blue InGaN multiple-quantum well light-emitting diodes with InGaN

合集下载

GaN基蓝光LED峰值波长蓝移现象分析及解决措施

GaN基蓝光LED峰值波长蓝移现象分析及解决措施

GaN基蓝光LED峰值波长蓝移现象分析及解决措施第22卷第3期2008年5月湖南工业大学JournalofHunanUniversityofTechnologyVO1.22NO.3May2008GaN基蓝光LED峰值波长蓝移现象分析及解决措施刘一兵(1.湖南大学电气与信息工程学院,湖南长沙410082;2.邵阳职业技术学院机电工程系,湖南邵阳422000)摘要:分析了引起GaN基蓝光LED峰值波长不稳定的原因,它是由多量子阱区内极化效应引起的量子限制斯塔克效应造成的.讨论了通过弱化压电场,采用四元系结构,优化外延材料的生长条件和总应变量等措施来提高波长的稳定性,并指出了提高GaN基蓝光LED峰值波长稳定性的最优方案.关键词:氮化镓;蓝光LED;峰值波长蓝移;压电效应;多量子阱中图分类号:TN304.2+3文献标识码:A文章编号:1673—9833(2008)03—0087—04 ~henomenonAnalysisandSolutionMeasureforBlueGaN—Based LEDsPeakWavelengthBlueMovesLiuYibing,(1.SchoolofElectricalandInformationEngineering,HunanUniversity,Changsha410082, China;2.DepartmentofMechanicalandElectricalEngineering,ShaoyangProfessionalTechnolog yCollege,ShaoyangHunan422000,China)Abstract:AnalyzingtheunstablereasonofGaN—basedbluelightLEDpeakwavelength,itwasthequantumrestriction Starkeffectcausedbythemulti—quantumwellarea.Somemeasurementscanimprovethestabilityofwavelengthbydiscussin gtheelectricfieldthroughtheattenuationpressed,usingfourYuandepartmentsstructures,opti mizingextensionmaterialgrowthconditionandtotalvariables.Then,itpointedoutthemostsuperiorplanforenhancing stablityofGaN—bluelightLEDpeakwavelength.Keywords:GaN;bluelightLED;thepeakwavelengthbluemoves;piezoelectriceffect;multi —quantumwell20世纪90年代以来,由于异质外延缓冲层技术及GaN材料P型掺杂技术取得突破,引发了全球科研工作者对GaN材料的研究.以GaN为代表的Ⅲ族氮化物属直接跃迁型的宽带隙半导体材料,其发光谱覆盖了从紫光到红光的整个可见光波段,且具有电子漂移饱和速度高,热导率高,硬度大,介电常数小,化学性质稳定及抗辐射,抗高温等优点,使得其广泛地应用于高亮度蓝绿光LEDs,蓝紫光LDs的研制,成为当今国内外半导体研究领域的一大热点.随着对GaN基蓝光LED研究的深入和应用范围的扩展,暴露出一些问题,如LED的输出光波长等将随注入电流,温度和时间的影响而变化].这给GaN基LED的实际应用带来两个问题:1)在全彩色显示应用中,波长的漂移将引起发光颜色变化,导致色彩不纯,影响显示屏的视觉效果;2)在半导体照明领域,蓝光LED峰值波长的变化将引起色度坐标的漂移,造成白光的颜色或色温发生变化.由此可见,获得高波长稳定性的LED器件是材料外延中研究的重点之一.本文对GaN基蓝光LED产生峰值波长蓝移的原因进行了细致分析,并提出了抑制这种现象的具体措施.1GaN基蓝光LED峰值波长蓝移的原因分析图1所示为GaN基蓝光LED的峰值波长随注入电流的变化曲线,可以看出,随着注入电流的增加,LED收稿日期:2008-03-25作者简介:刘一兵(1964-),男,湖南邵东人,邵阳职业技术学院高级工程师,湖南大学硕士生,主要研究方向为半导体器件制造工艺及设计.88湖南工业大学2008年发光峰值波长向短波长方向移动,即发生了蓝移.在实际应用中,蓝绿光波段5nm左右的波长变化足以让人眼感觉到颜色的差异.而造成这种蓝光LED峰值波长蓝移的主要原因,是由于InGaN/GaN多量子阱区强烈的极化效应,下面讨论极化效应产生的机理.图1GaN基蓝光LED峰值波长随注入电流变化曲线Fig.1ChangecurveofblueGaN-basedLEDspeak wavelengthalongwithpoursintotheelectriccurrentGaN基半导体材料存在3种晶体形态_3:纤锌矿(Wurtzite)结构,属六方相,为稳定结构;闪锌矿(Zincblende)结构,属立方相,为亚稳态结构;岩盐(Rocksalt)结构,需要在高压下才能形成.由于GaN晶格排列缺乏反演对称性,因此表现出强烈的极化效应.它表现为两个方面:1)沿(0001)晶向生长的纤锌矿结构GaN材料缺少变换对称性,GaN薄膜结构中Ga原子集合和N原子集合的质心不重合(c/a=1.633时,GaN原子集合的质心重合),从而形成电偶极子,在材料内部产生固有的自发极化(SPo2)在MOCVD外延生长量子阱时,由于InGaN和GaN存在较大的晶格失配和热膨胀系数失配产生应力,导致形成压电极化(PEo拉伸应变时,对于Ga面系材料,自发极化P和压电极化P方向相同,压缩应变则相反,且其极化系数比传统Ⅲ一V族GaAs材料高(见表1[】o表1纤锌矿结构Ⅲ一V族半导体极化系数Table1Semiconductorsusceptibilityof spiauteritestructureIII-Vracec.m-2半导体自发极化压电极化压电极化压电极化名称系数P系数e31系数e33系数e35le31一(c3/q,e3,J 注:1(c?m)=6.25×10(e?m).对于一个应力层来说,有效压电极化强度P为:=[一(C3/C3,e3,]占,其中,占是层内应力,且占1=占+Eyy;C31和C33是弹性常数.在InGaN材料中,由于InGa一和GaN的自发极化强度之差很小,为△PsP=1.88x×10他(e?m-),而GaN上的InxGa1—层是处在压应力作用下,且尸PF=1.1x×10H(e?m-),女哚IIlN自q鹰弥哟0.15,那么PPF=1.65xx10"(e?m-), 此时压电极化占支配地位.由于Ⅲ族纤锌矿氮化物存在较大的压电极化系数,极化率在界面处的急剧变化将产生大量极化电荷,直接使体系内出现内建电场.在考虑极化效应时,InGaN/GaN量子阱的能带结构如图2所示.图2InGaN/GaN量子阱考虑极化效应时能带图Fig.2EnergybandchartofInGaN/GaNquantumpitfall considerationpolarizationeffect在通常使用的InGaN/GaN量子阱的(0001)方向上,内建电场强度粗略计达到MV/cm量级.这个内强电场将阻止发光器件中载流子的注入,引起显着的量子限制斯塔克效应(QCSE),导致能带倾斜,发光波长向长波段方向移动(即红移).随着注入电流的增大,由于载流子在导带(或价带)内的驰豫时间(约ps量级)比载流子寿命(约ns量级)要短得多,这样多量子阱区的自由载流子增加,屏蔽了部分内建电场,削弱了QCSE效应,阱中基态升高,从而使LED峰值波长向短波方向移动.这种蓝移就是LED峰值波长随注入电流变化的内在原因.由于量子限制斯塔克效应的影响,应力诱导极化场,激子跃迁能量减少大致为eEod(Eo为压电场,d为量子阱厚度),一般当InGaN/GaN量子阱宽超过3nm时,阱内电子空穴波函数空间分裂严重,波函数重叠积分大大减小,电子空穴对的复合辐射几率降低,限制了器件内量子效率的提高.2GaN基蓝光LED峰值波长蓝移的解决措施由于极化效应引起GaN基LED峰值波长蓝移造成波长稳定性差,使其在应用中引起一系列的问题,近年来,学者们研究了一系列解决蓝移的措施.由于压电电场是沿c轴方向产生的,如果在非极性面(相对于C面垂直的a面或m面)的法线(a轴或第3期刘一兵GaN基蓝光LED峰值波长蓝移现象分析及解决措施89 m轴)方向上,或者半极性面(相对于c面倾斜的斜面)的法线方向上生长晶体,就可以弱化压电电场对于生长轴方向的影响.这样既可以减小蓝移现象所造成发光波长的变动幅度,还可以提高外部量子效率.