数列求和与数列的综合问题

合集下载

数列的综合运用范文

数列的综合运用范文

数列的综合运用范文数列是数学中一种重要的概念,它是由一组按照一定规律排列的数所组成的序列。

在数学中,数列的综合运用十分广泛,涉及到数列的求和、递推关系、数列的性质和应用等方面。

本文将从上述几个方面综合运用数列进行详细探讨。

首先,数列的求和是数列的基本操作,它包括求等差数列的和、等比数列的和以及一些特殊的数列的和。

对于等差数列来说,求和可以通过求首项与末项的平均数乘以项数来得到,也可以通过求首项与末项之和乘以项数的一半得到。

对于等比数列来说,求和可以通过首项乘以公比的幂次减1再除以公比减1得到。

此外,还可以利用数列的递推关系求得求和的公式,例如斐波那契数列的求和公式即为斐波那契数列的通项公式的一个特殊情况。

其次,数列的递推关系指的是后一项与前一项之间的关系,它描述了数列的演化过程。

数列的递推关系可以通过观察数列的前几项来得到,并根据这种规律来确定后面的项。

例如等差数列的递推关系为后一项等于前一项加上公差,等比数列的递推关系为后一项等于前一项乘以公比。

利用数列的递推关系可以解决一些实际生活中的问题,如利用斐波那契数列的递推关系可以解决兔子繁殖问题。

第三,数列的性质是指数列在运算中所具有的一些特点。

其中常见的性质有有界性、单调性和周期性等。

数列的有界性指的是数列的所有项都存在一个上界和一个下界,即数列的所有项都位于这个区间内。

数列的单调性指的是数列的所有项是递增的或者递减的,即数列的项之间存在一种明显的大小关系。

数列的周期性指的是数列的项按照一定的规律重复出现,即数列的第n项与第n+k项相等。

利用数列的性质可以研究数列的极限、范围和周期等问题。

最后,数列的应用广泛存在于实际生活和各个学科中。

在实际生活中,数列的应用可以帮助我们解决一些数学和经济等问题,如利用利率的等比数列可以计算存款的本息和。

在学科中,数列的应用可以帮助我们研究和解决一些科学问题,如利用斐波那契数列可以表达自然界中一些规律和现象。

另外,数列的应用还可以帮助我们提高思维能力和解决问题的能力,如数列的递推关系与递归问题的求解有密切的关系。

2022版高考数学一轮复习第7章第4讲数列求和数列的综合应用训练含解析

2022版高考数学一轮复习第7章第4讲数列求和数列的综合应用训练含解析

第七章 第4讲[A 级 基础达标]1.在数列{a n }中,a 1=1,a n +1=3a n +2n -1,则数列{a n }的前100项和S 100为( ) A .399-5 051 B .3100-5 051 C .3101-5 051 D .3102-5 051【答案】B2.(2020年唐山月考)已知等差数列{a n }的公差不为零,其前n 项和为S n ,若S 3,S 9,S 27成等比数列,则S 9S 3等于( )A .3B .6C .9D .12【答案】C3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-400【答案】B4.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 016=( ) A .22 016-1 B .3·21 008-3 C .3·21 008-1 D .3·21 007-2 【答案】B5.(2020年广州天河区一模)一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( )A .a (1+r )17B .ar [(1+r )17-(1+r )]C .a (1+r )18D .ar [(1+r )18-(1+r )]【答案】D 【解析】根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为a (1+r )17,同理,孩子在2周岁生日时存入的a 元产生的本利合计为a (1+r )16,孩子在3周岁生日时存入的a 元产生的本利合计为a (1+r )15,…,孩子在17周岁生日时存入的a 元产生的本利合计为a (1+r ),题目所求可以看成是以a (1+r )为首项,(1+r )为公比的等比数列的前17项的和,此时S =a (1+r )17+a (1+r )17+…+a (1+r )=a (1+r )[(1+r )17-1]1+r -1=ar [(1+r )18-(1+r )]. 6.(2020年池州模拟)正项等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,则公比q =________.【答案】3 【解析】q =1时,不合题意,q ≠1时,由S 3=a 2+10a 1,得a 1(1-q 3)1-q =a 1q+10a 1,所以1+q +q 2=q +10.又q >0,所以q =3.7.已知{a n }的前n 项和S n =n 2-9n -1,则|a 1|+|a 2|+…+|a 30|的值为________. 【答案】671 【解析】{a n }的前n 项和S n =n 2-9n -1,可得n =1时,a 1=S 1=-9;n ≥2时,a n =S n -S n -1=n 2-9n -1-(n -1)2+9(n -1)+1=2n -10,可得n ≤5时,a n <0,n ≥6时,a n >0,可得|a 1|+|a 2|+…+|a 30|=S 30-S 5-S 5=900-270-1-2×(25-45-1)=671.8.设f (x )=4x 4x +2,利用倒序相加法,可求得f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011的值为________. 【答案】5 【解析】当x 1+x 2=1时,f (x 1)+f (x 2)=4x 14x 1+2+4x 24x 2+2=2×4x 1+x 2+2×(4x 1+4x 2)4x 1+x 2+2×(4x 1+4x 2)+4=1.设S =f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011,倒序相加有2S =⎣⎡⎦⎤f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫1011+⎣⎡⎦⎤f ⎝⎛⎭⎫211+f ⎝⎛⎭⎫911+…+⎣⎡⎦⎤f ⎝⎛⎭⎫1011+f ⎝⎛⎭⎫111=10,即S =5.9.(2020年大庆月考)已知正项等差数列{a n }的前n 项和为S n ,若S 3=12,且2a 1,a 2,a 3+1成等比数列.(1)求{a n }的通项公式及S n ;(2)记b n =S nn,求数列{b n }的前n 项和T n .解:(1)设正项等差数列{a n }的公差为d ,则d >0.因为S 3=12,即a 1+a 2+a 3=12, 所以3a 2=12,所以a 2=4.又2a 1,a 2,a 3+1成等比数列,所以 a 22=2a 1·(a 3+1),即42=2(4-d )·(4+d +1). 解得d =3或d =-4(舍去),所以a 1=a 2-d =1.故{a n }的通项公式为a n =a 1+(n -1)d =3n -2,且S n =n (a 1+a n )2=3n 2-n2.(2)由(1)知b n =S n n =3n -12,所以b n +1-b n =3(n +1)-12-3n -12=32,且b 1=3×1-12=1.所以数列{b n }是以b 1=1为首项,32为公差的等差数列.所以数列{b n }的前n 项和为T n =n (b 1+b n )2= 3n 2+n4.10.(2020年哈尔滨期末)设等差数列{a n }的前n 项和为S n ,若S 9=81,a 3+a 5=14. (1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求{b n }的前n 项和为T n .解:(1)设{a n }的公差为d ,则⎩⎪⎨⎪⎧9a 1+9×82d =81,a 1+2d +a 1+4d =14,解得⎩⎨⎧a 1=1,d =2.所以a n =a 1+2(n -1)=2n -1. (2)由于a n =2n -1,所以b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,所以T n =12⎝⎛ 1-13+13-15+…+12n -1-⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1.[B 级 能力提升]11.(2020年蚌埠模拟)数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为( )A .nn +2B .2n n +2 C .n n +1D .2n n +1【答案】B 【解析】a n =1+2+3+…+n n =12(n +1),1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,可得数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为4⎝⎛⎭⎫12-13+13-14+…+1n +1-1n +2=4⎝⎛⎭⎫12-1n +2=2n n +2.12.(多选)(2020年菏泽模拟)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( )A .a 6=8B .S 7=33C .a 1+a 3+a 5+…+a 2 019=a 2 020D .a 21+a 22+…+a 22 019a 2 019=a 2 020【答案】ABCD 【解析】对A ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,可得a 6=8成立;对B ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,可得a 6=8,a 7=13,所以s 7=1+1+2+3+5+8+13=33成立;对C ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,…,a 2 019=a 2 020-a 2 018,可得a 1+a 3+a 5+…+a 2 019=a 2 020,故a 1+a 3+a 5+…+a 2 019是斐波那契数列中的第2 020项,C成立;对D ,斐波那契数列总有a n +2=a n +1+a n ,则a 21=a 2a 1,a 22=a 2(a 3-a 1)=a 2a 3-a 2a 1,a 23=a 3(a 4-a 2)=a 3a 4-a 3a 2,…,a 22 018=a 2 018a 2 019-a 2 018a 2 017,a 22 019=a 2 019a 2 020-a 2 019a 2 018.所以a 21+a 22+…+a 22 019=a 2 019a 2 020,D 成立.故选ABCD .13.在正项数列{a n }中,a 1=2,其前n 项和S n 满足S n +S n -1=12a 2n(n ≥2),若数列b n =(-1)n ·2n +1S n,则数列{b n }的前2 020项和为________.【答案】-2 0202 021 【解析】在正项数列{a n }中,a 1=2,其前n 项和S n 满足S n +S n -1=12a 2n (n ≥2),可得S n -1+S n -2=12a 2n -1,相减可得a n +a n -1=12a 2n -12a 2n -1,化为a n -a n -1=2.n =2时,2+2+a 2=12a 22,可得a 2=4,则a n =2n ,S n =n (n +1),b n =(-1)n ·2n +1S n =(-1)nn +n +1n (n +1)=(-1)n ⎝⎛⎭⎫1n +1n +1.可得数列{b n }的前2 020项和为-⎝⎛⎭⎫1+12+12+13+…-12 019-12 020+12 020+12 021=-1+12 021=-2 0202 021.14.(一题两空)(2020年北京模拟)已知集合A ={x |x =a 3×30+a 2×3-1+a 1×3-2+a 0×3-3},其中a k ∈{0,1,2},k =0,1,2,3,将集合A 中的元素从小到大排列得到数列{b n },设{b n }的前n 项和为S n ,则b 3=________,S 15=________.【答案】19 28027 【解析】由题意可知b 3=0×30+0×3-1+1×3-2+0×3-3=19.a 0,a 1,a 2,a 3各有3种取法(均可取0,1,2).在前15项中,a 0,a 1,a 2,a 3全部为0,有1个数值;只有1个1,其余取0,共有4个数值;2个取1,2个取0,共有6个数值;3个取1,1个取0,共有4个数值.此时集合A 中,元素从小到大排列得到数列恰好是15个,而且a 0,a 1,a 2,a 3各取1的次数都是7次,由分类计数原理得集合A 中所有元素之和S 15=7×(30+3-1+3-2+3-3)=28027. 15.(2020年韶关期末)已知等差数列{a n }的前n 项和为S n ,且a 2=3,S 6=36. (1)求数列{a n }的通项公式; (2)若数列{b n }满足b n =1a 2n +4n -2(n ∈N*),求数列{bn }的前n 项和T n .【答案】解:(1)设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+d =3,S 6=6a 1+6×52d =36,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a n =1+2(n -1)=2n -1.(2)由(1)得,数列{b n }满足b n =1a 2n +4n -2=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,则T n =12⎝⎛ 1-13+13-15+…+12n -1-⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1.16.(2020年杭州模拟)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=30,2S 2是3S 1和S 3的等差中项.(1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =1+log 3a na n,求数列{b n }前n 项和T n .解:(1)设等比数列{a n }的公比为q ,由a 1+a 3=30,2S 2是3S 1和S 3的等差中项,可得a 1+a 1q 2=30,4S 2=3S 1+S 3,即有4(a 1+a 1q )=3a 1+a 1+a 1q +a 1q 2,解得a 1=q =3,则a n =3n (n∈N *).(2)b n =1+log 3a na n=1+log 33n3n=(2n +1)·⎝⎛⎭⎫13n , 前n 项和T n =3×13+5×19+7×127+…+(2n +1)·⎝⎛⎭⎫13n , 13T n =3×19+5×127+7×181+…+(2n +1)·⎝⎛⎭⎫13n +1, 相减可得23T n =1+2⎣⎡⎦⎤19+127+…+⎝⎛⎭⎫13n -(2n +1)·⎝⎛⎭⎫13n +1=1+2·19⎝⎛⎭⎫1-13n -11-13-(2n +1)·⎝⎛⎭⎫13n +1,化简可得T n =2-(n +2)·⎝⎛⎭⎫13n . [C 级 创新突破]17.(2020年南通模拟)定义数列{a n }:先给出a 1=1,接着复制该项,再添加1的后继数2,于是a 2=1,a 3=2,接下来再复制前面所有项,之后再添加2的后继数3,如此继续(1,1,2,1,1,2,3,1,1,2,1,1,2,3,4,…),设S n 是a n 的前n 项和,则S 2 020=________.【答案】3 990 【解析】由数列{a n }的构造方法可知a 1=1,a 3=2,a 7=3,a 15=4,可得a 2n -1=n .由于数表的前n 行共有2n -1 个数,于是,先计算S 2n -1.在前2n -1个数中,共有1个n,2个n -1,22个n -2,… ,2n -k 个k , (2)-1个1,因此S 2n -1 =n ×1+(n -1)×2+…+k ×2n -k +…+2×2n -2+1×2n -1,则2S 2n -1=n ×2+(n -1)×22+…+k ×2n-k +1+…+2×2n -1+1×2n ,两式相减,得S 2n -1=n +2+22+…+2n -1+2n =2n +1-n -2.所以S 2 020=S 210-1+S 997=S 210-1+S 29-1+S 486=…=S 210-1+S 29-1+…+S 25-1+S 10=(211-12)+(210-11)+(29-10)+(28-9)+(27-8)+(26-7)+15=3 990.18.(2020年邢台模拟)设数列{a n }是公差为2的等差数列,数列{b n }满足b 1=1,b 2=2,a n b n +b n =(n +1)·b n +1.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n b n }的前n 项和S n ;(3)设c n =a nlog 2b n +1,试问是否存在正整数s ,t (s ≠t ),使c 3,c s ,c t 成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由.解:(1)数列{b n }满足b 1=1,b 2=2,a n b n +b n =(n +1)b n +1. 当n =1时,a 1b 1+b 1=2b 2,解得a 1=3.所以a n =3+2(n -1)=2n +1.由于a n b n +b n =(n +1)b n +1,所以(2n +2)b n =(n +1)b n +1,整理得b n +1b n =2(常数).所以b n =1·2n -1=2n-1.(2)由于a n =2n +1,b n =2n -1, 所以a n b n =(2n +1)·2n-1.则S n =3·20+5·21+7·22+…+(2n +1)·2n -1①, 2S n =3·21+5·22+7·23+…+(2n +1)·2n ②,由①-②得,-S n =2(1+2+…+2n -1)+1-(2n +1)·2n ,整理得S n =(2n -1)·2n +1. (3)根据(1)得c n =a n log 2b n +1=1n+2.假设存在正整数s 和t ,使c 3,c s ,c t 成等差数列, 所以2s +4=13+2+1t +2,整理得2s =13+1t ,即6t =st +3s ,整理得s =6-18t +3,当t =s =3时,与s ≠t 矛盾,故舍去. 当t =6时,s =4,符合题意; 当t =15,s =5时,符合题意.。

高考数学二轮复习数列求和及其综合应用

高考数学二轮复习数列求和及其综合应用

(2)在各项均为正数的数列{an}中,a1=1,a2n+1-2an+1an-3a2n=0,Sn 是数列 {an}的前 n 项和,若对 n∈N*,不等式 an(λ-2Sn)≤27 恒成立,则实数 λ 的 取值范围为_(-__∞__,__1_7_]_.
∵a2n+1-2an+1an-3a2n=0, ∴(an+1+an)(an+1-3an)=0, ∵an>0,∴an+1=3an,又a1=1, ∴数列{an}是首项为1,公比为3的等比数列, ∴an=3n-1, Sn=11--33n=32n-12, ∴不等式 an(λ-2Sn)≤27 即 λ≤2Sn+2a7n=3n+32n-71-1 对 n∈N*恒成立,
所以 2an1
2an
=4,
所以an+1-an=2,
所以数列{an}是公差为2的等差数列,
因为a2,a4,a7成等比数列,
所以 a24=a2a7,
所以(a1+6)2=(a1+2)(a1+12), 解得a1=6,
所以an=6+2(n-1)=2n+4, 因为Sn为数列{bn}的前n项和,且bn是1和Sn的等差中项, 所以Sn+1=2bn, 当n≥2时,有Sn-1+1=2bn-1, 两式相减得bn=2bn-2bn-1,即bn=2bn-1, 当n=1时,有S1+1=b1+1=2b1, 所以b1=1, 所以数列{bn}是首项为1,公比为2的等比数列,所以bn=2n-1,
考向3 错位相减法
例3 (2022·上饶模拟)从①b5-b4=18b2,②S5=b4-2,③log3bn+1-1= log3bn这三个条件中任选一个,补充在下面问题中,并解答. 已知数列{an}的前n项和为Sn,数列{bn}是正项等比数列,且2an=an+1+ an-1(n≥2),S3=b3=9,b4=a14,________. (1)求数列{an}和{bn}的通项公式; 注:如果选择多个条件分别解答,按第一个解答计分.

清单24 数列求和与数列综合问题(解析版)-2022年新高考数学一轮复习知识方法清单与跟踪训练

清单24 数列求和与数列综合问题(解析版)-2022年新高考数学一轮复习知识方法清单与跟踪训练
【答案】B
【解析】当 为奇数时, ,数列 是首项为1,公差为2的等差数列;
当 为偶数时, ,数列 是首项为2,公差为0的等差数列,即常数列.
则 .故选B.
5.若 为等差数列,求 的前n项和,可采用并项求和,即把相邻两项合并,构造一个新数列求和
【对点训练5】若数列 的通项公式是 ,则
A. B. C. D.
又当 时,有 ,可得: ,∴数列 是首项为1,公比为 的等比数列,
∴ , ,∴ ,
∴ .
4.若 , 为等差数列或等比数列,求 的前n项和可以采用分组求和,分别求出 的奇数项之和与偶数项之和再相加.
【对点训练4】(2021届四川省九市高三二模)记 为数列 的前 项和,若 , ,且 ,则 的值为()
A.5050B.2600C.2550D.2450
是以 为首项, 为公差的等差数列, ;
经检验: 满足 ;
综上所述: ,
,
,
由 得: ,
令 ,则 ,
为递增数列, , ,即实数 的取值范围为 .
故选A.
9.(2021届河南省驻马店市高三上学期四校联考)数列 满足 ,则数列 的前60项和等于()
A.1830B.1820C.1810D.1800
【答案】D
【解析】当 为正奇数时,由题意可得 , ,
两式相加得 ;
当 为正偶数时,由题意可得 , ,
两式相减得 .
因此,数列 的前 项和为 .
故选D.
10.已知等比数列 满足 , ,若 , 是数列 的前 项和,对任意 ,不等式 恒成立,则实数 的取值范围为()
A. B. C. D.
【答案】C
【解析】设等比数列 的公比为 ,
10.裂项相消法
把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(1)用裂项相消法求和时,要对通项进行变换,如: = ( - ), = ( - ),裂项后可以产生连续相互抵消的项.(2)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.

数列专题(三)

数列专题(三)

