心肌 血管 2005 Cell Metab if 17.65
bap检测参考范围
bap检测参考范围BAP检测参考范围BAP(Brain Natriuretic Peptide,脑钠肽)是一种由心脏分泌的肽类激素,其检测可以用于评估心脏功能和诊断心脏相关疾病。
BAP检测参考范围是指BAP检测结果正常人群的数值范围,该范围可以作为判断患者心脏功能是否正常的依据。
BAP检测参考范围的确定是基于大量的临床研究和统计分析。
一般来说,BAP的参考范围会根据性别、年龄和体重等因素而有所不同。
在成年人中,正常的BAP水平一般在5-100 pg/mL之间。
对于儿童和老年人,正常范围可能会有所偏移。
BAP检测的结果可以通过血液样本来获得。
通常情况下,医生会在患者静脉血中测定BAP的浓度。
BAP检测是一种简单、快速、非创伤性的检测方法,可以在临床上广泛应用。
BAP检测结果的解读需要综合考虑患者的临床表现和其他相关检查结果。
如果BAP的浓度在参考范围内,通常可以排除心脏功能异常的可能性。
然而,如果BAP的浓度高于正常范围,可能提示心脏负荷过重或心脏功能不全等问题,需要进一步的检查和诊断。
需要注意的是,BAP检测参考范围只是一个参考值,并不能单独作为诊断的依据。
在临床实践中,医生还需要综合考虑患者的临床症状、体征和其他检查结果,才能做出准确的诊断和判断。
BAP检测参考范围的确定也存在一定的局限性。
由于不同实验室使用的试剂盒和仪器可能存在差异,因此BAP的参考范围可能会有所不同。
BAP检测参考范围是评估心脏功能和诊断心脏相关疾病的重要指标之一。
通过检测BAP的浓度可以初步判断患者的心脏功能是否正常。
然而,BAP检测结果的解读需要综合考虑患者的临床表现和其他相关检查结果。
同时,需要注意参考范围的局限性和解读时的谨慎性。
在临床实践中,医生应根据具体情况综合判断,以提供准确的诊断和治疗方案。
对非扩张型左心室心肌病诊治的认识
对非扩张型左心室心肌病诊治的认识《2023年欧洲心脏病学会心肌病管理指南》对心肌病分类进行了修订,首次提出非扩张型左心室心肌病(NDLVC)表型。
NDLVC是指正常心肌出现非缺血性瘢痕或者脂肪组织替代(伴或不伴整体或局部室壁运动异常),或者原发性孤立性左心室运动减弱而不伴有瘢痕形成。
本文就NDLVC的定义、分类、诊断流程、治疗进行综述并对这一疾病提出作者的观点。
心肌病是指在排除冠状动脉疾病、高血压、心脏瓣膜病及先天性心脏病等疾病后,导致心肌结构和功能异常的一大类心肌疾病,据估计我国心肌病患者超过700万。
近日由国家心血管病中心心肌病专科联盟发布的一项全国性调查研究显示,从2017年~2021年,我国心肌病患者疾病负担显著增加,门诊及住院数呈上升趋势,但由于不同医院诊治能力及地区经济水平不同,对于心肌病的管理能力存在显著差异[1]。
2023年欧洲心脏病学会(ESC)心肌病管理工作组发布了《2023年欧洲心脏病学会心肌病管理指南》[2](以下简称2023 ESC指南),其为国际上第一部针对所有心肌病的诊治指南,对心肌病的表型分类、临床诊治路径、遗传学检测及筛查、全生命周期管理、心源性猝死危险分层及多学科管理等方面均提出了具体的证据分类及指导意见。
2023 ESC指南根据心脏结构、功能和心肌组织学特征对心肌病做出了全新的表型分类和定义,首次提出非扩张型左心室心肌病(NDLVC)这一心脏表型,弥补了扩张型心肌病定义的局限,并且研究发现NDLVC患者预后与传统扩张型心肌病比较差异并未有统计学意义[3],对于此类疾病的早期识别、诊断及治疗具有重要价值。
一、对象与方法心肌病分类发展概要及NDLVC的定义1957年,英国心脏病学家Wallace Brigden首次提出了心肌病(cardiomyopathy)的概念,他提出将一大类描述心肌异常的术语,如原发性、特异性、非特异性,或急性、亚急性、慢性,或嗜酸性、过敏性、肉芽肿性等,统一称为心肌病,定义为“非冠状动脉疾病相关的心肌疾病”[4]。
心血管疾病生物标记物总结
心血管疾病生物标记物总结心血管疾病是指发生在心脏及周围血管系统中的一系列疾病,包括冠心病、高血压、心肌梗死、中风等。
这些疾病是目前导致全球死亡的主要原因之一。
为了早期诊断、及时干预和预防这些疾病,科研人员一直在寻找心血管疾病的生物标记物。
本文将对一些常见的心血管疾病生物标记物进行总结。
1. 心肌肌钙蛋白心肌肌钙蛋白是一种心肌特异性蛋白质,其在心肌损伤时释放到循环系统中。
心肌肌钙蛋白的测定可以被用作急性冠脉综合征、心肌梗死和心肌炎的早期诊断指标。
2. C-反应蛋白C-反应蛋白是一种急性炎症标志物,其浓度在心脏病发作时会升高。
血液中的C-反应蛋白水平可以用来评估心脏病发作的风险,以及预测心血管事件的发生。
3. 血清抗氧化物水平氧化应激是心血管疾病发展过程中的重要环节。
血液中的抗氧化物水平可以反映体内的氧化应激程度,通过测定抗氧化物水平,可以评估心血管疾病的风险。
4. 血液中的脂质水平脂代谢紊乱是心血管疾病的一个重要危险因素。
血液中的胆固醇和甘油三酯水平的升高与冠心病和心肌梗死的风险增加密切相关。
因此,测量血液中的脂质水平可以用作评估心血管疾病的风险和预测心血管事件的发生。
5. 微粒物质微粒物质是由心脏和血管内皮细胞损伤释放到循环系统中的一些颗粒物。
血液中的微粒物质浓度升高与冠心病、高血压和中风的风险增加相关。
测量血液中的微粒物质浓度可以用作心血管疾病的早期诊断和预测。
6. 血液中的凝血因子心血管疾病的发展和血液凝血功能紊乱密切相关。
血液中的凝血因子活性水平的升高与心血管疾病的风险增加相关。
因此,测量血液中的凝血因子活性水平可以用来评估心血管疾病的风险和预测心血管事件的发生。
7. 血管内皮功能血管内皮功能紊乱是心血管疾病的一个重要机制。
血管内皮功能可以通过测量血液中一些特定标志物,如一氧化氮、内皮素、血管紧张素等来评估。
总之,心血管疾病生物标记物的研究对于心血管疾病的早期诊断、预测和干预具有重要意义。
心血管专业网站
(一)中国:1) 心血管权威网站之一2) 中国动脉粥样硬化网:/index.html3)中国血脂网站:/4)大连医科大学心脏中心: /,里面有教学幻灯大连医科大学心血管专家精彩幻灯集中地(13部)/wsjl/jxnr/jxnr.asp5)心脏听诊/心电图学习网站/jcxt/tyvf/tyvf1.htm/List.asp?CD3=706)心血管最新进展的英文有声杂志(丁香园paltalk版主办)帮助你了解最新的进展,提高你的医学英语听力和口语水平/bbs/post/view?bid=109&id=1398464&s ty=1&tpg=1&age=0杂志主页:/bbs/post/page?bid=109&sty=1&age=0& amp;tpg=1&s=8297)心血管视频资源下载:冠状动脉造影中国心血管网(/)中华医学网/http://202.112.190.68/shipin/zaoying1.mpghttp://202.112.190.68/shipin/zaoying2.mpghttp://202.112.190.68/shipin/zaoying3.mpg心血管系统解剖http://202.112.190.68/shipin/xinxueguan1.mpghttp://202.112.190.68/shipin/xinxueguan2.mpghttp://202.112.190.68/shipin/xinxueguan3.mpghttp://202.112.190.68/shipin/xinxueguan4.mpg经皮腔内冠状动脉成形术http://202.112.190.68/shipin/chengxing1.mpghttp://202.112.190.68/shipin/chengxing2.mpghttp://202.112.190.68/shipin/chengxing3.mpghttp://202.112.190.68/shipin/chengxing4.mpghttp://202.112.190.68/shipin/chengxing5.mpg8)哈医大心内课件(冠心病、高血压、心肌梗死、体格检查等)http://202.97.205.31/jpkc/nkx/ygkj/ygkjindex.htm(二)国外心血管著名杂志:/循环/心血管研究/高血压/心脏移植/心脏//胸部//美国心脏病学协会/JAMA/心胸外科杂志/------------------------------------------------------------------------------------充血性心力衰竭的治疗.ppt/bbs/read.php?tid=64306&fpage=1---------------------------------------------------------------------------------------/中华循环网可下载5版医学教材-----------------------------------------------------------------------------------课件下载_心血管网/down/index.htm心血管病学医学网站/心血管临床与基础---最新报告/心电图/~rlpierce/ecg.htm/[url]/介入心脏病学/main.html医学教育网站/class2000/sims/HeartSounds.html心音网/index0.htm循征医学/中国循征医学中心/netdoctors/医师在线/yldt/xuanj1.htm中国介入心脏网/中国医学科学院信息研究所/国内外文献数据库/中国医院数字图书馆/jiaowuchu/ ... %D0%C4%D1%AA%B9%DC/ 心脏解剖学图库/englishcorner//pic/30/12/16/029.htm心脏冠状动脉解剖/article/040311/a0403110301.htm中国医学论坛报/中华心血管医学网/reg/login_input.jsp/医心网/home/生物医学中心/index.htm中国心血管网/心血管医学生物信息//about/overview/overview.htm美国心脏病学会/全球心脏病学网站/美国心脏病学资源网/美国医学会杂志(免费)/美国国立医学图书馆/kw/ecg/国外:American College of Cardiology/美国心脏病学协会网站,提供心脏病学新闻、会议、出版物、培训信息,相关杂志的链接,并附文摘,部分内容只限于会员访问,自由注册。
曲美他嗪对缺氧状态下血管内皮细胞线粒体损伤的保护作用
[] , , (): caspase dependent J . J Urol 2004 171 1 457 - 461. [ ] , , , 23 Hu G Chong RA Yang Q et al. MTDH activation by 8q22 genomic
[] in papillary thyroid cancer through upregulation of MMP2 / 9 J . Int J
[] , , chemically induced liver cancer in mice J . Cell Death Differ 2016 23
, , (): Oncol 2017 51 3 812 - 822.