但采用常规外延工艺获得的非极性或半极性GaN存在表面粗糙,缺陷多和不稳定等缺点,因此,必须采用侧向外延,氢化物气相外延(HVPE)技术和优化外延生长参数来完善它.日亚化学中村修二等已成功地生长了室温最高空穴浓度达2×10/cm3的a面P-GaN,这比c面P—GaN的空穴浓度要高得多,还生长了堆垛层错密度达3×103/cm3,位错密度达5×106/cm3的光滑表面的m面GaN,由此制成的蓝光(450nm)LED芯片,在20mA和300mA电注入下测得的光功率分别达0.24mW 和2.95lI1w,封装后在20mA连续电注入和1A脉冲电注入(占空比为0.25%)下测得光功率分别达0.6mW和23.5mW,在高电流下没有饱和迹象,且波长稳定性很好刚.虽然非极性面还在晶体质量,MQW的界面平整度,压电极化及优化设计和有效注入电流等方面存在问题,但非极性LED正逐渐显示出其优越性.已有最新报道,非极性白光LED的发光效率达到200lm/W.而a面蓝宝石衬底更容易解理和易于获得更大尺寸(6英寸以上)且无裂纹的GaN外延片,这对GaN基电子器件是很重要的,为此,王涛,张国义等¨比较了以a面,c面蓝宝石为衬底生长的GaN外延层晶体取向,完整性和光学特性.采用四元混合晶体AIInGaN作为量子阱垒层材料代替GaN,由于AIlnGaN在能带和晶格大小的裁减上有着更大的自由度,可得到与InGaN晶格匹配很好的结构,能减少应力和缺陷,提高界面平整度等,从而提高了有源区的质量,有效抑制了QCSE效应.实验证明,这种有源区的发光机理为带到带的跃迁发光,非常适合制备宽量子阱的大功率LED.测试表明,虽然当电流低于120mA时,发光功率不如常规结构,但当电流高于120mA时,这种优越逐渐显现,且线性很好也不易饱和(见图3).这种InGaN/AIInGaN多量子阱结构LED的电致发光谱(EL)的峰值随注入电流变化的敏感程度下降,发光亮度得到提高.在生长MQW前先生长一层掺si的InGa,N层[1,In㈣GaoN层相当于一个宽阱,只要匹配好,当宽阱和有源层里的电子能量相等时,电子就会隧穿到有源层,从而提高了电子的浓度,当达到1×10/cm 时,可完全屏蔽掉压电极化场的影响.同时,宽阱In㈣GaN层的引入,相当于一个良好的电流分散层, 能削弱由于电流拥挤导致电场分布不均匀的影响,提高输出功率,减小驱动电压,提高发光均匀性.≥吕,静罨电流/mA图3AIInGaN和GaN作为量子阱垒层的LED在不同电注入方式下的光功率一电流曲线Fig.3Thedifferentelectricitylightpower—currentcurve whenitpourintoAIInGaNandGaNbuild thelevelasthequantumpitfallLED为增强GaN基LED波长的稳定性,可采用脉冲电流消除热效应的影响,但要从根本上解决波长的稳定性问题,必须尽量降低极化场强的大小.InGaN材料起主导作用的压电极化强度与器件的总应变量成正比,且当压电效应一定时,电流注入导致的能带填充效应也会对发射波长的变化产生一定影响,因此,必须设法使量子阱中的应力驰豫.罗毅等¨通过优化LED器件材料的生长条件和总应变量,在700~740℃生长5个周期具有极平整界面的InGaN(1.8nn1)/GaN (11rim)多量子阱作为发光区的LED外延片,由此制作出的LED器件,在0~120mA注入电流下,发光波长变化小于1rim(如图4所示),在20mA的正向电流下,其光谱半高全宽(FWHM)只有18rim,当正向电流达到120mA时,光谱的FWHM仍只有21rim,变化仅3rim(如图5所示),且随流入电流变化较小.因此, 通过优化外延生长条件,调节量子阱中阱层与垒层的厚度,可抑制极化效应,降低极化场强来稳定GaN基LED的波长.吕盐ij型磐电流/mA图4蓝光LED芯片峰值波长随注入电流的变化Fig.4ThechangeoftheblueLEDchippeakwavelength alongwithpoursintotheelectriccurrent90湖南工业大学2008正g譬≥_工电流/mA图5蓝光LEDFWHM随注入电流的变化Fig.5ThechangeofbluelightLEDFWHM alongwithpoursintotheelectriccurrent3结语GaN基蓝光LED目前主要采用InGaN/GaN多量子阱结构,而这种结构由于InGaN和GaN晶格常数失配产生应力存在强烈的压电极化现象,造成LED的峰值波长蓝移,引起LED在实际应用中出现一系列的问题.本文研究了造成峰值波长不稳定的原因,介绍了目前提高波长稳定性的主要解决措施.根据以上分析,笔者认为:采用非极性的GaN衬底,在MQW之前引入用于改善外延材料应力的InGaN/GaN超晶格,优化外延生长条件,将是提高GaN基蓝光LED峰值波长稳定性的最优方案.参考文献【1】【2】SheuJK,PanCJ,ChiGC,eta1.White—lightemission formInGaN—GaNmultiquantum-welllight-emittfiagdiodeswith SiandZncodopedactivewelllayer[J].IEEEPhotonTechno1. Lett.,2002,14(4):450-452.MuthuS,SchuurmansFJ,PashlegMD.Redgreenand blueLEDbasedwhitelightgenertionissuesandcontrol[C]// IEEEIndustryApplicationConference.【S.1.】:【S.n.】,2002: 327-333.【3】陈平,王启明.GaN非线性光学效应研究进展IJJ.物理学进展,2005,25(4):430-440.【4】罗毅,张贤鹏,韩彦军,等.半导体照明关键技术研究【J1.激光与光电子学进展,2007,44(3):17—28.【5】KimJJ,ParkSK,KimHM.Piezoelectricandspontaneous polarizationeffectsonexcitonbindingenergiesinwurtziteGaN/A1GaNquantumwells[J].J.KoreanPhysicalSociety, 2003,43(1):149-153.【6】ShiJJ,XiaCX,WeiSY,eta1.Excitonstatesinwurtzite InGaNstrainedcoupledquantumdotsEffectsof piezoelectricityandspontaneouspolarization[J].J.App1. Phys.,2005,97(8):083704—083707.【7】LerouxM,GrandjeanN,LaugtM,eta1.Quantumconfined Starkeffectduetobuilt—ininteralpolarizationfieldsin(A1Ga)N/GaNquantumwells[J].PhyscicalReviewB.,1998,58 (20):13371—13374.【8】TraettaG,CarloAD,RealeA,eta1.Chargestorageand sereeningoftheinteralfieldinGaN/AIGaNquantumwells[J]. J.CrystalGrowth,2001,230(3):492—496.【9】TengCC,WangHC,TangTY,eta1.Depthdependence ofopticalpropertybeyondthecriticalthicknessofanInGaNfilm[J].J.CrystalGrowth,2006,288(1):18—22.【10】张国义,陆敏,陈志忠.高亮度白光LED用外延片的新进展[JJ.物理,2007,36(5):377—384.【11】王涛,姚健全,张国义.金属有机化学气相沉积外延技术生长GaN基半导体发光二极管和激光二极管(Ⅱ)[JJ.物理,2005,34(10):718-724.【12】LaiWeichih,ChangShoo,inn,MeisoY okogam,eta1. InGaN/AIlnGaNmultiquantum—wellLEDs[J].IEEEPhoton Techno1.Lett.,2001,13(6):559—56t.【13】SheuJK,ChiGC,JouMJ.Enhancedoutputpowerin InGaN??GaNmultiquantum..welllightemittingdiodewithan InGaNcurrent—spreadinglayer[J].IEEEPhotonTechno1. Lett.,2001,13(11):1164-1166.【14】罗毅,郭文平,邵嘉平,等,GaN基蓝光发光二极管的波长稳定性研究[J】.物理,2004,53(8):2720—2723.(责任编辑:廖友媛)。