年 级: 辅导科目:数学 课时数: 课 题 数列求和与数列综合应用教学目的教学内容数列求和(一)高考目标考纲解读1.熟练掌握等差、等比数列的前n 项和公式. 2.掌握非等差、等比数列求和的几种常见方法. 考向预测1.以考查等差、等比数列的求和公式为主,同时考查转化的思想.2.常与函数、方程、不等式等诸多知识联系在一起,作为高考的中档题或压轴题.(二)课前自主预习知识梳理1.当已知数列{an }中,满足an +1-an =f (n ),且f (1)+f (2)+…+f (n )可求,则可用求数列的通项an .2.当已知数列{a n }中,满足a n +1a n=f (n ),且f (1)·f (2)·…·f (n )可求,则可用 求数列的项通a n .3.等差数列前n 项和nS= = ,推导方法:(5)3333312n ++++L =5.(1)分组求和:把一个数列分成几个可以直接求和的数列.(2)拆项相消:有时把一个数列的通项公式分成二项差的形式,相加过程消去中间项,只剩有限项再求和.(3)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和;(4)倒序相加:例如,等差数列前n项和公式的推导方法.(三)基础自测1.(2011·威海模拟)设f(n)=2+24+27+…+23n+1(n∈N*),则f(n)等于( )A.27(8n-1) B.27(8n+1-1) C.27(8n+2-1) D.27(8n+3-1)[答案] B[解析] 由题意发现,f(n)即为一个以2为首项,公比q=23=8,项数为n+1的等比数列的和.由公式可得f(n)=S n+1=a11-q n+11-q=21-8n+11-8=27(8n+1-1).2.(2011·滨州模拟)已知数列2011,1,-2010,-2011,-1…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2012项之和S2012等于( )A.2010 B.2011 C.1 D.2012[答案] D[解析] a1=2011,a2=1,a3=-2010,a4=-2011,a5=-1,a6=2010,a7=2011,a8=1,该数列是周期为6的周期数列且S6=0,∴S2012=S2=2011+1=2012.3.数列{a n}的通项公式是a n=1n+n+1(n∈N*),若前n项的和为10,则项数n为( )A.11 B.99 C.120 D.121 [答案] C[解析] ∵a n=1n+n+1=n+1-n,∴a1=2-1,a2=3-2,…,a n=n+1-n,∴S n=n+1-1=10,∴n=120.4.(2009·广东理)已知等比数列{a n}满足a n>0,n=1,2,…,且a5·a2n-5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n-1=( )A.n(2n-1) B.(n+1)2 C.n2 D.(n-1)2[答案] C[解析] 考查等比数列的性质、通项、等差数列求和及对数的运算法则.∵a n为等比数列,且a5·a2n-5=22n,∴a n2=22n,∵a n>0,∴a n=2n,∴a2n-1=22n-1.∴log2a1+log2a3+…+log2a2n-1=1+3+5+…+(2n-1)=n2.5.(2011·济南模拟)数列1,1+2,1+2+22,…,1+2+22+…+2n -1,…的前n 项和为________. [答案] 2n +1-2-n[解析] 该数列的前n 项和S n =a 1+a 2+…+a n ,而a n =1+2+22+…+2n -1=1×1-2n1-2=2n-1.∴S n =(21-1)+(22-1)+(23-1)+...+(2n -1)=(2+22+ (2))-n =2×1-2n1-2-n =2n +1-2-n .6.(教材改编题)数列112,214,318,4116,…的前n 项和为________.[答案] 12(n 2+n +2)-12n[解析] 数列的通项公式为:a n =n +12n ,S n =(1+2+3+…+n )+⎝ ⎛⎭⎪⎫12+14+18+…+12n =n n +12+⎝ ⎛⎭⎪⎫1-12n =12(n 2+n +2)-12n .7.求数列1,3a,5a 2,7a 3,…,(2n -1)a n -1,…(a ≠0)的前n 项和. [解析] 当a =1时,数列变为1,3,5,7,…,(2n -1),…,S n =1+3+5+7+…+(2n -1)=n 1+2n -12=n 2;当a ≠1时,有S n =1+3a +5a 2+7a 3+…+(2n -1)a n -1,①aSn =a +3a 2+5a 3+7a 4+…+(2n -1)an ,② 令①-②,得Sn -aSn =1+2a +2a 2+2a 3+2a 4+…+2an -1-(2n -1)an ,(1-a )S n =1+2·a 1-a n -11-a-(2n -1)a n,∵1-a ≠0,∴S n =1-2n -1a n 1-a+2a -a n 1-a2.(四)典型例题1.命题方向:公式法求和[例1] 已知函数f (x )=x 2-2(n +1)x +n 2+5n -7(n ∈N*).(1)若函数f (x )的图像的顶点的横坐标构成数列{a n },试证明数列{a n }是等差数列; (2)设函数f (x )的图像的顶点到x 轴的距离构成数列{b n },试求数列{b n }的前n 项和S n .[解析] f (x )=x 2-2(n +1)x +n 2+5n -7=[x -(n +1)]2+3n -8.(1)由题意,a n =n +1,故a n +1-a n =(n +1)+1-(n +1)=1,故数列{a n }是等差数列. (2)由题意,b n =|3n -8|.当1≤n ≤2时,b n =-3n +8,数列{b n }为等差数列,b 1=5,∴S n =n 5-3n +82=-3n 2+13n 2;当n ≥3时,b n =3n -8,数列{b n }是等差数列,b 3=1. ∴S n =S 2+n -21+3n -82=3n 2-13n +282.∴S n=⎩⎪⎨⎪⎧-3n 2+13n2,1≤n ≤23n 2-13n +282,n ≥3.[点评] 用等差数列或等比数列的求和公式时,一定要看清数列的哪些项构成等差数列或等比数列.在第(2)问的求解中,1≤n ≤2或n ≥3时,都可以用等差数列的前n 项和公式,但当1≤n ≤2时,不要误求为数列的前2项和;当n ≥3时,数列的首项为b 3,项数为n -2,不要误求为n 项的和,也不要误求为n -3项的和. 跟踪练习1在等差数列{a n }中,a 16+a 17+a 18=a 9=-36,其前n 项和为S n . (1)求S n 的最小值,并求出S n 取最小值时n 的值; (2)求Tn =|a 1|+|a 2|+…+|a n |.[解析] ∵a 16+a 17+a 18=3a 17=-36.∴a 17=-12. 又∵a 9=-36,∴d =a 17-a 917-9=-12+368=3,首项a 1=a 9-8d =-60,(1)方法一:设前n 项和S n 最小,则⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,即⎩⎪⎨⎪⎧3n -63≤0,3n +1-63≥0,得n =20或n =21.故n =20或n =21时S n 的值最小,且最小值为S 20=S 21=-630. 方法二:S n =-60n +n n -12×3=32(n 2-41n )=32⎝ ⎛⎭⎪⎫n -4122-50438.∵n ∈N *,∴当n =20或21时,S n 取最小值,最小值为-630. (2)由a n =3n -63≤0,得n ≤21. ∴当n ≤21时,T n =-S n =32(41n -n 2);当n >21时,T n =-a 1-a 2-…-a 21+a 22+…+a n =S n -2S 21=32(n 2-41n )+1260.2.命题方向:分组求和[例2] (2008·陕西)已知数列{a n }的首项a 1=23,a n +1=2a na n +1,n =1,2,….(1)证明:数列⎩⎨⎧⎭⎬⎫1a n -1是等比数列; (2)求数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n .[分析] (1)由已知条件利用等比数列的定义证明,即从a n +1=2a n a n +1得到1a n +1-1与1a n-1的等式关系.(2)充分利用(1)的结论得出1a n =12n +1.欲求数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n 可先求出T n =12+222+323+…+n2n 的值.[解析] (1)∵a n +1=2a na n +1, ∴1a n +1=a n +12a n =12+12·1a n, ∴1a n +1-1=12⎝ ⎛⎭⎪⎫1a n -1,又a 1=23,∴1a 1-1=12,∴数列⎩⎨⎧⎭⎬⎫1a n -1是以12为首项,12为公比的等比数列.(2)由(1)知1a n -1=12·12n -1=12n ,即1a n =12n +1,∴n a n =n2n +n . 设T n =12+222+323+…+n2n ,①则12T n =122+223+…+n -12n +n2n +1,② ①-②得12T n =12+122+…+12n -n 2n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n -n2n +1∴T n =2-12n -1-n2n .又1+2+3+…+n =n n +12.∴数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n =2-2+n 2n +nn +12=n 2+n +42-n +22n.跟踪练习2(2011·浙江省金丽衢联考)已知在数列{a n }中,a 1=3,a n +1=2a n -1(n ∈N*). (1)求证:数列{a n -1}是等比数列;(2)设数列{2na n }的前n 项和为S n ,求S n 的大小. [解析] (1)∵a 1=3,a n +1=2a n -1, ∴a n +1-1=2(a n -1),∴{a n -1}是以a 1-1=2为首项,以2为公比的等比数列.(2)由(1)知a n -1=2·2n -1=2n , ∴a n =2n +1,∴2na n =2n (2n +1)=n ·2n +1+2n ,∴S n =2(21+1)+4(22+1)+6(23+1)+…+2n (2n+1)=(2×21+4×22+6×23+…+2n ×2n)+(2+4+6+…+2n )设T n =2×21+4×22+6×23+…+2n ×2n,12T n =21+4×2+6×22+…+2n ·2n -1, 两式相减,得12T n =-2-22-23-…-2n -1-2n +2n ·2n =2n ·2n -22n-12-1=2n ·2n -2n +1+2, ∴T n =4(n -1)·2n+4, ∴S n =4(n -1)·2n +4+n 2+n .3.命题方向:错位相减求和[例3] (2009·山东文)等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N*,点(n ,Sn )均在函数y =bx +r (b >0且b ≠1,b ,r 均为常数)的图像上.(1)求r 的值;(2)当b =2时,记b n =n +14a n (n ∈N *),求数列{b n }的前n 项和T n .[解析] (1)由题意,S n =b n +r ,当n ≥2时,S n -1=b n -1+r ,所以a n =S n -S n -1=b n -1(b -1), 由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列, 又a 1=b +r ,a 2=b (b -1),a 2a 1=b ,即b (b -1)b +r=b , 解得r =-1.(2)由(1)知,n ∈N *,a n =(b -1)b n -1=2n -1所以b n =n +14×2n -1=n +12n +1.T n =222+323+424+…+n +12n +1.12T n =223+324+…+n 2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2=12+123×1-12n -11-12-n +12n +2=34-12n +1-n +12n +2, 故T n =32-12n -n +12n +1=32-n +32n +1.跟踪练习3:(2010·新课标理)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1. (1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .[解析] 本小题主要考查数列的基础知识,即数列的通项公式与前n 项和的求法以及分析问题与解决问题的能力. (1)由已知得,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1.①从而22·S n =1·23+2·25+3·27+…+n ·22n +1.② ①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1.即S n =[(3n -1)22n +1+2]. 4.命题方向:裂项相消求和[例4] (2008·江西)等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ; (2)求1S 1+1S 2+…+1S n.[解析] (1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正整数,a n =3+(n -1)d ,b n =qn -1,依题意有⎩⎪⎨⎪⎧S 2b 2=6+d q =64S 3b 3=9+3dq 2=960解得⎩⎪⎨⎪⎧d =2q =8,或⎩⎪⎨⎪⎧d =-65q =403(舍去)故a n =3+2(n -1)=2n +1,b n =8n -1.(2)S n =3+5+…+(2n +1)=n (n +2), ∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1nn +2=12⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…⎦⎥⎤+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +32n +1n +2. 跟踪练习4求数列31×22,522×32,522×32,732×42,…,2n +1n 2(n +1)2的前n 项和S n . [解析] ∵2n +1n2(n +1)2=1n 2-1(n +1)2,∴S n =⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫122-132+…+⎣⎢⎡⎦⎥⎤1n 2-1(n +1)2=1-1(n +1)2=n 2+2n n +12.5.命题方向:倒序相加法求和[例5] 设函数f (x )=3x 3x +3图像上有两点P 1(x 1,y 1),P 2(x 2,y 2),若P 为P 1P 2的中点,且P 点的横坐标为12.(1)求证:P 点的纵坐标为定值,并求出这个值;(2)求f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝ ⎛⎭⎪⎫n n .[分析] (1)由已知函数图像上两点P 1P 2可得y 1=3x 13x 1+3,y 2=3x 23x 2+3,设P (x ,y ),根据中点坐标公式去求y =y 1+y 22.(2)根据(1)的结论:若x 1+x 2=1,则由f (x 1)+f (x 2)=1可以得到f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n -1n =1,利用倒序相加进行求解.[解析] (1)证明:∵P 为P 1P 2的中点, ∴x 1+x 2=1,y p =y 1+y 22.又y 1+y 2=3x 13x 1+3+3x 23x 2+3=1-33x 1+3+1-33x 2+3=2-6+33x 1+3x 26+33x 1+3x 2=2-1=1,∴y p =y 1+y 22=12.(2)由x 1+x 2=1,得y 1+y 2=f (x 1)+f (x 2)=1,f (1)=3-32. 设S n =f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝ ⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫n n ,又S n =f ⎝⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫n -2n +…+f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n n ,∴2S n =1+1+1+1+…+1++2f (1)=n +2-3, 即S n =n +2-32.(五)思想方法点拨1.常见数列求和的类型及方法(1)an =kn +b ,利用等差数列前n 项和公式直接求解;(2)an =a ·qn -1,利用等比数列前n 项和公式直接求解,但要注意对q 分q =1与q ≠1两种情况进行讨论; (3)an =bn ±cn ,数列{bn },{cn }是等比数列或等差数列,采用分组转化法求{an }前n 项和; (4)an =bn ·cn ,{bn }是等差数列,{cn }是等比数列,采用错位相减法求{an }前n 项和; (7)an =(-1)nf (n ),可采用相邻两合并求解,即采用“并项法”. (8)求出S 1,S 2,S 3,然后猜出Sn ,用数学归纳法证明. 2.求和时应注意的问题(1)直接用公式求和时,注意公式的应用范围和公式的推导过程.(2)注意观察数列的特点和规律,在分析数列通项的基础上或分解为基本数列求和,或转化为基本数列求和.(六)课后强化作业一、选择题1.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( ) A .12 B .18 C .24 D .42 [答案] C[解析] 由题意设S n =An 2+Bn ,又∵S 2=2,S 4=10,∴4A +2B =2,16A +4B =10, 解得A =34,B =-12,∴S 6=36×34-3=24.2.数列{a n }的前n 项和为S n ,若a n =1n +1n +2,则S 8等于( )A.25B. 130C.730D.56 [答案] A [解析] ∵a n =1n +1n +2=1n +1-1n +2, 而S n =a 1+a 2+…+a n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2=n2n +2, ∴S 8=82×8+2=25. 3.数列1×12,2×14,3×18,4×116,…的前n 项和为( )A .2-12n -n 2n +1B .2-12n -1-n2nC.12(n 2+n +2)-12nD.12n (n +1)+1-12n -1 [答案] B[解析] S =1×12+2×14+3×18+4×116+…+n ×12n =1×121+2×122+3×123+…+n ×12n ,①则12S =1×122+2×123+3×124+…+(n -1)×12n +n ×12n +1,② ①-②得12S =12+122+123+…+12n -n ×12n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1=1-12n -n2n +1.∴S =2-12n -1-n2n .4.122-1+132-1+142-1+…+1n +12-1的值为( )A.n +12n +2 B.34-n +12n +2C.34-12⎝ ⎛⎭⎪⎫1n +1+1n +2D.32-1n +1+1n +2 [答案] C [解析] ∵1n +12-1=1n 2+2n =1n n +2=12⎝ ⎛⎭⎪⎫1n -1n +2.∴S n =12⎝ ⎛1-13+12-14+13-15+…+1n-⎭⎪⎫1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2. 5.(2011·汕头模拟)已知a n =log (n +1)(n +2)(n ∈N *),若称使乘积a 1·a 2·a 3·…·a n 为整数的数n 为劣数,则在区间(1,2002)内所有的劣数的和为( )A .2026B .2046C .1024D .1022 [答案] A[解析] ∵a 1·a 2·a 2·…·a n =lg3lg2·lg4lg3·…·lg n +2lg n +1=lg n +2lg2=log 2(n +2)=k ,则n =2k-2(k ∈Z).令1<2k-2<2002,得k =2,3,4, (10)∴所有劣数的和为41-291-2-18=211-22=2026.6.(2011·威海模拟)已知数列{a n }的前n 项和S n =n 2-4n +2,则 |a 1|+|a 2|+…+|a 10|=( ) A .66 B .65 C .61 D .56 [答案] A[解析] 当n ≥2时,a n =S n -S n -1=2n -5; 当n =1时,a 1=S 1=-1,不符合上式,∴a n =⎩⎪⎨⎪⎧-1,n =1,2n -5,n ≥2,∴{|a n |}从第3项起构成等差数列,首项|a 3|=1, 末项|a 10|=15.∴|a 1|+|a 2|+…+|a 10|=1+1+1+15×82=66.7.(文)(2009·江西)公差不为零的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A .18B .24C .60D .90 [答案] C[解析] 由题意可知⎩⎪⎨⎪⎧a 42=a 3×a 7S 8=32,∴⎩⎪⎨⎪⎧a 1+3d 2=a 1+2d a 1+6d8a 1+8×72×d =32,∴⎩⎪⎨⎪⎧a 1=-3d =2,∴S 10=10×(-3)+10×92×2=60,选C. (理)(2009·重庆)设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n =( ) A.n 24+7n 4 B.n 23+5n 3 C.n 22+3n4 D .n 2+n [答案] A[解析] 设等差数列公差为d ,∵a 1=2,∴a 3=2+2d ,a 6=2+5d .又∵a 1,a 3,a 6成等比数列,∴a 32=a 1a 6,即(2+2d )2=2(2+5d ),整理得2d 2-d =0.∵d ≠0,∴d =12,∴S n =na 1+n n -12d =n 24+74n .故选A.8.在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( ) A .2n +1-2 B .3n C .2n D .3n-1[答案] C[解析] 解法1:由{a n }为等比数列可得a n +1=a n ·q ,a n +2=a n ·q 2由{a n +1}为等比数列可得(a n +1+1)2=(a n +1)(a n +2+1),故(a n ·q +1)2=(a n +1)(a n ·q 2+1), 化简上式可得q 2-2q +1=0,解得q =1,故a n 为常数列,且a n =a 1=2,故S n =n ·a 1=2n ,故选C. 解法2:设等比数列{a n }的公比为q ,则有a 2=2q 且a 3=2q 2, 由题设知(2q +1)2=3·(2q 2+1), 解得q =1,以下同解法1. 二、填空题9.设f (x )=12x +2,则f (-9)+f (-8)+…+f (0)+…+f (9)+f (10)的值为________.[答案] 5 2[解析] ∵f (-n )+f (n +1)=12-n +2+12n +1+2=2n1+2n ·2+12n +1+2=2n·2+12n +1+2=22, ∴f (-9)+f (-8)+…+f (0)+…+f (9)+f (10)=5 2.10.(2011·启东模拟)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.[答案] 2n +1-2[解析] ∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n,∴S n =2-2n +11-2=2n +1-2.11.(2011·江门模拟)有限数列A ={a 1,a 2,…,a n },S n 为其前n 项的和,定义S 1+S 2+…+S nn为A 的“凯森和”;如果有99项的数列{a 1,a 2,…,a 99}的“凯森和”为1000,则有100项的数列{1,a 1,a 2,…,a 99}的“凯森和”为________.[答案] 991[解析] ∵{a 1,a 2,…,a 99}的“凯森和”为S 1+S 2+…+S 9999=1000,∴S 1+S 2+…S 99=1000×99,数列{1,a 1,a 2,…,a 99}的“凯森和”为: 1+S 1+1+S 2+1+…+S 99+1100=100+S 1+S 2+…+S 99100=991.三、解答题12.(2010·重庆文)已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和. (1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及其前n 项和T n .[解析] 本题主要考查等差数列的基本性质,以及通项公式的求法,前n 项和的求法,同时也考查了学生的基本运算能力.(1)因为{a n }为首项a 1=19,公差d =-2的等差数列, 所以a n =19-2(n -1)=-2n +21,S n =19n +n n -12(-2)=-n 2+20n .(2)由题意知b n -a n =3n -1,所以b n =3n -1-2n +21T n =b 1+b 2+…+b n =(1+3+…+3n -1)+S n =-n 2+20n +3n-12.13.已知数列{a n }的前n 项和S n =2n 2-3n . (1)求证:数列{a n }是等差数列;(2)若b n =a n ·2n,求数列{b n }的前n 项和T n .[解析] (1)证明:a 1=S 1=-1,当n ≥2时,a n =S n -S n -1=2n 2-3n -2(n -1)2+3(n -1)=4n -5. 又a 1适合上式,故a n =4n -5(n ∈N *). 当n ≥2时,a n -a n -1=4n -5-4(n -1)+5=4, 所以{a n }是等差数列且d =4,a 1=-1. (2)b n =(4n -5)·2n,∴T n =-21+3·22+…+(4n -5)·2n,① 2T n =-22+…+(4n -9)·2n +(4n -5)·2n +1,②①-②得-T n =-21+4·22+…+4·2n -(4n -5)·2n +1=-2+4·41-2n -11-2-(4n -5)·2n +1=-18-(4n -9)·2n +1,∴T n =18+(4n -9)·2n +1.14.设数列{a n }的前n 项和为S n ,已知a 1=1,且a n +2S n S n -1=0(n ≥2), (1)求数列{S n }的通项公式; (2)设S n =1f(n ),b n =f (12n )+1.记P n =S 1S 2+S 2S 3+…+S n S n +1,T n =b 1b 2+b 2b 3+…+b n b n +1,试求T n ,并证明P n <12.[解析] (1)解:∵a n +2S n S n -1=0(n ≥2), ∴S n -S n -1+2S n S n -1=0. ∴1S n -1S n -1=2.又∵a =1,∴S n =12n -1(n ∈N +). (2)证明:∵S n =1f n,∴f (n )=2n -1.∴b n =2(12n )-1+1=(12)n -1.T n =(12)0·(12)1+(12)1·(12)2+…+(12)n -1·(12)n =(12)1+(12)3+(12)5+…+(12)2n -1=23[1-(14)n ].∵S n =12n -1(n ∈N +) ∴P n =11×3+13×5+…+12n -12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12. 15.(2010·山东理)已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a n 2-1(n ∈N *),求数列{b n }的前n 项和T n . [解析] 本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,熟练掌握数列的基础知识是解答好本类题目的关键.对(1)可直接根据定义求解,(2)问采用裂项求和即可解决.(1)设等差数列{a n }的公差为d ,因为a 3=7,a 5+a 7=26,所以有⎩⎪⎨⎪⎧a 1+2d =72a 1+10d =26,解得a 1=3,d =2,所以a n =3+2(n -1)=2n +1;S n =3n +n n -12×2=n 2+2n .(2)由(1)知a n =2n +1,所以b n =1a n 2-1=12n +12-1=14·1n n +1=14·⎝ ⎛⎭⎪⎫1n -1n +1, 所以T n =14·⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=14·⎝ ⎛⎭⎪⎫1-1n +1=n4n +1, 即数列{b n }的前n 项和T n =n4n +1.[点评] 数列在高考中主要考查等差、等比数列的定义、性质以及数列求和,解决此类题目要注意合理选择公式,对于数列求和应掌握经常使用的方法,如:裂项、叠加、累积.本题应用了裂项求和.第五节 数列的综合应用(一)高考目标考纲解读能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题. 考向预测1.以递推关系为背景,考查数列的通项公式与前n 项和公式. 2.等差、等比交汇,考查数列的基本计算.3.数列与函数、不等式、解析几何交汇,考查数列的综合应用. 4.以考查数列知识为主,同时考查“等价转化”、“变量代换”思想.(二)课前自主预习知识梳理1.数列在实际生活中着广泛的应用,其解题的基本步骤,可用图表示如下:2.数列应用题常见模型:(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差. (2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比. (3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是an 与an +1的递推关系,还是前n 项和Sn 与Sn +1之间的递推关系.(4)分期付款模型:设贷款总额为a ,年利率为r ,等额还款数为b ,分n 期还完,则b =r 1+r n1+r n-1a . 3.数列与其他章节的综合题数列综合题,包括数列知识和指数函数、对数函数、不等式的知识综合起来;另外,数列知识在复数、三角函数、解析几何等部分也有广泛的应用. 4.数列的探索性问题探索性问题是高考的热点,常在数列解答题中出现,探索性问题对分析问题、解决问题的能力有较高的要求.(三)基础自测1.已知数列{a n }满足a n +1=⎩⎪⎨⎪⎧3a n0<a n ≤1a n -1a n >1,若a 1=23,则a 2012的值为( )A.23B .1C .2D .3[答案] C[解析] 由递推公式可知a 2=3a 1=2,a 3=a 2-1=1,a 4=3a 3=3,a 5=a 4-1=2,a 6=a 5-1=1…, 可见{a n }满足a n +3=a n (n ≥2). 故a 2012=a 2=1.2.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1 C.nn -1D.n +1n[答案] A[解析] f ′(x )=mx m -1+a =2x +1,∴a =1,m =2,∴f (x )=x (x +1),1f (n )=1nn +1=1n -1n +1, ∴S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=n n +1. 3.(教材改编题)一个凸多边形,它的各内角度数成等差数列,最小角为60°,公差为20°,则这个多边形的边数是( )A .3B .4C .5或9D .4或9[答案] B[解析] 设边数为n ,则60°n +n n -12·20°=(n -2)·180°,解得n =4或9.当n =9时,最大内角度数为60°+(9-1)×20°=220°>180°,故舍去.4.有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要( )A .6秒钟B .7秒钟C .8秒钟D .9秒钟 [答案] B[解析] 设至少需要n 秒钟,则 1+21+22+…+2n -1≥100,∴1-2n1-2≥100,∴n ≥7.故选B. 5.(2011·安徽合肥模拟)秋末冬初,流感盛行,某医院近30天每天入院治疗流感的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N*),则该医院30天入院治疗流感的人数共有________. [答案] 255[解析] 由于a n +2-a n =1+(-1)n,所以a 1=a 3=…=a 29=1,a 2,a 4,…,a 30构成公差为2的等差数列,所以a 1+a 2+…+a 29+a 30=15+15×2+15×142×2=255. 6.设等差数列{an }的前n 项和为Sn ,S 4≥10,S 5≤15,则a 4的最大值是________. [答案] 4[解析] 由题意,得⎩⎪⎨⎪⎧4a 1+4×32d ≥105a 1+5×42d ≤15,即⎩⎪⎨⎪⎧4a 1+6d ≥105a 1+10d ≤15,也即⎩⎪⎨⎪⎧2a 1+3d ≥5a 1+2d ≤3,又a 4=a 1+3d =-(2a 1+3d )+3(a 1+2d )≤-5+3×3=4,故a 4的最大值为4.7.某科研单位欲拿出一定的经费奖励科研人员第1名得全部资金的一半加一千元,第二名得剩下的一半加一千元,以名次类推都得到剩下的一半加一千元,到第10名恰好资金分完,求此科研单位共拿出多少千元资金进行奖励. [解析] 设单位共拿出x 千元资金,第1名到第10名所得资金构成数列{a n },前n 项和为S n ,则a 1=x 2+1,a n =12(x -S n -1)+1(n ≥2),∴2a n =x -S n -1+2,2a n +1=x -S n +2, 两式相减得2a n +1-2a n =-a n , ∴2a n +1=a n .∴{a n }是首项为x 2+1,公比为12的等比数列,∴S 10=⎝ ⎛⎭⎪⎫x 2+1⎝ ⎛⎭⎪⎫1-12101-12=x ,解得x =2046.故单位共拿出2046千元资金进行奖励.又a 2=2S 1+a 1=3a 1,a n ≠0,∴{a n }是首项为a 1,公比为3的等比数列, ∴a n =a 1·3n -1.(2)方法一:∵S n =a 11-q n 1-q =-12a 1+12a 1·3n,∴b n =1-S n =1+12a 1-12a 1·3n,要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2,此时b n =3n,∴{b n }是首项为3,公比为3的等比数列. ∴{b n }能为等比数列,此时a 1=-2.方法二:设数列{bn }能为等比数列,则b 1,b 2,b 3成等比数列, ∴b 22=b 1·b 3,∵Sn =a 1+a 2+…+an ,an =a 1·3n -1,bn =1-Sn , ∴b 2=1-4a 1,b 1=1-a 1,b 3=1-13a 1, ∴(1-4a 1)2=(1-a 1)(1-13a 1),又an ≠0,得a 1=-2,此时bn =1-Sn =3n , ∴{bn }是首项为3,公比为3的等比数列, ∴{bn }能为等比数列,此时a 1=-2.方法三:设数列{b n }能为等比数列,即满足b n 2=b n -1·b n +1(n ≥2,n ∈N *),又∵b n =1-S n ,b n -1=1-(S n -a n ),b n +1=1-(S n +a n +1), ∴(1-S n )2=(1-S n +a n )(1-S n -a n +1),∴(1-S n )2=(1-S n )2+(a n -a n +1)(1-S n )-a n a n +1,即-2a n ·⎣⎢⎡⎦⎥⎤1-a 11-3n 1-3=a n a n +1, 将a n =a 1·3n -1代入得a 1=-2,此时b n =1-S n =3n.2.命题方向:数列与函数的综合应用[例2] 已知f (x )=log ax (a >0且a ≠1),设f (a 1),f (a 2),…,f (an )(n ∈N*)是首项为4,公差为2的等差数列. (1)设a 为常数,求证:{an }成等比数列;(2)若bn =anf (an ),{bn }的前n 项和是Sn ,当a =时,求Sn .[分析] 利用函数的有关知识得出an 的表达式,再利用表达式解决其他问题.[解析] (1)f (a n )=4+(n -1)×2=2n +2,即log a a n =2n +2, 可得a n =a2n +2.∴a n a n -1=a 2n +2a2n -1+2=a 2(n ≥2),为定值.∴{a n }为等比数列. (2)b n =a n f (a n )=a 2n +2log a a2n +2=(2n +2)a2n +2.当a =2时,b n =(2n +2)(2)2n +2=(n +1)2n +2.S n =2·23+3·24+4·25+…+(n +1)·2n +2①2S n =2·24+3·25+4·26+…+n ·2n +2+(n +1)·2n +3②①-②得-S n =2·23+24+25+…+2n +2-(n +1)·2n +3=16+241-2n -11-2-(n +1)2n +3=16+2n +3-24-n ·2n +3-2n +3=-n ·2n +3.∴S n =n ·2n +3(n ∈N *).[点评] 数列与函数的综合问题主要有以下两类:①已知函数条件,解决数列问题.此类问题一般利用函数的性质、图像研究数列问题;②已知数列条件,解决函数问题.解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形. 跟踪练习2在数列{a n }中,a 1=4,且对任意大于1的正整数n ,点(a n ,a n -1)在直线y =x -2上. (1)求数列{a n }的通项公式;(2)已知b 1+b 2+…+b n =a n ,试比较a n 与b n 的大小. [解析] (1)∵点(a n ,a n -1)在直线y =x -2上,∴a n =a n -1+2,即数列{a n }是以a 1=2为首项,公差d =2的等差数列.∴a n =2+2(n -1)=2n , ∴a n =4n 2.(2)∵b 1+b 2+…+bn =an ,∴当n ≥2时,bn =an -an -1=4n 2-4(n -1)2=8n -4, 当n =1时,b 1=a 1=4,满足上式.∴bn =8n -4,∴an -bn =4n 2-(8n -4)=4(n -1)2≥0, ∴an ≥bn .[点评] 第(2)问可由b 1+b 2+…+bn =an 得,an -bn =an -1=4(n -1)2≥0,∴an ≥bn 简捷明了,注意观察分析常能起到事半功倍的效果.3.命题方向:数列与导数、解析几何的综合应用[例3] (2011·山东模拟)设曲线y =x 2+x +2-ln x 在x =1处的切线为l ,数列{an }的首项a 1=-m (其中常数m 为正奇数),且对任意n ∈N*,点(n -1,an +1-an -a 1)均在直线l 上. (1)求出{an }的通项公式;(2)令bn =nan (n ∈N*),当an ≥a 5恒成立时,求出n 的取值范围,使得bn +1>bn 成立.[分析] 问题(1)可先利用求导公式求得直线的斜率,进而求出直线方程,利用累加法即求得数列的通项公式;问题(2)是恒成立问题,可转化为数列的单调性问题进而求得数列的最小值.[解析] (1)由y =x 2+x +2-ln x ,知x =1时,y =4.又y ′|x =1=(2x +1-1x)|x =1=2,归纳、猜想的手段,建立出有关等差(比)数列、递推数列模型,再结合其他相关知识来解决问题.(六)课后强化作业一、选择题1.如果数列{a n }的前n 项和S n =14n (9n -4n )(n ∈N *),那么这个数列( )A .是等差数列而不是等比数列B .是等比数列而不是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列 [答案] B[解析] S n =⎝ ⎛⎭⎪⎫94n -1符合S n =Aq n-A 的特征,故该数列为等比数列.2.数列{a n }的前n 项和S n =n 2-2n -1,则a 3+a 17等于( ) A .15 B .17 C .34 D .398 [答案] C[解析] a 3=S 3-S 2=(32-2×3-1)-(22-2×2-1)=3.a 17=S 17-S 16=(172-2×17-1)-(162-2×16-1)=31,∴a 3+a 17=34.3.某种细胞开始时有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按照此规律,6小时后细胞存活数是( )A .33B .64C .65D .127 [答案] B[解析] 每一小时后细胞变为前一小时细胞数的2倍减1,4小时后为17个,5小时后为33个,6小时后为65个.4.(2011·黄冈模拟)小正方形按照如图的规律排列:每个图中的小正方形的个数就构成一个数列{a n },有以下结论: ①a 5=15;②数列{a n }是一个等差数列; ③数列{a n }是一个等比数列;④数列的递推公式为:a n +1=a n +n +1(n ∈N *). 其中正确的命题序号为( )A.①② B.①③ C.①④ D.①[答案] C[解析] 当n=1时,a1=1;当n=2时,a2=3;当n=3时,a3=6;当n=4时,a4=10,…,观察图中规律,有a n+1=a n+n+1,a5=15.故①④正确.5.△ABC中,tan A是以-4为第三项,-1为第七项的等差数列的公差,tan B是以12为第三项,4为第六项的等比数列的公比,则该三角形的形状是( )A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上均错[答案] B[解析] 由题意知:tan A=-1--47-3=34>0.tan3B=412=8,∴tan B=2>0,∴A、B均为锐角.又∵tan(A+B)=34+21-34×2=-112<0,∴A+B为钝角,即C为锐角,∴△ABC为锐角三角形.6.在正项数列{a n}中,a1=2,点(a n,a n-1)(n≥2)在直线x-2y=0上,则数列{a n}的通项公式a n为( ) A.2n-1 B.2n-1+1 C.2n D.2n+1[答案] C[解析] 据题意得a n-2a n-1=0,即a n=2a n-1,所以a n=2×2n-1=2n.7.编辑一个运算程序:1&1=2,m&n=k,m&(n+1)=k+3(m、n、k∈N*),1&2004的输出结果为( )A.2004 B.2006 C.4008 D.6011[答案] D[解析] 由已知m&(n+1)-m&n=3可得,数列{1&n}是首项为1&1=2,公差为3的等差数列,∴1&2004=2+(2004-1)×3=6011.应选D.8.下表给出一个“直角三角形数阵”141 2,143 4,38,316∵y ′=2x ,∴过点(a k ,a k 2)的切线方程为y -a k 2=2a k (x -a k ),又该切线与x 轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.(理)如图,“杨辉三角”中从上往下数共有n (n >7,n ∈N)行,设其第k (k ≤n ,k ∈N *)行中不是1的数字之和为a k ,由a 1,a 2,a 3,…组成的数列{a n }的前n 项和是S n .现在下面四个结论:①a 8=254;②a n =a n -1+2n ;③S 3=22;④S n =2n +1-2-2n .1 1 12 1 13 3 1 14 6 4 1 … … … …其中正确结论的序号为________.(写出所有你认为正确的结论的序号) [答案] ①④[解析] 由已知得a n =C n 0+C n 1+C n 2+…+C n n-2 =(1+1)n -2=2n-2,∴a 8=28-2=256-2=254,①正确;a n -a n -1=2n -2-2n -1+2=2n -1≠2n ,②不正确;∵S n =2-2+22-2+ (2)-2=21-2n1-2-2n =2n +1-2n -2,∴S 3=24-6-2=8≠22,③不正确,④正确. ∴①④正确. 三、解答题12.已知数列{a n }是公差d ≠0的等差数列,记S n 为其前n 项和. (1)若a 2、a 3、a 6依次成等比数列,求其公比q .(2)若a 1=1,证明点P 1⎝ ⎛⎭⎪⎫1,S 11,P 2⎝ ⎛⎭⎪⎫2,S 22,…,P n ⎝ ⎛⎭⎪⎫n ,S n n (n ∈N *)在同一条直线上,并写出此直线方程.[解析] (1)∵a 2、a 3、a 6依次成等比数列, ∴q =a 3a 2=a 6a 3=a 6-a 3a 3-a 2=3dd=3,即公比q =3.(2)证明:∵S n =na 1+n n -12d ,∴S n n=a 1+n -12d =1+n -12d .∴点P n ⎝⎛⎭⎪⎫n ,S n n在直线y =1+x -12d 上.∴点P 1,P 2,…,P n (n ∈N *)都在过点(1,1)且斜率为d2的直线上.此直线方程为y -1=d2(x -1).13.(2010·福建文)数列{a n }中,a 1=13.前n 项和S n 满足S n +1-S n =(13)n +1(n ∈N *).(1)求数列{a n }的通项公式a n 以及前n 项和S n ;(2)若S 1,t (S 1+S 2),3(S 2+S 3)成等差数列,求实数t 的值.[解析] 本小题主要考查数列,等差数列,等比数列等基础知识,考查运算求解能力,考查函数与方程思想,化归与转化思想.(1)由S n +1-S n =(13)n +1得a n +1=(13)n +1(n ∈N *)又a 1=13,故a n =(13)n (n ∈N *)从而S n =13×[1-13n]1-13=12[1-(13)n ](n ∈N *) (2)由(1)可得S 1=13,S 2=49,S 3=1327从而由S 1,t (S 1+S 2),3(S 2+S 3)成等差数列可得 13+3×(49+1327)=2×(13+49)t ,解得t =2. 14.(2010·湖北文)已知某地今年年初拥有居民住房的总面积为a (单位:m 2),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的10%建设新住房,同时也拆除面积为b (单位:m 2)的旧住房.(1)分别写出第一年末和第二年末的实际住房面积的表达式;(2)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b 是多少?(计算时取1.15=1.6)[解析] 本小题主要考查阅读资料,提取信息,建立数学模型的能力,同时考查运用所学知识分析和解决实际问题的能力.(1)第1年末的住房面积a ·1110-b =(1.1a -b )(m 2) 第2年末的住房面积(a ·1110-b )1110-b =a (1110)2-b (1+1110)=(1.21a -2.1b )(m 2)(2)第3年末的住房面积⎣⎢⎡⎦⎥⎤a 11102-b 1+1110·1110-b =a ·⎝ ⎛⎭⎪⎫11103-b ⎣⎢⎡ 1+1110+⎦⎥⎤11102第4年末住房面积为:a (1110)4-b ⎣⎢⎡⎦⎥⎤1+1110+11102+11103. 第5年末住房面积为:a ·(1110)5-b ⎣⎢⎡ 1+1110+11102+11103⎦⎥⎤+11104=1.6a -6b 依题意可得,1.6a -6b =1.3a ,解得b =a20,所以每年拆除的旧房面积为a20(m 2). 15.某企业投资1000万元于一个高科技项目,每年可获利25%.由于企业间竞争激烈,每年年底需要从利润中取出资金200万元进行科研、技术改造与广告投入,方能保持原有的利润增长率,问经过多少年后,该项目资金可以达到或超过翻两番(4倍)的目标?(取lg2=0.3)[解析] 设该企业逐年的项目资金依次为a 1,a 2,a 3,…,a n ,则由已知a n +1=a n (1+25%)-200(n ∈N *),即a n +1=54a n -200, 令a n +1-x =54(a n -x ),即a n +1=54a n -14x ,由x4=200,得x =800, ∴a n +1-800=54(a n -800)(n ∈N *),故{a n -800}是以a 1-800为首项,54为公比的等比数列.∵a 1=1000(1+25%)-200=1050, ∴a 1-800=250∴a n -800=250⎝ ⎛⎭⎪⎫54n -1,∴a n =800+250⎝ ⎛⎭⎪⎫54n -1(n ∈N *).由题意a n ≥4000,∴800+250⎝ ⎛⎭⎪⎫54n -1≥4000,即⎝ ⎛⎭⎪⎫54n≥16, ∴n ln 54≥lg16,即n (1-3lg2)≥4lg2,∵lg2=0.3,∴0.1n ≥1.2,故n ≥12. 答:经过12年后,该项目资金可以翻两番.教师备课平台一、函数与方程的思想在数列中的应用在数列中,数列本身就是一种函数.这种函数的定义域是N +(或其子集),从而表现在图像上就是孤立的点.数列具有单调性,如等差数列(除去公差为0的情况),等比数列(如a 1>0,q >1).因此研究数列问题,可以类比函数的一些性质来研究,用运动变化的观点来研究,例如数列中求某项的范围问题,某个字母的范围问题、最值问题等就可以利用函数思想,转化成求函数值域问题,或解不等式.在等差、等比数列问题中,已知五个基本量中的几个,求另几个时,往往是设出基本量,建立方程或方程组来解决问题.但需注意数列看作函数时的定义域与一般函数定义域的区别.[例1] 已知数列{a n }的前n 项和为S n ,点(n ,S n )在函数f (x )=2x-1的图像上,数列{b n }满足b n =log 2a n -12(n ∈N *).(1)求数列{a n }的通项公式a n ;(2)当数列{b n }的前n 项和最小时,求n 的值;(3)设数列{b n }的前n 项和为T n ,求不等式T n <b n 的解集.[分析] 先利用函数关系求出S n 的表达式,再依a n 与S n 关系求出a n .进而求出b n 、T n ,使问题解决. [解析] 由题意得S n =2n-1. (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(2n -1)-(2n -1-1)=2n -1.又∵a 1=1=21-1,∴a n =2n -1.(2)b n =log 2a n -12=log 22n -1-12=(n -1)-12=n -13,∴b n =n -13,令b n ≥0得n ≥13,∴数列{b n }的前12项均为负数,第13项为0,从第14项起均为正数,∴当n =12或13时,数列{b n }的前n 项和最小.(3)∵b n +1-b n =1,∴数列{b n }为等差数列. ∴T n =n n -252<n -13,整理得n 2-27n +26<0,解得1<n <26. ∴T n <b n 的解集为{n |1<n <26,n ∈N *}.[例2] 设S n 为等差数列{a n }的前n 项和,已知S 7=21,S 15=-75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n 的最大值.[分析] 列方程组可求得S n ,继而求得T n ,把T n 看成关于自变量n 的函数来求最大值即可. [解析] 设等差数列{a n }公差为d ,则S n =na 1+12n (n -1)d .∵S 7=21,S 15=-75,。