[ ] , , , 18 Li W F Dai H Ou Q et al. Overexpression of microRNA -30a -5p inhib
[ ] , , , 22 Power RE Doyle BT Higgins D et al. Mechanical deformation in
(收稿日期:2019 - 06 - ) 20
心肌细胞caspase - 3 表达的影响[J]. 中国妇幼保健,2016,31(5):
1042 - 1044.
: 文章编号: ( ) DOI 10. 3969 / j. issn. 1671 - 4695. 2020. 02. 010
1671 - 4695 Leabharlann 020 02 - 0148 - 04
曲美他嗪对缺氧状态下血管内皮细胞线粒体损伤的保护作用
血管内皮生长因子对急性心肌梗死大鼠心功能和心肌细胞凋亡的影响
心肌细胞组织重构的指标
心肌细胞组织重构的指标是评估心脏病变和心脏功能的重要指标,通过对这些指标的监测可以及时发现心脏问题并采取相应的治疗措施。
心肌细胞组织重构是指心肌细胞在心脏疾病或损伤后的结构和功能变化,这种变化会导致心肌组织的重建和再生。
在过去的几十年里,研究人员对心肌细胞组织重构进行了广泛的研究,探索了多种指标来评估心肌细胞组织的状态。
本文将从细胞水平、组织水平和器官水平分析心肌细胞组织重构的指标,为临床诊断和治疗提供参考。
在心肌细胞组织重构的研究中,细胞水平的指标是评估心肌细胞结构和功能的关键。
其中,心肌细胞形态学的变化是最明显的指标之一。
在心脏病变或受损后,心肌细胞可能会发生肥大、萎缩或坏死等病理性变化,这些变化可以通过显微镜观察心肌组织的断面来进行评估。
此外,心肌细胞的膜电位和收缩力也是重要的指标,可以通过电生理学技术和肌测力仪来进行检测和记录。
除了细胞水平的指标外,组织水平的指标也是评估心肌细胞组织重构的重要依据。
心肌组织中的胶原沉积是心肌纤维化和结构改变的典型表现,可以通过组织切片染色和免疫组化技术来检测。
此外,心肌肌钙蛋白和肌凝蛋白等蛋白质水平的改变也可以反映心肌组织的变化,可以通过Westernblot和ELISA等方法来检测。
在器官水平的研究中,心肌重构的指标包括心脏结构和功能的改变。
心脏超声可以直观地评估心室的收缩和舒张功能,揭示心肌重构的程度。
此外,心电图和心脏磁共振成像也是评估心脏功能的重要手段,可以检测心肌缺血、心肌梗死和心肌纤维化等病变。
综合上述各个水平的指标,可以全面评估心肌细胞组织的重构情况。
在临床诊断和治疗中,及时监测这些指标可以帮助医生制定合理的治疗方案,提高心脏病患者的生存率和生活质量。
值得注意的是,心肌细胞组织重构是一个复杂的过程,仍然有许多未解之谜需要进一步研究。
希望随着科学技术的不断进步,我们能够更深入地了解心肌细胞组织重构的机制,为心脏病的治疗和预防提供更多的突破口。
干细胞治疗心血管再生领域最新突发
干细胞治疗心血管再生领域最新突发心血管疾病是当前全球范围内主要的致死原因之一。
尽管心脏病患者进行传统的药物治疗和手术治疗,在缓解症状和延缓进展方面取得了一定的成功,但长期来看,这些治疗方法并不能修复心脏组织的损伤。
因此,心血管领域一直在寻求一种创新的方法,能够实现心脏组织的再生和修复,干细胞治疗就成为了当前的热点研究领域。
干细胞是一类具有自我更新和多能分化潜能的细胞,可以分化成多种细胞类型。
在心血管再生方面,研究人员主要关注的是两种类型的干细胞:胚胎干细胞和成体干细胞。
胚胎干细胞来源于早期胚胎,拥有广泛的分化潜能,可以分化成心脏组织中的各种细胞类型。
成体干细胞则存在于成年人的各种组织和器官中,尤其是脂肪和骨髓中,具有较强的自我更新能力和较低的倾向分化。
近年来,干细胞治疗心血管再生方面取得了一系列突破性的进展。
一项最新的研究表明,通过干细胞治疗心肌梗死,可以有效增强和改善心脏功能,降低死亡率。
该研究采用了成体干细胞作为治疗手段,并通过干细胞的自我更新和分化能力,促进心脏组织的再生和修复。
研究结果显示,干细胞治疗组的患者心脏功能明显改善,心肌梗死面积缩小,并且出现更少的心血管事件和死亡率。
另外,还有一项最新研究发现,人体自身产生的干细胞也可以应用于心血管再生治疗。
该研究发现,心脏组织中存在一种叫做心肌干细胞的细胞群体,具有产生新心肌细胞的能力。
通过干细胞治疗的方式,研究人员成功地激活并扩增了这种心肌干细胞,使其能够大量产生新的心肌细胞,为心脏组织的再生提供了新的可能性。
此外,基因编辑技术的快速发展也为心血管再生治疗提供了新的机遇。
通过基因编辑技术,研究人员可以对干细胞进行基因修饰,使其具备更强的自我更新和分化能力,从而增强心血管再生治疗的效果。
例如,研究人员可以利用基因编辑技术将干细胞中的特定基因调节到理想状态,使其具备更好的心脏再生能力。
虽然干细胞治疗心血管再生领域取得了显著的进展,但仍存在一些挑战和风险。
机能实验学实验报告影响血管生成的因素
机能实验学实验报告影响血管生成的因素机能实验学实验报告:影响血管生成的因素1. 引言血管生成是机体生物学过程中的重要事件,它在正常生长发育、组织修复和疾病进程中起着关键作用。
了解影响血管生成的因素对于深入理解疾病机制、药物研发和治疗策略的制定至关重要。
因此,本次实验旨在探究影响血管生成的主要因素,并通过实验验证其效果。
2. 实验方法2.1 实验对象本次实验使用小鼠为实验对象,选取2周龄的C57BL/6J小鼠。
2.2 实验组织将实验对象分为对照组和干预组,每组10只小鼠。
2.3 干预方法对照组:给予对照组小鼠正常饮食和生活环境,不进行任何干预。
干预组:给予干预组小鼠高脂饮食和高盐饮食,水中添加10mg/L二氧化碳,每天注射10mg/kg体重的糖皮质激素。
2.4 实验观察观察血管生成的情况,并通过以下指标进行量化和评估:- 血管密度:使用免疫组织化学染色技术检测血管标志物CD31的表达,并计算血管密度。
- 血管分叉数:观察血管分叉数目,并进行统计。
- 血管形态:通过显微镜观察血管形态的变化。
3. 实验结果经过实验观察和检测,得到以下结果:对照组小鼠血管密度为X个/mm²,血管分叉数为Y个,血管形态正常。
干预组小鼠血管密度为Z个/mm²,血管分叉数为W个,血管形态异常,血管较为粗大。
4. 实验讨论根据实验结果可以得出以下结论:1. 高脂饮食、高盐饮食和二氧化碳浓度增加可以显著促进血管生成。
2. 糖皮质激素的使用可能对血管生成产生负面影响,导致血管形态异常。
5. 实验结论本次实验验证了高脂饮食、高盐饮食和二氧化碳浓度增加是影响血管生成的因素。
糖皮质激素的使用可能对血管生成产生负面影响。
这一研究结果对于深入了解疾病的发生机制、药物的研发和治疗策略的制定具有重要的意义。
6. 参考文献- 张三,李四,王五. 血管生成的调控机制研究进展[J]. 生命科学研究, 2021, 10(1): 23-30.- Smith A, Jones B. The role of angiogenesis in tissue repair. XYZ Journal, 2019, 25(2): 45-56.以上为本次实验报告的内容,感谢阅读!。
肥厚型心肌病致病因子被发现
肥厚型心肌病致病因子被发现
肥厚型心肌病是心脑血管疾病中最常见的病症之一。
日本庆应义塾高校12日发表公报称,讨论小组找到了导致病情恶化的物质。
肥厚型心肌病是因心肌变厚,导致其难以向全身输送血液而发病的,有时会导致心力衰竭,是运动性猝死的缘由之一。
肥厚型心肌病通常有家族遗传倾向,目前尚无有效疗法。
庆应义塾高校讨论人员利用肥厚型心肌病重症患者和健康人的体细胞培育出诱导多功能干细胞(iPS细胞),然后培育出心肌细胞。
经对比发觉,健康人的心肌细胞内部整齐地排列着称为肌原纤维的纤维状结构,但肥厚型心肌病患者心肌细胞内肌原纤维的排列则特别混乱,心肌细胞的收缩也存在特别。
讨论人员进一步分析导致病情恶化的因子时发觉,一种被称为内皮缩血管肽-1的物质会大幅加剧肌原纤维排列的混乱。
内皮缩血管肽-1是心脏因运动而承受负荷时产生的激素,不仅存在于血管内皮,也广泛存在于各种组织和细胞中,是调整心血管功能的重要因子,对维持基础血管张力等起重要作用。
讨论人员认为,肥厚型心肌病患者的心肌细胞肌原纤维应当是生来就存在稍许的排列紊乱,因内皮缩血管肽-1的影响而加剧。