硅基与蓝宝石衬底上的GaN-LEDs性能差异分析

硅基与蓝宝石衬底上的GaN-LEDs性能差异分析

硅基与蓝宝石衬底上的GaN-LEDs性能差异分析王美玉;朱友华;施敏;黄静;邓洪海;马青兰【摘要】在简要阐述硅基与蓝宝石衬底的GaN研究与发展基础上,就此两种不同衬底上GaN‐LEDs性能进行了对比分析,并对这两种衬底上的LED进行了相应的表征实验。

通过AFM 和XRD等分析手段揭示了器件的结构特性,对器件性能(I‐V 和 EL以及I‐L测试)进行了相应的评价。

通过分析相关实验数据得出:在电学特性与光学性能两方面,蓝宝石衬底上的L ED均优于硅衬底上的L ED。

%Basied on the research and development of gallium nitride using silicon and sapphire substrates , different device performances of GaN‐LEDs grown on these two substrates have been compared and discussed . The corresponding experimental characterizations have been carriedout .Firstly ,the structural characteristics of device are revealed by means of XRD and AFM ,and the performance of device was evaluated by I‐V ,EL , and I‐L measurements . Finally , through the experimental data analyses , both the electrical and optical properties of the LEDs grown on the sapphire are superior to ones grown on the silicon substrate .【期刊名称】《实验技术与管理》【年(卷),期】2016(033)003【总页数】4页(P62-65)【关键词】氮化镓基发光二极管;硅衬底;蓝宝石衬底;电学特性;光学特性【作者】王美玉;朱友华;施敏;黄静;邓洪海;马青兰【作者单位】南通大学电子信息学院,江苏南通226019;南通大学电子信息学院,江苏南通 226019;南通大学电子信息学院,江苏南通 226019;南通大学电子信息学院,江苏南通 226019;南通大学电子信息学院,江苏南通 226019;南通大学电子信息学院,江苏南通 226019【正文语种】中文【中图分类】TN364近年来,新型宽禁带化合物半导体材料的发展迅速,特别是GaN材料。