2024年高考数学---数列求和、数列的综合

2024年高考数学---数列求和、数列的综合

例2 (2022海南嘉积中学等四校联考,18)①等比数列{an}的公比为2,且a4 是a3与a5-8的等差中项;②a2=4,S3=14且{an}为递增数列,在①②中任选一 个,补充在下列横线上并解答.
已知等比数列{an}中,Sn为数列{an}的前n项和,若
.
(1)求数列{an}的通项公式;
(2)若bn=(n+1)log2an,记数列
2)以数列为载体,考查不等式的恒成立问题时,可转化为数列的最值问题, 可利用数列单调性或数列对应函数的单调性; 3)解决与数列有关的不等式的证明问题时,可构造函数证明,或利用放缩 法证明.
综合篇
考法一 错位相减法求和 1.当{an}是等差数列,{bn}是等比数列时,求数列{an·bn}的前n项和常采用错 位相减法. 2.用错位相减法求和时,应注意: 1)要善于识别题目类型,特别是等比数列的公比为负数的情形. 2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”, 以便于下一步准确地写出“Sn-qSn”的表达式. 3)应用等比数列求和公式必须注意公比q是否等于1,如果q=1,那么应用公 式Sn=na1.
q2
)
14, 解得aq122,或
a1 8,
q
1 2
,
因为数列{an}是递增数列,所以 aq122,, 所以数列{an}的通项公式是
an=2n.
(2)证明:由(1)知an=2n,则bn=(n+1)log2an=(n+1)log22n=n(n+1),
因此
1 bn
=
1 n(n 1)
=
1 n
-
1 n 1
,于是有Tn=1
1 bn
的前n项和Tn,求证:

2020高考人教版数学理科一轮复习课后练34【数列求和与数列的综合应用】及解析

2020高考人教版数学理科一轮复习课后练34【数列求和与数列的综合应用】及解析

2020高考人教版数学理科一轮复习课后练34【数列求和与数列的综合应用】及解析一、选择题1.已知数列{a n }的通项公式是a n =2n -3⎝⎛⎭⎫15n,则其前20项和为( C ) A .380-35⎝⎛⎭⎫1-1519 B .400-25⎝⎛⎭⎫1-1520 C .420-34⎝⎛⎭⎫1-1520 D .440-45⎝⎛⎭⎫1-1520 解析:令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+…+a 20=2(1+2+…+20)-3⎝⎛⎭⎫15+152+…+1520=2×20×(20+1)2-3×15⎝⎛⎭⎫1-15201-15=420-34⎝⎛⎭⎫1-1520. 2.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n ,n 为正奇数,a n+1,n 为正偶数,则其前6项之和是( C )A .16B .20C .33D .120解析:由已知得a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,所以S 6=1+2+3+6+7+14=33.3.化简S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n-1的结果是( D )A .2n +1+n -2B .2n +1-n +2C .2n -n -2D .2n +1-n -2解析:因为S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1,① 2S n =n ×2+(n -1)×22+(n -2)×23+…+2×2n -1+2n ,②所以①-②得,-S n =n -(2+22+23+…+2n )=n +2-2n +1,所以S n =2n +1-n -2.4.(2019·沈阳市教学质量监测)在各项都为正数的等比数列{a n }中,若a 1=2,且a 1a 5=64,则数列{a n(a n -1)(a n +1-1)}的前n 项和是( A ) A .1-12n +1-1B .1-12n +1C .1-12n +1D .1-12n -1解析:∵数列{a n }为等比数列,a n >0,a 1=2,a 1a 5=64,∴公比q =2,∴a n =2n ,a n(a n -1)(a n +1-1)=2n(2n -1)(2n +1-1)=12n -1-12n +1-1.设数列{a n(a n -1)(a n +1-1)}的前n 项和为T n ,则T n =1-122-1+122-1-123-1+123-1-124-1+…+12n -1-12n +1-1=1-12n +1-1,故选A. 5.我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何.”其意思为:今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和,恰好重1斤.问此人总共持金多少.则在此问题中,第5关收税金( B )A.120斤 B.125斤 C.130斤 D.136斤 解析:假设原来持金为x ,则第1关收税金12x ;第2关收税金13(1-12)x =12×3x ;第3关收税金14(1-12-16)x=13×4x ;第4关收税金15(1-12-16-112)x =14×5x ;第5关收税金16(1-12-16-112-120)x =15×6x .依题意,得12x+12×3x +13×4x +14×5x +15×6x =1,即(1-16)x =1,56x =1,解得x =65,所以15×6x =15×6×65=125.故选B.6.设数列{a n }的前n 项和为S n ,a n +1+a n =2n +1,且S n =1 350.若a 2<2,则n 的最大值为( A ) A .51 B .52 C .53D .54解析:因为a n +1+a n =2n +1 ①, 所以a n +2+a n +1=2(n +1)+1=2n +3 ②,②-①得a n +2-a n =2,且a 2n -1+a 2n =2(2n -1)+1=4n -1,所以数列{a n }的奇数项构成以a 1为首项,2为公差的等差数列,数列{a n }的偶数项构成以a 2为首项,2为公差的等差数列,数列{a 2n -1+a 2n}是以4为公差的等差数列,所以S n=⎩⎪⎨⎪⎧n (n +1)2+(a 1-1),n 为奇数,n (n +1)2,n 为偶数.当n 为偶数时,n (n +1)2=1 350,无解(因为50×51=2 550,52×53=2 756,所以接下来不会有相邻两数之积为2 700).当n 为奇数时,n (n +1)2+(a 1-1)=1 350,a 1=1 351-n (n +1)2,因为a 2<2,所以3-a 1<2,所以a 1>1,所以1 351-n (n +1)2>1,所以n (n +1)<2 700,又n ∈N *,所以n ≤51,故选A. 二、填空题7.已知数列{a n }的通项公式为a n =(-1)n +1(3n -2),则前100项和S 100等于-150.解析:∵a 1+a 2=a 3+a 4=a 5+a 6=…=a 99+a 100=-3,∴S 100=-3×50=-150. 8.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018=3·21_009-3.解析:∵数列{a n }满足a 1=1,a n +1·a n =2n ,①∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n -1,②由①÷②得a n +1a n -1=2,∴数列{a n }的奇数项、偶数项分别成等比数列,∴S 2 018=1-21 0091-2+2(1-21 009)1-2=3·21 009-3.9.(2018·全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=-63. 解析:解法1:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1; 当n =2时,a 1+a 2=2a 2+1,解得a 2=-2; 当n =3时,a 1+a 2+a 3=2a 3+1,解得a 3=-4; 当n =4时,a 1+a 2+a 3+a 4=2a 4+1,解得a 4=-8; 当n =5时,a 1+a 2+a 3+a 4+a 5=2a 5+1,解得a 5=-16;当n =6时,a 1+a 2+a 3+a 4+a 5+a 6=2a 6+1,解得a 6=-32.所以S 6=-1-2-4-8-16-32=-63. 解法2:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1,当n ≥2时,a n =S n -S n -1=2a n+1-(2a n -1+1),所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,所以a n =-2n -1,所以S 6=-1×(1-26)1-2=-63.三、解答题10.(2019·贵阳市监测考试)设等比数列{a n }的前n 项和为S n ,公比q >0,S 2=4,a 3-a 2=6. (1)求数列{a n }的通项公式;(2)设b n =log 3a n +1,数列{b n }的前n 项和为T n ,求证:1T 1+1T 2+…+1T n <2.解:(1)∵S 2=a 1+a 2=4,a 3-a 2=6,∴⎩⎪⎨⎪⎧a 1(1+q )=4,a 1(q 2-q )=6,∵q >0,∴q =3,a 1=1,∴a n =1×3n -1=3n -1, 即数列{a n }的通项公式为a n =3n -1.(2)证明:由(1)知b n =log 3a n +1=log 33n =n ,∴b 1=1,b n +1-b n =n +1-n =1,∴数列{b n }是首项b 1=1,公差d =1的等差数列, ∴T n =n (n +1)2,则1T n =2n (n +1)=2(1n -1n +1),∴1T 1+1T 2+…+1T n =2(11-12+12-13+…+1n -1n +1)=2(1-1n +1)<2,∴1T 1+1T 2+…+1T n <2. 11.已知数列{a n }的首项为a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n ,求数列{b n }的前n 项和T n .解:(1)由已知得S nn =1+(n -1)×2=2n -1,所以S n =2n 2-n .当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. 而a 1=1满足上式,所以a n =4n -3,n ∈N *. (2)由(1)可得b n =(-1)n (4n -3).当n 为偶数时,T n =(-1+5)+(-9+13)+…+[-(4n -7)+(4n -3)]=4×n2=2n ;当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1.综上,T n =⎩⎪⎨⎪⎧2n ,n 为偶数,-2n +1,n 为奇数.12.(2019·石家庄质量检测(二))已知等差数列{a n }的前n 项和为S n ,若S m -1=-4,S m =0,S m +2=14(m ≥2,且m ∈N *).(1)求m 的值;(2)若数列{b n }满足a n2=log 2b n (n ∈N *),求数列{(a n +6)·b n }的前n 项和.解:(1)由已知得,a m =S m -S m -1=4, 且a m +1+a m +2=S m +2-S m =14, 设数列{a n }的公差为d , 则有2a m +3d =14,∴d =2.由S m =0,得ma 1+m (m -1)2×2=0,即a 1=1-m ,∴a m =a 1+(m -1)×2=m -1=4,∴m =5.(2)由(1)知a 1=-4,d =2,∴a n =2n -6, ∴n -3=log 2b n ,得b n =2n -3, ∴(a n +6)·b n =2n ×2n -3=n ×2n -2. 设数列{(a n +6)·b n }的前n 项和为T n ,则T n =1×2-1+2×20+…+(n -1)×2n -3+n ×2n -2,① 2T n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1,② ①-②,得-T n =2-1+2+…+2n -2-n ×2n -1=2-1(1-2n )1-2-n ×2n -1=2n -1-12-n ×2n -1,∴T n =(n -1)×2n -1+12(n ∈N *).第二次作业 高考·模拟解答题体验1.(2019·河北名校联考)已知数列{a n }是等差数列,a 2=6,前n 项和为S n ,{b n }是等比数列,b 2=2,a 1b 3=12,S 3+b 1=19.(1)求{a n },{b n }的通项公式; (2)求数列{b n cos(a n π)}的前n 项和T n . 解:(1)∵数列{a n }是等差数列,a 2=6, ∴S 3+b 1=3a 2+b 1=18+b 1=19,∴b 1=1, ∵b 2=2,数列{b n }是等比数列,∴b n =2n -1. ∴b 3=4,∵a 1b 3=12,∴a 1=3,∵a 2=6,数列{a n }是等差数列,∴a n =3n . (2)由(1)得,令C n =b n cos(a n π)=(-1)n 2n -1, ∴C n +1=(-1)n +12n , ∴C n +1C n=-2,又C 1=-1, ∴数列{b n cos(a n π)}是以-1为首项、-2为公比的等比数列,∴T n =-1×[1-(-2)n ]1+2=-13[1-(-2)n ].2.已知各项均不相等的等差数列{a n }的前四项和为14,且a 1,a 3,a 7恰为等比数列{b n }的前三项. (1)分别求数列{a n },{b n }的前n 项和S n ,T n ;(2)记数列{a n b n }的前n 项和为K n ,设c n =S n T nK n ,求证:c n +1>c n (n ∈N *).解:(1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ),解得⎩⎪⎨⎪⎧a 1=2,d =1或⎩⎪⎨⎪⎧a 1=72,d =0(舍去),所以a n =n +1,S n =n (n +3)2.又b 1=a 1=2,b 2=a 3=4,所以b n =2n ,T n =2n +1-2. (2)证明:因为a n ·b n =(n +1)·2n , 所以K n =2·21+3·22+…+(n +1)·2n ,①所以2K n =2·22+3·23+…+n ·2n +(n +1)·2n +1,② ①-②得-K n =2·21+22+23+…+2n -(n +1)·2n +1, 所以K n =n ·2n +1.则c n =S n T n K n=(n +3)(2n-1)2n +1,c n +1-c n=(n +4)(2n +1-1)2n +2-(n +3)(2n -1)2n +1=2n +1+n +22n +2>0,所以c n +1>c n (n ∈N *). 3.已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .解:(1)由题设知a 1a 4=a 2a 3=8,又a 1+a 4=9,可解得⎩⎪⎨⎪⎧ a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去).设等比数列{a n }的公比为q ,由a 4=a 1q 3,得q =2,故a n =a 1q n -1=2n -1,n ∈N *. (2)S n =a 1(1-q n )1-q=2n-1,又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,所以T n =b 1+b 2+…+b n =⎝⎛⎭⎫1S 1-1S 2+⎝⎛⎭⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1,n ∈N *. 4.(2019·石家庄质量检测)已知数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n .(1)设b n =a nn,求数列{b n }的通项公式;(2)求数列{a n }的前n 项和S n .解:(1)由a n +1=n +1n a n +n +12n ,可得a n +1n +1=a n n +12n ,又b n =a n n ,∴b n +1-b n =12n ,由a 1=1,得b 1=1,累加可得(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1=121+122+…+12n -1,即b n -b 1=12(1-12n -1)1-12=1-12n -1,∴b n =2-12n -1.(2)由(1)可知a n =2n -n 2n -1,设数列{n2n -1}的前n 项和为T n ,则T n =120+221+322+…+n2n -1 ①,12T n =121+222+323+…+n2n ②, ①-②得12T n =120+121+122+…+12n -1-n2n =1-12n1-12-n 2n =2-n +22n ,∴T n =4-n +22n -1.易知数列{2n }的前n 项和为n (n +1), ∴S n =n (n +1)-4+n +22n -1.5.已知S n 是正项数列{a n }的前n 项和,且2S n =a 2n +a n ,等比数列{b n }的公比q >1,b 1=2,且b 1,b 3,b 2+10成等差数列.(1)求数列{a n }和{b n }的通项公式;(2)设c n =a n ·b n +(-1)n ·2n +1a n ·a n +1,记T 2n =c 1+c 2+c 3+…+c 2n ,求T 2n .解:(1)当n ≥2时,由题意得2S n -2S n -1=a 2n -a 2n -1+a n -a n -1, 2a n =a 2n -a 2n -1+a n -a n -1, a 2n -a 2n -1-(a n +a n -1)=0,(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1,当n =1时,2a 1=a 21+a 1,∵a 1>0,∴a 1=1, ∴数列{a n }是首项为1,公差为1的等差数列,∴a n =1+(n -1)×1=n .由b 1=2,2b 3=b 1+(b 2+10),得2q 2-q -6=0, 解得q =2或q =-32(舍),∴b n =b 1q n -1=2n .(2)由(1)得c n =n ·2n+(-1)n·2n +1n (n +1)=n ·2n +(-1)n ⎝ ⎛⎭⎪⎫1n +1n +1, ∴T 2n =(1×2+2×22+…+2n ·22n)+⎣⎢⎡⎦⎥⎤-⎝⎛⎭⎫1+12+⎝⎛⎭⎫12+13-13+14+…+⎝⎛⎭⎪⎫12n +12n +1=(1×2+2×22+…+2n ·22n)+⎝ ⎛⎭⎪⎫-1+12n +1,记W 2n =1×2+2×22+…+2n ·22n , 则2W 2n =1×22+2×23+…+2n ·22n +1, 以上两式相减可得-W 2n =2+22+ (22)-2n ·22n +1=2(1-22n )1-2-2n ·22n +1=(1-2n )·22n +1-2,∴W 2n =(2n -1)·22n +1+2,∴T 2n =W 2n +⎝ ⎛⎭⎪⎫-1+12n +1=(2n -1)·22n +1+12n +1+1. 6.在数列{a n }中,a 1=2,a n +1=2⎝⎛⎭⎫1+1n a n (n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =2na n ,数列{b n }的前n 项的和为S n ,试求数列{S 2n -S n }的最小值;(3)求证:当n ≥2时,S 2n ≥7n +1112. 解:(1)由条件a n +1=2⎝⎛⎭⎫1+1n a n , 得a n +1n +1=2·a n n ,又a 1=2,所以a 11=2,因此数列⎩⎨⎧⎭⎬⎫a n n 构成首项为2,公比为2的等比数列.a nn=2·2n -1=2n ,因此,a n =n ·2n . (2)由(1)得b n =1n ,设c n =S 2n -S n ,则c n =1n +1+1n +2+…+12n ,所以c n +1=1n +2+1n +3+…+12n +12n +1+12n +2,从而c n +1-c n =12n +1+12n +2-1n +1>12n +2+12n +2-1n +1=0,因此数列{c n }是单调递增的,所以(c n )min =c 1=12.。

数列的求和公式的综合题目

数列的求和公式的综合题目
三角等。
确定数列的通 项公式
利用错位相减 法求和
构造等比数列
整理结果并化 简
解题思路:利用错位相减法 求和
题目:求数列1,3,6,10, 15,... 的前n项和
解题步骤:先写出等差数列的 前n项和公式,然后错位相减
答案:S_n = n*(n+1)/2
添加 标题
适用范围:适用于等差数列和等比数列的混合数列求和
分组法在数列求和中有广泛应用, 尤其适用于某些项数较少,但每项 数值较大或难以直接求和的数列。
添加标题
添加标题
添加标题
添加标题
分组法的关键是选择合适的分组方 式,使得分组后的数列易于求和。
分组法可以与其他求和方法结合使 用,以简化数列求和的过程。
确定分组依据:根据题目要求,将数列按照一定的规律或性质进行分组。 分别求和:对每组数列进行求和,得到每组的和。 合并结果:将各组的和相加,得到整个数列的和。 化简结果:对求和结果进行化简,得到最终答案。
等比数列的公比 r 不能等于 0,否则数列将无法定义。
定义:等比数列中任意一项与首项的比值相等 公式:an=a1*q^(n-1),其中an是第n项,a1是首项,q是公比 推导:由等比数列的定义和性质推导得出 应用:在数列求和、数列的通项公式等方面有广泛应用
定义:等比数列是一种常见的数列, 其每一项与前一项的比值都相等
裂项相消法在解决一些复杂数列求和问题时具有很高的实用价值,是数学中常用的解 题技巧之一。
确定数列的通项公式 将通项公式进行裂项处理,使其变为易于求和的形式 利用裂项后的数列求和公式进行求和 整理求和结果,得出最终答案
● 题目:1/2+1/6+1/12+1/20+1/30

专题3 第3讲 数列求和及其综合应用

专题3   第3讲  数列求和及其综合应用

第3讲数列求和及其综合应用[考情分析]数列求和常与数列的综合应用一起考查,常以解答题的形式出现,有时与函数、不等式综合在一起考查,难度中等偏上.考点一数列求和r核心提炼、1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是依次项抵消,有的是间隔项抵消.常见的裂项方式有:1 _1 1 , 1 _^=if_U__UYn(n+∖) n Λ+Γn(n+k) n+k)' n1-∖丸—1 n+∖)' 4??2—1 2∖2n —1 2∕ι÷l∕2.如果数列{小}是等差数列,{d}是等比数列,那么求数列{4・儿}的前〃项和S〃时,可采用错位相减法.用错位相减法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写出ff的表达式时应特别注意将两式“错项对齐”,以便准确写出“Sn—qSj的表“SJ和a qSn达式.考向1分组转化法求和例1已知在等比数列{斯}中,m=2,且两,的内一2成等差数列.⑴求数列{斯}的通项公式;⑵若数列{小}满足儿=J+21og2斯- 1,求数列{d}的前n项和解(1)设等比数列{〃“}的公比为4,由Q], 〃2,。

3 —2成等差数列,得2。

2 =。

1+。

3-2,即4夕=2 + 2/-2,解得夕=2(4=0舍去),则m=α∣尸=2〃,n∈ N*.(2)⅛Λ=~+21og2Λrt— l=^+21og22n- l=^∏+2n-↑,则数列{九}的前〃项和考向2裂项相消法求和例2 (2020•莆田市第一联盟体学年联考)设数列{斯}的前〃项和为S”,且&=久一2〃,{d }为正项等比数列,且〃∣=α∣+3, 63=604+2. ⑴求数列{斯}和{d }的通项公式;⑵设c 〃=——j~~;—,求{c 〃}的前〃项和T n .4"+l∙∣0g2%+l解 (1)由工=/一2〃,得当〃 =1 时,0=S] = —1, 当九22 时,S n -ι=(n -l)2-2(n- l)=n 2-4n+3f所以当时,a∏=S n —S n -\=2n —3, a\ — — 1也满足此式.所以斯=2〃一3, Q @N*. 又加=。

初一数学综合算式练习题数列求和

初一数学综合算式练习题数列求和

初一数学综合算式练习题数列求和数列是数学中的一个重要概念,它由一系列按照一定规律排列的数所组成。

数列求和是数学中常见的问题,它要求我们计算数列中所有数的和。

在初一数学综合中,数列求和也是一个重要的考点。

本文将通过几个练习题来帮助初一学生加深对数列求和的理解。

练习题1:已知等差数列的首项为a₁,公差为d,前n项和为Sₙ。

如果首项a₁=2,公差d=3,前n项和Sₙ=50,求n的值。

解析:根据等差数列的前n项和公式,可以得到Sₙ = (n/2)(2a₁+ (n−1)d)。

将已知条件代入公式,得到50 = (n/2)(2×2 + (n − 1)×3)。

化简得到50 = (n/2)(4 + 3n − 3),进一步化简得到3n² - n - 100 = 0。

通过解一元二次方程,可以求得n的值。

练习题2:已知等差数列的首项为a₁,公差为d,前n项和为Sₙ。

如果首项a₁=-2,公差d=5,前n项和Sₙ=-45,求n的值。

解析:同样地,我们可以根据等差数列的前n项和公式得到Sₙ =(n/2)(2a₁ + (n−1)d)。

将已知条件代入公式,得到-45 = (n/2)(2×(-2) + (n− 1)×5)。

化简得到-45 = (n/2)(-4 + 5n - 5),进一步化简得到5n² - 11n + 90 = 0。

通过解一元二次方程,我们可以求得n的值。

练习题3:求等差数列1, 4, 7, 10, ... 的前10项和。

解析:对于这个等差数列,我们可以发现首项为1,公差为3。

我们可利用等差数列前n项和公式 Sₙ = (n/2)(2a₁ + (n−1)d),将已知条件代入公式,得到Sₙ= (10/2)(2×1 + (10 − 1)×3) = 5(2 + 27) = 145。