讨论同时发觉,一种名为内皮缩血管肽受体拮抗剂的药物能改善心肌细胞肌原纤维的排列混乱,以及心肌细胞的收缩紊乱现象。
这种药目前已被用于治疗肺动脉高压,其对人体的平安性已得到确认。
相关论文已刊登在新一期的《美国心脏病协会杂志》上。
诱导性多潜能干细胞在心血管疾病中的应用
诱导性多潜能干细胞在心血管疾病中的应用邹琪;张新超【期刊名称】《中国心血管杂志》【年(卷),期】2015(000)004【总页数】4页(P313-316)【关键词】心血管疾病;诱导性多潜能干细胞【作者】邹琪;张新超【作者单位】100730 北京医院急诊科;100730 北京医院急诊科【正文语种】中文心血管疾病已经成为人类最大的健康威胁,寻求有效的治疗措施尤为迫切。
骨髓间充质干细胞、胚胎干细胞等多潜能干细胞可分化为带有特定心肌细胞标记物的细胞,具有心肌自主收缩功能,改善心脏功能,内皮祖细胞可促进心脏血管新生,或许干细胞治疗能为治疗心血管疾病提供新的契机。
但多潜能干细胞分化不确定性、同种异体移植引起的移植排异反应和胚胎干细胞(embryonic stem cells,ESC)伦理问题阻碍了它的发展[1]。
然而2006年发现的诱导性多潜能干细胞(induced pluripotent stem cell,iPS)为干细胞治疗带来了新的希望。
iPS细胞是Takahashi和Yamanaka用反转录病毒向鼠成纤维细胞中导入 Oct3/4、Sox2、Klf4和 c-Myc(OSKC)4种关键基因的转录因子获得的一种类干细胞,可分化为内、中、外3个胚层,具有生殖系传递和四倍体互补的干细胞特点[2]。
将其与ESC进行比较发现,两者在形态学、增殖能力、表面抗原、基因表达、表观遗传学和端粒酶活性等方面均非常相似[3-4]。
由于此项技术操作简单,不需要使用卵细胞或胚胎细胞,所以避开了胚胎干细胞研究应用带来的伦理道德问题和同种异体移植的排异问题[5]。
本文就iPS细胞在心血管疾病中的研究应用进展作一综述。
1 iPS细胞的产生方法1.1 反转录法iPS细胞的来源十分丰富,目前已经分别从人B淋巴细胞、胰腺细胞、肝细胞、胃壁细胞、神经细胞、睾丸细胞、骨髓细胞成功获得[6-9]。
相比较而言,存储量大、易获得、损伤小的皮肤细胞、CD34+细胞、角质细胞、脂肪细胞和尿液中尿路上皮细胞[10]更受到研究人员的青睐。
脑梗死后血清血小板衍生内皮细胞生长因子浓度变化与神经功能缺损的关系
脑梗死后血清血小板衍生内皮细胞生长因子浓度变化与神经功能缺损的关系官俏兵;张晓玲;王琰萍;余波;杜瑛媛;万里红【摘要】Objective To investigate serum concentrations of platelet derived- endothelial cellgrowth factor (PD- ECGF) in patients with acute cerebral infarction. Methods Sixty patients with acute cerebral infarction were included. Serum concentra-tions of PD- ECGF and scores of National Institutes of Health Stroke Scale (NIHSS) were measured at 24h and d3, 7, 14 after the onset of stroke;and the volume of infarction were also documented. Results The mean values of serum PD- ECGF concentrations at 24 hours and d3, 7, 14 after onset were 4 080.62±1 569.27pg/ml, 4 386.03±1 746.05pg/ml, 5 473.24±2 312.75pg/ml and 3 365.72±1421.76pg/ml, respectively(F=14.297, P<0.05), which were al higher than that of c ontrols(2 687.92±950.60pg/ml, P<0.05). NIHSS scores at the corresponding time points were 6.35 ±4.09, 6.25 ±4.45, 5.42 ±4.44 and 4.68 ±4.49, respectively (F=1.925, P>0.05). The serum PD- ECGF concentrations were not correlated with cerebral infarctionvolumes(r=0.107, P>0.05), but the cerebral infarction volume on d3 after the onset was correlated with NIHSS score (r=0.619, P<0.05). Conclusion The serum concentrations of PD- ECGF begin to rise after occurrence of infarction, which are consistent with the pathophysiological process of acute cerebral infarction, but not correlated with the degree of neurological impairment or rehabilitation.%目的:研究急性脑梗死后血清血小板衍生内皮细胞生长因子浓度(PD- ECGF)变化与神经功能缺损的关系。
血管内皮生长因子对冠状动脉内皮的保护作用
血管内皮生长因子对冠状动脉内皮的保护作用马卓;吴迪;周游【期刊名称】《中国心血管病研究》【年(卷),期】2017(015)008【总页数】3页(P681-683)【关键词】血管内皮生长因子;内皮功能障碍;冠状动脉疾病【作者】马卓;吴迪;周游【作者单位】100028北京市,煤炭总医院心脏中心;100028北京市,煤炭总医院心脏中心;100028北京市,煤炭总医院心脏中心【正文语种】中文【中图分类】R541.4目前我国冠心病危险因素流行趋势明显,心血管病发病率逐年提高。
新近研究发现,冠状动脉血流减少起因于固定性血管狭窄与血管张力异常的合力。
尽管冠状动脉介入等血管成形技术的应用改善了患者冠脉供血,减少了患者心绞痛发作,提高了患者的生活质量,但血管内皮功能障碍仍存在。
近年研究证实,血管内皮生长因子可改善血管内皮功能,是冠心病治疗的新方向。
血管内皮是多种心血管疾病或危险因子作用的靶器官。
在吸烟、高血压、糖尿病等危险因素的作用下,血管内皮损害与修复失衡,合成与释放的多种细胞因子之间的平衡被打乱,血管紧张度调节紊乱,抗血小板聚集、抗凝等功能异常,导致血管内皮功能障碍。
内皮功能障碍是冠心病的始动环节,并参与动脉粥样硬化、血栓形成的发生、发展。
1.1 炎症反应与动脉粥样硬化形成循环中促炎细胞因子如肿瘤坏死因子、白介素-1,通过激活核因子-кB(nuclear factor кB,NF-кB)通路,诱导内皮细胞黏附分子和单核细胞趋化因子表达,增加内皮层通透性,致单核细胞浸入内皮下,成为巨噬细胞,其通过清道夫受体吞噬低密度脂蛋白胆固醇转变为泡沫细胞,形成脂质条纹[1]。
泡沫细胞合成分泌多种生长因子,刺激平滑肌细胞迁移、增殖致血管重塑。
随后,泡沫细胞和平滑肌细胞凋亡,细胞碎片积累和胆固醇晶体形成纤维帽覆盖的脂质核,致动脉粥样硬化斑块形成。
1.2 内皮侵蚀、斑块破裂与血栓形成内皮覆盖在动脉粥样硬化斑块上,在高水平的剪切应力或循环中炎症环境等的长期作用下,内皮细胞凋亡,内皮完整性被破坏。
瑞科喜
ATP敏感性钾通道(KATP)
• 1983年Noma首次报道,其特征是通道活性随胞内ATP浓度升高而被显著抑 制, 因此将其命名为ATP敏感性钾通道(ATP-sensitive potassium channel, KATP )
• 是一组将细胞膜电活动与细胞代谢紧密联系在一起的重要通道,在调节细胞 功能和活动中起关键作用
二氮嗪
58µM 0.8µM*
>1mM
EC50* 吡那地尔
2µM
?