蓝金(Bluefin)海底摄影电子装置与配件系列说明说明书

蓝金(Bluefin)海底摄影电子装置与配件系列说明说明书

288Underwater VideoElectronic Housings & AccessoriesHousings & Lighting KitsB&H now stocks the full line of Light & Motion housings and accessories. Featuring travel packages that include housing, case, charger, arms, 2 batteries and 2 lights.Elite Kits include Bright 35w Halogen Lamp Dual Light HeadsPro Kits include Bright HID Daylight Balanced Lamp Dual Light Heads Bluefin & Mako Electronic Housings Allow Light Control from Hand Grip Rated to 330’Standard Port Included with Kit#LIBHSFX1 Bluefin Housing with Flat Port for FX1 $5,999.95#LIBEKSFX1 Bluefin Elite Halogen Travel Package for FX1 $6,499.95#LIBPKSFX1 Bluefin Pro HID Travel Package for FX1 $7,997.95#LIBHSZ1U Bluefin Housing with Flat Port for Z1U $5,999.95#LIBEKSZ1U Bluefin Elite Halogen Travel Package for Z1U $6,498.95#LIBPKSZ1U Bluefin Pro HID Travel Package for Z1U $7,997.95#LIBSHHC7 Bluefin Housing with Zoom Macro Port for HC7 $3,099.95#LIBETPHC7 Bluefin Elite Halogen Travel Package for HC7 $4,499.95#LIBPTPHC7 Bluefin Pro HID Travel Package for HC7 $5,599.95#LIBCSHHC3 Bluefin Housing with Zoom Macro Port for HC3 $3,098.95#LIBETPHC3 Bluefin Elite Halogen Travel Package for HC3 $4,498.95#LIBPTPHC3 Bluefin Pro HID Travel Package for HC3 $5,599.95••••• 2.5” MonitorsRemote Monitor for Bluefin and Mako HousingsControl the Camera from up to 300’ away Powered by an Integrated NiMh Battery Pack #LIRMB $1,649.95#LICMB Monitor for Bluefin $1,398.95#LIMBM Monitor Back for Mako $799.95#LIMBS3HC Monitor Back for Stingray III f/HC42/32/21/30/20 $799.95#LIMBS2 Monitor Back for All Stingray II Housings & Stingray III Housings for HC1000, HC40, TRV19/22/33 $799.95•• VLDL0010Video Light10w HID Video Light Internal Battery Burn Time: 2 Hours #AMVLDL0010 $819.95••• Discovery HID Light KitsThis Amphibico Discovery II 12 Volt, 35/50 watt HID light mounted on a 20” adjustable aluminum arm Designed for the professional camcorder operatorLight output is adjustable from 35 to 50 watts The light has wet mate connector cables to the Ultra Pro Power Pack #AMALKT002B Dual Kit: 2 Heads & Power Pack $5,289.95#AMALKT001B Single Kit: 1 Head & Power Pack $3,743.95#AMVLALHIDB Head: 1 Head & Arm $1,754.95•••• Dive Buddy EVO HD EliteElectronic Underwater HousingNew Evo HD Elite has 3.5” color LCD monitor back-angled at 10° for easy enhanced viewing Housing is depth rated to 330’ (100m) Electronic controls on right hand gripOptional mechanical control out • Externalhydrophone • Marine bayonet-mounted flat port #AMDBSHDRSR7 for Sony HDR-SR7/ SR8 $2,279.95#AMESHDRUX1 for Sony HDR-UX1/ SR1 $2,379.95#AMDBSHDRHC5 for Sony HDR-HC5/ HDR-HC7 $2,279.95#AMDBSHVRA1U for Sony HDR-HC1/ HVR-A1U $2,269.95•••• Stingray III SportElectronic HousingUniversal housing for a wide variety of camcorderswith control L including Sony HC42, HC32, HC21, HC20, HC30, HC40, DVD101, DVD201, TRV19, TRV22,TRV33, HC1000, PC100, PC110, PC115, PC120, PC300, PC330, PC105, PC350, PC1000, and Canon Elura 50#LIS3SH Stingray III Sport $898.95#LIS3SK Stingray III Sport w/Lighting $1,798.95• Phenom FXZ1Electronic Underwater Camcorder HousingsDepth Rated to 330’ (100m) • Electronic and mechanical pushbutton controlsMarine-grade aluminum and brass w/stainless steel hardware#AMVHSHDRFX1 Housing with Wide-Angle Lens for Sony HDR-FX1, HVR-Z1U $6,749.95#AMVHSFX1 Housing without WA lens $5,077.95#AMPFXZ1PK Housing with 3.5” LCD Monitor/ & WA lens $7,214.95#AMPFXZ1BK Housing with 3.5” LCD Monitor/ No WA lens $5,693.95•• Endeavor FX-V1 Housingfor Sony HDR-FX7 and HVR-V1 Electronic Underwater HousingNew Evo SE HD has 3.5” color LCD Monitor backDepth Rated to 330’ (100m)Electronic Controls on Right Hand Grip Electronic Manual Focus on Left Grip External HydrophoneMarine Bayonet-Mounted Flat Port Electronic Moisture Sensor#AMVHSFX7WA Housing with 3.5” Monitor Back and Wide-Angle Lens $ 6,187.95#AMVHSFX7DP Housing with 3.5” Monitor Back and Dome $ 4,241.95#AMVHSFX7FP Housing with 3.5” Monitor Back and Flat Port $ 4,123.95#AMVHSFX7WAQ Housing with 4.3” High Definition 16:9 Monitor Back and Wide-Angle Lens $ 8,253.95#AMVHSFX7DPQ Housing with 4.3” High Definition 16:9 Monitor Back and Dome $ 6,244.95#AMVHSFX7FPQ 4.3” High Definition 16:9 Monitor Back and Flat Port $ 5,899.95••••••• 16:9 HD MonitorVideo MonitorSupports resolutions up to 1080i • Component Out portto camcorder • Uses four AA rechargeable batteries • Designed for under- or above-water use • Aluminum housing construction #AMACHDM043 $2,169.95#AMACFM0350 High Performance 4:3 TFT LCD Color Monitor $699.95• Housing, Lighting and Camcorder KitsThese kits contain everything you need to jump right into the water and start shooting video.#LIBPKSZ1UK Bluefin Housing w/ Sunray-X Pro Lights and Sony HVR-Z1U Camcorder $11,994.95#LIBPKSFX1K Bluefin Housing w/ Sunray-X Pro Lights and Sony HDR-FX1 Camcorder $10,494.95#LIBEKSZ1UK Bluefin Housing w/ Sunray-X Elite Lights and Sony HVR-Z1U Camcorder $9,949.95•800.947.1175 | 212.444.6675 Quick Dial: 821Underwater Video Gates Housings & Accessories289FX1 HD MechanicalUnderwater HousingSony HDR-FX1/HVR-Z1UCamcorder HousingPro capability with access to11 camera functionsStandard, Flat, and Super WidePort optionsDepth rating 300 ft/91mts and2-year warranty#GAHSHDRFX1 Housing No Port $3,990.95 #GAHSHDRFX1K4 Housing with SWP44 Wide Angle Port $8,472.95#GAHSHDRFX1K1 Housing with SP44 Standard Port $4,440.95#GAHSHDRFX1K2 Housing with FP44 Flat Port $4,439.95#GAHSHDRFX1K6 Housing with SWP44 WA Port/ Green Force HID 250 Light Pakwith FII Battery $12,297.95#GAHSHDRFX1K7 Housing with SP44 Standard Port/ Green Force HID 250 Light Pakwith FIII Battery $8,715.95#GAHSHDRFX1K5 Housing with SP44 Standard Port and Green Force HID 250 Light Pakwith FII Battery $8,265.95•••HC7 HousingSony HDR-HC7 Camcorder HousingCompact Design for Easy TravelingCamera LCD is theUnderwater ViewfinderDepth Rating 450 ft/137mts2-year WarrantyDimensions: 7.5 x 5.5 x 9.8” with Removable Handles#GAHHC7 No Port $2,125.95#GAHHC7WP25 Housing with WP25 Wide Angle Port $3,015.95#GAHHC7GP25A Housing with GP25A Wide Angle Port $2,705.95#GAHHC7SP25 Housing with SP25 Standard Port $2,240.95#GAHHC7K3 Housing with WP25 Wide Angle Port and Green Force HID 50 Video Light $5,390.95 #GAHHC7K2 Housing with GP25A Wide Angle Port and Green Force HID 50 Video Light $4,680.95#GAHHC7K1 Housing with GP25A Wide Angle Port and Nightrider HID Pro 20 Video Light $4,420.95•••••Dual Green Force HID 250 Lighting KitsVideo LightPowerful Dual 50w HIDLight HeadsRobust Bulbs/Diffuser forWide & Even Beam4.5Ah Batteries (FII)50 Min. Burn Time3800°K Color TemperatureOptional Battery Mount to Gates orOther HousingsDepth Rating 500 ft (152m)Limited Lifetime WarrantyRugged design#GAGFHIDL250B Green Force HID 250 with FIII Batteries $4,275.95#GAGFHIDL250A Green Force HID 250 with FII Batteries $3,825.95#GAGFHIDL50A Green Force HID 50 with FI Batteries $1,850.95#GAGFHIDL50 Green Force HID 50 with FII Batteries $2,374.95#GAHIDP20B Dual NIGHTRIDER HID Pro 20 $1,715.95#GAHIDP40B Dual NIGHTRIDER HID Pro 40 $2,715.95•••••••••EM434” High Resolution Color Monitor16:9 Aspect RatioPAL or NTSC Auto SensePower On/Off Auto Sense (Battery Saver)Up to 14 hours on 8 AA Alkaline, NiMH orNiCad BatteriesFully Articulated Swivel MountHeavy Duty Wet-Connect Cable#GAEM43B EM43 4.3” Wide-screen 16:9 Monitor for HighDefinition Camcorders $ 2,325.95#GAEM43B EM43 4.3” Wide-screen 16:9 Monitor for StandardDefinition Camcorders $ 2,325.95••••••FX7/V1 HD MechanicalUnderwater HousingSony HDR-FX7/HVR-V1UCamcorder HousingPro capability with access to14 camera functionsAdjustable handle grips allowperfect positioning over fingertipmechanical controlsStandard, Flat and