练习题4:求等差数列2, 5, 8, 11, ... 的前15项和。

解密04 数列求和及综合问题(分层训练)-【高频考点解密】2021年高考数学二轮复习讲义+分层训练

解密04 数列求和及综合问题(分层训练)-【高频考点解密】2021年高考数学二轮复习讲义+分层训练

解密04 数列求和及综合问题A 组 考点专练一、选择题1.已知T n 为数列⎩⎨⎧⎭⎬⎫2n +12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( )A.1 026B.1 025C.1 024D.1 023【答案】C【解析】因为2n +12n =1+12n ,所以T n =n +1-12n ,则T 10+1 013=11-1210+1 013=1 024-1210,又m >T 10+1 013,所以整数m 的最小值为1 024.2.在等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项的和为( ) A.1 009 B.1 010 C.2 019 D.2 020【答案】D【解析】设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2, b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,∴数列{a n cos n π}的前2 020项的和S 2 020=(b 1+b 2)+(b 3+b 4)+…+(b 2 019+b 2 020)=2×1 010=2 020. 3.数列{a n }满足a 1=1,对任意n ∈N *,都有a n +1=1+a n +n ,则1a 1+1a 2+…+1a 99=( )A.9998 B.2C.9950D.99100【答案】C【解析】对任意n ∈N *,都有a n +1=1+a n +n ,则a n +1-a n =n +1,则a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+1=n (n +1)2,则1a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以1a 1+1a 2+…+1a 99=2[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫199-1100]=2×⎝⎛⎭⎫1-1100=9950. 4.(多选题)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=S n +2a n +1,数列⎩⎨⎧⎭⎬⎫2n a n a n +1的前n 项和为T n ,n ∈N *,则下列选项正确的为( ) A.数列{a n +1}是等差数列 B.数列{a n +1}是等比数列 C.数列{a n }的通项公式为a n =2n -1 D.T n <1 【答案】BCD【解析】由S n +1=S n +2a n +1,得a n +1=S n +1-S n =2a n +1,可化为a n +1+1=2(a n +1).由a 1=1,得a 1+1=2,则数列{a n +1}是首项为2,公比为2的等比数列.则a n +1=2n,即a n =2n-1.由2na n a n +1=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,得T n=1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1<1.所以A 错误,B ,C ,D 正确.故选BCD.5.(多选题)已知数列{a n }满足a n +1+a n =n ·(-1)n (n +1)2,其前n 项和为S n ,且m +S 2 019=-1 009,则下列说法正确的是( ) A.m 为定值 B.m +a 1为定值 C.S 2 019-a 1为定值 D.ma 1有最大值【答案】BCD【解析】当n =2k (k ∈N *)时,由已知条件得a 2k +a 2k +1=2k ·(-1)k (2k+1),所以S 2 019=a 1+a 2+a 3+…+a 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019)=a 1-2+4-6+8-10+…-2 018=a 1+1 008-2 018=a 1-1 010,所以S 2 019-a 1=-1 010.m +S 2 019=m +a 1-1 010=-1 009,所以m +a 1=1,所以ma 1≤⎝⎛⎭⎫m +a 122=14,当且仅当m =a 1=12时等号成立,此时ma 1取得最大值14.故选BCD. 二、填空题6.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =________. 【答案】2n +1-2【解析】因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n,所以S n =2-2n +11-2=2n +1-2.7.已知数列{a n }的前n 项和为S n ,且2S n =3a n +1,则a 1=________,a n =________. 【答案】-1 -3n -1【解析】令n =1,则2S 1=3a 1+1,又S 1=a 1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=12(3a n -3a n -1),整理得a n =3a n -1,即a na n -1=3(n ≥2).因此,{a n }是首项为-1,公比为3的等比数列. 故a n =-3n -1.8.已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________. 【答案】5【解析】S n =1×21+2×22+…+n ×2n , 则2S n =1×22+2×23+…+n ×2n +1,两式相减得 -S n=2+22+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1,故S n =2+(n -1)·2n +1. 又a n =2n ,∴S n -na n +1+50=2+(n -1)·2n +1-n ·2n +1+50=52-2n +1, 依题意52-2n +1<0,故最小正整数n 的值为5. 三、解答题9.记S n 为等差数列{a n }的前n 项和,且a 10=4,S 15=30. (1)求数列{a n }的通项公式以及前n 项和S n ;(2)记数列{2a n +4+a n }的前n 项和为T n ,求满足T n >0的最小正整数n 的值. 【解析】(1)记数列{a n }的公差为d ,S 15=30⇒15a 8=30⇒a 8=2,故d =a 10-a 810-8=1,故a n =a 10+(n -10)d =4+n -10=n -6,S n =na 1+n (n -1)d 2=-5n +n (n -1)2=n 22-11n2.(2)依题意,2a n +4+a n =n -6+2n -2T n =(-5-4+…+n -6)+(2-1+20+…+2n -2)=n (n -11)2+2n -12, 当n =1时,T 1=-1×10+21-12<0;当n =2时,T 2=-2×9+22-12<0;当n =3时,T 3=-3×8+23-12<0;当n =4时,T 4=-4×7+24-12<0;当n ≥5时,n (n -11)2≥-15,2n -12≥312,所以T n >0.故满足T n >0的最小正整数n 的值为5.10.甲、乙两同学在复习数列时发现曾经做过的一道有关数列的题目因纸张被破坏,导致一个条件看不清,具体如下:等比数列{a n }的前n 项和为S n ,已知________. (1)判断S 1,S 2,S 3的关系;(2)若a 1-a 3=3,设b n =n 12|a n |,记{b n }的前n 项和为T n ,求证:T n <43.甲同学记得缺少的条件是首项a 1的值,乙同学记得缺少的条件是公比q 的值,并且他俩都记得第(1)问的答案是S 1,S 3,S 2成等差数列.如果甲、乙两同学记得的答案是正确的,请你通过推理把条件补充完整并解答此题.【解析】(1)由S 1,S 3,S 2成等差数列,得 2S 3=S 1+S 2,即2(a 1+a 1q +a 1q 2)=2a 1+a 1q , 解得q =-12或q =0(舍去).若乙同学记得的缺少的条件是正确的,则公比q =-12.所以S 1=a 1,S 2=a 1+a 2=a 1-12a 1=12a 1,S 3=a 1+a 2+a 3=a 1-12a 1+14a 1=34a 1,可得S 1+S 2=2S 3,即S 1,S 3,S 2成等差数列.(2)由a 1-a 3=3,可得a 1-14a 1=3,解得a 1=4,所以a n =4×⎝⎛⎭⎫-12n -1.所以b n =n 12|a n |=n 12⎪⎪⎪⎪⎪⎪4×⎝⎛⎭⎫-12n -1=23n ·⎝⎛⎭⎫12n. 所以T n =23⎝⎛⎭⎫1×12+2×14+3×18+…+n ×12n , 12T n =23⎝⎛⎭⎫1×14+2×18+3×116+…+n ×12n +1, 两式相减,得12T n =23⎝⎛⎭⎫12+14+18+116+…+12n -n ·12n +1=23⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎫1-12n1-12-n ·12n +1,化简可得T n =43⎝ ⎛⎭⎪⎫1-n +22n +1.由1-n +22n +1<1,得T n <43.B 组 专题综合练11.设数列{a n }的各项均为正数,前n 项和为S n ,对于任意的n ∈N *,a n ,S n ,a 2n 成等差数列,设数列{b n}的前n 项和为T n ,且b n =(ln x )na 2n ,若对任意的实数x ∈(1,e](e 为自然对数的底数)和任意正整数n ,总有T n <r (r ∈N *),则r 的最小值为________. 【答案】2【解析】由题意得,2S n =a n +a 2n , 当n ≥2时,2S n -1=a n -1+a 2n -1,∴2S n -2S n -1=a n +a 2n -a n -1-a 2n -1,∴(a n +a n -1)(a n -a n -1-1)=0,∵a n >0,∴a n -a n -1=1,即数列{a n }是公差为1的等差数列,又2a 1=2S 1=a 1+a 21,a 1=1,∴a n =n (n ∈N *).又x ∈(1,e],∴0<ln x ≤1,∴T n ≤1+122+132+…+1n 2<1+11×2+12×3+…+1(n -1)n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =2-1n <2,∴r ≥2,即r 的最小值为2. 12.等差数列{a n }的公差为2,a 2,a 4,a 8分别等于等比数列{b n }的第2项、第3项、第4项. (1)求数列{a n }和{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+…+c na n =b n +1,求数列{c n }的前2 020项的和.【解析】(1)依题意得b 23=b 2b 4, 所以(a 1+6)2=(a 1+2)(a 1+14),所以a 21+12a 1+36=a 21+16a 1+28,解得a 1=2.∴a n =2n .设等比数列{b n }的公比为q ,所以q =b 3b 2=a 4a 2=84=2,又b 2=a 2=4,∴b n =4×2n -2=2n . (2)由(1)知,a n =2n ,b n =2n . 因为c 1a 1+c 2a 2+…+c n -1a n -1+c n a n =2n +1①当n ≥2时,c 1a 1+c 2a 2+…+c n -1a n -1=2n ②由①-②得,c n a n =2n ,即c n =n ·2n +1,又当n =1时,c 1=a 1b 2=23不满足上式,∴c n =⎩⎪⎨⎪⎧8,n =1,n ·2n +1,n ≥2.故S 2 020=8+2×23+3×24+…+2 020×22 021 =4+1×22+2×23+3×24+…+2 020×22 021设T 2 020=1×22+2×23+3×24+…+2 019×22 020+2 020×22 021③, 则2T 2 020=1×23+2×24+3×25+…+2 019×22 021+2 020×22 022④, 由③-④得:-T 2 020=22+23+24+…+22 021-2 020×22 022 =22(1-22 020)1-2-2 020×22 022=-4-2 019×22 022,所以T 2 020=2 019×22 022+4, 所以S 2 020=T 2 020+4=2 019×22 022+8.。

高考数学二轮总复习第2篇经典专题突破核心素养提升专题2数列第2讲数列求和及其综合应用课件

高考数学二轮总复习第2篇经典专题突破核心素养提升专题2数列第2讲数列求和及其综合应用课件
n+1,n为奇数, 从而 bn=2n,n为偶数,
b1+b2+b3+…+b2n-1+b2n =(2+4+…+2n)+(22+24+…+22n) =n×(22+2n)+4×1(-1-4 4n) =n(n+1)+43(4n-1);
(2)∵cn=b2n-1·b2n=2n×22n=2n·4n, ∴Sn=2×41+4×42+6×43+…+2n·4n, 4Sn=2×42+4×43+6×44+…+2(n-1)·4n+2n·4n+1, 两式相减得,-3Sn=2×41+2×42+2×43+…+2×4n-2n×4n+1 =8(11--44n)-2n×4n+1
(1)求数列{an}的通项公式; (2)设 bn=24nn+an1,求数列{bnbn+1}的前 n 项和 Tn.
【解析】(1)当 n=1 时,a1=14. 因为 a1+4a2+42a3+…+4n-2an-1+4n-1an=n4,① 所以 a1+4a2+42a3+…+4n-2an-1=n-4 1(n≥2,n∈N*),② ①-②得 4n-1an=14(n≥2,n∈N*), 所以 an=41n(n≥2,n∈N*). 当 n=1 时也适合上式,故 an=41n(n∈N*).
核心拔头筹 考点巧突破
考点一 数列求和
1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间 能够相互抵消,但在抵消的过程中,有的是依次项抵消,有的是间隔项 抵消.常见的裂项方式有:
n(n1+1)=1n-n+1 1; n(n1+k)=1k1n-n+1 k; n2-1 1=12n-1 1-n+1 1; 4n21-1=122n1-1-2n1+1.
②cn=4n3-n 2, Tn=23+362+1303+…+4n3-n 2,① 13Tn=322+363+1304+…+4n3-n 6+43nn-+12,②

高中数学《数列求和与综合问题》专项练习题(含答案解析)

高中数学《数列求和与综合问题》专项练习题(含答案解析)

高中数学《数列求和与综合问题》专项练习题(含答案解析)一、选择题1.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( ) A .3×44 B .3×44+1 C .44D .44+1A [因为a n +1=3S n ,所以a n =3S n -1(n ≥2), 两式相减得,a n +1-a n =3a n ,即a n +1a n=4(n ≥2),所以数列a 2,a 3,a 4,…构成以a 2=3S 1=3a 1=3为首项,公比为4的等比数列,所以a 6=a 2·44=3×44.]2.已知数列{a n }是等差数列,其前n 项和为S n ,若a 1a 2a 3=15,且3S 1S 3+15S 3S 5+5S 5S 1=35,则a 2等于( ) A .2B .12C .3D .13C [∵在等差数列中,S 2n -1=(2n -1)a n ,∴S 1=a 1,S 3=3a 2,S 5=5a 3,∴35=1a 1a 2+1a 2a 3+1a 1a 3,∵a 1a 2a 3=15,∴35=a 315+a 115+a 215=a 25,即a 2=3.]3.已知数列{b n }满足b 1=1,b 2=4,b n +2=⎝ ⎛⎭⎪⎫1+sin 2n π2b n +cos 2n π2,则该数列的前23项的和为( )A .4 194B .4 195C .2 046D .2 047A [当n 为偶数时,b n +2=⎝⎛⎭⎪⎫1+sin 2n π2b n +cos 2n π2=b n +1,有b n +2-b n =1,即偶数项成等差数列,所以b 2+b 4+…+b 22=11b 2+11×102×1=99.当n 为奇数时,b n +2=2b n ,即奇数项成等比数列,所以b 1+b 3+…+b 23=b 11-2121-2=212-1=4 095.所以该数列的前23项的和为99+4 095=4 194,故选A .]4.已知数列{a n }的前n 项和为S n ,且满足a 1=1,a n +a n +1=2n +1,则S 2 0192 019=( )A .1 010B .1 009C .2 020D .2 019A [S 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019), =(2×0+1)+(2×2+1)+(2×4+1)+…+(2×2 018+1), =1+2×2 018+11 0102=2 019×1 010,∴S 2 0192 019=1 010,故选A .]5.已知数列{a n }的前n 项和S n =2+λa n ,且a 1=1,则S 5=( ) A .27 B .5327C .3116D .31C [∵S n =2+λa n ,且a 1=1,∴S 1=2+λa 1, 即λ=-1,∴S n =2-a n ,当n ≥2时,S n =2-(S n -S n -1),∴2S n =2+S n -1,即S n =12S n -1+1,∴S n -2=12(S n -1-2),∴S n -2=(-1)×⎝ ⎛⎭⎪⎫12n -1.当n =1时也满足.∴S 5=2-⎝ ⎛⎭⎪⎫124=3116.故选C .]6.设曲线y =2 018x n +1(n ∈N *)在点(1,2 018)处的切线与x 轴的交点的横坐标为x n ,令a n =log 2 018x n ,则a 1+a 2+…+a 2 017的值为( )A .2 018B .2 017C .1D .-1D [因为y ′=2 018(n +1)x n ,所以切线方程是y -2 018=2 018(n +1)(x -1),所以x n =nn +1,所以a 1+a 2+…+a 2 017=log 2 018(x 1·x 2·…·x 2 017)=log 2 018⎝ ⎛⎭⎪⎫12×23×…×2 0172 018=log 2 01812 018=-1.]7.在等比数列{a n }中,公比q =2,前87项和S 87=140,则a 3+a 6+a 9+…+a 87等于( )A .1403B .60C .80D .160C [法一:a 3+a 6+a 9+…+a 87=a 3(1+q 3+q 6+…+q 84)=a1q 2×1q 3291-q 3=q 21+q +q 2×a 11-q 871-q =47×140=80.故选C . 法二:设b 1=a 1+a 4+a 7+…+a 85,b 2=a 2+a 5+a 8+…+a 86,b 3=a 3+a 6+a 9+…+a 87,因为b 1q =b 2,b 2q =b 3,且b 1+b 2+b 3=140,所以b 1(1+q +q 2)=140,而1+q +q 2=7,所以b 1=20,b 3=q 2b 1=4×20=80.故选C .]8.设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5,则数列⎩⎨⎧⎭⎬⎫1a n ·a n +1前n 项和的最大值为( )A .49B .1C .4181D .151315A [a 1=9,a 2为整数,可知:等差数列{a n }的公差d 为整数,由S n ≤S 5,∴a 5≥0,a 6≤0,则9+4d ≥0,9+5d ≤0,解得-94≤d ≤-95,d 为整数,d =-2.∴a n =9-2(n -1)=11-2n . 1a n ·a n +1=111-2n9-2n =12⎝⎛⎭⎪⎫19-2n -111-2n , 数列⎩⎨⎧⎭⎬⎫1a n ·a n +1前n 项和为 12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-19+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫19-2n -111-2n =12⎝⎛⎭⎪⎫19-2n -19, 令b n =19-2n ,由于函数f (x )=19-2x 的图象关于点⎝ ⎛⎭⎪⎫92,0对称及其单调性,可知:0<b 1<b 2<b 3<b 4,b 5<b 6<b 7<…<0,∴b n ≤b 4=1.∴最大值为49.故选A .]二、填空题 9.已知a n =2n ,b n =3n -1,c n =b n a n,则数列{c n }的前n 项和S n 为________.5-3n +52n [由题设知,c n =3n -12n ,所以S n =221+522+823+…+3n -12n , ①2S n =2+521+822+…+3n -12n -1,②由②-①得,S n =2+321+322+…+32n -1-3n -12n .故所求S n =2+32⎝ ⎛⎭⎪⎫1-12n -11-12-3n -12n =5-3n +52n .]10.已知数列{a n }和{b n }满足a 1=1,a n +1a n=n +1n,b n a n=sin 2n π3-cos 2n π3,n ∈N *,则数列{b n }的前47项和等于________.1 120 [依题意得a n +1n +1=a nn ,故数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是常数列,于是有a n n =1,a n =n 2,b n =-n 2cos 2n π3,b 3k -2+b 3k -1+b 3k =3k -223k -122-(3k )2=-9k +52(k ∈N *),因此数列{b n }的前47项和为S 47=S 48-b 48=-9×161+162+52×16+482=1 120.]11.设某数列的前n 项和为S n ,若S nS 2n为常数,则称该数列为“和谐数列”.若一个首项为1,公差为d (d ≠0)的等差数列{a n }为“和谐数列”,则该等差数列的公差d =________.2 [由S nS 2n =k (k 为常数),且a 1=1,得n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n 2n -1d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得,(4k -1)dn +(2k -1)(2-d )=0,∵对任意正整数n ,上式恒成立,∴⎩⎪⎨⎪⎧d 4k -10,2k -12-d0,得⎩⎪⎨⎪⎧d =2,k =14.∴数列{a n }的公差为2.]12.记S n 为正项等比数列{a n }的前n 项和,若S 4-2S 2=3,则S 6-S 4的最小值为________.12 [由题可知数列{a n }的公比q >0,a n >0,则3=(a 4-a 2)+(a 3-a 1)=a 1(q +1)·(q 2-1),则有q >1,所以3S 6-S 4=3a 6+a 5=3a 1q +1q 4=a 1q +1q 2-1a 1q +1q 4=1q 2-⎝ ⎛⎭⎪⎫1q 22=14-⎝ ⎛⎭⎪⎫1q 2-122≤14(当且仅当q =2时,取等号),所以S 6-S 4≥12,即S 6-S 4的最小值为12.]三、解答题13.(2018·黔东南州二模)已知数列{a n }的前n 项和为S n ,且满足S n =43(a n -1),n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =log 2a n ,记数列⎩⎨⎧⎭⎬⎫1b n -1b n +1的前n 项和为T n ,证明:T n <12.[解] (1)当n =1时,有a 1=S 1=43(a 1-1),解得a 1=4.当n ≥2时,有S n -1=43(a n -1-1),则a n =S n -S n -1=43(a n -1)-43(a n -1-1),整理得:a na n -1=4,∴数列{a n }是以q =4为公比,以a 1=4为首项的等比数列.∴a n =4×4n -1=4n (n ∈N *)即数列{a n }的通项公式为:a n =4n (n ∈N *). (2)由(1)有b n =log 2a n =log 2 4n =2n ,则1b n +1b n -1=12n +12n -1=12⎝⎛⎭⎪⎫12n -1-12n +1. ∴T n =12⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1. 易知数列{T n }为递增数列, ∴T 1≤T n <12,即13≤T n <12.14.(2018·邯郸市一模)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2.(1)求T n -S n ; (2)求数列⎩⎨⎧⎭⎬⎫b n 2n 的前n 项和R n .[解] (1)依题意可得b 1-a 1=3,b 2-a 2=5,…,b n -a n =2n +1, ∴T n -S n =(b 1+b 2+…+b n )-(a 1+a 2+…+a n ) =n +(2+22+…+2n )=2n +1+n -2. (2)∵2S n =S n +T n -(T n -S n )=n 2-n , ∴S n =n 2-n2,∴a n =n -1. 又b n -a n =2n +1, ∴b n =2n +n .∴b n2n =1+n2n , ∴R n =n +⎝ ⎛⎭⎪⎫12+222+…+n 2n ,则12R n =12n +⎝ ⎛⎭⎪⎫122+223+…+n 2n +1,∴12R n =12n +⎝ ⎛⎭⎪⎫12+122+…+12n -n2n +1, 故R n =n +2×12-12n +11-12-n 2n =n +2-n +22n .。