10µM
尼可地尔
10µM 100µM* >500µM
IC50* 格列本脲
1µM*
56nM
1.2µM
胰腺
SUR1 Kir6.2 60µM
高
高
<10nM
药理作用
心脏保护 扩张血管 扩张血管和 心脏保护
*EC50、IC50 是KATP 通道的最大激活浓度和抑制浓度
钙拮抗剂:钙离子拮抗剂主要作用于L-型钙通道,而冠脉微血管上主要为 T-型钙通道
硝普钠:血流动力学影响大,易产生冠脉“窃血”现象
*J Cyclic Nucleotide Res ,1997 ,3 :239
作用机制
注射用尼可地尔临床应用简史
1975: 日本中外制药(Chugai)合成 1983: 载入美国新药年鉴《心血管药物》 第一卷 1984: 口服尼可地尔上市(第四代硝酸酯类药物) 1993: 注射用尼可地尔上市,用于不稳定型心绞痛
尼可地尔 (μg/kg/min)
21. Akai K, et al. J Cardiovasc Pharmacol. 1995 Oct;26(4):541-7.
尼可地尔 (μg/kg/min)
作用机制
血管内皮生长因子、内皮抑素与冠心病的关系
血管内皮生长因子、内皮抑素与冠心病的关系
孔菁;毛威
【期刊名称】《实用心脑肺血管病杂志》
【年(卷),期】2010(18)4
【摘要】血管内皮生长因子、内皮押素是影响血管内皮功能的两个重要因素,它们的动态正负调节影响了冠心病的发生发展.现就其与冠心病的关系作一综述.
【总页数】3页(P524-526)
【作者】孔菁;毛威
【作者单位】310000浙江省杭州市,浙江中医药大学;310000浙江省杭州市,浙江中医药大学附属第一医院心内科
【正文语种】中文
【中图分类】R751.4
【相关文献】
1.喉癌患者血清中血管内皮抑素和血管内皮生长因子的表达及与临床病理特点的关系 [J], 马鲲鹏;蹇兆成;马丽敏
2.冠心病患者冠状动脉循环中的血清内皮抑素及其与冠状动脉侧支形成的关系 [J], Mitsuma;W;Kodama;M.;Hanawa;H.;黄欣(译);刘少伟(校)
3.血管内皮生长因子和内皮抑素与2型糖尿病肾病的关系 [J], 李慧;钱毅;薛耀明;高方;张倩
4.血清内皮抑素与冠心病合并2型糖尿病病人冠状动脉病变严重程度的关系研究[J], 张小花;宗雪萍;管丽娟
5.内皮抑素和血管内皮生长因子与2型糖尿病大血管病变的关系 [J], 段薇;张锦;张学梅;孙丽鹏
因版权原因,仅展示原文概要,查看原文内容请购买。
急性心肌梗死患者外周血液单核细胞中血管内皮生长因子的表达
急性心肌梗死患者外周血液单核细胞中血管内皮生长因子的表达张翼;祁述善;周胜华;沈向前;杨玉莲;郭莹;欧柏青;宁忠平;李青;骆阳平【期刊名称】《中国心血管杂志》【年(卷),期】2003(008)003【摘要】目的探讨急性心肌梗死(AMI)后外周血单核细胞中血管内皮生长因子(VEGF)的表达及其与AMI左心室收缩功能的关系.方法分别抽取25例行急诊经皮冠状动脉介入(PCI)治疗的AMI患者发病后第1、5、10和15d的外周静脉血,分离、培养单核细胞,用酶联免疫吸附法(ELISA)测定VEGF浓度.结果单核细胞分泌的VEGF在AMI后第5d即达高峰,显著高于对照组(343.2±82.5pg/ml vs143.3±24.2pg/ml,P<0.05).单核细胞分泌的VEGF峰植与肌酸磷酸激酶(CK)峰值无显著相关.PCI术后左心室收缩功能改善的AMI患者,其单核细胞分泌的VEGF水平显著高于左心室收缩功能未改善者(867.6±113.1 pg/ml vs234.8±82.4pg/ml,P<0.05).结论AMI患者PCI术后单核细胞产生的VEGF与左心室收缩功能改善有关.【总页数】3页(P179-181)【作者】张翼;祁述善;周胜华;沈向前;杨玉莲;郭莹;欧柏青;宁忠平;李青;骆阳平【作者单位】湖南省人民医院心内科,湖南,长沙市,410002;中南大学湘雅二医院心内科,湖南,长沙市,410011;中南大学湘雅二医院心内科,湖南,长沙市,410011;中南大学湘雅二医院心内科,湖南,长沙市,410011;湖南省人民医院心内科,湖南,长沙市,410002;湖南省人民医院心内科,湖南,长沙市,410002;湖南省人民医院心内科,湖南,长沙市,410002;湖南省人民医院心内科,湖南,长沙市,410002;湖南省人民医院心内科,湖南,长沙市,410002;湖南省人民医院心内科,湖南,长沙市,410002【正文语种】中文【中图分类】R542.2+2【相关文献】1.外周血液单核细胞作为对人布氏菌免疫反应表达的试管内抗体分泌 [J], Vend.,TP;杨慧2.单核细胞趋化蛋白-1和血管内皮生长因子mRNA在急性甲醇中毒大鼠脑组织的表达 [J], 李璣p查皓;陈伟伟;杨崇猛;李娟娟;童宗武;吴春云;3.单核细胞趋化蛋白-1和血管内皮生长因子mRNA在急性甲醇中毒大鼠脑组织的表达 [J], 李璠;查皓;陈伟伟;杨崇猛;李娟娟;童宗武;吴春云4.子宫内膜异位症合并不孕患者血清中基质金属蛋白酶-9、基质金属蛋白酶抑制剂-1、血管内皮生长因子可溶性受体、胰岛素生长因子-1、单核细胞趋化蛋白-1表达水平及临床意义 [J], 高扬; 朱艳5.急性心肌梗死患者外周血单个核细胞miR-132、单核细胞趋化蛋白-1的表达及与预后的关系 [J], 李晶瑾;翟阳;靳刚;陈茜;黄欣因版权原因,仅展示原文概要,查看原文内容请购买。
血管内皮生长因子在大鼠急性肺损伤中表达的变化
血管内皮生长因子在大鼠急性肺损伤中表达的变化杨颖乔;刘晓晴【期刊名称】《实用医学杂志》【年(卷),期】2005(021)012【摘要】目的:探讨油酸诱导大鼠急性肺损伤(ALI)中血管内皮生长因子(VEGF)表达的变化及黄芪对VEGF和ALI的影响.方法:将18只Wistar大鼠随机分成3组:正常组、油酸组、黄芪组.ELISA方法检测肺组织及血浆VEGF的表达,观察肺组织病理形态学变化.结果:VEGF在ALI大鼠肺组织的表达较正常组和黄芪组显著降低(P <0.05)、而血浆中VEGF的表达显著增加(P<0.05),肺组织与血浆VEGF的表达有显著负相关(r=-0.49,P<0.05).结论:VEGF在油酸诱导大鼠ALI形成过程中起重要作用,黄芪对ALI具有一定的治疗作用.【总页数】3页(P1248-1250)【作者】杨颖乔;刘晓晴【作者单位】430030,武汉市,华中科技大学同济医学院附属同济医院呼吸病研究室;430030,武汉市,华中科技大学同济医学院附属同济医院呼吸病研究室【正文语种】中文【中图分类】R5【相关文献】1.脂多糖致大鼠急性肺损伤肺组织中糖皮质激素受体的表达及活性变化 [J], 张芳;钱桂生;汪晓莉;吴学玲;雷撼2.黄芪对大鼠急性肺损伤早期血管内皮生长因子表达的影响 [J], 杨颖乔;赵辛元3.大鼠急性肺损伤中炎性因子的表达及病理损伤变化 [J], 热依拉·牙合甫; 古丽加玛丽·阿不都拉; 范桂君; 宫蕊; 谢姆孜牙·买买提热夏提; 李瑞晟; 努尔阿米娜·铁力瓦尔迪; 买热木古·阿布都热木; 阿帕尔·卡哈尔; 哈利; 王琴4.核因子κB及Nrf2在胎粪吸入急性肺损伤新生大鼠肺组织中的表达变化 [J], 刘文静;张昕;陈彤;崔秀杰;王爱红;王鑫;王东关;于丽5.狗肝菜多糖对辐射损伤后大鼠腮腺中血管内皮生长因子的表达变化和意义 [J], 覃珊珊;王代友;眭斌;张岩;孙喆因版权原因,仅展示原文概要,查看原文内容请购买。
沙库巴曲缬沙坦与培哚普利治疗急性心肌梗死经皮冠状动脉介入术后心力衰竭的疗效对比
沙库巴曲缬沙坦与培哚普利治疗急性心肌梗死经皮冠状动脉介入术后心力衰竭的疗效对比张晨俐;周娜;汪芳芳;吴连察;金理翔;陈生立【期刊名称】《中国药物与临床》【年(卷),期】2024(24)2【摘要】目的比较沙库巴曲缬沙坦以及培哚普利治疗急性心肌梗死(AMI)患者经皮冠状动脉介入治疗(PCI)术后心力衰竭的疗效。
方法回顾性选取浙江省苍南县人民医院2021年1月至2022年6月收治的112例AMI患者,根据治疗情况分为沙库巴曲缬沙坦组和培哚普利组,2组患者均接受PCI及常规药物治疗,观察2组患者在治疗前后心功能变化情况以及不良事件发生率。
结果与培哚普利组相比,沙库巴曲缬沙坦组N末端B型利钠肽前体(NT-proBNP)水平降低,差异有统计学意义(P<0.05),2组的血压控制水平差异无统计学意义(P>0.05),沙库巴曲缬沙坦组心率改善情况优于培哚普利组(P<0.05),2组均能有效改善患者的心功能,但较之培哚普利组,沙库巴曲缬沙坦组心功能改善情况更明显(P<0.05)。
2组不良事件发生率差异无统计学意义(P>0.05)。
结论在AMI患者行PCI后的心力衰竭治疗中,沙库巴曲缬沙坦可能是一种有效的药物选择。
沙库巴曲缬沙坦在改善心功能不全、降低NT-proBNP水平以及稳定心率方面,可能更优于培哚普利。
【总页数】5页(P130-134)【作者】张晨俐;周娜;汪芳芳;吴连察;金理翔;陈生立【作者单位】苍南县人民医院心血管内科【正文语种】中文【中图分类】R54【相关文献】1.沙库巴曲缬沙坦对急性ST段抬高型心肌梗死急诊经皮冠状动脉介入治疗术后合并心力衰竭患者治疗效果观察2.沙库巴曲缬沙坦对高血压并发急性心肌梗死患者经皮冠状动脉介入术后心肌重构、心肌受损的治疗效果3.沙库巴曲缬沙坦钠片对急性ST段抬高型心肌梗死患者经皮冠状动脉介入术后心功能的影响4.沙库巴曲缬沙坦在急性心肌梗死急诊经皮冠状动脉介入术后心力衰竭患者中的应用价值5.沙库巴曲缬沙坦联合螺内酯治疗急性心肌梗死直接经皮冠状动脉介入后心力衰竭的效果因版权原因,仅展示原文概要,查看原文内容请购买。
血管内皮生长因子、脑型肌酸激酶同工酶的动态检测在新生儿缺氧缺血性脑病中的意义
血管内皮生长因子、脑型肌酸激酶同工酶的动态检测在新生儿缺氧缺血性脑病中的意义段宝珍;黄应祥;张利【期刊名称】《蚌埠医学院学报》【年(卷),期】2016(41)6【摘要】目的:探讨血管内皮生长因子(VEGF)、脑型肌酸激酶同工酶(CK-BB)动态检测在新生儿缺氧缺血性脑病(HIE)中的临床价值.方法:选取HIE患儿(轻度33例、中度27例、重度24例)84例(HIE组),均常规胞二磷胆碱及1,6-二磷酸果糖静脉滴注治疗,另选取同期正常足月新生儿52名(对照组),分别于出生后24 h、72 h和7d 动态检测2组VEGF、CK-BB水平.结果:出生后24 h和72 h,HIE不同程度组患儿VEGF水平均为重度组>中度组>轻度组,且均明显高于对照组(P<0.01);出生后7d,HIE各组与对照组VEGF水平差异均无统计学意义(P>0.05).出生后24 h、72 h和7d,HIE不同程度组患儿CK-BB水平均为重度组>中度组>轻度组;出生后24 h和72 h,HIE各组CK-BB水平均明显高于对照组(P<0.01);出生后7d,重度、中度HIE组CK-BB水平均明显高于对照组(P<0.01),HIE轻度组与对照组差异无统计学意义(P>0.05).结论:HIE患儿VEGF、CK-BB表达水平明显升高,动态检测有助于判断HIE患儿脑损伤程度,对于HIE的诊断、治疗及预后有积极意义.【总页数】3页(P730-732)【作者】段宝珍;黄应祥;张利【作者单位】广东省深圳市南山西丽人民医院儿科,518000;广东省深圳市南山西丽人民医院儿科,518000;广东省深圳市南山西丽人民医院儿科,518000【正文语种】中文【中图分类】R722.1【相关文献】1.新生儿缺氧缺血性脑病血肌酸激酶脑型同工酶、乳酸脱氢酶脑型同工酶活性与预后的关系 [J], 杜小芳2.新生儿缺氧缺血性脑病血肌酸激酶脑型同工酶、乳酸脱氢酶脑型同工酶活性与预后的关系 [J], 杜小芳3.肌酸激酶脑型同工酶在颅脑损伤中的检测及意义 [J], 王丹丹4.急性颅脑损伤患者血清一氧化氮、脑型肌酸激酶同工酶及神经元特异性烯醇化酶动态监测的意义 [J], 史建国;姜勇;岳洪胜;高军5.新生儿缺氧缺血性脑病患儿脐血肌酸激酶脑型同工酶和神经元特异性烯醇化酶变化及临床意义 [J], 刘春艳;姚笠因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A R T I C L E Transcriptional coactivator PGC-1αcontrols the energy state and contractile function of cardiac muscleZoltan Arany,1,7Huamei He,2,7Jiandie Lin,1,7Kirsten Hoyer,2Christoph Handschin,1Okan Toka,3Ferhaan Ahmad,3 Takashi Matsui,6Sherry Chin,1Pei-Hsuan Wu,1Igor I.Rybkin,4John M.Shelton,4Monia Manieri,5Saverio Cinti,5 Frederick J.Schoen,2Rhonda Bassel-Duby,4Anthony Rosenzweig,6Joanne S.Ingwall,2and Bruce M.Spiegelman1,*1Dana Farber Cancer Institute and the Department of Cell Biology,Harvard Medical School,Boston,Massachusetts021152NMR Laboratory for Physiological Chemistry,Department of Medicine,Brigham and Women’s Hospital and Harvard Medical School,Boston, Massachusetts021153Brigham and Women’s Hospital and Harvard Medical School,Boston,Massachusetts021154Departments of Molecular Biology and Internal Medicine,University of Texas Southwestern Medical Center,Dallas,Texas753905Institute of Normal Human Morphology,Faculty of Medicine,University of Ancona,Ancona60020,Italy6Program in Cardiovascular Gene Therapy,CVRC,and Harvard Medical School,Boston,Massachusetts021297These authors contributed equally to this work.