Super WidePort optionsDepth rating 450 ft/137mts and2-year warranty#GAHSHDRFX7 Housing No Port $3,990.95#GAHSHDRFX7KC Housing with SWP44B Super Wide Angle Port $7,955.95#GAHSHDRFX7KA Housing with SP44 Standard Port $4,440.95#GAHSHDRFX7KB Housing with FP44 Flat Port $4,440.95#GAHSHDRFX7K2 Housing with SWP44B Super Wide-Angle Port/Green Force HID 250 Light Pak with FII Battery $11,780.95#GAHSHDRFX7K3 Housing with SP44 Standard Port andGreen Force HID 250 Light Pak with FIII Battery $8,715.95#GAHSHDRFX7K1 Housing with SP44 Standard Port andGreen Force HID 250 Light Pak with FII Battery $8,265.95••••TripodSturdy platform for stable underwater shotsFully articulating legs are extendable 7 to 18 inchesLegs fold compactly under housing when not in useIntegrates with Gates lighting systems#GATL For Large Housings $ 569.95#GATS For Small Housings $ 569.95••••XL H1 HD HousingCanon XL H1 Camcorder HousingReliable Fingertip Mechanical ControlsAccess10 Camera Functions2.5” Color Monitor Included,Optional 4” MonitorMachined Aluminum Construction,Type III Hard Anodize Finish#GAHCLXH1 No Port $7,990.95#GAHCLXH1SWP4 with SWP44 Wide Angle Port $12,472.95#GAHCLXH1FP44 with FP44 Flat Port $8,440.95#GAHCLXH1SP44 with SP44 Standard Port $8,440.95#GAHCLXH1K2 with SWP44 Wide Angle Port and Green Force HID 250 Light $16,297.95#GAHCLXH1K1 with SP44 Standard Port and Green Force HID 250 Light $12,265.95#GAHPAGHVX200 HVX200 Pro HD Housing For Panasonic AG-HVX200 No Port $6,860.95•••290Underwater VideoEquinox, ewa-marine, and Aquapac Housings & AccessoriesCamcorder HousingsTested for use to a depth of 33’ (10m). Remarkably light & still robust, they prove effective against sand, dust, rain, seawater, mud, humidity, etc. Double laminated PVC with optical glass ports.#EWVDS for Panasonic PVGS150, 250 Call #EWVGS for Panasonic PVGS19, 31, 35 $284.95#EWVMV for Canon Optura $344.95#EWVDS for Canon ZR Series Call #EWVMV20 for Canon Elura $374.95#EWVXM2 for Canon GL-2 $434.95#EWVXL2 for Canon XL-1 $949.95#EWVJD for JVC DV-1 $269.95#EWVHC for Sony HC21, 32, 42, 90 $285.95#EWVDS for Sony DVD92, 203, 403 Call #EWVPE for Sony PC1000 $289.95#EWVDS for Sony TRV-8, 10 Call #EWVST for Sony TRV-950, 138, 338 $264.95#EWV1000 for Sony VX-1000 $449.95#EWV2000 for Sony VX2000 $479.95#EWVFX for Sony FX1, Z1 $499.95FiltersSize 22mm 27mm 30.5mm 37mm 43mm 46mm Blue Water $65.95$65.95$65.95$66.95$66.95$66.95Green Water$66.95$54.95$54.95$54.95$66.95$66.95Size 49mm 52mm 58mm 67mm 72mm Blue Water $66.95$66.95$66.95$109.95$124.95Green Water$66.95$66.95$54.95$109.95$144.95Monitor backs available for all HousingsLarge 2.5” color active matrix LCD display • PAL or NTSC Auto Sense Rechargeable Ni-Cad battery that gives you one hour of view time.The On/off switch is on the outside of the back for easy access.Call for additional details••• Camcorder & Housing Kits#SOHDRFX7Q Sony HDR-FX7, with Pro10 housing $4,794.95#SOHDRFX7EQK Sony HDR-FX7, with Pro8 housing $3,839.95#SOHDRFX1EQK Sony HDR-FX1, with Pro10 housing $5,199.95#EQPSHVRA1UK Sony HVR-A1U, with Pro10 housing $3,199.95#SOHDRHC7EQK Sony HDR-HC7, with Pro10 housing $1,999.95#SODCRSR200KQ Sony DCR-SR200, with Pro6 housing $1,499.95#SODCRSR300KQ Sony DCR-SR300, with Pro6 housing $1,629.95#EQPSHDRHC5K Sony HDR-HC5, with Pro6 housing $1,459.95#EQPP8VX2100K Sony DCR-VX2100, with Pro8 housing $3,398.95#CAXHG1K Canon XH-G1, with Pro10 housing $8,699.95#CAGL2KQ Canon GL-2, with Pro8 housing $3,100.95#CAXHA1EQPCHK Canon XH-A1, with Pro10 housing $5,874.95#CAHV20K Canon HV20, with Pro6 housing $1,849.95#EQDVX100BPRK Panasonic AG-DVX100B, with Pro10 housing $4,649.95#EQPP8DVX100K Panasonic AG-DVX100B with Pro-Pak 8 $3,794.95Camcorder HousingsThese housings are depth rated to 250’ (75m)Custom Housings can be built for any video camera with controls of choice PVC housing material 5 manual controls Optical portRemovable wings1” Clear, acrylic front and rear faceplatesSafety Quick-releasepin, housing becomes positive, causing it to rise to the surfacePro10 HousingsIncludes: Spare parts kit#EQFX7PRO for Sony HDR-FX7, V1 w/2.5” monitor $2,399.95#EQPSHDRHC7P for Sony HDR-HC7 $999.95#EQPSHVRA1U for Sony HVR-A1U/HDR-HC1 $999.95#EQFX1PRO for Sony HDR-FX1/HVR-Z1U with 2.5” monitor $2,249.00#EQDVX100BPRO for Panasonic AG-DVX100B with 2.5” monitor $1,899.95#EQHVX200PRO For Panasonic AG-HVX200 Pro with 2.5” monitor $2,749.95Pro8 HousingIncludes: Dome Port Protector, Color Correction Filter & Spare Parts Kit#EQPP8FX7 for Sony HDR-FX7,V1 $1,399.95#EQPP8DVX100B for Panasonic AG-DVX100B $1,149.95#EQPP8GL2 for Canon GL2 $1,199.95#EQPP8VX2100 for Sony VX2100/PD170 $1,249.95Pro6 HousingsIncludes: .45x Wide Angle Lens, Dome Port Protector, Color Discontinued 2 in STOCKCorrection Filter & Spare Parts Kit#EQP6CX7 for Sony HDR-CX7 $899.95#EQP6SR7 for Sony HDR-SR7 $899.95#EQP6UX7 for Sony HDR-UX7/ UX5 $899.95#EQPP6HC5 for Sony HDR-HC5 $799.95#EQPP6SR1 for Sony HDR-SR1 $799.95#EQPP6HC3 for Sony HDR-HC3 $849.95#EQPP6SR200 for Sony SR200 & SR300 $899.95#EQPP6PVGS320 for Panasonic PV-GS320 $789.95#EQPP6PVGS500 for Panasonic PV-GS500 $749.95 ••••••••Large Aqualight Light SystemDepth Rated to 400’ • 3300°K Easily Changed Lamps, No Tools RequiredMachined from a Solid Block of Marine Grade Aluminum Emits Beautiful, Soft, Even,180º Light that has the Appearance of AmbientMAL02 KitIncludes: 2-50 Watt Quarts-Halogen Light, 12 volt/12 amp Rechargeable Battery, Charger & Control Arm #EQMAL02 $1,099.95AL02 KitIncludes: 2-100 Watt Quarts-Halogen Light, 12 volt/12 amp Rechargeable Lead-Acid Battery, Charger & Control Arm #EQAL02 $1,999.95••••Aquapac Camcorder HousingsTested for use to a depth of 15’ (4.5m).Protect your barrel camcorder from the elements at the beach and during activities such as swimming, kayak-ing, skiing, fishing, sailing, snorkel-ing or diving. Excellent image quality through the ultraclear optical quality LENZFLEX material#AQUA461 for Barrel Camcorders $119.95#AQUA471 for Palm Camcorders $119.95800.947.1175 | 212.444.6675Quick Dial: 821Underwater VideoBonica, ikelite, Sea & Sea Housings & Accessories291Books & DVDs About Underwater VideoBook: Underwater Digital Video Made Easy by Steven M. Barsky, Lance Milbrand, and Mark Thurlow#HAUWDVME $23.95DVD: Your Guide to Creating Underwater Video By Annie Crawley#ANYGUV $39.95Underwater Video Basics by Steve Miller#24UVWBDVD $29.95Pro Electronic Underwater HousingVX-S1/VX-S2 HousingA large folding mirror reflects the camcorder’s LCD screenDesigned for multiple camcorder models, require a specific camera base Depth rating: 200 ft (60m)Infrared control grip switches easily between video and still captureIncludes: 0.6x wide conversion lensLeak detector alerts you to any accidental moisture in the housing Underwater microphone captures sounds to accompany your video Pressure release valve ensures that excess air pressure is released #SEVXS1 VX-S1 for Sony HDR-HC3/DCR-DVD505/UX5/ UX7/ HC7 $1,549.95#SEVXS2 VX-S2 for Sony HDR-UX1/HDR-SR1 $1,549.95#SEBSHDRUX5 Base for Mounting Sony HDR-UX5/ HDR-UX7 $179.95#SEBSHDRHC7 Base for Mounting Sony HDR-HC7 $174.95#SEBSHDRHC3 Base for Mounting Sony HDR-HC3 $149.95#SEBSDCRDVD50 Base for Mounting Sony DCR-DVD505 $149.95#SEBSHDRUX1 Base for Mounting Sony HDR-UX1 / HDR-SR1 $149.95•••••••• Video HousingsDepth:20’/tested @ 60’ • Optical quality, scratch-resistant lensAdjustable pause/record mechanism Incredibly strong polycarbonate hull #EPE Elite: Fits most cameras within these dimensions: (HWD) 5 x 5 x 8.5” $268.95#EPS Sport: Fits most cameras within these dimensions: (HWD) 5 x 5 x 6.5” $268.95#EPPHD Pro HD: for the Sony HDR-FX1 $398.95#EPPV1 Pro V1: for the Canon GL-1 , Canon GL-2, and Panasonic AG-DVX100 $368.95#EPPV2 Pro V2: for the Sony