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。

数列求和的几种方法、数列的实际应用问题

数列求和的几种方法、数列的实际应用问题

数列求和的⼏种⽅法、数列的实际应⽤问题数列求和的⼏种⽅法、数列的实际应⽤问题⼀. 教学难点:数列的实际应⽤问题⼆. 课标要求:1. 探索并掌握⼀些基本的数列求前n 项和的⽅法;2. 能在具体的问题情境中,发现数列的通项和递推关系,并能⽤有关等差、等⽐数列知识解决相应的实际问题.三. 命题⾛向:数列求和和数列综合及实际问题在⾼考中占有重要的地位,⼀般情况下都是出⼀道解答题,解答题⼤多以数列为⼯具,综合运⽤函数、⽅程、不等式等知识,通过运⽤逆推思想、函数与⽅程、归纳与猜想、等价转化、分类讨论等各种数学思想⽅法,这些题⽬都考查考⽣灵活运⽤数学知识分析问题和解决问题的能⼒,它们都属于中、⾼档题⽬.有关命题趋势:1. 数列是⼀种特殊的函数,⽽不等式则是深刻认识函数和数列的有效⼯具,三者的综合题是对基础和能⼒的双重检验,在三者交汇处设计试题,特别是代数推理题是⾼考的重点;2. 数列推理题将继续成为数列命题的⼀个亮点,这是由于此类题⽬能突出考查学⽣的逻辑思维能⼒,能区分学⽣思维的严谨性、灵敏程度、灵活程度;3. 数列与新的章节知识结合的特点有可能加强,如与解析⼏何的结合等;4. 有关数列的应⽤问题也⼀直备受关注.【教学过程】⼀、基本知识回顾 1. 数列求通项与和(1)数列前n 项和S n 与通项a n 的关系式:a n =--11s s s n n 12=≥n n .(2)求通项常⽤⽅法①作新数列法.作等差数列与等⽐数列.②累差叠加法.最基本的形式是:a n =(a n -a n -1)+(a n -1+a n -2)+…+(a 2-a 1)+a 1.③归纳、猜想法.(3)数列前n 项和①重要公式:等差和等⽐数列的求和公式1+2+…+n =21n (n +1);12+22+…+n 2=61n (n +1)(2n +1);13+23+…+n 3=(1+2+…+n )2=41n 2(n +1)2;②裂项相消法将数列的通项分成两个式⼦的代数和,即a n =f (n +1)-f (n ),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.⽤裂项法求和,需要掌握⼀些常见的裂项,如:)11(1))((1C An B An B C C An B An a n +-+-=++=、)1(1+n n =n 1-11+n 等.③错位相减法(可⽤于推导等⽐数列前n 项和公式)对⼀个由等差数列及等⽐数列对应项之积组成的数列的前n 项和,常⽤错位相减法.n n n c b a ?=,其中{}n b 是等差数列, {}n c 是等⽐数列,记n n n n n c b c b c b c b S ++?++=--112211,则1211n n n n n qS b c b c b c -+=+??++,…④分组转化求和把数列的某些项放在⼀起先求和,然后再求S n .⑤倒序相加法(可⽤于推导等差数列前n 项和公式) 2. 递归数列数列的连续若⼲项满⾜的等量关系a n +k =f (a n +k -1,a n +k -2,…,a n )称为数列的递归关系.由递归关系及k 个初始值可以确定的⼀个数列叫做递归数列.如由a n +1=2a n +1,及a 1=1,确定的数列}12{-n 即为递归数列.递归数列的通项的求法⼀般说来有以下⼏种:(1)归纳、猜想.(2)迭代法.(3)代换法.包括代数代换,对数代数,三⾓代数.(4)作新数列法.最常见的是作成等差数列或等⽐数列来解决问题.【典型例题】例1. 已知数列{}n a 为等差数列,且公差不为0,⾸项也不为0,求和:∑=+ni i i a a 111.解:⾸先考虑=∑=+n i i i a a 111∑=+-n i i i a a d 11)11(1,则∑=+ni i i a a 111=1111)11(1++=-n n a a na a d .点评:已知数列{}n a 为等差数列,且公差不为0,⾸项也不为0,下列求和11nni i ===也可⽤裂项求和法.例2. 求)(,32114321132112111*N n n ∈+++++++++++++++.解:)1(2211+=+?++=k k k a k , ])1n (n 1321211[2S n ++?+?+?=∴.1n n 21n 1121n 1n 131212112+=??+-= ??+-+?+??-+ -= 点评:裂项求和的关键是先将形式复杂的因式转化的简单⼀些.例3. 设221)(+=x x f ,利⽤课本中推导等差数列前n 项和的⽅法,可求得)6()5()0()4()5(f f f f f ++++-+- 的值为____________解:课本中推导等差数列前n 项和的⽅法为倒序相加法.因为22221221)1()(1=+++=-+-x x x f x f所以22)1()0()5()4()6()5(=+==+-=+-f f f f f f原式=622=23点评:本题曾为上海⾼考题,主要考查考⽣对课本的熟练程度和倒序相加法的应⽤,其中有函数式⼦的变化,计算能⼒的考查.例4. 已知1,0≠>a a ,数列{}n a 是⾸项为a ,公⽐也为a 的等⽐数列,令)(lg N n a a b n n n ∈?=,求数列{}n b 的前n 项和n S .解:,lg n nn n a a b n a a ==? , 232341(23)lg (23)lg n n n n S a a a na a aS a a a na a +∴=++++=++++ ……①……②①-②得:a na a a a S a n n n lg )()1(12+-+++=- ,[]nn ana n a a a S )1(1)1(lg 2-+--=∴点评:设数列{}n a 是等⽐数列,数列{}n b 是等差数列,则对数列{}n n b a 的前n 项和nS 进⾏求解,均可⽤错位相减.例 5. 数列),60cos 1000lg(),...60cos 1000lg(),60cos 1000lg(,1000lg 1n 2-…的前多少项和为最⼤?解:{}3(1)lg2,n n a n a =--是以3为⾸项,以lg 2-为公差的等差数列,2lg 26lg 2[33(1)lg 2],222n n S n n n +=+--=-+对称轴*6lg 210.47,,10,112lg 2n n N +=≈∈⽐较起来10更靠近对称轴∴前10项和为最⼤另法:由100n n a a +≥??点评:求和的最值关键在于找分界点.例6. 求数列1,3+13,32+132,……,3n +13n的各项的和.解:其和为(1+3+ (3))+(13132++…+13n )=3121321n n +--+-=12(3n +1-3-n ).点评:分组转化法求和.例7. (2006年浙江卷20)已知函数()f x =x 3+x 2,数列{x n }.(x n > 0)的第⼀项x 1=1,以后各项按如下⽅式取定:曲线y =()f x 在11(())n n x f x ++?处的切线与经过(0,0)和(x n ,f (x n ))两点的直线平⾏(如图).求证:当n ∈*N 时:(I )221132n n n n x x xx -++=+;(II )1211()()22n n n x --≤≤.解:(I )因为'2 ()32,f x x x =+所以曲线()y f x =在11(,())n n x f x ++处的切线斜率121132.n n n k x x +++=+因为过(0,0)和(,())n n x f x 两点的直线斜率是2,n n x x +所以221132n n n n x x x x +++=+.(II )因为函数2()h x x x =+当0x >时单调递增,⽽221132n n n n x x x x +++=+21142n n x x ++≤+211(2)2n n x x ++=+所以12nn x x +≤,即11,2n n x x +≥ 因此1121211().2n n n n n n x x x x x x x ----=≥⼜因为12212(),n n n n x x x x +++≥+ 令2,n n n y x x =+则11.2n ny y +≤ 因为21112,y x x =+=所以12111()().22n n n y y --≤?=因此221(),2n n n n x x x -≤+≤故1211()().22n n n x --≤≤点评:数列与解析⼏何问题结合在⼀块,数列的通项与线段的长度、点的坐标建⽴起联系.例8. (2005上海⾼考20.)假设某市2004年新建住房400万平⽅⽶,其中有250万平⽅⽶是中低价房.预计在今后的若⼲年内,该市每年新建住房⾯积平均⽐上⼀年增长8%.另外,每年新建住房中,中低价房的⾯积均⽐上⼀年增加50万平⽅⽶.那么,到哪⼀年底,(1)该市历年所建中低价房的累计⾯积(以2004年为累计的第⼀年)将⾸次不少于4750万平⽅⽶?(2)当年建造的中低价房的⾯积占该年建造住房⾯积的⽐例⾸次⼤于85%? 解:(1)设中低价房⾯积形成数列{a n },由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +502)1(?-n n =25n 2+225n ,令25n 2+225n ≥4750,即n 2+9n -190≥0,⽽n 是正整数,∴n ≥10.到2013年底,该市历年所建中低价房的累计⾯积将⾸次不少于4750万平⽅⽶.(2)设新建住房⾯积形成数列{b n },由题意可知{b n }是等⽐数列,其中b 1=400,q =1.08,则b n =400·(1.08)n -1·0.85.由题意可知a n >0.85 b n ,有250+(n -1)·50>400·(1.08)n -1·0.85.由计算器解得满⾜上述不等式的最⼩正整数n =6.到2009年底,当年建造的中低价房的⾯积占该年建造住房⾯积的⽐例⾸次⼤于85%.点评:本题考查等差、等⽐数列的应⽤题,关键是如何把实际问题转化为数列问题,注意解应⽤题的设、列、解、答四个步骤.例9. 某企业进⾏技术改造,有两种⽅案,甲⽅案:⼀次性贷款10万元,第⼀年便可获利1万元,以后每年⽐前⼀年增加30%的利润;⼄⽅案:每年贷款1万元,第⼀年可获利1万元,以后每年⽐前⼀年增加5千元;两种⽅案的使⽤期都是10年,到期⼀次性归还本息.若银⾏两种形式的贷款都按年息5%的复利计算,试⽐较两种⽅案中,哪种获利更多?(取665.575.1,786.133.1,629.105.1101010===)解:甲⽅案是等⽐数列,⼄⽅案是等差数列,①甲⽅案获利:63.423.013.1%)301(%)301(%)301(11092≈-=+++++++ (万元),银⾏贷款本息:29.16%)51(1010≈+(万元),故甲⽅案纯利:34.2629.1663.42=-(万元),②⼄⽅案获利:5.02910110)5.091()5.021()5.01(1??+=+++++++50.32=(万元);银⾏本息和:]%)51(%)51(%)51(1[05.192+++++++? 21.1305.0105.105.110≈-?=(万元)故⼄⽅案纯利:29.1921.1350.32=-(万元);综上可知,甲⽅案更好.点评:这是⼀道⽐较简单的数列应⽤问题,由于本息与利润是熟悉的概念,因此只建⽴通项公式并运⽤所学过的公式求解.例10. (2007⼭东理17)设数列{}n a 满⾜211233333n n na a a a -++++=(Ⅰ)求数列{}n a 的通项;(Ⅱ)设n n nb a =,求数列{}n b 的前n 项和n S .解:(I )2112333...3,3n n na a a a -+++= 221231133...3(2),3n n n a a a a n ---+++=≥1113(2).333n n n n a n --=-=≥1(2).3n n a n =≥验证1n =时也满⾜上式,*1().3n n a n N =∈(II )3nn b n =?,23132333...3n n S n =?+?+?+?231233333n n n S n +-=+++-?11332313n n n S n ++--=-?-,111333244n n n n S ++=?-?+?例11. (2007⼭东⽂18)设{}n a 是公⽐⼤于1的等⽐数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +== ,,,,求数列{}n b 的前n 项和T n .解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=??+++=,解得22a =.设数列{}n a 的公⽐为q ,由22a =,可得1322a a qq ==,.227q q ++=,即22520q q -+=,解得12122q q ==,.由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +== ,,,,由(1)得3312nn a +=3ln 23ln 2n n b n ∴==⼜2ln 3b b n 1n =-+{}n b ∴是等差数列. 12n n T b b b ∴=+++.2ln 2)1n (n 32)2ln n 32ln 3(n 2)b b (n n 1+=+=+=故3(1)ln 22n n n T +=.点评:2007年⼭东⾼考⽂科和理科数列的题⽬都在⼤题的前两题的位置,理科考查的是错位相减法求和,⽂科为等差和等⽐数列公式的应⽤,都考查了考⽣的运算能⼒.例12. (2007福建⽂21)数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N .(Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)求数列{}n na 的前n 项和n T .解:(Ⅰ)12n n a S += ,12n n n S S S +∴-=,13n nS S +∴=.⼜111S a == ,∴数列{}n S 是⾸项为1,公⽐为3的等⽐数列,1*3()n n S n -=∈N .当2n ≥时, )2(32221≥?==--n S a n n n ,≥?==∴-2,321,12n n a n n (Ⅱ)12323n n T a a a na =++++ ,当1n =时,11T =;当2n ≥时,2103236341-?++?+?+=n n n T ,…………①12132363433-?++?+?+=n n n T ………………………②-①②得:122132)333(2422--?-+++++-=-n n n n T123231)31(322--?---?+=n n n13)21(1-?-+-=n n . 1113(2)22n n T n n -??∴=+- ≥.⼜111T a == 也满⾜上式,1*113()22n n T n n -??∴=+-∈ N .点评:本⼩题考查数列的基本知识,考查等⽐数列的概念、通项公式及数列的求和,考查分类讨论及化归的数学思想⽅法,以及推理和运算能⼒.满分12分.[思维⼩结]1. 数列求和的常⽤⽅法(1)公式法:适⽤于等差、等⽐数列或可转化为等差、等⽐数列的数列;(2)裂项相消法:适⽤于+1n n a a c 其中{ n a }是各项不为0的等差数列,c 为常数;部分⽆理数列、含阶乘的数列等;(3)错位相减法:适⽤于{}n n b a 其中{ n a }是等差数列,{}n b 是各项不为0的等⽐数列.(4)倒序相加法:类似于等差数列前n 项和公式的推导⽅法. (5)分组求和法 2. 常⽤结论nk k ==∑1+2+3+...+n = 2)1(+n n(2)1(21)nk k =-=∑1+3+5+...+(2n -1)=2n(3)21nk k ==∑)12)(1(613212222++=++++n n n n(4)111)1(1+-=+n n n n )211(21)2(1+-=+n n n n(5))()11(11q p q p p q pq <--=3. 数学思想(1)迭加累加(等差数列的通项公式的推导⽅法)若1(),(2)n n a a f n n --=≥,则……;(2)迭乘累乘(等⽐数列的通项公式的推导⽅法)若1()(2)nn a g n n a -=≥,则……;(3)逆序相加(等差数列求和公式的推导⽅法);(4)错位相减(等⽐数列求和公式的推导⽅法).4. 应⽤题注意审清题意,把实际问题转化为数列中的问题.设、列、解、答四步骤不可少.【模拟试题】1. 数列{}n a 的通项公式11++=n n a n ,则该数列的前()项之和等于9.A. 98B. 99C. 96D. 972. 在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为()A. 9D. 173. 在等差数列{}n a 中,2700...,200...10052515021=+++=+++a a a a a a ,则1a 为()A. 22.5-B. 21.5-C. 20.5-D. 20-4. 已知等差数列n a n 的前}{项和m S a a a m S m m m m n 则且若,38,0,1,12211==-+>-+-等于()A. 38B. 20C. 10D. 95. 等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S nT n =+,则n n a b =()A. 23B. 2131n n --C. 2131n n ++D. 2134n n -+6. 已知数列的12++=n n S n ,则12111098a a a a a ++++=_____________.7. 在等差数列{}n a 中,公差21=d ,前100项的和45100=S ,则99531...a a a a ++++=_____________.8. 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则13__________.S =9. ⼀个等⽐数列各项均为正数,且它的任何⼀项都等于它的后⾯两项的和,则公⽐q 为_______________.10. (2007北京理)若数列{}n a 的前n 项和210(123)nS n n n =-= ,,,,则此数列的通项公式为;数列{}n na 中数值最⼩的项是第项.11. 已知数列{}n a 的前n 项和nn S 23+=,求n a .170,求此数列的公⽐和项数.13. 数列),60cos 1000lg(),...60cos 1000lg(),60cos 1000lg(,1000lg 1n 2-…的前多少项和为最⼤?14. 已知数列{}n a 的前n 项和)34()1( (139511)--++-+-=-n S n n,求312215S S S -+的值.【试题答案】1. B...n n a S ===+110,99n S n ====2. A 4841,3,S S S =-=⽽48412816122016,,,,,S S S S S S S S S ----成等差数列即1,3,5,7,9,1718192020169a a a a S S +++=-=3. C501505027002005050,1,()2002d d S a a -=?==+=,1501118,2498,241,20.5a a a d a a +=+==-=- 4. C 20,(2)0,2,m m m m m m a a a a a a +-=-==21121221()(21)38,21192m m m m S a a m am --+=-=-=,m =10.5. B 121212112121()22(21)21223(21)131()2n n n n n n n n n a a a a S n n b b T n n b b -----+--=====-+-+6. 100228910111212712121(771)100a a a a a S S ++++=-=++-++= 7. 10 100110011001991100100()45,0.9,0.4,2S a a a a a a a a d =+=+=+=+-="1995050()0.41022S a a =+=?=8.156371011431110471311371312,,12,()132a a a a a a a a a a S a a a +-+-=+=+==+=9.设2212,10,0,n n n n n a a a qa q a q q q q ++=+=++-=>=10. 211n - 3 11. 解:111132,32,2(2)n n n nn n n n S S a S S n ----=+=+=-=≥ ⽽115a S ==,∴≥==-)2(,2)1(,51n n a n n 12. 解:设此数列的公⽐为,(1)q q ≠,项数为2n ,则,170q 1)q 1(a S ,85q 1)q 1(a S 2n 222n 21=--=偶奇2221122,85,2256,28,14n n S a q n S a -======-偶奇∴,2=q 项数为813. 解:{}3(1)lg2,n n a n a =--是以3为⾸项,以lg 2-为公差的等差数列,2lg 26lg 2[33(1)lg 2],222n n S n n n +=+--=-+对称轴*6lg 210.47,,10,112lg 2n n N +=≈∈⽐较起来10更靠近对称轴∴前10项和为最⼤.另法:由100n n a a +≥??14. 解:(4),2,2121,(4)43,2n n nn n n S S n n n n n ??-?-??==??---+-??为偶数为偶数,,为奇数为奇数15223129,44,61,S S S ==-=15223176S S S +-=-。