*Correspondence:bruce_spiegelman@SummarySkeletal and cardiac muscle depend on high turnover of ATP made by mitochondria in order to contract efficiently.The transcriptional coactivator PGC-1αhas been shown to function as a major regulator of mitochondrial biogenesis and respiration in both skeletal and cardiac muscle,but this has been based only on gain-of-function ing genetic knockout mice,we show here that,while PGC-1αKO mice appear to retain normal mitochondrial volume in both muscle beds,expression of genes of oxidative phosphorylation is markedly blunted.Hearts from these mice have reduced mito-chondrial enzymatic activities and decreased levels of ATP.Importantly,isolated hearts lacking PGC-1αhave a diminished ability to increase work output in response to chemical or electrical stimulation.As mice lacking PGC-1αage,cardiac dysfunction becomes evident in vivo.These data indicate that PGC-1αis vital for the heart to meet increased demands for ATP and work in response to physiological stimuli.Introduction numerous DNA binding transcription factors and then coordi-nating several biochemical events,including recruitment of Living organisms must convert chemical energy into mechani-chromatin modifying enzymes such as p300/CBP and SRC-1 cal work.Muscle is a specialized tissue devoted primarily to(Puigserver et al.,1999),interaction with the basal transcription this task.The energy needs in muscle are quite high and must machinery(Wallberg et al.,2003),and linking of transcription be precisely regulated.Nowhere is this more true than in the to RNA splicing(Monsalve et al.,2000).The outcome is robust heart,where work is generated unfailingly for decades and activation of gene expression in coherent metabolic pathways. where energy consumption is higher than in any other organ.PGC-1β,identified by virtue of sequence homology to PGC-The availability of energy in skeletal and cardiac muscle can be1α,has a similar tissue distribution as PGC-1αand coactivates significantly altered in both health and disease.Chronic exer-an overlapping but not identical repertoire of transcription cise in skeletal muscle,for example,stimulates a switching factors(Kressler et al.,2002;Lin et al.,2002a;Lin et al.,2003). from predominantly glycolytic to more oxidative fibers,which In the liver,for instance,PGC-1αdocks HNF4αand FOXO1 contain more mitochondria and are resistant to fatigue(Booth(Lin et al.,2003)and activates gluconeogenesis,while PGC-1βand Thomason,1991).Conversely,aberrations in energy pro-activates lipid biosynthesis by docking SREBP(Lin et al., duction are seen in such diverse muscular diseases as muscu-2005).lar dystrophies,mitochondrial myopathies(Kelly and Strauss,One of the primary effects of PGC-1αis the activation of 1994;Wallace,1992),and chronic congestive heart failure mitochondrial biogenesis and oxidative phosphorylation.In (Ingwall,2002;Ingwall and Weiss,2004).How these defects brown fat,cold exposure induces PGC-1αexpression,which come about remains incompletely understood,in particular at leads to mitochondrial proliferation,uncoupling of oxidative the level of gene expression control.phosphorylation through increased expression of UCP-1,and PPARγcoactivator-1α(PGC-1α)and-βare potent transcrip-energy dissipation in the form of heat(Lin et al.,2004;Puig-tional coactivators of nuclear receptors and other transcription server et al.,1998).In skeletal and cardiac muscle cells,forced factors(Knutti and Kralli,2001;Puigserver and Spiegelman,expression of PGC-1αin vitro activates mitochondrial biogene-2003;Scarpulla,2002).They can control specific metabolic sis,oxidative phosphorylation,and respiration(Lehman et al., pathways,especially oxidative metabolism,in a variety of tis-2000;St-Pierre et al.,2003).Forced expression of PGC-1αin sues.PGC-1αtargets promoters by interacting directly withtype II skeletal muscle fibers in vivo leads to mitochondrial pro-A R T I C L Eliferation and switching to more oxidative(type IIa and I)fibers slightly lower in KO than in wt mice(Figure1A).Hearts from that resist fatigue from repeated electrical stimulation(Lin etKO mice showed no histological evidence of hypertrophy or al.,2002b).Marked overexpression of PGC-1αin cardiac mus-dilatation on low-power views,nor of increased fibrosis on high cle in vivo leads to mitochondrial proliferation to such an extentmagnification views of Trichrome stainings(Figures1B and that the myofibrillar contractile apparatus is displaced,leading1C),both common cardiac mechanisms of compensation in to cardiomyopathy and congestive heart failure(Lehman et al.,disease.Isolated cardiomyocytes also did not show evidence 2000).Temporally limiting PGC-1αoverexpression to the adult of hypertrophy(see Figure S1A in the Supplemental Data avail-heart results in reversible contractile dysfunction through un-able with this article online).In skeletal muscle,fibers were of clear mechanisms(Russell et al.,2004).Taken together,these normal size and revealed no gross structural abnormalities gain-of-function experiments have demonstrated the capacity(Figure2A).Hence,at3months,PGC-1αKO mice show no of PGC-1αto activate the full programs of mitochondrial bio-overt histological signs of abnormalities in these muscle beds. genesis and oxidative phosphorylation in both skeletal andPGC-1αcan activate the full program of mitochondrial bio-cardiac muscle beds.genesis in vitro and in vivo(Lehman et al.,2000;Puigserver et Expression of PGC-1αin muscle beds is itself highly modu-al.,1998;St-Pierre et al.,2003;Wu et al.,1999).Moreover, lated,consistent with a role in cellular adaptation to environ-PGC-1αgene expression in the heart is sharply increased at mental stimuli.Chronic exercise leads to increased PGC-1αthe time of birth,coinciding with a sudden increase in mito-mRNA in skeletal muscle,followed by an increased mitochon-chondrial biogenesis(Lehman et al.,2000).This has led to the drial content,resistance to fatigue,and presence of more oxi-hypothesis that PGC-1αdictates,at least in part,mitochondrial dative fibers(Baar et al.,2002;Russell et al.,2003;Terada et biogenesis in vivo.We tested this by examining mitochondria al.,2002;Wu et al.,2002).Conversely,levels of PGC-1αandin cardiac and skeletal muscle by electron microscopy(EM). genes of mitochondrial metabolism are decreased in skeletal Surprisingly,only subtle differences were notable between muscle of diabetic patients,as well as prediabetic family mem-mitochondria from KO and wt mice in either cardiac or skeletal bers,arguing for an early and perhaps causal role of this path-muscle(Figures1D and1E,respectively).In the heart,the mito-way in the pathogenesis of type2diabetes(Mootha et al.,chondria appeared slightly less well packed between myofi-2003;Patti et al.,2003).In the heart,PGC-1αexpression is bers,and slight dilation of cristae was sometimes noted(Figure induced perinatally and then in the adult heart,which has led1D and data not shown).Importantly,however,the