DCR-vx1000/2000 $388.95#EPPV3 Pro V3: for the Sony DCR-PD150 and Sony DCR-vx2100 $388.95••• Snapper Dive DV,Digital Camera & HousingCamera Features:Shoot video or 5.0 MP digital stills2.4” LCD Monitor • Built-in Video light and flash 3x Optical zoom • 4X digital Zoom Use SD cards to 4 GB Digital stabilizerSnapper Skin: Protects camera if housing floods, depth rated to 12’ by itselfPolycarbonate housing: Depth rated to 180’Easy to use buttons #BOSDDVUBP $630.95#BOSDDVHHB Snapper Dive DV Camera with Water-tight Hard Travel Case $693.95•••••••• Camcorder HousingsMolded of Corrosion-Free Polycarbonate and Operates Safely to 200 FeetProvides Full View Camcorder Info, Control FunctionsQuad-Seal Camera Controls Includes Special Viewfinder Enhancement DeviceWeighted for Near Neutral Buoyancy Dimensions 4.75 x 6 x 11” Weight 9 lbs USAMany new Camcorders Supported Call #IK6039.05 Sony HDR-HC5 $1,199.95#IK6039.07 Sony HDR-HC7 $1,199.95#IK6038.82 Sony SR32, SR42, SR52, SR62, SR72, SR82 $989.95#IK6038.83 Sony SR190, SR200, SR290, SR300 $989.95#IK6038.24 Sony DCR-HC28, HC27E $694.95#IK6038.90 Sony HDR-SR1 $989.95#IK6039.11 Sony HDR-UX1 $989.95#IK6039.03 Sony HDR-HC3 $1,094.95#IK6039.01 Sony HDR-HC1 $1,099.95#IK6037.14 Sony PD170, VX2100 $1,159.95#IK6070 Canon HV10 $799.95#IK6045 Canon ZR-500, 600, 700 $659.95#IK6046 Canon ZR850,830,800 $699.95#IK6042 Canon GL-2 $1,169.95#IK6014.07 JVC MG-130, 133, 134, 135, 150, 155, 175, 255, 275 $699.95#IK6014.04 JVC-MG77 $643.95••••••• Camcorder & Housing Kits#IK6038.90K Sony HDR-SR1 with 6038.90 housing $2,449.95#IK6039.11K Sony HDR-UX1 with 6039.11 housing $1,549.95#IK6039.03K Sony HDR-HC3 with 6039.03 housing $2,294.95#IK6037.14K Sony DCR-VX2100 with 6037.14 housing $3,269.00#IK6070CHV10K Canon HV10 with 6070 housing $1,449.95#IK6014.08J VC GZ-MG255 with 6014.07 housing $2,294.95Video LightLX-33Light intensity controller allows you to lower the light intensity • LED battery indicator flashes red when battery power gets low3200° kelvin color temperature /4000° kelvin with color enhancer filterBurn Time: 60 Minutes at full power • 70° light coverage Built in Lithium-ion battery • Depth Rated to 200’ (60m)#SELX33VL $674.95•••• MT-09 Video LightAluminum casing that provides corrosion resistance Quartz-Halogen lamp that is switchable from 25 to 50W.Lithium-ion Polymer battery gives you a continuous burn time of 45 minutes on full power 80° even lighting coverage#BOVLK MT-09 25/50W Quartz-Halogen Video Light w/Tray and Arm $589.95#BOVL MT-09 25/50W Quartz-Halogen Video Light Head Only $499.95#BOVLCK Snapper Dive DV w/MT-09 Light w/ Tray/ Arm Hard Tr Case $1,298.95•••• Pro Video Lite III KitsLite Kits with Smart ChargerKits Include: Ball Joint Mounting Arm, Battery Pack, PRO/SPD Smart Charger, Cable with In-line Switch 50wDepth Rated to 300’ (90m)Burn Time: 55 Minutes • 3400°K #IK6341.55 $579.95100wDepth Rated to 300’ (90m) • Burn Time: 25 Minutes • 3400°K #IK6341.05 $579.95•••292Night VisioN VideoAstroScope Night Vision Video9350XL-3PRODesigned for the Canon XL1/1S/XL2/XL-H1 Series, standard and high-definition model camcorders. Utilizing Canon’s 20x zoom lens enables long-range surveillance and evidence capture. This system permits you to define your system even more by taking advantage of the vast array of Canon quality EOS EF still imaging lenses, with the addition of Canon’s EF Lens Adapter. (B&H #CAEFAXL1)Intensifier (CIU) Module Powered by the CamcorderMaintains all Camera Functions Including Image Stabilization 9350XL-3PRo system includes:Gen III Common Module Central Intensifier Unit • Back Body Adapter (BBA)Front Lens Adapter (FLA) • Simple “Start Here Card” • Soft-Sided Drawstring Lens Bag • Lens Cleaning Cloth #ASNVACXL (914657) $5,849.95••••9323B ENG9323B-3N for ENG/EFP 2/3” B-4 (Sony-Type) Bayonet Mountsystems includes:Gen III Thin Film Image IntensifiersSupports 2/3” Cameras with B-4 (Sony-Type) Bayonet Mount Intensifier module powered directly from host camera Permits the use of all standard optics Soft-Sided Drawstring Lens Bag Lens Cleaning ClothSupport for High-Definition (HD) Models #ASNVABENG (914415)$8,798.95•••••••9350CCD-3PROfor C -mount CCTV Camera Night Vision AdapterIf covert or overt surveillance are your requirements, this system with the common module Gen III Central Intensifier Unit allows you advanced night vision with significant detail from any C-mount camera.C-Mount systems includes:Gen III Central Intensifier UnitC-Mount Front Lens Adapter (FLA-C)C-Mount Back Body Adapter (BBA-C)#ASCMCA (914739) $5,804.95•••AstroScope 9350BRAC systemsThe AstroScope 9350BRAC systems are designed for video camcorders with a “fixed” (non-removable) lens. They require an optional standard C-mount objective lens, per your intended requirements for high performance.9350BRAC systems include:Gen III Central Intensifier Unit Module (Powered by AAA Batteries)Custom-Designed Relay Lens • Camera Platform Bracket with Standard 1/4” x 20 Tripod Mount • Eyepiece Adapter (EPA) with Cold Shoe Accessory Adaptor • C-Mount Front Lens Adaptor (FLA-C) • Simple “Start Here Card”Standard AAA Batteries • Lens Cleaning Cloth#ASNVBCGL2 9350BRAC-GL2-3PRO for Canon GL2$5,399.95#ASNVBSPD150 9350BRAC-PD-3PRO for Panasonic DSR-PD150 and DSR-PD170$5,399.95#ASNVBPAGHVX2 9350BRAC-HVX-3PRO for Panasonic AG-HVX200$5,800.00#ASNVBSHDRSR1 9350BRAC-SR1-3PRO for Sony HDR-SR1$5,800.00•••#ASNVBPAGDVX1 9350BRAC-DVX-3PRO for Panasonic AG-DVX100/A/B$5,800.00#ASNVBSHVRA1U 9350BRAC-A1-3PRO for Sony HVR-A1U $5,800.00#ASNVBCXHG1 9350BRAC-XHG1-3PRO for Canon XH-G1 $5,800.00#ASNVBSHVRZ1U 9350BRAC-Z1-3PRO for the Sony HVR-Z1U $5,399.95800.947.1175 | 212.239.6675Quick Dial: 821Night VisioN VideoB.E. Meyers & Co. Night Vision Video293Prowler 4300iMulti-purpose Gen. 3 Pocket ScopeThird Generation Gen III+ Image Intensifier with IR illuminator+2/-6 Dipodic Adjustment • Operates on (1) CR123 battery or (1) AA battery #BE4300i $2,994.95••745A Camcorder (Fixed-Lens) SystemsKits Include: Camcorder Relay and Designated Camcorder BracketBE745A-GL (745A-GL-2) f/Canon GL-1 and GL-2$949.95BE745A-XH (745A-XH-A1/XH-G1) f/Canon XH-A1 and XH-G1 $949.95BE745A-A1U (745A-A1U) f/Sony HVR-A1U $949.95BE745A-V1U 745A-V1U) f/Sony HVR-V1U $949.95BE745A-Z1U (745A-Z1U) f/Sony HVR-Z1U$949.95BE745A-VX2100 (745A-PD170/745A-VX2100) f/Sony DCR-VX2100/DSR-PD170 $949.95BE745A-SR1 (745A-SR1) f/Sony HDR-SR1$949.95BE745A-HVX200 (745A-HVX200) f/Pansonic AG-HVX200$949.95B.E. MYERS 51Laser IlluminatorIt features adjustable beam angle from 0.1 to 8.6°, 20 hours of continuous run time on a single CR123A battery, and has a standard 1/4x20” tripod type mount.#BE51 $1,994.95B.E. MYERS 703Night Vision CCTV Relay Lens AdapterThis CCTV Relay Lens allows you to install anyProwler Scope on a CCTV camera. Simply replace your standard relay lens with this lens and install the assembly onto your CCTV camera.#BE703 $794.95745-B1 Night Vision SystemsCanon XL Series Night Vision Camcorders kitThe 745B-1 series adapts to Canon XL series (interchangeable-lens) camcorders. The 745B-1 includes the relay with designated camcorder adapting bracket mount. The image above illustrates the 745B-1 together with the (optional) Prowler scope, which has a C-mount front and 50mm lens. To adapt the Canon 6x, 16x, and 20x video lenses requires the optional 709A-Xl adapter ring#BE745B1XL for CanonXL-1/1S/XL-2/XL-H1$2,594.95 B.E. MYERS Night Vision Accessories#BE709A-XL Canon Video XL Series Lens Adapter #BE709A-C Lens Adaptor for 35mm Canon Lenses #BE709A-N Lens Adaptor for 35mm Nikon Lenses#BE709A-M Lens Adaptor f/35mm Minolta Lenses#BE709A-P Lens Adaptor f/35mm Pentax Lenses #BE704 3” Extended Viewer for the Prowler—When Prowler is used as a Scope Only $494.95704。