新高考一轮复习人教版 数列求和、数列的综合 作业

新高考一轮复习人教版 数列求和、数列的综合 作业

7.4 数列求和、数列的综合基础篇 固本夯基考点一 数列求和1.(2021浙江,10,4分)已知数列{a n }满足a 1=1,a n+1=n 1+√a (n ∈N *).记数列{a n }的前n 项和为S n ,则( ) A.32<S 100<3 B.3<S 100<4 C.4<S 100<92 D.92<S 100<5 答案 A2.(2020山东仿真联考3)已知正项数列{a n }满足a n+1>2a n ,S n 是{a n }的前n 项和,则下列四个命题中错误的是( )A.a n+1>2na 1 B.S 2k >(1+2k)S k C.S n <2a n -a 1(n ≥2) D.{a n+1a n}是递增数列 答案 D3.(2020浙江,11,4分)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列{n(n+1)2}就是二阶等差数列.数列{n(n+1)2}(n ∈N *)的前3项和是 . 答案 104.(2022届T8联考,18)设等差数列{a n }的前n 项和为S n ,已知a 1=3,S 3=5a 1. (1)求数列{a n }的通项公式;(2)设b n =1+2S n,数列{b n }的前n 项和为T n .定义[x]为不超过x 的最大整数,例如[0.3]=0,[1.5]=1.当[T 1]+[T 2]+…+[T n ]=63时,求n 的值.解析 (1)设等差数列{a n }的公差为d,因为a 1=3,所以S 3=3a 1+3d=9+3d. 又因为S 3=5a 1=15,所以9+3d=15,得d=2. 所以数列{a n }的通项公式是a n =3+2(n-1)=2n+1. (2)因为S n =3n+n(n−1)2×2=n 2+2n,所以b n =1+2S n =1+2n(n+2)=1+1n -1n+2. 所以T n =n+(1−13)+(12−14)+(13−15)+…+(1n−1−1n+1)+(1n −1n+2)=n+1+12-1n+1-1n+2. 当n ≤2时,因为-13≤12-1n+1-1n+2<0,所以[T n ]=n.当n ≥3时,因为0<12-1n+1-1n+2<12,所以[T n ]=n+1.因为[T 1]+[T 2]+…+[T n ]=63, 所以1+2+4+5+…+(n+1)=63, 即3+(n−2)(4+n+1)2=63,即n 2+3n-130=0,即(n-10)·(n+13)=0.因为n ∈N *,所以n=10.5.(2022届华中师范大学琼中附中月考,17)已知等差数列{a n }中,a 2=3,a 4+a 6=18. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n+1=2b n ,并且b 1=a 5,试求数列{b n }的前n 项和S n .解析 (1)设数列{a n }的公差为d,根据题意得{a 1+d =3,2a 1+8d =18,解得{a 1=1,d =2,∴a n =a 1+(n-1)d=2n-1.(2)∵b n+1=2b n ,∴数列{b n }是公比为2的等比数列, 又b 1=a 5=2×5-1=9,∴S n =b 1(1−q n )1−q =9(1−2n )1−2=-9+9×2n.6.(2022届长沙雅礼中学月考,17)已知数列{a n }中,a 1=1,a 2=3,其前n 项和S n 满足S n+1+S n-1=2S n +2(n ≥2,n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =a n +2a n ,求数列{b n }的前n 项和T n .解析 (1)由题意得S n+1-S n =S n -S n-1+2(n ≥2),即a n+1-a n =2(n ≥2),又a 2-a 1=3-1=2,所以a n+1-a n =2(n ∈N *).所以数列{a n }是以1为首项,2为公差的等差数列,所以a n =2n-1(n ∈N *).(2)b n =a n +2a n=2n-1+22n-1=2n-1+12·4n ,所以T n =[1+3+5+…+(2n-1)]+12×(4+42+43+…+4n )=n 2+2(4n−1)3.7.(2022届广东深圳七中月考)已知等比数列{a n }中,a 1=1,且2a 2是a 3和4a 1的等差中项.等差数列{b n }满足b 1=1,b 7=13.(1)求数列{a n }的通项公式; (2)求数列{a n -b n }的前n 项和T n .解析 (1)设数列{a n }的公比为q,由题意可得2×2a 2=a 3+4a 1,即4a 1q=a 1q 2+4a 1,又a 1=1,所以q=2,则数列{a n }的通项公式为a n =2n-1.(2)设数列{b n }的公差为d,由题意可得b 7-b 1=12=6d,即d=2,则数列{b n }的通项公式为b n =1+(n-1)×2=2n-1.a n -b n =2n-1-(2n-1),则T n =(20-1)+(21-3)+…+[2n-1-(2n-1)]=(20+21+…+2n-1)-(1+3+…+2n-1)=1−2n 1−2-(1+2n−1)·n 2=2n -1-n 2.8.(2022届河北秦皇岛青龙8月测试,18)已知数列{a n }的前n 项和为S n ,且满足S n =2a n -1(n ∈N *). (1)求数列{a n }的通项公式a n 及S n ;(2)若数列{b n }满足b n =|S n -15|,求数列{b n }的前n 项和T n . 解析 (1)当n=1时,S 1=2a 1-1,即a 1=1,由S n =2a n -1得S n+1=2a n+1-1,两式相减得a n+1=2a n+1-2a n ,即a n+1=2a n ,即数列{a n }是以1为首项,2为公比的等比数列,则a n =2n-1,则S n =1−2n 1−2=2n-1.(2)由(1)知b n =|2n-16|,则b n ={16−2n (1≤n ≤4),2n −16(n >4).记{2n -16}的前n 项和为A n ,则A n =(21+22+…+2n)-16n=2·(1−2n )1−2-16n=2n+1-16n-2.则当1≤n ≤4时,T n =-A n =16n-2n+1+2.当n>4时,T n =(16-21)+(16-22)+…+(16-24)+(25-16)+(26-16)+…+(2n-16)=-A 4+A n -A 4=A n -2A 4=2n+1-16n+66,则T n ={16n −2n+1+2(1≤n ≤4),2n+1−16n +66(n >4).9.(2021浙江“山水联盟”开学考)已知数列{a n }满足:a 1=1,a n+1a n =nn+1;数列{b n }是等比数列,并满足b 1=2,且b 1-1,b 4,b 5-1成等差数列. (1)求数列{a n },{b n }的通项公式;(2)若数列{b n }的前n 项和是S n ,数列{c n }满足c n =a n a n+1a n+2(S n +2),求证:c 1+c 2+…+c n <12.解析 (1)由于a 1=1,na n =(n+1)a n+1,所以{na n }是常数列,所以na n =1·a 1=1,故a n =1n. 设{b n }的公比是q,由已知得2b 4=(b 1-1)+(b 5-1),所以4q 3=2q 4,所以q=2,故b n =2n.(2)证明:由(1)得S n =2(1−2n )1−2=2n+1-2,则c n =a n a n+1a n+2(S n +2)=n+2n(n+1)·2n+1=1n·2n -1(n+1)·2n+1, 则c 1+c 2+…+c n =11×2-12×22+12×22-13×23+…+1n·2n-1(n+1)·2n+1,所以c 1+c 2+…+c n =12-1(n+1)·2n+1<12. 10.(2020天津,19,15分)已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4-a 3),b 5=4(b 4-b 3). (1)求{a n }和{b n }的通项公式;(2)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N *);(3)对任意的正整数n,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1b n+1,n 为偶数.求数列{c n }的前2n 项和.解析 (1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由a 1=1,a 5=5(a 4-a 3),可得d=1,从而{a n }的通项公式为a n =n.由b 1=1,b 5=4(b 4-b 3),又q ≠0,可得q 2-4q+4=0,解得q=2,从而{b n }的通项公式为b n =2n-1.(2)证明:由(1)可得S n =n(n+1)2,故S n S n+2=14n(n+1)·(n+2)(n+3),S n+12=14(n+1)2(n+2)2,从而S n S n+2-S n+12=-12(n+1)(n+2)<0,所以S n S n+2<S n+12.(3)当n 为奇数时,c n =(3a n −2)b n a n a n+2=(3n−2)2n−1n(n+2)=2n+1n+2-2n−1n ;当n 为偶数时,c n =a n−1b n+1=n−12n.对任意的正整数n,有∑k=1nc 2k-1=∑k=1n(22k 2k+1−22k−22k−1)=22n 2n+1-1和∑k=1n c 2k =∑k=1n 2k−14k =14+342+543+…+2n−14n ①. 由①得14∑k=1n c 2k =142+343+…+2n−34n +2n−14n+1②. 由①-②得34∑k=1n c 2k =14+242+…+24n -2n−14n+1=24(1−14n )1−14-14-2n−14n+1,从而得∑k=1n c 2k =59-6n+59×4n .因此,∑k=12nc k =∑k=1nc 2k-1+∑k=1nc 2k =4n 2n+1-6n+59×4n -49.所以,数列{c n }的前2n 项和为4n 2n+1-6n+59×4n -49.考点二 数列的综合1.(2020福建泉州线上测试)已知{a n }是公差为3的等差数列.若a 1,a 2,a 4成等比数列,则{a n }的前10项和S 10=( )A.165B.138C.60D.30 答案 A2.数学家也有许多美丽的错误,如法国数学家费马于1640年提出了以下猜想:F n =22n+1(n=0,1,2,…)是质数.直到1732年才被善于计算的大数学家欧拉算出F 5=641×6700417,不是质数.现设a n =log 2(F n -1),n=1,2,…,S n表示数列{a n }的前n 项和.则使不等式2S 1S 2+22S 2S 3+…+2n S n S n+1<2n2 020成立的最小正整数n 的值是( )A.11B.10C.9D.8 答案 C3.(2022届浙江“山水联盟”开学考,20)已知数列{a n }的前n 项和为S n ,2S n =(2n+1)a n -2n 2(n ∈N *),数列{b n }满足b 1=a 1,nb n+1=a n b n .(1)求数列{a n }和{b n }的通项公式; (2)设数列{c n }满足:c 1=4,c n+1=c n -a n b n (n ∈N *),若不等式λ+3n+92n ≥c n (n ∈N *)恒成立,求实数λ的取值范围. 解析 (1)当n=1时,2a 1=3a 1-2,∴a 1=2.当n ≥2时,由{2S n =(2n +1)a n −2n 2,2S n−1=(2n −1)a n−1−2(n −1)2得2a n =(2n+1)a n -(2n-1)a n-1-2n 2+2(n-1)2,即a n -a n-1=2,∴数列{a n }是公差为2的等差数列, ∵a 1=2,∴a n =2n.由条件得b 1=2,nb n+1=2nb n ,∴b n+1=2b n ,即数列{b n }是公比为2的等比数列,∴b n =2n.(2)由(1)得a n b n =2n 2n =n 2n−1,设数列{a n b n }的前n 项和为T n ,则T n =1+22+322+423+…+n2n−1, ∴12T n =12+222+323+…+n−12n−1+n2n , ∴12T n =1+12+122+123+…+12n−1-n 2n =1−12n 1−12-n 2n =2-n+22n , ∴T n =4-n+22n−1,由c n+1=c n -a nb n 得c n+1-c n =-a n b n ,所以c n -c n-1=-a n−1b n−1,……,c 2-c 1=-a 1b 1,累加得c n -c 1=-T n-1,即c n -4=-4+n+12n−2,∴c n =n+12n−2,∴λ≥n+12n−2-3n+92n =n−52n 对任意n ∈N *恒成立, 令f(n)=n−52n ,则f(n+1)-f(n)=n−42n+1-n−52n =−n+62n+1, ∴f(1)<f(2)<…<f(6)=f(7),f(7)>f(8)>…, ∴f(n)max =f(6)=f(7)=164,∴λ≥164. 故λ的取值范围是[164,+∞). 4(2022届校际联合考试)我国南宋时期的数学家杨辉,在他1261年所著的《详解九章算法》一书中,用如图的三角形解释二项和的乘方规律,此图称为“杨辉三角”.在此图中,从第三行开始,首尾两数为1,其他各数均为它肩上两数之和.(1)把“杨辉三角”中第三斜列的各数取出,按原来的顺序排列得一数列:1,3,6,10,15,…,写出a n 与a n-1(n ∈N *,n ≥2)的递推关系,并求出数列{a n }的通项公式;(2)已知数列{b n }满足b 1+12b 2+13b 3+ (1)b n =2a n (n ∈N *),设数列{c n }满足c n =2n+1b n b n+1,数列{c n }的前n 项和为T n ,若T n <n n+1λ(n ∈N *)恒成立,试求实数λ的取值范围. 解析 (1)由题意可知a 1=1,n ≥2时,a n -a n-1=n,所以a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+a 1=n+(n-1)+…+2+1=n(n+1)2,故a n =n(n+1)2. (2)数列{b n }满足b 1+12b 2+13b 3+ (1)b n =n 2+n,① 当n ≥2时,b 1+12b 2+13b 3+…+1n−1b n-1=(n-1)2+(n-1),② ①-②得1nb n =2n,故b n =2n 2(n ≥2),又n=1时亦成立,所以b n =2n 2(n ∈N *). 数列{c n }满足c n =2n+1b n b n+1=2n+14n 2(n+1)2=14[1n 2−1(n+1)2], 则T n =14[1−122+122−132+⋯+1n 2−1(n+1)2]=14[1−1(n+1)2],由T n <n n+1λ(n ∈N *)恒成立, 得14[1−1(n+1)2]<n n+1λ,整理得λ>n+24n+4,因为y=n+24n+4=14(1+1n+1)在n ∈N *上单调递减,故当n=1时,(n+24n+4)max =38,即λ>38,所以实数λ的取值范围为(38,+∞). 5.(2022届长沙长郡中学月考,18)已知数列{a n }满足a n+1-2a n =0,a 3=8. (1)求数列{a n }的通项公式; (2)设b n =n a n,数列{b n }的前n 项和为T n .若2T n >m-2021对n ∈N *恒成立,求正整数m 的最大值. 解析 (1)由a n+1-2a n =0得a n+1=2a n ,则{a n }是以2为公比的等比数列, 又a 3=8,即4a 1=8,解得a 1=2,所以a n =2n.(2)由(1)可得b n =n a n =n 2n ,则T n =12+222+323+…+n 2n ,12T n =122+223+324+…+n 2n+1,两式相减可得12T n =12+122+123+…+12n -n 2n+1=12(1−12n)1−12-n 2n+1, 化简可得T n =2-n+22n (n ∈N *),因为T n+1-T n =2-n+32n+1-2+n+22n =n+12n+1>0,所以{T n }逐项递增,T 1最小,为12,所以2×12>m-2021,解得m<2022,又m ∈N *,所以m 的最大值为2021. 6.(2021南京三模,18)已知等差数列{a n }满足:a 1+3,a 3,a 4成等差数列,且a 1,a 3,a 8成等比数列. (1)求数列{a n }的通项公式;(2)在任意相邻两项a k 与a k+1(k=1,2,…)之间插入2k个2,使它们和原数列的项构成一个新的数列{b n },记S n为数列{b n }的前n 项和,求满足S n <500的n 的最大值. 解析 (1)设等差数列{a n }的公差为d, 由题意知a 1+3+a 4=2a 3, 即2a 1+3+3d=2a 1+4d,解得d=3, 又a 1a 8=a 32,即a 1·(a 1+7×3)=(a 1+2×3)2,解得a 1=4,故a n =3n+1.(2)因为b n >0,所以{S n }是单调递增数列,又因为a k+1前的所有项的项数为k+21+22+ (2)=k+2k+1-2,所以S k+2k+1−2=(a 1+a 2+…+a k )+2(21+22+23+ (2))=k(4+3k+1)2+2×2(1−2k )1−2=3k 2+5k 2+2k+2-4.当k=6时,S 132=321<500;当k=7时,S 261=599>500, 令S 132+a 7+2(n-133)<500,即321+22+2(n-133)<500, 解得n<211.5,所以满足S n <500的n 的最大值为211.7.(2020辽宁葫芦岛兴城高中模拟)设函数f(x)=x 2,过点C 1(1,0)作x 轴的垂线l 1,交函数f(x)的图象于点A 1,以A 1为切点作函数f(x)图象的切线交x 轴于点C 2,再过C 2作x 轴的垂线l 2,交函数f(x)的图象于点A 2,……,以此类推得点A n ,记A n 的横坐标为a n ,n ∈N *.(1)证明数列{a n }为等比数列,并求出通项公式;(2)设直线l n 与函数g(x)=lo g 12x 的图象相交于点B n ,记b n =OA⃗⃗⃗⃗ n ·OB ⃗⃗⃗⃗ n (其中O 为坐标原点),求数列{b n }的前n 项和S n .解析 (1)以点A n-1(a n-1,a n−12)(n ≥2)为切点的切线方程为y-a n−12=2a n-1(x-a n-1).当y=0时,x=12a n-1,即a n =12a n-1,又∵a 1=1,∴数列{a n }是以1为首项,12为公比的等比数列,∴a n =(12)n−1. (2)由题意,得B n ((12)n−1,n −1), ∴b n =OA⃗⃗⃗⃗ n ·OB ⃗⃗⃗⃗ n =(14)n−1+(14)n−1·(n-1)=n ·(14)n−1, ∴S n =1×(14)0+2×(14)1+…+n ×(14)n−1,14S n =1×(14)1+2×(14)2+…+n ×(14)n. 两式相减,得34S n =1×(14)0+14+…+(14)n−1-n ×(14)n=1−(14)n1−14-n ×(14)n,化简,得S n =169-(4n 3+169)×(14)n =169-3n+49×4n−1.综合篇 知能转换A 组考法一 错位相减法求和1.(2022届全国学业质量联合检测)已知正项数列{a n }的前n 项和为S n ,且满足a n 2,S n ,a n 成等差数列. (1)求数列{a n }的通项公式;(2)请从以下三个条件中任意选择一个,求数列{b n }的前n 项和T n . 条件①:设数列{b n }满足b n =(-1)na n ;条件②:设数列{b n }满足b n =2a n ·a n ; 条件③:设数列{b n }满足b n =√a +√a .解析 (1)因为a n 2,S n ,a n 成等差数列,所以2S n =a n 2+a n ,当n ≥2时,2S n-1=a n−12+a n-1,两式作差化简,得(a n +a n-1)·(a n -a n-1-1)=0.因为该数列是正项数列,所以a n +a n-1≠0, 所以a n -a n-1-1=0,即a n -a n-1=1, 所以数列{a n }是公差为1的等差数列, 又当n=1时,2a 1=a 12+a 1,解得a 1=1, 所以a n =n(n ∈N *).(2)选择条件①:数列{b n }满足b n =(-1)n a n =(-1)nn. 所以T n =-1+2-3+4-5+6-…+(-1)nn,当n 为偶数时,T n =(-1+2)+(-3+4)+(-5+6)+…+[-(n-1)+n]=n2×1=n 2; 当n 为奇数时,T n =(-1+2)+(-3+4)+(-5+6)+…+[-(n-2)+(n-1)]-n=n−12×1-n=-1+n2.所以T n ={n2,n 为偶数,−1+n 2,n 为奇数.选择条件②:数列{b n }满足b n =2a n ·a n =n ·2n,可得T n =1×21+2×22+…+n ·2n,①2T n =1×22+2×23+…+n ·2n+1,②①-②得-T n =2+22+23+ (2)-n ·2n+1=2(1−2n )1−2-n ·2n+1=(1-n)·2n+1-2,则T n =(n-1)·2n+1+2.选择条件③:数列{b n }满足b n =√a +√a =√n+1+√n=√n +1-√n ,则T n =(√2-1)+(√3-√2)+…+(√n +1-√n )=√n +1-1.2.(2022届山东德州夏津一中入学考试)设数列{a n }是等差数列,数列{b n }是公比大于0的等比数列,已知a 1=1,b 1=3,b 2=3a 3,b 3=12a 2+3.(1)求数列{a n }和数列{b n }的通项公式;(2)设数列{c n }满足c n ={1,n ≤5,b n−5,n ≥6,求数列{a n c n }的前n 项和T n .解析 (1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q(q>0),根据题意得{3q =3(1+2d),3q 2=12(1+d)+3,解得{d =1,q =3或{d =−1,q =−1(舍),所以a n =1+(n-1)×1=n,b n =3·3n-1=3n .(2)当n ≤5时,c n =1,所以T n =a 1+a 2+…+a n =1+2+…+n=n(n+1)2.当n ≥6时,c n =b n-5=3n-5,所以T n =T 5+a 6b 1+a 7b 2+…+a n b n-5=15+6×31+7×32+…+n ·3n-5.令M=6×31+7×32+…+n ·3n-5,则3M=6×32+7×33+…+(n-1)·3n-5+n ·3n-4,两式相减得-2M=6×31+(32+33+…+3n-5)-n ·3n-4=18+32(1−3n−6)1−3-n ·3n-4,整理得M=-274+2n−14·3n-4,所以T n =334+2n−14·3n-4.综上,T n ={n(n+1)2,n ≤5,334+2n−14·3n−4,n ≥6.3.(2022届山东泰安肥城摸底考试)已知数列{a n }各项均为正数,a 1=1,{a n 2}为等差数列,公差为2. (1)求数列{a n }的通项公式.(2)求S n =2a 12+22a 22+23a 32+ (2)a n 2.解析 (1)∵a 1=1,∴a 12=1,又∵{a n 2}为等差数列,公差为2,∴a n 2=a 12+(n-1)×2=2n-1,又∵a n >0,∴a n =√2n −1.(2)由(1)可得S n =1×2+3×22+5×23+…+(2n-1)·2n ,2S n =1×22+3×23+5×24+…+(2n-1)·2n+1, 两式相减得-S n =1×2+2×22+2×23+…+2·2n-(2n-1)·2n+1=2+2n+2-23-(2n-1)·2n+1=-6-(2n-3)·2n+1,∴S n =6+(2n-3)·2n+1.4.(2021浙江,20,15分)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n+1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n-4)a n =0(n ∈N *),记{b n }的前n 项和为T n ,若T n ≤λb n 对任意n ∈N *恒成立,求实数λ的取值范围.解析 (1)解法一:由4S n+1=3S n -9,得4S n =3S n-1-9(n ≥2),两式相减,得4a n+1=3a n ,则a n+1=34a n (n ≥2).又由4S n+1=3S n -9,得4S 2=3S 1-9,即4(a 1+a 2)=3a 1-9, 又a 1=-94,所以a 2=-2716,则a 2=34a 1, 所以数列{a n }是以-94为首项,34为公比的等比数列, 所以数列{a n }的通项公式为a n =-94·(34)n−1=-3·(34)n . 解法二:由4S n+1=3S n -9,得S n+1=34S n -94,则S n+1+9=34S n -94+9=34S n +274=34(S n +9),又S 1+9=-94+9=274≠0,所以数列{S n +9}是以274为首项,34为公比的等比数列,则S n +9=274·(34)n−1=9·(34)n ,所以S n =9·(34)n-9.当n ≥2时,a n =S n -S n-1=[9·(34)n −9]-[9·(34)n−1−9]=-3·(34)n .当n=1时,a 1=-94也满足上式,所以数列{a n }的通项公式为a n =-3·(34)n.(2)由(1)知a n =-3·(34)n.由3b n +(n-4)a n =0,得b n =-n−43a n =(n-4)(34)n. 则T n =(-3)×34+(-2)×(34)2+(-1)×(34)3+0×(34)4+…+(n-5)(34)n−1+(n-4)(34)n,① 因此34T n =(-3)×(34)2+(-2)×(34)3+(-1)×(34)4+0×(34)5+…+(n-5)(34)n +(n-4)(34)n+1,②由①-②,得14T n =-3×34+(34)2+(34)3+(34)4+…+(34)n -(n-4)(34)n+1 =-94+(34)2−(34)n ·341−34-(n-4)(34)n+1=-n (34)n+1, 所以T n =-4n (34)n+1.由T n ≤λb n ,得-4n (34)n+1≤λ(n-4)(34)n 恒成立,即λ(n-4)≥-3n 恒成立. 当n<4时,λ≤-3n n−4,设f(n)=-3n n−4=-3+−12n−4,当n<4且n ∈N *时,f(n)min =f(1)=1,所以λ≤1;当n=4时,不等式恒成立; 当n>4时,λ≥-3n n−4,设f(n)=-3n n−4=-3+−12n−4,当n>4且n ∈N *,n →+∞时,f(n)→-3,所以λ≥-3.综上所述,实数λ的取值范围是[-3,1].5.(2021全国乙文,19,12分)设{a n }是首项为1的等比数列,数列{b n }满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式;(2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n 2. 解析 (1)设等比数列{a n }的公比为q. ∵a 1,3a 2,9a 3成等差数列,∴6a 2=a 1+9a 3,又∵{a n }是首项为1的等比数列,∴6a 1q=a 1+9a 1q 2,∴9q 2-6q+1=0,解得q 1=q 2=13,∴a n =a 1·q n-1=(13)n−1,∵b n =na n 3,∴b n =n ·(13)n. (2)证明:∵S n 为{a n }的前n 项和, ∴S n =a 1(1−q n )1−q =32[1−(13)n]. ∵T n 为{b n }的前n 项和, ∴T n =b 1+b 2+…+b n =1×(13)1+2×(13)2+…+n (13)n,① 13T n =1×(13)2+2×(13)3+…+n (13)n+1.② ①-②可得23T n =13+(13)2+…+(13)n-n ·(13)n+1=13[1−(13)n ]1−13-n ·(13)n+1=-(13n +12)(13)n +12,∴T n =-(12n +34)(13)n +34, ∴T n -S n 2=-12n ·(13)n <0,∴T n <S n2.6.(2020课标Ⅲ理,17,12分)设数列{a n }满足a 1=3,a n+1=3a n -4n. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2na n }的前n 项和S n . 解析 (1)a 2=5,a 3=7. 猜想a n =2n+1.由已知可得 a n+1-(2n+3)=3[a n -(2n+1)], a n -(2n+1)=3[a n-1-(2n-1)], ……a 2-5=3(a 1-3).因为a 1=3,所以a n =2n+1. (2)由(1)得2na n =(2n+1)2n,所以S n =3×2+5×22+7×23+…+(2n+1)×2n.①从而2S n =3×22+5×23+7×24+…+(2n+1)×2n+1.②①-②得-S n =3×2+2×22+2×23+…+2×2n-(2n+1)×2n+1.所以S n =(2n-1)2n+1+2.7.(2017山东文,19,12分)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n+1=b n b n+1,求数列{b na n}的前n 项和T n . 解析 (1)设{a n }的公比为q,由题意知a 1(1+q)=6,a 12q=a 1q 2,又a n >0,所以解得a 1=2,q=2,所以a n =2n. (2)由题意知S 2n+1=(2n+1)(b 1+b 2n+1)2=(2n+1)b n+1,又S 2n+1=b n b n+1,b n+1≠0,所以b n =2n+1.令c n =b n a n ,则c n =2n+12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n−12n−1+2n+12n ,又12T n =322+523+724+…+2n−12n +2n+12n+1,两式相减得12T n =32+(12+122+⋯+12n−1)-2n+12n+1,所以T n =5-2n+52n. 8.(2017天津理,18,13分)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).解析 (1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,因为b 1=2,所以q 2+q-6=0,解得q=2或q=-3,又因为q>0,所以q=2.所以,b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8①.由S 11=11b 4,可得a 1+5d=16②,联立①②,解得a 1=1,d=3,由此可得a n =3n-2. 所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,得a 2n b 2n-1=(3n-1)×4n, 故T n =2×4+5×42+8×43+…+(3n-1)×4n,4T n =2×42+5×43+8×44+…+(3n-4)×4n +(3n-1)×4n+1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=12×(1−4n )1−4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n =3n−23×4n+1+83.所以,数列{a 2n b 2n-1}的前n 项和为3n−23×4n+1+83. 9.(2018浙江,20,15分)已知等比数列{a n }的公比q>1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1-b n )·a n }的前n 项和为2n 2+n. (1)求q 的值;(2)求数列{b n }的通项公式.解析 (1)由a 4+2是a 3,a 5的等差中项得a 3+a 5=2a 4+4,所以a 3+a 4+a 5=3a 4+4=28,解得a 4=8. 由a 3+a 5=20得8(q +1q )=20,解得q=2或q=12, 因为q>1,所以q=2.(2)设c n =(b n+1-b n )a n ,数列{c n }的前n 项和为S n . 由c n ={S 1,n =1,S n −S n−1,n ≥2,解得c n =4n-1. 由(1)可知a n =2n-1,所以b n+1-b n =(4n-1)·(12)n−1,故b n -b n-1=(4n-5)·(12)n−2,n ≥2, 所以b n -b 1=(b n -b n-1)+(b n-1-b n-2)+…+(b 3-b 2)+(b 2-b 1)=(4n-5)·(12)n−2+(4n-9)·(12)n−3+…+7×12+3.设T n =3+7×12+11×(12)2+…+(4n-5)·(12)n−2,n ≥2,则12T n =3×12+7×(12)2+…+(4n-9)·(12)n−2+(4n-5)·(12)n−1, 所以12T n =3+4×12+4×(12)2+…+4·(12)n−2-(4n-5)·(12)n−1,因此T n =14-(4n+3)·(12)n−2,n ≥2,又b 1=1,所以b n =15-(4n+3)·(12)n−2. 10.(2021浙江嘉兴教学测试,20)已知数列{a n }的前n 项和为S n ,S n =2a n -n,n ∈N *. (1)求数列{a n }的通项公式;(2)令b n =2na n ,求数列{b n }的前n 项和T n . 解析 (1)当n=1时,S 1=a 1=2a 1-1,得a 1=1;当n ≥2时,由S n =2a n -n,得S n-1=2a n-1-(n-1),两式相减得a n =2a n-1+1,变形得a n +1=2(a n-1+1), ∴数列{a n +1}是等比数列,且公比为2.又∵a 1+1=2,∴a n +1=2n,∴a n =2n-1.(2)b n =2na n =2n(2n -1)=n ·2n+1-2n,于是T n =b 1+b 2+…+b n =(1×22-2)+(2×23-4)+…+(n ×2n+1-2n)=(1×22+2×23+…+n ×2n+1)-2(1+2+…+n),令A n =1×22+2×23+…+n ·2n+1,即T n =A n -n(n+1).A n =1×22+2×23+…+(n-1)·2n +n ·2n+1,① 2A n =1×23+2×24+…+(n-1)·2n+1+n ·2n+2,②①-②得-A n =22+23+…+2n+1-n ·2n+2=4(1−2n )1−2-n ·2n+2=-4+2n+2-n ·2n+2=-(n-1)·2n+2-4,∴A n =(n-1)·2n+2+4,∴T n =(n-1)·2n+2+4-n 2-n.考法二 裂项相消法求和1.(2020长沙明德中学3月月考)在各项都为正数的等比数列{a n }中,若a 1=2,且a 1a 5=64,则数列{a n(an −1)(a n+1−1)}的前n 项和是( )A.1-12n+1−1B.1-12n+1C.1-12n+1 D.1-12n −1答案 A2.(多选)(2021辽宁百校联盟质检,10)已知数列{a n }满足a 2=4,n(n-1)a n+1=(n-1)a n -na n-1(n>1且n ∈N *),数列{a n }的前n 项和为S n ,则( ) A.a 1+a 3=2 B.a 1+a 3=4C.2020S 2021-a 2020=8080D.2021S 2021-a 2020=4040 答案 AC3.(2017课标Ⅱ,15,5分)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k=1n1S k = . 答案2nn+14.(2020浙江丽水四校联考,14)已知数列{a n }满足:a 1=12,a n+1=a n 2+a n ,用[x]表示不超过x 的最大整数,则[1a1+1+1a 2+1+⋯+1a 2 012+1]的值等于 . 答案 15.(2022届河北邢台入学考试)在①a3+a6=18,②{a n}的前n项和S n=n2+pn,③a3+a4=a7这三个条件中任选一个,补充在下面的问题中并解答.问题:在等差数列{a n}中,a1=2,且.(1)求数列{a n}的通项公式;(2)若b n=1a n a n+1,求数列{b n}的前n项和T n.注:若选择多个条件分别解答,则按第一个解答计分.解析(1)选①.设{a n}的公差为d.由题意可得a1+2d+a1+5d=2a1+7d=18.因为a1=2,所以d=2,则a n=a1+(n-1)d=2n.选②.设{a n}的公差为d.因为S n=n2+pn,所以S n-1=(n-1)2+p(n-1)=n2+pn-2n-p+1(n≥2),两式相减得a n=2n+p-1(n≥2),又因为a1=S1=p+1满足上式,所以a n=2n+p-1(n∈N*).由a1=2得p+1=2,所以p=1,所以a n=2n. 选③.设{a n}的公差为d.因为a3+a4=a7,所以a1+2d+a1+3d=a1+6d,即a1=d.因为a1=2,所以d=2,所以a n=a1+(n-1)d=2n.(2)由(1)可得a n+1=2(n+1),则b n=12n·2(n+1)=14(1n−1n+1).故T n=14[(1−12)+(12−13)+⋯+(1n−1n+1)]=14(1−1n+1)=n4n+4.6.(2022届河北唐山玉田一中开学考试)在①S7=49,②S5=a8+10,③S8=S6+28这三个条件中任选一个,补充在下面问题中,并完成解答.问题:已知等差数列{a n}的前n项和为S n,a5=9,,若数列{b n}满足b n=1a n a n+1,证明:数列{b n}的前n项和T n<12.注:若选择多个条件分别解答,则按第一个解答计分.证明 选择①.设数列{a n }的公差为d,由{S 7=49,a 5=9,得{7a 1+7×(7−1)2d =49,a 1+4d =9,解得{a 1=1,d =2,所以a n =2n-1.又因为b n =1a n a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),所以T n =b 1+b 2+b 3+…+b n =12(1−13+13−15+15−17+⋯+12n−1−12n+1), 所以T n =12(1−12n+1)<12. 选择②.设数列{a n }的公差为d,由S 5=a 8+10,可得4a 1+3d=10,又a 5=a 1+4d=9,联立解得d=2,a 1=1,所以a n =2n-1.下面同选择①.选择③.设数列{a n }的公差为d,由S 8-S 6=28,可得a 7+a 8=2a 5+5d=28,又因为a 5=9,所以d=2,所以a 1=a 5-4d=9-4×2=1,所以a n =2n-1.下面同选择①.7.(2022届湖北黄冈调研,19)已知数列{a n }的前n 项和为S n ,2S n =(n+1)a n ,且a 1>1,a 2-1,a 4-2,a 6成等比数列. (1)求数列{a n }的通项公式; (2)设b n =4a n a n+1+2−a n ,数列{b n }的前n 项和为T n ,求证:T n <43.解析 (1)∵2S n =(n+1)a n ,∴S n =(n+1)a n 2,当n ≥2时,a n =S n -S n-1=n+12·a n -n 2·a n-1,化简得a n n =a n−1n−1,即a n n =a n−1n−1=…=a 11,∴a n =na 1,又a 2-1,a 4-2,a 6成等比数列,∴(a 2-1)·a 6=(a 4-2)2,即(2a 1-1)·6a 1=(4a 1-2)2,解得a 1=2或a 1=12.又a 1>1,∴a 1=2,∴a n =2n(n ∈N *). (2)证明:由(1)可得b n =4a n a n+1+2−a n =42n·2(n+1)+2-2n =1n -1n+1+(14)n ,∴T n =b 1+b 2+…+b n =[(1−12)+14]+[(12−13)+(14)2]+…+[(1n −1n+1)+(14)n ]=(1−12+12−13+⋯+1n −1n+1)+14+(14)2+…+(14)n=1-1n+1+14[1−(14)n]1−14=43-1n+1-13(14)n ,∵n ∈N *,∴T n <43. 8.(2021广东深圳外国语学校第一次月考)设数列{a n }的前n 项和为S n ,∀m ∈N *,都有a m+1-a m =-1,且a 2+S 2=-5. (1)求数列{a n }的通项公式; (2)求证:1a 1a 2+1a 2a 3+…+1a n a n+1<1. 解析 (1)∵∀m ∈N *,都有a m+1-a m =-1, ∴{a n }是等差数列,设公差为d,则d=-1.由a 2+S 2=3a 1+2d=-5,解得a 1=-1, 所以a n =-1-(n-1)=-n. (2)证明:由a n =-n,得1a n a n+1=1n(n+1)=1n -1n+1,所以1a 1a 2+1a 2a 3+…+1a n a n+1=(1−12)+(12−13)+…+(1n −1n+1)=1-1n+1<1. 9.(2021湖北八市3月联考,18)已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论. 条件①:S n =-a n +t(t 为常数);条件②:a n =b n b n+1,其中数列{b n }满足b 1=1,(n+1)b n+1=nb n ;条件③:3a n 2=3a n+12+a n+1+a n .数列{a n }中,a 1是(2√301x)6展开式中的常数项,且 .求证:S n <1对任意n ∈N *恒成立.注:如果选择多个条件作答,则按第一个条件的解答计分.解析 (2√30+1x )6的展开式的通项为T r+1=C 6r·(2√30)6−r(1x )r =C 6r (√30)6−r x 12-3r,令12-3r=0,得r=4,得展开式的常数项为12,即a 1=12.若选择①:在S n =-a n +t 中,令n=1,得2a 1=t,即t=1, 当n ≥2时,S n-1=-a n-1+1.两式相减得a n =12a n-1, 故{a n }是以12为首项,12为公比的等比数列, 所以S n =a 1(1−q n )1−q =1-(12)n <1对任意n ∈N *恒成立. 若选择②:由(n+1)b n+1=nb n 得b n+1b n =nn+1, 所以b n =b n b n−1·b n−1b n−2·…·b 2b 1·b 1=1n (n ≥2),n=1时也满足,故b n =1n (n ∈N *),则a n =1n(n+1)=1n -1n+1, S n =(1−12)+(12−13)+…+(1n −1n+1)=1-1n+1<1对任意n ∈N *恒成立. 若选择③:由题意得3a n+12-3a n 2=-(a n+1+a n ),得a n+1-a n =-13或a n+1+a n =0,又a 1=12,当a n+1+a n =0时,有S n ={0,n 为偶数,12,n 为奇数,所以S n <1;当a n+1-a n =-13时,有S n =n 2-n(n−1)6=-16(n 2-4n),当n=2时,S n 取最大值,为-16×(22-4×2)=23,因为23<1,所以S n <1对任意的n ∈N *恒成立.10.(2022届广东阶段测,17)设{a n }是各项均为正数的数列,a 1=3,a n+1=√a n 2+4a n+1+4a n . (1)求数列{a n }的通项公式;(2)若S n 为数列{a n }的前n 项和,且b n =n(n+1)S n+1S n,求数列{b n }的前n 项和.解析 (1)由a n+1=√a n 2+4a n+1+4a n 得a n+12=a n 2+4a n+1+4a n ,整理得(a n+1-a n -4)(a n+1+a n )=0,又a n+1+a n >0,所以a n+1-a n =4,所以{a n }是首项为3,公差为4的等差数列,故a n =4n-1. (2)由(1)可知,S n =n(3+4n−1)2=n(2n+1),S n+1=(n+1)(2n+3),所以b n =n(n+1)S n+1S n =1(2n+1)(2n+3)=12(12n+1−12n+3),设数列{b n }的前n 项和为T n , 则T n =12[(13−15)+(15−17)+⋯+(12n+1−12n+3)] =12(13−12n+3)=n6n+9.B 组1.(2022届重庆西南大学附中月考,8)设数列{a n }的前n 项和是S n ,令T n =S 1+S 2+⋯+S nn,称T n 为数列a 1,a 2,…,a n 的“超越数”.已知数列a 1,a 2,…,a 504的“超越数”为2020,则数列5,a 1,a 2,…,a 504的“超越数”为( )A.2018B.2019C.2020D.2021 答案 D2.(2022届河北张家口宣化一中考试,6)将正整数12分解成两个正整数的乘积,有1×12,2×6,3×4三种分解方式,其中3×4是这三种分解方式中两数差的绝对值最小的一种,我们称3×4为12的最佳分解.当p ·q(p,q ∈N *)是正整数n 的最佳分解时,我们定义函数f(n)=|p-q|,例如f(12)=|4-3|=1,则∑i=12 021f(2i)=( )A.21011-1B.21011C.21010-1 D.21010答案 A3.(2021山东菏泽期末,7)已知数列{a n }的前n 项和是S n ,且S n =2a n -1,若a n ∈(0,2021),则称项a n 为“和谐项”,则数列{a n }的所有“和谐项”的和为( ) A.1022 B.1023 C.2046 D.2047 答案 D4.(2021河北衡水中学联考二,11)若P(n)表示正整数n 的个位数字,a n =P(n 2)-P(2n),数列{a n }的前n 项和为S n ,则S 2021=( )A.-1B.0C.1009D.1011 答案 C5.(多选)(2021新高考Ⅱ,12,5分)若正整数n=a 0·20+a 1·2+…+a k-1·2k-1+a k ·2k ,其中a i ∈{0,1}(i=0,1,…,k),记ω(n)=a 0+a 1+…+a k ,则( )A.ω(2n)=ω(n)B.ω(2n+3)=ω(n)+1C.ω(8n+5)=ω(4n+3)D.ω(2n-1)=n 答案 ACD6.(多选)(2021广州一模,12)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;……;第n(n ∈N *)次得到数列1,x 1,x 2,x 3,…,x k ,2.记a n =1+x 1+x 2+…+x k +2,数列{a n }的前n 项和为S n ,则( ) A.k+1=2nB.a n+1=3a n -3C.a n =32(n 2+3n) D.S n =34(3n+1+2n-3) 答案 ABD7.(2020山东师范大学附中最后一卷)对n 个不同的实数a 1,a 2,…,a n 可得n!个不同的排列,每个排列为一行写成一个n!行的数阵.对第i 行a i1,a i2,…,a in ,记b i =-a i1+2a i2-3a i3+…+(-1)nna in ,i=1,2,3,…,n!.例如用1,2,3可得数阵如图,此数阵中每一列各数之和都是12,所以b 1+b 2+…+b 6=-12+2×12-3×12=-24.那么,在用1,2,3,4,5形成的数阵中,b 1+b 2+…+b 120等于( )1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1A.-3600B.-1800C.-1080D.-720 答案 C8.(2021湖南岳阳一模,4)“中国剩余定理”又称“孙子定理”,讲的是一个关于整除的问题.现有这样一个整除问题:将1到2021这2021个数中能被3整除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{a n },则此数列的所有项中,中间项的值为( ) A.992 B.1022 C.1007 D.1037 答案 C9.(多选)(2021济南十一学校联考,11)已知数列{F n }:1,1,2,3,5,8,13,…,从第三项开始,每项等于其前相邻两项之和.记数列{F n }的前n 项和为S n ,则下列结论中正确的是( ) A.S 6=F 8 B.S 2019=F 2021-1C.F 1+F 3+F 5+…+F 2021=F 2022D.F 12+F 22+F 32+…+F 2 0202=F 2020F 2021答案 BCD10.(2022届南京调研,7)取一条长度为1的直线段,将它三等分,去掉中间一段,留剩下的两段;再将剩下的两段分别三等分,各去掉中间一段,留剩下的更短的四段;……;将这样的操作一直继续下去,直至无穷,由于在不断分割舍弃的过程中,所形成的线段数目越来越多,长度越来越小,在极限的情况下,得到一个离散的点集,称为康托尔三分集.若在第n 次操作中去掉的线段长度之和不小于160,则n 的最大值为(参考数据:lg2≈0.3010,lg3≈0.4771)( ) A.6 B.7 C.8 D.9 答案 C应用篇知行合一应用构建数列模型解决实际生活中的问题1.(2020山东潍坊6月模拟数学文化与等差数列)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.相逢时良马比驽马多行()A.540里B.426里C.963里D.114里答案A2.(2020山东省实验中学期中数学文化与等比数列)古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述已知条件,若要使织布的总尺数不少于30尺,则至少需要()A.6天B.7天C.8天D.9天答案C3.(2022届全国联考,6实际生活)某微生物科研机构为了记录微生物在不同时期的存活状态,计划将微生物分批次培养,第一批次,培养1个;从第二批次开始,每一批次培养的个数是前一批次的2倍,按照这种培养方式(假定每一批次的微生物都能成活),要使微生物的总个数不少于950,大概经过的批次为()A.10B.9C.8D.7答案A4.(2022届湖南湘潭月考,4数学文化与等比数列)我国古代数学名著《算法统宗》是明代数学家程大位(1533年—1606年)所著.程大位少年时,读书极为广博,对书法和数学颇感兴趣.20岁起便在长江中下游一带经商,因商业计算的需要,他随时留心数学,遍访名师,搜集了很多数学书籍,刻苦钻研,时有心得,终于在他60岁时,完成了《算法统宗》这本著作.该书中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”根据诗词的意思,可得塔的最底层共有灯()A.192盏B.128盏C.3盏D.1盏答案 A5.(多选)(2022届江苏南通海门一中月考数学文化)《张丘建算经》是中国古代众多数学名著之一.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何?”其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了9匹3丈,问从第二天起,每天比前一天多织多少尺布?”已知1匹=4丈,1丈=10尺,若这个月有30天,记该女子这个月中第n 天所织布的尺数为a n ,b n =2a n ,则( )A.b 10=8b 5B.数列{b n }是等比数列C.a 1b 30=105D.a 3+a 5+a 7a 2+a 4+a 6=209193答案 BD6.(多选)(2021江苏栟茶中学学情调研数学文化与等比数列)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难,次日脚痛减一半,如此六日过其关.”则下列说法正确的是( )A.此人第二天走了九十六里路B.此人第一天走的路程比后五天走的路程多六里C.此人第三天走的路程占全程的18D.此人后三天共走了42里路答案 ABD7.(多选)(2021湖南、河北联考,11数学文化与等差数列)朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( )。