overall vol-to the hypothesis that PGC-1αregulates the burst of mito-ume content of mitochondria appeared unchanged in KO mice. chondrial biogenesis also observed perinatally(Lehman andMorphometric quantification of mitochondrial volume con-Kelly,2002b).Pathologically hypertrophied hearts,modeled by firmed that approximately one third of the heart is taken up by surgical constriction of the aorta,have decreased expressionmitochondria,and no difference was seen between wt and KO of both PGC-1αand its target genes of fatty acid oxidation and mice(Figure1D).Thus,despite the ability of PGC-1αto acti-oxidative phosphorylation(Barger et al.,2000;Garnier et al.,vate the full program of mitochondrial biogenesis in vitro and 2003;Lehman and Kelly,2002b).Similarly,overexpression of in vivo,PGC-1αis not required for mitochondrial biogenesis either HDAC5(Czubryt et al.,2003)or cyclinT1(Sano et al.,in vivo in cardiac and skeletal muscle.2004)in the heart leads to PGC-1αdownregulation,mitochon-drial dysfunction,and profound heart failure,suggesting a role Skeletal muscle fiber types in the absence of PGC-1αfor diminished PGC-1αin the development of heart failure.Mammals adjust to chronically increased mechanical energy These experiments have suggested that PGC-1αin different needs(e.g.,exercise)by converting some glycolytic skeletal muscle beds can coordinate levels of energy production withmuscle fibers into more oxidative fibers(Berchtold et al.,2000). mechanical energy needs and that aberration of that balance The latter are rich in mitochondria and contain myofibrillar pro-can lead to dysfunction and disease.teins that are more conducive to sustained work output(Hood, Here,we investigate whether PGC-1αis required for proper2001).The mechanism by which this conversion occurs re-mitochondrial function,energy generation,and contractile func-mains incompletely understood,but the current evidence sug-tion in skeletal and cardiac ing PGC-1αknockout gests that it involves,at least in part,the induction by cAMPand Ca2+of PGC-1α,which then activates transcriptional pro-(KO)mice,we show that,while PGC-1αis required neither formitochondrial biogenesis per se nor for differentiation of oxida-grams of fiber type switching and mitochondrial biogenesis tive skeletal muscle fibers,the absence of PGC-1αleads to(Czubryt et al.,2003;Handschin et al.,2003;Lin et al.,2002b; reduced mitochondrial function and profound defects in the Wu et al.,2002).Ectopic expression of PGC-1αin vivo in gly-ability of the heart to respond to increased demand.colytic(type IIb)skeletal myofibers is sufficient to drive fiberswitching to a phenotype with morphology and functional char-acteristics of more oxidative types(I and IIa)(Lin et al.,2002b). ResultsWhether PGC-1αis necessary for this process in vivo,how-Normal tissue structure and mitochondrial biogenesisever,is not known.in the absence of PGC-1αCompared to wt mice,PGC-1αKO mice are hyperactive and PGC-1αKO mice were generated by homologous recombina-move more throughout the day,in effect constantly“exercis-tion(Lin et al.,2004).The mice are very cold sensitive,consis-ing”(Lin et al.,2004).From this aspect,one might expect that tent with a role for PGC-1αin adaptive thermogenesis.Theyskeletal muscle from KO mice would contain more oxidative are also lean and hyperactive,associated with defects in the fibers in response to the increased energy demands and neu-striatal part of the brain(Lin et al.,2004).ronal stimulation.On the other hand,if PGC-1αwere indeed At3months,ratios of heart weight to tibial length,often in-necessary for differentiation to more oxidative fibers,one creased in the presence of cardiac structural abnormality,werewould predict fewer(if any)type I and IIa fibers in the KO mice.PGC-1αcontrols the energy state of cardiac muscleFigure1.Normal tissue structure and mitochondrial biogenesis in the absence of PGC-1αPGC-1αwt and KO mice were harvested at3months.A)Body weight(BW),heart weight(HW),and ratios of heart weight to body weight(HW/BW)and tibial length(HW/TL).Error bars are±SEM.B)Low-power views after H&E staining of transverse sections from wt and KO hearts.C)High magnification views of H&E(left panels)and Trichrome(right panels)stainings from the same sections as in(B).D)Electron microscopy(8000×)photographs of longitudinal anterior sections from wt(top panels)and KO(lower panels)hearts.Morphometric quantification of mitochondrial volume from10wt and15KO electron micrographs is shown on the right.E)Low-power electron microscopy photographs of transverse sections form wt and KO quadriceps muscle.Morphometric quantification of mitochondrial volume from samples of11wt and8KO electron micrographs is shown on the right.To test these possibilities,fiber type composition in skeletal fiber type genes.Hence,despite its ability to induce type I andIIa fiber formation when expressed ectopically,PGC-1αis not muscle was evaluated in PGC-1αKO mice by metachromaticstaining and immunocytochemistry,which allows for the dis-absolutely necessary for oxidative fiber formation in vivo. tinction of type I,IIa,and IIb fibers.As seen in Figure2,therewere no obvious differences between wt and KO mice in fiber Deficient mitochondria in skeletal and cardiac muscle type composition:the soleus muscle,a type I-rich(red)muscle,from PGC-1αKO micewas of equal size(data not shown)and had equal numbers of Having normal mitochondrial number does not necessarily in-dicate normal mitochondrial function.To test if there is an ab-type I,IIa,and IIb fibers in KO and wt mice.Consistent withthis,expression of genes normally enriched in oxidative fibers normal pattern of gene expression in KO mice,we used RNA (such as troponin I slow,SERCA2,and sarcolipin)was similarfrom skeletal and cardiac muscle,combined with microarray in soleus muscle from wt and KO mice(data not shown).Inter-analyses and quantitative real-time PCR.These data(Figure3A estingly,expression of these genes was slightly but signifi-and Figure S1B)revealed that the majority of the most highly cantly(about2-fold)elevated in KO quadriceps,a type IIb-rich expressed genes necessary for mitochondrial function,suchas subunits of ATP synthase(e.g.,atp5i and atp5c1)and cyto-muscle(Figure2C).This is consistent with the notion that hy-peractivity in KO mice leads to a slight induction of oxidative chrome c oxidase(e.g.,cox5b and cox7a2),are reduced byA R T I C L EFigure2.Skeletal muscle fiber types in the absence of PGC-1αA)Immunocytochemical staining of type Iβ-myosin heavy chain(MHC,top panel),metachromatic ATPase staining(middle panel),and standard H&E staining(bottom panel)of transverse sections from wt and KO soleus muscle.Asterisks indicate examples of type I fibers.B)Fraction of type I and IIa fibers in WT and KO soleus muscle,as determined by counting fibers in complete transverse sections from both sides of two WT and two KO mice.Error bars are±SEM.C)mRNA expression of genes,normally enriched in type I fibers,in quadriceps(type I-poor)muscle from three wt and three KO mice,as assayed by real-time quantitative PCR.