InGaN_GaN多量子阱势垒层掺In工艺及其应用研究_吕拴军

InGaN_GaN多量子阱势垒层掺In工艺及其应用研究_吕拴军

目录
目录
第一章 绪论 ......................................................................................................................... 1 1.1 引言 ......................................................................................................................... 1 1.2 LED 发光二极管的优势 ....................................................................................... 1 1.3 LED 的发展历程及国内外研究比较 .................................................................. 2 1.4 本文研究的目的与意义 ....................................................................................... 4 第二章 GaN 的有关性质与材料的外延生长 ................................................................... 5 2.1 GaN 材料的基本性质 ........................................................................................... 5 2.1.1 GaN 的晶体结构 ........................................................................................ 5 2.1.2 GaN 的化学性质 ........................................................................................ 5 2.1.3 GaN 的电学性质 ........................................................................................ 6 2.1.4 GaN 的光学性质 ........................................................................................ 6 2.2 GaN 材料的生长 .................................................................................................... 6 2.2.1 衬底的选择 ................................................................................................ 6 2.2.2 外延方法的选择 ........................................................................................ 8 2.2.3 GaN 基 LED 关键材料的外延生长 ....................................................... 11 2.2.4 GaN 基 LED 外延生长小结 .................................................................... 13 第三章 LED 基本特性简介 ............................................................................................. 15 3.1 LED 发光的基本原理 ......................................................................................... 15 3.2 LED 的主要特性 .................................................................................................. 16 3.2.1 LED 的伏安( V-I)特性 ........................................................................ 16 3.2.2 LED 的光谱特性 ...................................................................................... 17 3.2.3 LED 的热特性 .......................................................................................... 18 第四章 LED 发光效率的影响因素及提高措施 ............................................................ 19 4.1 影响 LED 发光效率的主要因素 ....................................................................... 19 4.2 提高发光效率的各种有效手段 ........................................................................ 20 4.2.1 内量子效率提高的措施 ......................................................................... 21 4.2.2 外量子效率提高的措施 ........................................................................... 23 第五章 GaN 基 LED 的多量子阱垒层掺 In 研究 ......................................................... 29 5.1 多量子阱垒掺 In 实验部分 ............................................................................... 29 5.1.1 实验准备 .................................................................................................. 29 5.1.2 实验样品制备 .......................................................................................... 30 5.1.3 实验测试手段 ........................................................................................... 31 5.2 多量子阱垒层掺 In 实验数据与讨论 ............................................................... 32