高中数学复习:数列求和及综合问题

高中数学复习:数列求和及综合问题

高中数学复习:数列求和及综合问题1.数列{a n }满足a n +2+(-1)na n =3n -1,前16项和为540,则a 1=________. 解析 法一 因为a n +2+(-1)na n =3n -1, 所以当n 为偶数时,a n +2+a n =3n -1,所以a 4+a 2=5,a 8+a 6=17,a 12+a 10=29,a 16+a 14=41, 所以a 2+a 4+a 6+a 8+a 10+a 12+a 14+a 16=92. 因为数列{a n }的前16项和为540,所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=540-92=448.① 因为当n 为奇数时,a n +2-a n =3n -1,所以a 3-a 1=2,a 7-a 5=14,a 11-a 9=26,a 15-a 13=38, 所以(a 3+a 7+a 11+a 15)-(a 1+a 5+a 9+a 13)=80.② 由①②得a 1+a 5+a 9+a 13=184.又a 3=a 1+2,a 5=a 3+8=a 1+10,a 7=a 5+14=a 1+24,a 9=a 7+20=a 1+44,a 11=a 9+26=a 1+70,a 13=a 11+32=a 1+102,所以a 1+a 1+10+a 1+44+a 1+102=184,所以a 1=7. 法二 同法一得a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448. 当n 为奇数时,有a n +2-a n =3n -1, 由累加法得a n +2-a 1=3(1+3+5+…+n )-n +12=32(1+n )·n +12-n +12=34n 2+n +14, 所以a n +2=34n 2+n +14+a 1.所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=a 1+⎝ ⎛⎭⎪⎫34×12+1+14+a 1+⎝ ⎛⎭⎪⎫34×32+3+14+a 1+⎝ ⎛⎭⎪⎫34×52+5+14+a 1+⎝ ⎛⎭⎪⎫34×72+7+14+a 1+⎝ ⎛⎭⎪⎫34×92+9+14+a 1+⎝ ⎛⎭⎪⎫34×112+11+14+a 1+⎝ ⎛⎭⎪⎫34×132+13+14+a 1=8a 1+392=448,解得a 1=7. 答案 72.记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________.解析 法一 因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1),所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列, 所以a n =-2n -1.所以S 6=-1×(1-26)1-2=-63.法二 由S n =2a n +1,得S 1=2S 1+1,所以S 1=-1,当n ≥2时,由S n =2a n +1得S n =2(S n -S n -1)+1,即S n =2S n -1-1,∴S n -1=2(S n -1-1),又S 1-1=-2,∴{S n -1}是首项为-2,公比为2的等比数列,所以S n -1=-2×2n -1=-2n ,所以S n =1-2n ,∴S 6=1-26=-63.答案 -633.已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. (1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100. 解 (1)设{}a n 的公比为q (q >1). 由题设得a 1q +a 1q 3=20,a 1q 2=8. 解得q =12(舍去),q =2.由题设得a 1=2.所以{}a n 的通项公式为a n =2n.(2)由题设及(1)知b 1=0,且当2n ≤m <2n +1时,b m =n .所以S 100=b 1+(b 2+b 3)+(b 4+b 5+b 6+b 7)+…+(b 32+b 33+…+b 63)+(b 64+b 65+…+b 100)=0+1×2+2×22+3×23+4×24+5×25+6×(100-63)=480. 4.设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.解 (1)设{a n }的公比为q ,由题设得2a 1=a 2+a 3, 即2a 1=a 1q +a 1q 2.所以q 2+q -2=0,解得q =1(舍去)或q =-2. 故{a n }的公比为-2.(2)记S n 为{na n }的前n 项和.由(1)及题设可得a n =(-2)n -1,所以S n =1+2×(-2)+…+n ·(-2)n -1,-2S n =-2+2×(-2)2+…+(n -1)·(-2)n -1+n ·(-2)n.所以3S n =1+(-2)+(-2)2+…+(-2)n -1-n ·(-2)n=1-(-2)n3-n ·(-2)n .所以S n =19-(3n +1)(-2)n9.考点1.常用公式:12+22+32+42+…+n 2=n (n +1)(2n +1)6.2.(1)数列通项a n 与前n 项和S n 的关系为a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1 (n ≥2).(2)应用a n 与S n 的关系式f (a n ,S n )=0时,应特别注意n =1时的情况,防止产生错误. 3.数列求和(1)分组转化法:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并.(2)错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.温馨提醒 裂项求和时,易把系数写成它的倒数或忘记系数导致错误. 4.数列与函数、不等式的交汇数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查不等关系或恒成立问题.热点一 a n 与S n 的关系问题【例1】 设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有a n =5S n +1成立,b n =-1-log 2|a n |,数列{b n }的前n 项和为T n ,c n =b n +1T n T n +1. (1)求数列{a n }的通项公式;(2)求数列{c n }的前n 项和A n ,并求出A n 的最值. 解 (1)因为a n =5S n +1,n ∈N *, 所以a n +1=5S n +1+1, 两式相减,得a n +1=-14a n ,又当n =1时,a 1=5a 1+1,知a 1=-14,所以数列{a n }是公比、首项均为-14的等比数列.所以数列{a n }的通项公式a n =⎝ ⎛⎭⎪⎫-14n. (2)由(1)知b n =-1-log 2|a n |=2n -1, 数列{b n }的前n 项和T n =n 2,c n =b n +1T n T n +1=2n +1n 2(n +1)2=1n 2-1(n +1)2, 所以A n =1-1(n +1)2.因此{A n }是单调递增数列,∴当n =1时,A n 有最小值A 1=1-14=34;A n 没有最大值.探究提高 1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.由S n 求a n 时,一定注意分n =1和n ≥2两种情况,最后验证两者是否能合为一个式子,若不能,则用分段形式来表示.【训练1】 已知正项数列{a n }的前n 项和为S n ,满足a 2n =S n +S n -1(n ≥2),a 1=1. (1)求数列{a n }的通项公式;(2)设b n =(1-a n )2-a (1-a n ),若{b n }是递增数列,求实数a 的取值范围. 解 (1)a 2n =S n +S n -1(n ≥2),a 2n -1=S n -1+S n -2(n ≥3).相减可得a 2n -a 2n -1=a n +a n -1,∵a n >0,a n -1>0,∴a n -a n -1=1(n ≥3). 当n =2时,a 22=a 1+a 2+a 1, ∴a 22=2+a 2,a 2>0,∴a 2=2.因此n =2时,a n -a n -1=1成立. ∴数列{a n }是等差数列,公差为1. ∴a n =1+n -1=n .(2)b n =(1-a n )2-a (1-a n )=(n -1)2+a (n -1), ∵{b n }是递增数列,∴b n +1-b n =n 2+an -(n -1)2-a (n -1) =2n +a -1>0,即a >1-2n 恒成立,∴a >-1. ∴实数a 的取值范围是(-1,+∞). 热点二 数列求和 方法1 分组转化求和【例2】 已知等差数列{a n }的前n 项和为S n ,且满足关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 解 (1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3,得a 1=d , 又易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n.因为b n =a 2n +2a n -1,所以b n =2n -1+2n,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+ (2)) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.探究提高 1.求解本题要过四关:(1)“转化”关,把不等式的解转化为方程根的问题;(2)“方程”关,利用方程思想求出基本量a 1及d ;(3)“分组求和”关,观察数列的通项公式,把数列分成几个可直接求和的数列;(4)“公式”关,会利用等差、等比数列的前n 项和公式求和.2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组.本题易忽视数列通项的下标如错得a 2n =n ,应注意“=”左右两边保持一致.【训练2】 设等差数列{a n }的前n 项和为S n ,且a 2=8,S 4=40.数列{b n }的前n 项和为T n ,且T n -2b n +3=0,n ∈N *. (1)求数列{a n },{b n }的通项公式;(2)设c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,求数列{c n }的前n 项和P n .解 (1)设等差数列{a n }的公差为d , 由题意,得⎩⎪⎨⎪⎧a 1+d =8,4a 1+6d =40,解得⎩⎪⎨⎪⎧a 1=4,d =4,所以a n =4n , 因为T n -2b n +3=0,所以当n =1时,b 1=3,当n ≥2时,T n -1-2b n -1+3=0, 两式相减,得b n =2b n -1(n ≥2),则数列{b n }为首项为3,公比为2的等比数列, 所以b n =3·2n -1.(2)c n =⎩⎪⎨⎪⎧4n ,n 为奇数,3·2n -1,n 为偶数, 当n 为偶数时,P n =(a 1+a 3+…+a n -1)+(b 2+b 4+…+b n ) =(4+4n -4)·n 22+6(1-4n2)1-4=2n +1+n 2-2.当n 为奇数时,法一 n -1(n ≥3)为偶数,P n =P n -1+c n =2(n -1)+1+(n -1)2-2+4n =2n +n 2+2n -1,n =1时符合上式.法二 P n =(a 1+a 3+…+a n -2+a n )+(b 2+b 4+…+b n -1) =(4+4n )·n +122+6(1-4n -12)1-4=2n +n 2+2n -1.所以P n =⎩⎪⎨⎪⎧2n +1+n 2-2,n 为偶数,2n +n 2+2n -1,n 为奇数. 方法2 裂项相消求和【例3】 设数列{a n }的前n 项和为S n ,已知S 1=2,a n +1=S n +2.(1)证明:{a n }为等比数列; (2)记b n =log 2a n ,数列⎩⎨⎧⎭⎬⎫λb n b n +1的前n 项和为T n ,若T n ≥10恒成立,求λ的取值范围. (1)证明 由已知,得a 1=S 1=2,a 2=S 1+2=4, 当n ≥2时,a n =S n -1+2,所以a n +1-a n =(S n +2)-(S n -1+2)=a n , 所以a n +1=2a n (n ≥2). 又a 2=2a 1,所以a n +1a n=2(n ∈N *), 所以{a n }是首项为2,公比为2的等比数列. (2)解 由(1)可得a n =2n,所以b n =n . 则λb n b n +1=λn (n +1)=λ⎝ ⎛⎭⎪⎫1n -1n +1, T n =λ⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=λ⎝ ⎛⎭⎪⎫1-1n +1, 因为T n ≥10,所以λn n +1≥10,从而λ≥10(n +1)n, 因为10(n +1)n=10⎝ ⎛⎭⎪⎫1+1n ≤20,所以λ的取值范围为[20,+∞).探究提高 1.裂项相消求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 【训练3】 设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和. 解 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,①故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1, 又n =1时,a 1=2适合上式, 从而{a n }的通项公式为a n =22n -1. (2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n ,由(1)知a n 2n +1=2(2n -1)(2n +1)=12n -1-12n +1,则S n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =1-12n +1=2n 2n +1.方法3 错位相减法求和【例4】在①a 3=5,a 2+a 5=6b 2,②b 2=2,a 3+a 4=3b 3,③S 3=9,a 4+a 5=8b 2这三个条件中任选一个,补充至横线上,并解答问题.已知等差数列{a n }的公差为d (d >1),前n 项和为S n ,等比数列{b n }的公比为q ,且a 1=b 1,d =q ,________.(1)求数列{a n },{b n }的通项公式; (2)记c n =a nb n,求数列{c n }的前n 项和T n .(注:如果选择多个条件分别解答,按第一个解答计分) 解 选条件①.(1)∵a 3=5,a 2+a 5=6b 2,a 1=b 1,d =q ,d >1, ∴⎩⎪⎨⎪⎧a 1+2d =5,2a 1+5d =6a 1d ,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=256,d =512(舍去).∴⎩⎪⎨⎪⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n ,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n.上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n =3-(2n +3)×⎝ ⎛⎭⎪⎫12n. ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.选条件②.(1)∵b 2=2,a 3+a 4=3b 3,a 1=b 1,d =q ,d >1,∴⎩⎪⎨⎪⎧a 1d =2,2a 1+5d =3a 1d 2,即⎩⎪⎨⎪⎧a 1d =2,2a 1+5d =6d , 解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=-1,d =-2(舍去).∴⎩⎪⎨⎪⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1qn -1=2n -1.(2)∵c n =a n b n ,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n.上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n=3-(2n +3)×⎝ ⎛⎭⎪⎫12n. ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.选条件③.(1)∵S 3=9,a 4+a 5=8b 2,a 1=b 1,d =q ,d >1,∴⎩⎪⎨⎪⎧a 1+d =3,2a 1+7d =8a 1d ,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=218,d =38(舍去),∴⎩⎪⎨⎪⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1qn -1=2n -1.(2)∵c n =a n b n ,∴c n =2n -12n -1=(2n -1)×⎝ ⎛⎭⎪⎫12n -1.∴T n =1+3×12+5×⎝ ⎛⎭⎪⎫122+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -2+(2n -1)×⎝ ⎛⎭⎪⎫12n -1,12T n =12+3×⎝ ⎛⎭⎪⎫122+5×⎝ ⎛⎭⎪⎫123+…+(2n -3)×⎝ ⎛⎭⎪⎫12n -1+(2n -1)×⎝ ⎛⎭⎪⎫12n.上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)×⎝ ⎛⎭⎪⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(2n -1)×⎝ ⎛⎭⎪⎫12n=3-(2n +3)×⎝ ⎛⎭⎪⎫12n. ∴T n =6-(2n +3)×⎝ ⎛⎭⎪⎫12n -1.探究提高 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解. 2.在写“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确地写出“S n -qS n ”的表达式.【训练4】在①b 2n =2b n +1,②a 2=b 1+b 2,③b 1,b 2,b 4成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{a n }中,a 1=1,a n +1=3a n .公差不等于0的等差数列{b n }满足________,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和S n .(注:如果选择多个条件分别解答,按第一个解答计分) 解 因为a 1=1,a n +1=3a n ,所以{a n }是以1为首项,3为公比的等比数列, 所以a n =3n -1.选①②时,设数列{b n }的公差为d 1. 因为a 2=3,所以b 1+b 2=3(ⅰ).因为b 2n =2b n +1,所以当n =1时,b 2=2b 1+1(ⅱ). 由(ⅰ)(ⅱ)解得b 1=23,b 2=73,所以d 1=53,所以b n =5n -33.所以b n a n =5n -33n .所以S n =b 1a 1+b 2a 2+…+b n a n =231+732+1233+…+5n -33n ,所以13S n =232+733+1234+…+5n -83n +5n -33n +1.上面两式相减,得23S n =23+5⎝ ⎛⎭⎪⎫132+133+…+13n -5n -33n +1=23+56-152×3n +1-5n -33n +1=32-10n +92×3n +1. 所以S n =94-10n +94×3n .选②③时,设数列{b n }的公差为d 2. 因为a 2=3,所以b 1+b 2=3,即2b 1+d 2=3.因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d 2)2=b 1(b 1+3d 2),化简得d 22=b 1d 2. 因为d 2≠0,所以b 1=d 2,从而d 2=b 1=1,所以b n =n . 所以b n a n =n3n -1.所以S n =b 1a 1+b 2a 2+…+b n a n =130+231+332+…+n3n -1,所以13S n =131+232+333+…+n -13n -1+n3n .上面两式相减,得23S n =1+131+132+133+…+13n -1-n 3n =32⎝⎛⎭⎪⎫1-13n -n 3n =32-2n +32×3n .所以S n =94-2n +34×3n -1.选①③时,设数列{b n }的公差为d 3.因为b 2n =2b n +1,所以b 2=2b 1+1,所以d 3=b 1+1.又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d 3)2=b 1(b 1+3d 3),化简得d 23=b 1d 3.因为d 3≠0,所以b 1=d 3,无解,所以等差数列{b n }不存在.故不合题意. 热点三 与数列相关的综合问题【例5】 设f (x )=12x 2+2x ,f ′(x )是y =f (x )的导函数,若数列{a n }满足a n +1=f ′(a n ),且首项a 1=1.(1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)由f (x )=12x 2+2x ,得f ′(x )=x +2.∵a n +1=f ′(a n ),且a 1=1. ∴a n +1=a n +2,则a n +1-a n =2,因此数列{a n }是公差为2,首项为1的等差数列. ∴a n =1+2(n -1)=2n -1. (2)数列{a n }的前n 项和S n =n (1+2n -1)2=n 2,等比数列{b n }中,设公比为q ,∵b 1=a 1=1,b 2=a 2=3, ∴q =3.∴b n =3n -1,∴数列{b n }的前n 项和T n =1-3n1-3=3n-12.T n ≤S n 可化为3n-12≤n 2.又n ∈N *,∴n =1,或n =2.故适合条件T n ≤S n 的所有n 的值为1和2.探究提高 1.求解数列与函数交汇问题要注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别注意; (2)解题时准确构造函数,利用函数性质时注意限制条件.2.数列为背景的不等式恒成立、不等式证明,多与数列的求和相联系,最后利用数列或数列对应函数的单调性处理.【训练5】 已知数列{a n }与{b n }满足:a 1+a 2+a 3+…+a n =2b n (n ∈N *),若{a n }是各项为正数的等比数列,且a 1=2,b 3=b 2+4. (1)求数列{a n }与{b n }的通项公式;(2)若数列{c n }满足c n =a nb n b n +1(n ∈N *),T n 为数列{c n }的前n 项和,证明:T n <1. (1)解 由题意知,a 1+a 2+a 3+…+a n =2b n ,① 当n ≥2时,a 1+a 2+a 3+…+a n -1=2b n -1,② ①-②可得a n =2(b n -b n -1) ⇒a 3=2(b 3-b 2)=2×4=8, ∵a 1=2,a n >0,设{a n }的公比为q , ∴a 1q 2=8⇒q =2,∴a n =2×2n -1=2n (n ∈N *).∴2b n =21+22+23+ (2)=2(1-2n)1-2=2n +1-2,∴b n =2n -1(n ∈N *).(2)证明 由已知c n =a n b n ·b n +1=2n(2n -1)(2n +1-1)=12n-1-12n +1-1, ∴T n =c 1+c 2+…+c n =121-1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1,当n ∈N *时,2n +1>1,∴12n +1-1>0,∴1-12n +1-1<1,故T n <1.巩固提升一、选择题1.已知T n 为数列⎩⎨⎧⎭⎬⎫2n+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( )A.1 026B.1 025C.1 024D.1 023解析 因为2n+12n =1+12n ,所以T n =n +1-12n ,则T 10+1 013=11-1210+1 013=1 024-1210, 又m >T 10+1 013,所以整数m 的最小值为1 024. 答案 C2.在等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项的和为( ) A.1 009B.1 010C.2 019D.2 020解析 设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,∴数列{a n cos n π}的前2 020项的和S 2 020=(b 1+b 2)+(b 3+b 4)+…+(b 2 019+b 2 020)=2×1 010=2 020. 答案 D3.数列{a n }满足a 1=1,对任意n ∈N *,都有a n +1=1+a n +n ,则1a 1+1a 2+…+1a 99=( )A.9998B.2C.9950 D.99100解析 对任意n ∈N *,都有a n +1=1+a n +n ,则a n +1-a n =n +1,则a n =(a n -a n -1)+(a n -1-a n -2)+...+(a 2-a 1)+a 1=n +(n -1)+ (1)n (n +1)2,则1a n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,所以1a 1+1a 2+…+1a 99=2[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫199-1100]=2×⎝ ⎛⎭⎪⎫1-1100=9950.答案 C4.(多选题)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=S n +2a n +1,数列⎩⎨⎧⎭⎬⎫2na n a n +1的前n 项和为T n ,n ∈N *,则下列选项正确的为( ) A.数列{a n +1}是等差数列 B.数列{a n +1}是等比数列 C.数列{a n }的通项公式为a n =2n-1 D.T n <1解析 由S n +1=S n +2a n +1,得a n +1=S n +1-S n =2a n +1,可化为a n +1+1=2(a n +1).由a 1=1,得a 1+1=2,则数列{a n +1}是首项为2,公比为2的等比数列.则a n +1=2n,即a n =2n-1.由2n a n a n +1=2n(2n -1)(2n +1-1)=12n -1-12n +1-1,得T n =1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1<1.所以A 错误,B ,C ,D 正确.故选BCD.答案 BCD5.(多选题)(2020·烟台模拟)已知数列{a n }满足a n +1+a n =n ·(-1)n (n +1)2,其前n 项和为S n ,且m +S 2 019=-1 009,则下列说法正确的是( ) A.m 为定值B.m +a 1为定值C.S 2 019-a 1为定值D.ma 1有最大值解析 当n =2k (k ∈N *)时,由已知条件得a 2k +a 2k +1=2k ·(-1)k (2k +1),所以S 2 019=a 1+a 2+a 3+…+a 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019)=a 1-2+4-6+8-10+…-2 018=a 1+1 008-2 018=a 1-1 010,所以S 2 019-a 1=-1 010.m +S 2 019=m +a 1-1 010=-1 009,所以m +a 1=1,所以ma 1≤⎝ ⎛⎭⎪⎫m +a 122=14,当且仅当m =a 1=12时等号成立,此时ma 1取得最大值14.故选BCD. 答案 BCD 二、填空题6.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n,则数列{a n }的前n 项和S n =________.解析 因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案 2n +1-27.已知数列{a n }的前n 项和为S n ,且2S n =3a n +1,则a 1=________,a n =________. 解析 令n =1,则2S 1=3a 1+1,又S 1=a 1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=12(3a n -3a n -1),整理得a n =3a n -1,即a na n -1=3(n ≥2).因此,{a n }是首项为-1,公比为3的等比数列. 故a n =-3n -1.答案 -1 -3n -18.已知数列{na n }的前n 项和为S n ,且a n =2n,则使得S n -na n +1+50<0的最小正整数n 的值为________.解析 S n =1×21+2×22+…+n ×2n, 则2S n =1×22+2×23+…+n ×2n +1,两式相减得-S n =2+22+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1,故S n =2+(n -1)·2n +1.又a n =2n,∴S n -na n +1+50=2+(n -1)·2n +1-n ·2n +1+50=52-2n +1,依题意52-2n +1<0,故最小正整数n 的值为5.答案 5 三、解答题9.记S n 为等差数列{a n }的前n 项和,且a 10=4,S 15=30. (1)求数列{a n }的通项公式以及前n 项和S n ;(2)记数列{2a n +4+a n }的前n 项和为T n ,求满足T n >0的最小正整数n 的值. 解 (1)记数列{a n }的公差为d ,S 15=30⇒15a 8=30⇒a 8=2,故d =a 10-a 810-8=1,故a n =a 10+(n -10)d =4+n -10=n -6,S n =na 1+n (n -1)d2=-5n +n (n -1)2=n 22-11n2. (2)依题意,2a n +4+a n =n -6+2n -2T n =(-5-4+…+n -6)+(2-1+20+…+2n -2)=n (n -11)2+2n -12,当n =1时,T 1=-1×10+21-12<0;当n =2时,T 2=-2×9+22-12<0;当n =3时,T 3=-3×8+23-12<0;当n =4时,T 4=-4×7+24-12<0;当n ≥5时,n (n -11)2≥-15,2n-12≥312,所以T n >0.故满足T n >0的最小正整数n 的值为5.10.甲、乙两同学在复习数列时发现曾经做过的一道有关数列的题目因纸张被破坏,导致一个条件看不清,具体如下:等比数列{a n }的前n 项和为S n ,已知________. (1)判断S 1,S 2,S 3的关系;(2)若a 1-a 3=3,设b n =n 12|a n |,记{b n }的前n 项和为T n ,求证:T n <43.甲同学记得缺少的条件是首项a 1的值,乙同学记得缺少的条件是公比q 的值,并且他俩都记得第(1)问的答案是S 1,S 3,S 2成等差数列.如果甲、乙两同学记得的答案是正确的,请你通过推理把条件补充完整并解答此题. (1)解 由S 1,S 3,S 2成等差数列,得 2S 3=S 1+S 2,即2(a 1+a 1q +a 1q 2)=2a 1+a 1q , 解得q =-12或q =0(舍去).若乙同学记得的缺少的条件是正确的,则公比q =-12.所以S 1=a 1,S 2=a 1+a 2=a 1-12a 1=12a 1,S 3=a 1+a 2+a 3=a 1-12a 1+14a 1=34a 1,可得S 1+S 2=2S 3,即S 1,S 3,S 2成等差数列.(2)证明 由a 1-a 3=3,可得a 1-14a 1=3,解得a 1=4,所以a n =4×⎝ ⎛⎭⎪⎫-12n -1.所以b n =n 12|a n |=n 12⎪⎪⎪⎪⎪⎪4×⎝ ⎛⎭⎪⎫-12n -1=23n ·⎝ ⎛⎭⎪⎫12n.所以T n =23⎝ ⎛⎭⎪⎫1×12+2×14+3×18+…+n ×12n ,12T n =23⎝ ⎛⎭⎪⎫1×14+2×18+3×116+…+n ×12n +1,两式相减,得12T n =23⎝ ⎛⎭⎪⎫12+14+18+116+…+12n -n ·12n +1=23⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫1-12n1-12-n ·12n +1, 化简可得T n =43⎝ ⎛⎭⎪⎫1-n +22n +1.由1-n +22n +1<1,得T n <43.能力突破11.设数列{a n }的各项均为正数,前n 项和为S n ,对于任意的n ∈N *,a n ,S n ,a 2n 成等差数列,设数列{b n }的前n 项和为T n ,且b n =(ln x )na 2n,若对任意的实数x ∈(1,e](e 为自然对数的底数)和任意正整数n ,总有T n <r (r ∈N *),则r 的最小值为________. 解析 由题意得,2S n =a n +a 2n , 当n ≥2时,2S n -1=a n -1+a 2n -1, ∴2S n -2S n -1=a n +a 2n -a n -1-a 2n -1, ∴(a n +a n -1)(a n -a n -1-1)=0,∵a n >0,∴a n -a n -1=1,即数列{a n }是公差为1的等差数列, 又2a 1=2S 1=a 1+a 21,a 1=1,∴a n =n (n ∈N *). 又x ∈(1,e],∴0<ln x ≤1,∴T n ≤1+122+132+…+1n 2<1+11×2+12×3+…+1(n -1)n=1+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n <2,∴r ≥2,即r 的最小值为2.答案 212.等差数列{a n }的公差为2,a 2,a 4,a 8分别等于等比数列{b n }的第2项、第3项、第4项. (1)求数列{a n }和{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+…+c n a n=b n +1,求数列{c n }的前2 020项的和. 解 (1)依题意得b 23=b 2b 4, 所以(a 1+6)2=(a 1+2)(a 1+14),所以a 21+12a 1+36=a 21+16a 1+28,解得a 1=2. ∴a n =2n .设等比数列{b n }的公比为q ,所以q =b 3b 2=a 4a 2=84=2,又b 2=a 2=4,∴b n =4×2n -2=2n.(2)由(1)知,a n =2n ,b n =2n. 因为c 1a 1+c 2a 2+…+c n -1a n -1+c n a n=2n +1① 当n ≥2时,c 1a 1+c 2a 2+…+c n -1a n -1=2n② 由①-②得,c n a n=2n,即c n =n ·2n +1,又当n =1时,c 1=a 1b 2=23不满足上式,∴c n =⎩⎪⎨⎪⎧8,n =1,n ·2n +1,n ≥2. 故S 2 020=8+2×23+3×24+…+2 020×22 021=4+1×22+2×23+3×24+…+2 020×22 021设T 2 020=1×22+2×23+3×24+…+2 019×22 020+2 020×22 021③, 则2T 2 020=1×23+2×24+3×25+…+2 019×22 021+2 020×22 022④,由③-④得:-T 2 020=22+23+24+…+22 021-2 020×22 022=22(1-22 020)1-2-2 020×22 022=-4-2 019×22 022,所以T 2 020=2 019×22 022+4,所以S 2 020=T 2 020+4=2 019×22 022+8.。

专题5.4 数列求和及数列的综合应用-2020届高考数学一轮复习学霸提分秘籍(解析版)

专题5.4 数列求和及数列的综合应用-2020届高考数学一轮复习学霸提分秘籍(解析版)