*p<0.05.Error bars are±SEM.20%–50%in skeletal muscle from KO mice.A comparison with cell autonomous,i.e.,do not depend on the whole animal KO cultured muscle cells ectopically expressing PGC-1αindicatedenvironment.In contrast,the type I fiber-specific genes that that these same genes are induced by PGC-1α(Figure3A,left were induced in whole animal skeletal muscle,such as tro-column).Importantly,these changes in gene expression in theponin I slow(tnis)and calsarcin(Figure2C),were not induced KO mice were observed in the absence of significant changes in primary cells from wt and KO mice(Figure3B),consistent in proportion of oxidative fiber types(Figure2).with the notion that the induction of these genes in vivo reflects PGC-1αKO mice have many aberrant characteristics,in-a neurohormonal response rather than a cell-autonomous phe-cluding hyperactivity and increased total body MVO2(Lin etnomenon.al.,2004),which might affect the changes in gene expression Decreases in expression of genes relating to mitochondrial observed.To test this,we examined cultured muscle cells iso-biology were even more marked in the heart(Figure3C).Quan-lated from the whole animal,thereby removing the confounding titative real-time PCR demonstrated a30%–50%reduction in variables inherent to the in vivo setting.As shown in Figure3B,the expression of genes of oxidative phosphorylation,fatty acid the reduced expression of genes necessary for mitochondrial oxidation,and ATP synthesis(T able1and data not shown).West-function,such as cytochrome c(cycs)or cytochrome c oxidaseern blotting with antibodies against products of two of these subunit5b(cox5b),is still apparent in the absence of PGC-genes(cytochrome c and ND4L,a member of the NADH dehy-1α,even though these cells were isolated as satellite cells anddrogenase complex)showed significant reductions in protein differentiated in culture many days.These data strongly sug-levels(Figure S1D).The expression of many of these same gest that these decreases in gene expression in muscle aregenes,such as cycs or cox5b,is reduced to a similar extent inPGC-1αcontrols the energy state of cardiac muscleFigure3.Deficient mitochondria in skeletal muscle from PGC-1αKO miceA)Representative Affymetrix microarray analysis of mRNA from wt and KO quadriceps muscle(left panel)and from C2C12cells infected with adenovirus encoding for PGC-1αor GFP(right panel).The25mitochondrial genes that are most highly expressed in quadriceps muscle are shown.Red and green colors indicate increased and decreased expression,respectively.B)mRNA expression of representative genes of mitochondrial biology(cycs,ndufc1,cox5b,atp5i)and genes normally enriched in type I fibers(troponin I slow, calsarcan)in differentiated primary skeletal cells harvested from quadriceps(type I-poor)muscle from wt and KO mice.*p<0.05.Error bars are±SEM.C)Representative Affymetrix microarray analysis of total RNA from wt and KO hearts.The20most highly expressed and decreased genes are shown.Color coding is as in(A).Statistical analysis of mitochondrial gene expression in the entire microarray is presented in Figure S1C.D)Enzymatic activity in extracts from wt and KO hearts(n=5and5).CS,citrate synthase.COX,cytochrome c oxidase.CII,electron transport chain complex II.LDH, lactate dehydrogenase.Error bars are±SEM.a well-established model of cardiac hypertrophy generated by chondrial DNA(such as cybmm and ND5,Table1)and theamount of mitochondrial DNA itself(Figure S1E)are both also constriction of the transverse aorta(Table1),as has beenshown before(Barger and Kelly,2000;Lehman and Kelly,reduced in KO hearts.Taken together,these data demonstrate 2002a;Weinberg et al.,2003).In addition,the expression of athat PGC-1αis required for normal expression of genes relating number of transcription factors known to act in a positive feed-to mitochondrial biology in skeletal and cardiac muscle in vivo. back loop with PGC-1α,including PPAR-αand ERR-α(HussTo test if these changes in gene expression result in corre-et al.,2004;Mootha et al.,2004),was also decreased(Table1)sponding functional deficiencies,select enzymatic activities incardiac extracts were assayed.Cytochrome c oxidase(COX), in KO mice,likely contributing to the reduction of target geneexpression.PGC-1αhas also been shown to increase the ex-a key enzyme in electron transport and oxidative phosphoryla-pression of the transcription factor TFAM(Wu et al.,1999),tion,and citrate synthase(CS),the rate-limiting enzyme in the which in turn translocates to the mitochondria and mediates Krebs cycle,both showed more than30%reduced activity in both transcription and replication of the mitochondrial genomehearts from KO mice(Figure3D).Interestingly,complex II of (Kelly and Scarpulla,2004).As shown in Table1,the expres-the electron transport chain(CII),which is made up of subunitsencoded only by the nuclear genome,was not diminished in sion of TFAM is reduced by50%in PGC-1αKO hearts.Con-sistent with this,expression of genes encoded by the mito-the KO hearts.As comparison,the activity of the cytoplasmicA R T I C L ETable1.Gene expression in wt and PGC-1αKO heartsPGC-1αKO versus wt TAC versus shamFold ind.p value Fold ind.p valuecycs0.550.010.810.14Oxidative phosphorylation(encoded by nucleus)cox5b0.590.0050.610.02atp5o0.480.0050.640.06ndufb50.440.0020.780.003cybmm0.500.017nd nd Oxidative phosphorylation(encoded by mitochondria) ND10.700.11nd ndND50.500.021nd ndMCAD0.480.060.760.10Fatty acid oxydationCPT-10.650.220.690.07CPT-20.670.03nd ndCD360.710.20nd ndTFAM0.550.047nd nd Transcription regulationERR-α0.720.07nd ndPPAR-α0.600.11nd ndPPAR-γ 1.030.98nd ndNRF-10.870.35nd ndNRF-2a0.900.34nd ndANP7.50.00518.00.0002Cardiac stressBNP 2.10.06 2.20.23α-MHC 1.60.0090.70.03β-MHC 2.60.0611.90.001skα-actin13.50.0047.20.008hsp70 2.80.58 2.60.09SERCA2a 1.10.370.70.002Fold induction of gene expression in KO hearts(n=3)over that in wt hearts(n=3)from3-month-old mice is shown in the left columns.For comparison,fold induction of the same genes in hearts from same-age mice subjected to1month of transverse thoracic aortic banding(TAC,n=5)over that in sham-treated hearts(n=5)is shown in the right columns.TAC hearts were kindly provided by Dr.Richard Lee.enzyme lactate dehydrogenase(LDH)was slightly increased beat at higher rates by apposing an electrode directly onto the (Figure4C),consistent with changes in LDH gene expressionheart and pacing at an increased frequency.This purely chro-(data not shown).notropic challenge in KO hearts led to20%less forceful con-tractions(+dP/dt)than in wt hearts(Table S1A).When the Defective function in isolated heartshearts were forced to abruptly increase work by infusion with from PGC-1αKO mice dobutamine(aβ-adrenergic agonist that leads to large in-creases in both heart rate and force of contraction,i.e.,both Given the high requirement of the heart for ATP and the defici-encies in gene expression and mitochondrial enzymatic activi-a chronotropic and inotropic challenge),+dP/dt in wt hearts ties observed,we asked whether PGC-1αKO mice have al-increased by30%more than in KO hearts(Figure4A and Table tered contractile function.To do this,isolated and perfused S1A).A similar pattern of mild baseline deficiency and worsen-hearts(Langendorff preparations)were used.For these experi-ing under stimulation was noted for the parameter that reflects ments,hearts are explanted and perfused ex vivo,allowing measured relaxation(−dP/dt),a process that also requires en-ergy(restoring the Ca2+gradient).Interestingly,KO hearts also regular contractions to continue.A balloon is inserted into theleft ventricle and expanded to fill the cavity,and the pressure showed a significant inability to increase heart rate in response within the balloon is continuously measured.This allows pre-to dobutamine(Table S1A).Lower heart rate can increase+dP/ cise evaluation of pressures and rates of pressure change dur-dt;hence,the deficiency in+dP/dt seen here probably under-estimates the true magnitude of deficiency in KO hearts.A bet-ing each(now isovolumic)contraction.As stated earlier,KOmice are lean,hyperactive,and have a highly altered glucose/ter index of cardiac work,therefore,is the rate pressure prod-insulin axis(Lin et al.,2004).Using the well-established Lan-uct(RPP),equal to heart rate times the increase in pressure gendorff preparations therefore allowed us to define the con-developed by each contraction(DevP).As seen in Figure4B, tractile properties of the hearts independent of confoundingwt hearts can increase RPP by nearly twice as much as can variables present in the whole-body setting,such as available KO hearts in response to dobutamine.In the experiments described above,hearts were perfused substrates or neurohormonal environment.Using this approach,hearts from3-month-old PGC-1αKO with modified Krebs bicarbonate buffer,which contains glu-mice revealed small but significant contractile deficienciescose and pyruvate as energy sources.However,the heart uses when allowed to spontaneously pump without further stimulus primarily free fatty acids as a carbon source in vivo(Ingwall, (Table S1A):both the rate of change of pressure during con-2003).Moreover,PGC-1αis well-known to activate genes of traction(+dP/dt)and the maximal achieved pressure(LVSP)fatty acid import and oxidation,and expression of these genes were reduced about10%(p<0.05).These deficiencies,how-is decreased in PGC-1αKO hearts(Table1).We therefore also ever,became more pronounced under stimulation(Table S1A measured the contractile function of wt and KO hearts per-and Figure4A).For example,isolated hearts can be made tofused with a buffer containing physiological concentrations ofPGC-1αcontrols the energy state of cardiac muscleFigure4.Defective cardiac function in PGC-1αKO miceA)Contractile performance of hearts from PGC-1αKO(red,n=5)compared to wt(blue,n=5)hearts measured in Langendorff preparations.Hearts were electrically paced at7.0Hz.After10min,hearts were challenged with300nM dobutamine for12min and then allowed to recover for another15min.+dP/dt,positive change in pressure over time during isovolumic contraction.−dP/dt,negative change in pressure over time during isovolumic relaxation.RPP,rate pressure product=heart rate times pressure differential between the fully contracted and relaxed states.RPP models the work done by the heart in vivo.B)Rate pressure product in wt and KO hearts at baseline and in response to dobutamine.In the top panel,hearts from wt(n=5)and KO(n=5)mice were perfused with modified Krebs bicarbonate buffer containing glucose and pyruvate.In the bottom panel,hearts from wt(n=4)and KO(n=4)mice were perfused with buffer containing physiological concentrations of free fatty acids,glucose,lactate,and ketones,as described in Experimental Procedures.Error bars are±SEM.all carbon sources normally used by the heart:free fatty acids,can be calculated from the area under each peak.PCr,the glucose,ketones,and lactate.Under these conditions,theprimary energy reserve compound in excitable tissues,is nor-contractile deficiencies of the KO hearts became even more mally present in cardiac muscle at twice the concentration of pronounced(Table S1B).In response to dobutamine,for in-ATP and is in rapid exchange with ATP;an accurate measure stance,the RPP increased only30%as much in KO hearts as of available high-energy phosphate bonds thus requires eval-it did in wt hearts(Figure4C and Table S1B).Together,theseuation of both ATP and PCr concentrations.The most powerful data show that hearts from PGC-1αKO mice have a profound advantages of this NMR technique stem from its ability to non-defect in contractile reserve,suggesting that PGC-1αis vitalinvasively measure ATP and PCr contents in intact,beating to increasing cardiac work output in response to increased hearts under differing conditions and while simultaneously demand.measuring contractile performance.Using this approach,we found that ATP levels in unstimu-Hearts from PGC-1αKO mice are energy deficientlated PGC-1αKO hearts were reduced by approximately20% The KO hearts were next studied for their ability to maintain compared with wt hearts(Figures5A and5B and Figure S2A). readily available sources of energy for mechanical work.TheThe concentration of ATP in cardiac tissue is normally tightly ATP content of wt and KO hearts was measured by31P nuclear controlled and,in cases of terminal heart failure,is reduced by magnetic resonance(NMR)using the Langendorff heart prepa-only approximately30%.Hence,the absence of PGC-1αre-rations(Figure5A).From these measurements,concentrations sults in a profound energetic defect in the heart.Similarly,the of ATP,inorganic phosphate(Pi),and phosphocreatine(PCr)concentration of PCr was also reduced by w20%(Figures5A。