第五篇 数列及其应用专题5.04 数列求和及数列的综合应用【考试要求】1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法;3.了解数列是一种特殊的函数;4.能在具体问题情境中,发现等差、等比关系,并解决相应的问题.【知识梳理】1.特殊数列的求和公式(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 2.数列求和的几种常用方法(1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.3.数列应用题常见模型(1)等差模型:如果后一个量比前一个量增加(或减少)的是同一个固定值,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是同一个固定的非零常数,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑a n 与a n +1(或者相邻三项等)之间的递推关系,或者S n 与S n +1(或者相邻三项等)之间的递推关系.【微点提醒】1.1+2+3+4+…+n =n (n +1)2. 2.12+22+…+n 2=n (n +1)(2n +1)6. 3.裂项求和常用的三种变形(1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1. (3)1n +n +1=n +1-n .【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( ) (3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( ) 【答案】 (1)√ (2)√ (3)× (4)√【解析】 (3)要分a =0或a =1或a ≠0且a ≠1讨论求解.【教材衍化】2.(必修5P47B4改编)数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0192 020,则项数n 为( ) A.2 018B.2 019C.2 020D.2 021【答案】 B【解析】 a n =1n (n +1)=1n -1n +1, S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0192 020,所以n =2019. 3.(必修5P56例1改编)等比数列{a n }中,若a 1=27,a 9=1243,q >0,S n 是其前n 项和,则S 6=________. 【答案】 3649【解析】 由a 1=27,a 9=1243知,1243=27·q 8, 又由q >0,解得q =13,所以S 6=27⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫1361-13=3649.【真题体验】 4.(2018·东北三省四校二模)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A.9B.15C.18D.30【答案】 C【解析】 由题意知{a n }是以2为公差的等差数列,又a 1=-5,所以|a 1|+|a 2|+…+|a 6|=|-5|+|-3|+|-1|+1+3+5=5+3+1+1+3+5=18.5.(2019·北京朝阳区质检)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2,则2T n =________________.【答案】 2n +2+n (n +1)-4【解析】 由题意知T n -S n =b 1-a 1+b 2-a 2+…+b n -a n =n +2n +1-2,又S n +T n =2n +1+n 2-2,所以2T n =T n -S n +S n +T n =2n +2+n (n +1)-4.6.(2019·河北“五个一”名校质检)若f (x )+f (1-x )=4,a n =f (0)+f ⎝⎛⎭⎫1n +…+f ⎝⎛⎭⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为________.【答案】 a n =2(n +1)【解析】 由f (x )+f (1-x )=4,可得f (0)+f (1)=4,…,f ⎝⎛⎭⎫1n +f ⎝ ⎛⎭⎪⎫n -1n =4,所以2a n =[f (0)+f (1)]+⎣⎢⎡⎦⎥⎤f ⎝⎛⎭⎫1n +f ⎝ ⎛⎭⎪⎫n -1n +…+[f (1)+f (0)]=4(n +1),即a n =2(n +1). 【考点聚焦】考点一 分组转化法求和【例1】 (2019·济南质检)已知在等比数列{a n }中,a 1=1,且a 1,a 2,a 3-1成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =2n -1+a n (n ∈N *),数列{b n }的前n 项和为S n ,试比较S n 与n 2+2n 的大小.【答案】见解析【解析】(1)设等比数列{a n }的公比为q ,∵a 1,a 2,a 3-1成等差数列,∴2a 2=a 1+(a 3-1)=a 3,∴q =a 3a 2=2, ∴a n =a 1q n -1=2n -1(n ∈N *).(2)由(1)知b n =2n -1+a n =2n -1+2n -1,∴S n =(1+1)+(3+2)+(5+22)+…+(2n -1+2n -1)=[1+3+5+…+(2n -1)]+(1+2+22+…+2n -1)=1+(2n -1)2·n +1-2n1-2=n 2+2n -1. ∵S n -(n 2+2n )=-1<0,∴S n <n 2+2n .【规律方法】 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和. 2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【训练1】 已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n .【答案】见解析【解析】(1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5可得a 1+a 2+a 3=a 5,即3a 2=a 5,∴3(1+d )=1+4d ,解得d =2.∴a n =1+(n -1)×2=2n -1.(2)由(1)可得b n =(-1)n -1·(2n -1).∴T 2n =1-3+5-7+…+(2n -3)-(2n -1)=(-2)×n =-2n .考点二 裂项相消法求和【例2】 (2019·郑州模拟)已知数列{a n }的前n 项和为S n ,且a 2=8,S n =a n +12-n -1. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和T n . 【答案】见解析【解析】(1)∵a 2=8,S n =a n +12-n -1, ∴a 1=S 1=a 22-2=2, 当n ≥2时,a n =S n -S n -1=a n +12-n -1-⎝⎛⎭⎫a n 2-n , 即a n +1=3a n +2,又a 2=8=3a 1+2,∴a n +1=3a n +2,n ∈N *,∴a n +1+1=3(a n +1),∴数列{a n +1}是等比数列,且首项为a 1+1=3,公比为3,∴a n +1=3×3n -1=3n ,∴a n =3n -1.(2)∵2×3n a n a n +1=2×3n (3n -1)(3n +1-1)=13n -1-13n +1-1. ∴数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和 T n =⎝⎛⎭⎫13-1-132-1+⎝⎛⎭⎫132-1-133-1+…+⎝⎛⎭⎫13n -1-13n +1-1 =12-13n +1-1. 【规律方法】1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【训练2】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3.(1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和T n . 【答案】见解析【解析】(1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)由(1)得S n =na 1+n (n -1)2d =n (n +2), ∴b n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1-1n +1+⎝⎛⎭⎫1n -1n +2=12⎝⎛⎭⎫1+12-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. 考点三 错位相减法求和【例3】 已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n . 【答案】见解析【解析】(1)设{a n }的公比为q ,由题意知⎩⎪⎨⎪⎧a 1(1+q )=6,a 21q =a 1q 2,又a n >0,解得⎩⎪⎨⎪⎧a 1=2,q =2,所以a n =2n . (2)由题意知:S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1, 又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b n a n ,则c n =2n +12n , 因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n , 又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1, 所以T n =5-2n +52n . 【规律方法】 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法.2.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.【训练3】 已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式;(2)求数列{a n ·b n }的前n 项和T n .【答案】见解析【解析】(1)设等差数列{a n }的公差为d ,则d >0,由a 1=1,a 2=1+d ,a 3=1+2d 分别加上1,1,3后成等比数列,得(2+d )2=2(4+2d ),解得d =2(舍负),所以a n =1+(n -1)×2=2n -1.又因为a n +2log 2b n =-1,所以log 2b n =-n ,则b n =12n . (2)由(1)知a n ·b n =(2n -1)·12n , 则T n =121+322+523+…+2n -12n ,①12T n =122+323+524+…+2n -12n +1,② 由①-②,得12T n =12+2×⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. ∴12T n =12+2×14⎝⎛⎭⎫1-12n -11-12-2n -12n +1, ∴T n =1+2-22n -1-2n -12n =3-4+2n -12n =3-3+2n 2n . 考点四 数列的综合应用【例4】 某同学利用暑假时间到一家商场勤工俭学.该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天比前一天翻一番(即增加1倍).他应该选择哪种方式领取报酬呢?【答案】见解析【解析】设该学生工作n 天,每天领工资a n 元,共领工资S n 元,则第一种方案a n (1)=38,S n (1)=38n ; 第二种方案a n (2)=4n ,S n (2)=4(1+2+3+…+n )=2n 2+2n ;第三种方案a n (3)=0.4×2n -1,S n (3)=0.4(1-2n )1-2=0.4(2n -1). 令S n (1)≥S n (2),即38n ≥2n 2+2n ,解得n ≤18,即小于或等于18天时,第一种方案比第二种方案报酬高(18天时一样高).令S n (1)≥S n (3),即38n ≥0.4×(2n -1),利用计算器计算得小于或等于9天时,第一种方案报酬高,所以少于10天时,选择第一种方案.比较第二、第三种方案,S 10(2)=220,S 10(3)=409.2,S 10(3)>S 10(2),…,S n (3)>S n (2).所以等于或多于10天时,选择第三种方案.【规律方法】 数列的综合应用常考查以下几个方面:(1)数列在实际问题中的应用;(2)数列与不等式的综合应用;(3)数列与函数的综合应用.解答数列综合题和应用题既要有坚实的基础知识,又要有良好的逻辑思维能力和分析、解决问题的能力.解答应用性问题,应充分运用观察、归纳、猜想的手段建立出有关等差(比)数列、递推数列模型,再结合其他相关知识来解决问题.【训练4】 已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,试求数列{b n }的前n 项和T n . 【答案】见解析【解析】(1)设二次函数f (x )=ax 2+bx (a ≠0),则f ′(x )=2ax +b .由于f ′(x )=6x -2,得a =3,b =-2,所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上,所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5;当n =1时,a 1=S 1=3×12-2×1=6×1-5,也适合上式,所以a n =6n -5(n ∈N *).(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12·⎝⎛⎭⎫16n -5-16n +1, 故T n =12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫1-17+⎝⎛⎭⎫17-113+…+⎝⎛⎭⎫16n -5-16n +1=12⎝⎛⎭⎫1-16n +1=3n 6n +1. 【反思与感悟】1.非等差、等比数列的一般数列求和,主要有两种思想(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.2.解答数列应用题的步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求的是什么.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到实际问题中.【易错防范】1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,要注意观察未合并项的正负号.3.解等差数列、等比数列应用题时,审题至关重要,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差数列、等比数列问题,使关系明朗化、标准化,然后用等差数列、等比数列知识求解.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·全国Ⅲ卷)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A.-24B.-3C.3D.8 【答案】 A【解析】 设{a n }的公差为d ,根据题意得a 23=a 2·a 6, 即(a 1+2d )2=(a 1+d )(a 1+5d ),解得d =-2,所以数列{a n }的前6项和为S 6=6a 1+6×52d =1×6+6×52×(-2)=-24. 2.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400【答案】 B【解析】 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.3.数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于( ) A.9B.99C.10D.100【答案】 B【解析】 因为a n =1n +n +1=n +1-n , 所以S n =a 1+a 2+…+a n =(n +1-n )+(n -n -1)+…+(3-2)+(2-1)=n +1-1,令n +1-1=9,得n =99. 4.(2019·德州调研)已知T n 为数列⎩⎨⎧⎭⎬⎫2n +12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( ) A.1 026B.1 025C.1 024D.1 023【答案】 C 【解析】 ∵2n +12n =1+⎝⎛⎭⎫12n,∴T n =n +1-12n , ∴T 10+1 013=11-1210+1 013=1 024-1210, 又m >T 10+1 013恒成立,∴整数m 的最小值为1 024.5.(2019·厦门质检)已知数列{a n }满足a n +1+(-1)n +1a n =2,则其前100项和为( )A.250B.200C.150D.100 【答案】 D【解析】 当n =2k (k ∈N *)时,a 2k +1-a 2k =2,当n =2k -1(k ∈N *)时,a 2k +a 2k -1=2,当n =2k +1(k ∈N *)时,a 2k +2+a 2k +1=2,∴a 2k +1+a 2k -1=4,a 2k +2+a 2k =0,∴{a n }的前100项和=(a 1+a 3)+…+(a 97+a 99)+(a 2+a 4)+…+(a 98+a 100)=25×4+25×0=100.二、填空题6.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n =________.【答案】 3n -1【解析】 由a 2n +1-6a 2n =a n +1a n ,得(a n +1-3a n )(a n +1+2a n )=0,又a n >0,所以a n +1=3a n ,又a 1=2,所以{a n }是首项为2,公比为3的等比数列,故S n =2(1-3n )1-3=3n -1. 7.(2019·武汉质检)设数列{(n 2+n )a n }是等比数列,且a 1=16,a 2=154,则数列{3n a n }的前15项和为________. 【答案】 1516【解析】 等比数列{(n 2+n )a n }的首项为2a 1=13,第二项为6a 2=19,故公比为13,所以(n 2+n )a n =13·⎝⎛⎭⎫13n -1=13n ,所以a n =13n (n 2+n ),则3n a n =1n 2+n =1n -1n +1,其前n 项和为1-1n +1,n =15时,为1-116=1516. 8.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为________.【答案】 9【解析】 由于平均产量类似于图形过P 1(1,S 1),P n (n ,S n )两点直线的斜率,斜率大平均产量就高,由图可知n =9时割线P 1P 9斜率最大,则m 的值为9.三、解答题9.求和S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2(x ≠0). 【答案】见解析【解析】当x ≠±1时,S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2=⎝⎛⎭⎫x 2+2+1x 2+⎝⎛⎭⎫x 4+2+1x 4+…+⎝⎛⎭⎫x 2n +2+1x 2n=(x 2+x 4+…+x 2n )+2n +⎝⎛⎭⎫1x 2+1x 4+…+1x 2n=x 2(x 2n -1)x 2-1+x -2(1-x -2n)1-x -2+2n=(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n .当x =±1时,S n =4n .10.设数列{a n }的前n 项和为S n ,a 1=2,a n +1=2+S n (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1+log 2(a n )2,求证:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n <16.【答案】见解析【解析】(1)解 因为a n +1=2+S n (n ∈N *),所以a n =2+S n -1(n ≥2),所以a n +1-a n =S n -S n -1=a n ,所以a n +1=2a n (n ≥2).又因为a 2=2+a 1=4,a 1=2,所以a 2=2a 1,所以数列{a n }是以2为首项,2为公比的等比数列,则a n =2·2n -1=2n (n ∈N *).(2)证明 因b n =1+log 2(a n )2,则b n =2n +1.则1b n b n +1=12⎝⎛⎭⎫12n +1-12n +3, 所以T n =12⎝⎛⎭⎫13-15+15-17+…+12n +1-12n +3=12⎝⎛⎭⎫13-12n +3=16-12(2n +3)<16.【能力提升题组】(建议用时:20分钟)11.(2019·广州模拟)已知数列{a n }满足a 1=1,a n +1-a n ≥2(n ∈N *),且S n 为{a n }的前n 项和,则() A.a n ≥2n +1 B.S n ≥n 2C.a n ≥2n -1D.S n ≥2n -1【答案】 B【解析】 由题意得a 2-a 1≥2,a 3-a 2≥2,a 4-a 3≥2,…,a n -a n -1≥2,∴a 2-a 1+a 3-a 2+a 4-a 3+…+a n -a n -1≥2(n -1),∴a n -a 1≥2(n -1),∴a n ≥2n -1,∴a 1≥1,a 2≥3,a 3≥5,…,a n ≥2n -1,∴a 1+a 2+a 3+…+a n ≥1+3+5+…+2n -1,∴S n ≥n (1+2n -1)2=n 2. 12.某厂2019年投资和利润逐月增加,投入资金逐月增长的百分率相同,利润逐月增加值相同.已知1月份的投资额与利润值相等,12月份投资额与利润值相等,则全年的总利润ω与总投资N 的大小关系是( )A.ω>NB.ω<NC.ω=ND.不确定【答案】 A【解析】 投入资金逐月值构成等比数列{b n },利润逐月值构成等差数列{a n },等比数列{b n }可以看成关于n 的指数式函数,它是凹函数,等差数列{a n }可以看成关于n 的一次式函数.由于a 1=b 1,a 12=b 12,相当于图象有两个交点,且两交点间指数式函数图象在一次函数图象下方,所以全年的总利润ω=a 1+a 2+…+a 12比总投资N =b 1+b 2+…+b 12大,故选A.13.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.【答案】 4n -1【解析】 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n -1.14.(2019·潍坊调研)已知数列{a n }的前n 项和为S n ,a 1=5,nS n +1-(n +1)S n =n 2+n .(1)求证:数列⎩⎨⎧⎭⎬⎫S n n 为等差数列; (2)令b n =2n a n ,求数列{b n }的前n 项和T n .【答案】见解析【解析】(1)证明 由nS n +1-(n +1)S n =n 2+n 得S n +1n +1-S n n=1, 又S 11=5,所以数列⎩⎨⎧⎭⎬⎫S n n 是首项为5,公差为1的等差数列. (2)解 由(1)可知S n n=5+(n -1)=n +4, 所以S n =n 2+4n .当n ≥2时,a n =S n -S n -1=n 2+4n -(n -1)2-4(n -1)=2n +3.又a 1=5也符合上式,所以a n =2n +3(n ∈N *),所以b n =(2n +3)2n ,所以T n =5×2+7×22+9×23+…+(2n +3)2n ,①2T n =5×22+7×23+9×24+…+(2n +1)2n +(2n +3)2n +1,②所以②-①得T n =(2n +3)2n +1-10-(23+24+…+2n +1)=(2n +3)2n +1-10-23(1-2n -1)1-2=(2n +3)2n +1-10-(2n +2-8)=(2n +1)2n +1-2.【新高考创新预测】15.(多填题)已知公差不为零的等差数列{a n }中,a 1=1,且a 2,a 5,a 14成等比数列,{a n }的前n 项和为S n ,b n =(-1)n S n ,则a n =________,数列{b n }的前n 项和T n =________.【答案】 2n -1 (-1)n n (n +1)2【解析】 设等差数列{a n }的公差为d (d ≠0),则由a 2,a 5,a 14成等比数列得a 25=a 2·a 14,即(1+4d )2=(1+d )(1+13d ),解得d =2,则a n =a 1+(n -1)d =2n -1,S n =na 1+n (n -1)2d =n 2,当n 为偶数时,T n =-S 1+S 2-S 3+S 4-…-S n -1+S n =-12+22-32+42-…-(n -1)2+n 2=3+7+…+(2n -1)=n (n +1)2;当n为大于1的奇数时,T n =-S 1+S 2-S 3+S 4-…+S n -1-S n =-12+22-32+42-…-(n -2)2+(n -1)2-n 2=3+7+…+(2n -3)-n 2=-n (n +1)2,当n =1时,也符合上式.综上所述,T n =(-1)n n (n +1)2.。

2021高考数学二轮专题训练2.21课时突破数列解答题数列求和及数列的综合应用课件

2021高考数学二轮专题训练2.21课时突破数列解答题数列求和及数列的综合应用课件

n a
n
,求数列{cn}的前n项和Sn.
【解析】(1)由已知得an+1=3an+3n,得bn+1a3=nn+1=3a3n+ n3n=3an- n=1+ b1n+1,所以 bn+1-bn=1,又a1=1,所以b1=1,
所以数列{bn}是首项为1,公差为1的等差数列. (所2以)bSn=n=3 an1-n 1=1(1n,1所31n以)= a32n=(1n·31n3).= n-132,cn2=331n1n-- 11,
(1)利用定义,证明an+1-an(n∈N*)为一常数;
(2)利用等差中项,即证明2an=an-1+an+1(n≥2).
2.证明数列{an}是等比数列的两种基本方法
(1)利用定义,证明 a n 1 (n∈N*)为一常数;
an
(2)利用等比中项,即证明
a
2 n
=an-1an+1(n≥2).
3.若要判断一个数列不是等差(等比)数列,只需判断存在连续三项不成等差(等
(2)设Sn为{nan}的前n项和.
由(1)及题设可得,an=(-2)n-1.
所以Sn=1+2×(-2)+…+n×(-2)n-1,
-2Sn=-2+2×(-2)2+…+(n-1)×(-2)n-1+n×(-2)n.
可得3Sn=1+(-2)+(-2)2+…+(-2)n-1-n×(-2)n1=
( 3
2
)n -n×(-2)n.
a1 a2
an
3
1 3 n1
=3 (1 1 ). 3
2 3n 2

等差数列与等比数列的求和问题综合练习题

等差数列与等比数列的求和问题综合练习题

等差数列与等比数列的求和问题综合练习题数列是数学中常见的一个概念,它包含了一系列按照某种规律排列的数字。

在数列中,等差数列和等比数列是两种常见的类型,它们之间存在着不同的求和方法。

本文将通过综合练习题的方式,详细探讨等差数列与等比数列的求和问题。

一、等差数列求和等差数列是指数列中相邻两项之间的差值保持恒定的数列。

首先,我们来看一个等差数列求和的例子。

例题1:已知等差数列的首项a1为3,公差d为4,求前10项的和S10。

解题思路:利用等差数列通项公式an = a1 + (n-1)d,其中an代表数列的第n 项。

首先计算出第10项的值a10 = a1 + (10-1)d = 3 + (10-1)4 = 3 + 9*4 = 3 + 36 = 39。

其次计算出前10项的和S10 = (a1 + a10) * n / 2 = (3 + 39) * 10 / 2= 42 * 10 / 2 = 210。

答案:前10项的和S10为210。

二、等比数列求和等比数列是指数列中相邻两项之间的比值保持恒定的数列。

下面我们来看一个等比数列求和的例子。

例题2:已知等比数列的首项a1为3,公比q为2,求前5项的和S5。

解题思路:利用等比数列通项公式an = a1 * q^(n-1),其中an代表数列的第n 项。

首先计算出第5项的值a5 = a1 * q^(5-1) = 3 * 2^(5-1) = 3 * 2^4 = 3 * 16 = 48。

其次计算出前5项的和S5 = a1 * (1 - q^n) / (1 - q) = 3 * (1 - 2^5) / (1 - 2) = 3 * (1 - 32) / (1 - 2) = 3 * (-31) / (-1) = 93。

答案:前5项的和S5为93。

三、综合练习题接下来,我将给出一些综合训练题,涵盖了等差数列与等比数列的求和问题。

请你根据题意,独立思考并计算出答案。

练习题1:已知等差数列的首项a1为2,公差d为3,求前20项的和S20。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)证明:由(1)得 Sn=n2+n, ∴bn=Sn+1 n=n2+1 2n=12n1-n+1 2, ∴Tn=1211-13+12-14+13-15+…
+n-1 1-n+1 1+n1-n+1 2 =121+12-n+1 1-n+1 2 =34-12n+1 1+n+1 2<34.
9
首页 上页 下页 末页
3.错位相减法求和的关注点 (1)适用题型:等差数列{an}与等比数列{bn}对应项相乘({an·bn})型数列求和. (2)步骤: ①求和时先乘以数列{bn}的公比. ②将两个和式错位相减. ③整理结果形式.
14
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
答案:2n+1
3
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
2.若数列{an}满足 a1=1,an+1-an-1=2n,则 an=________.
解析:由题 an+1-an=2n+1,则 a2-a1=21+1, a3-a2=22+1, …… an-an-1=2n-1+1, 相加得 an-a1=211--22n-1+n-1, 故 an=2n+n-2. 答案:2n+n-2
20
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
[题后悟通] 解决此类问题要抓住一个中心——函数.两个密切联系:一是数列和函数之间的密切 联系,数列的通项公式是数列问题的核心,函数的解析式是研究函数问题的基础;二 是方程、不等式与函数的联系,利用它们之间的对应关系进行灵活的处理.
难度属于低档.
2
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
[题组练透] 1.已知数列{an}的前 n 项和为 Sn=n2+2n,则 an=________.
解析:当 n=1 时,a1=S1=12+2×1=3; 当 n≥2 时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1. 将 n=1 代入上式可得 a1=2×1+1=3 成立, 综上可得 an=2n+1.
令函数 f(x)=-(x+4x)-2,x>0,
则 f′(x)=4-x2x2=-x-x22x+2,
所以当 x∈(0,2)时,f′(x)>0,
当 x∈(2,+∞)时,f′(x)<0,
19
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
即 f(x)在(0,2)上单调递增,在(2,+∞)上单调递减, 由 f(1)=-7<f(3)=-139, 得 f(n)max=-139(n 为正奇数), 所以 k>-139,即实数 k 的取值范围为(-139,+∞).
21
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
增分强化练(十三)
22
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
增分强化练(十四)
23
首页 上页 下页 末页
解析:(1)由 a3+a4=6a5,得 6q2-q-1=0,解得 q=12或 q=-13. ∵数列{an}为递减数列,且首项为 1,∴q=12. ∴an=1×12n-1=12n-1. (2)∵bn=n·12n-1, ∴Tn=1·120+2·121+3·122+…+n·12n-1, ∴12Tn=1·121+2·122+3·123+…+n·12n.
5
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
2.已知数列的递推关系求通项公式的典型方法 (1)当出现 an=an-1+m 时,构造等差数列. (2)当出现 an=xan-1+y 时,构造等比数列. (3)当出现 an=an-1+f(n)时,用累加法求解. (4)当出现aan-n 1=f(n)时,用累乘法求解.
1.分组求和. 2.裂项求和. 3.错位相减求和.
7
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
[题组练透]
1.(2019·芜湖模拟)已知数列{an}为等差数列,且公差 d≠0,其前 n 项和为 Sn,S8=72,
且 a2,a4,a8 成等比数列.
(1)求等差数列{an}的通项公式;
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
[题后悟通] 1.分组求和中分组的策略 (1)根据等差、等比数列分组. (2)根据正号、负号分组. 2.裂项相消求和的规律 (1)裂项系数取决于前后两项分母的差. (2)裂项相消后前、后保留的项数一样多.
13
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
第2讲 数列求和与数列的综合问题
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
利用递推关系或Sn、an的关系求an
考情调研
考向分析
以考查 Sn 与 an 的关系为主,简单的递推关系也是考查的 1.由 热点.本节内容在高考中以选择、填空的形式进行考查,
Sn、an
的关系求通项.
2.由递推关系求通项.
[题组练透]
1.已知等差数列{an}满足 a6-a3=6,且 a3-1 是 a2-1,a4 的等比中项. (1)求数列{an}的通项公式;
(2)设 bn=ana1n+1(n∈N*),数列{bn}的前 n 项和为 Tn,求使 Tn<17成立的最大正整数 n 的
值. 解析:(1)设等差数列{an}的公差 d,∵a6-a3=3d=6,即 d=2, ∴a3-1=a1+3,a2-1=a1+1,a4=a1+6,
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
2.(2019·合肥质检)已知等比数列{an}是首项为 1 的递减数列,且 a3+a4=6a5. (1)求数列{an}的通项公式; (2)若 bn=nan,求数列{bn}的前 n 项和 Tn.
10
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
17
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
2.在数列{an}中,a1=5,an+1ห้องสมุดไป่ตู้4an-3.令 bn=log4(an-1),n∈N*. (1)求证:数列{bn}是等差数列,并求{bn}的通项公式; (2)记数列{bn}的前 n 项和为 Sn,若不等式(-1)nkbn<2Sn+n+4 对所有的正奇数 n 都成 立,求实数 k 的取值范围. 解析:(1)证明:因为 bn+1=log4(an+1-1)=log4[4(an-1)]=1+log4(an-1)=1+bn,所以 bn+1-bn=1, 所以数列{bn}是以 b1=log44=1 为首项,1 为公差的等差数列, 所以 bn=1+(n-1)×1=n.
6
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
数列求和
考情调研
考向分析
本节以考查分组法、错位相减法、倒序相加法、裂项相消法求数列 前 n 项和为主,识别出等差(比)数列,直接用公式法也是考查的热 点.题型以解答题的形式为主,难度中等或稍难.一般第一问考查 求通项,第二问考查求和,并与不等式、函数、最值等问题综合.
(2)设
bn=Sn+1 n,记数列{bn}的前
n
项和为
Tn,求证
3 Tn<4.
解析:(1)由题意得
a24=a2·a8 S8=72
⇒8aa11++32d8d2==7a21+da1+7d

解得 a1=d=2,∴an=2n.
8
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
数列的应用与综合问题
考情调研
考向分析
1.数列与不等式. 数列的应用与综合问题是在历年高考命题中偶尔会触及
2.数列与函数. 的考点,试题难度中等偏上,主要考查逻辑推理、数学运
3.以数学文化为背景的数列 算等核心素养.
问题.
15
首页 上页 下页 末页
考点一
考点二 考点三 增分强化练(十三) 增分强化练(十四)
∵a3-1 是 a2-1,a4 的等比中项,
∴(a3-1)2=(a2-1)·a4,即(a1+3)2=(a1+1)(a1+6),解得 a1=3.
∴数列{an}的通项公式为 an=2n+1.
16
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
(2)由(1)得 bn=ana1n+1=2n+112n+3=122n1+1-2n1+3. ∴Tn=b1+b2+…+bn=1213-15+15-17+...+2n1+1-2n1+3 =1213-2n1+3=32nn+3, 由32nn+3<17,得 n<9. ∴使得 Tn<17成立的最大正整数 n 的值为 8.
18
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三)
(2)由(1)知 bn=n,则 Sn=nn2+1,
增分强化练(十四)
所以(-1)nkbn<2Sn+n+4 等价于(-1)nkn<n2+2n+4,即(-1)nk<n+n4+2.
因为 n 为正奇数,所以原式变形为 k>-(n+n4)-2,则 k>[-(n+n4)-2]max.
4
首页 上页 下页 末页
考点一 考点二 考点三 增分强化练(十三) 增分强化练(十四)
[题后悟通] 1.已知 Sn,求 an 的步骤 (1)当 n=1 时,a1=S1. (2)当 n≥2 时,an=Sn-Sn-1. (3)对 n=1 时的情况进行检验,若适合 n≥2 的通项则可以合并;若不适合则写成分段 函数形式.
相关文档
最新文档