势垒硅掺杂对GaN基LED极化电场及其光电性能的影响

势垒硅掺杂对GaN基LED极化电场及其光电性能的影响

势垒硅掺杂对GaN基LED极化电场及其光电性能的影响张正宜;王超【摘要】势垒硅掺杂对InGaN量子阱中的电场及LED器件的光电性能有着重要的影响.采用6×6 K·P方法计算了不同势垒硅掺杂浓度对量子阱中电场的变化,研究表明当势垒硅掺杂浓度>1e18 cm-3时,阱垒界面处的电场强度会变大,这主要是由于硅掺杂浓度过高导致量子阱中界面电荷的聚集.进一步发现随着势垒掺杂浓度的升高,总非辐射复合随之增加,其中俄歇复合增加,而肖克莱-霍尔-里德复合随之减少,这是由于点陷阱的增大形成了缺陷能级.电流电压曲线表明势垒掺杂可有效改善GaN基LED的工作电压,这归于掺杂浓度的提高改善了载流子的传输特性.当掺杂浓度为1e18 cm-3时,获得了较高的内量子效率,这主要是由于适当的势垒掺杂降低了量子阱中界面电荷的损耗.【期刊名称】《发光学报》【年(卷),期】2018(039)010【总页数】6页(P1445-1450)【关键词】势垒;量子阱;极化电场;光电性能【作者】张正宜;王超【作者单位】山西交通职业技术学院信息工程系, 山西太原 030031;兰州交通大学光电技术与智能控制教育部重点实验室,甘肃兰州 730070【正文语种】中文【中图分类】TN321.81 引言InGaN半导体材料具有纤锌矿晶体结构和直接能隙结构,通过改变In原子在InGaN中的比例,可实现从0.7 eV到6.2 eV的能隙调控,从而可以在整个可见光范围内通过电致发光[1-2]。

InGaN LED被广泛应用到通用照明和显示领域。

对于氮化物发光二极管器件来说,InGaN多量子阱结构是其最重要的组成部分。

目前,对于InGaN多量子阱的材料结构设计及机理方面做了大量的研究工作,其中,包括量子阱p型掺杂、梯度量子阱、三角量子阱的设计等改变量子阱内的极化电场,采用lnGaN或者InAlGaN作为势垒材料来调节多量子阱中的应力[3],对InGaN多量子阱垒层掺杂Si来改善器件的光学及电学性能[4-6]。

半导体激光器的发展及其应用

半导体激光器的发展及其应用

半导体激光器的发展及其应用半导体激光器是将电能转变为光能的一种电光转换器件。

它是一种高效、紧凑、可调谐、易于集成和操作的光源。

半导体激光器的发展历程可以追溯到20世纪60年代初期的研究工作,经过几十年的发展,目前已经广泛应用于通信、医疗、显示、材料加工等领域。

半导体激光器最早的发展可以追溯到20世纪60年代初,当时最早的研究工作主要集中在氮化铟(InGaN)材料的研究中。

1970年代,砷化镓(GaAs)和磷化铟(InP)材料得到了广泛使用,并取得了重要的突破。

1980年代初,氮化镓和锗(Ge)等新材料的研究成果使得半导体激光器的性能得到了显著提高。

在半导体激光器的发展过程中,一些关键技术被不断突破。

如量子阱(Quantum Well)结构的引入,使半导体激光器的阈值电流减小、发光效率增加,达到了单模操作和高功率输出的要求。

此外,多量子阱(Multiple Quantum Well)和垂直腔面发射激光器(VCSEL)等新的结构和工艺,也极大地拓展了半导体激光器的应用领域。

半导体激光器在通信领域得到了广泛应用。

由于半导体激光器具有高效、紧凑、可调谐的特点,它已经成为光纤通信系统中的关键部件。

其发展逐渐从波长1310nm向波长1550nm转变,因为在这个波段下,半导体激光器的光纤耦合效率更高,损耗更小。

此外,半导体激光器还可以通过外部调制实现高速数据传输,使其在高速光通信中得到广泛应用。

除了通信领域,半导体激光器还在医疗领域发挥着重要作用。

它被广泛应用于眼科激光手术中,如角膜屈光手术和白内障手术等。

半导体激光器的高能量密度和可调谐波长特性,使其成为进行高精度眼科手术的理想工具。

此外,半导体激光器还应用于显示、材料加工、光存储和生物传感等领域。

在显示领域,半导体激光器的小尺寸和高亮度特点,使其成为液晶显示器背光源的重要选择。

在材料加工领域,半导体激光器的高功率和可调谐波长特性,使其在激光切割、激光焊接和激光打印等领域得到广泛应用。

南大宽禁带半导体实验室

南大宽禁带半导体实验室

禁带半导体紫外探测器紫外探测技术在国防预警与跟踪、电力工业、环境监测及生命科学领域具有重要的应用,其核心器件是高性能的紫外光电探测器。

基于半导体材料的固态紫外探测器件具有体重小、功耗低、量子效率高、和便于集成等系列优势。

以碳化硅(SiC)和III族氮化物为代表的宽禁带半导体是近年来国内外重点研究和发展的新型第三代半导体材料,具有禁带宽度大、导热性能好、电子饱和漂移速度高以及化学稳定性优等特点,用于制备紫外波段的光探测器件具有显著的材料性能优势。

我们实验室在宽禁带半导体紫外探测器领域具有较强的实力。

率先在国内实现4H-SiC基紫外雪崩单光子探测器;分别研制成功高增益同质外延GaN基紫外雪崩光电探测器、国际上领先的高增益AlGaN基日盲雪崩光电探测器、具有极低暗电流的AlGaN基MSM日盲深紫外探测器、高量子效率AlGaN基PIN日盲深紫外探测器、以及现有芯片面积最大的AlGaN基日盲深紫外探测器,相关结果多次获得国际主流媒体的跟踪报导。

目前,我们的工作重点是研制高灵敏度宽禁带半导体紫外探测器,包括:紫外单光子探测器件结构设计和物理分析,紫外单光子探测线阵和日盲紫外探测阵列制备。

宽禁带半导体功率电子器件针对未来高效电力管理系统、电动汽车和广泛军事应用大容量化、高密度化和高频率化的要求,将宽禁带半导体材料应用于高档次功率电子器件可以有效解决当今功率电子器件发展所面临的“硅极限”(silicon limit)问题,将大幅度降低电能转换过程中的无益损耗,在各领域创造可观的节能空间。

宽禁带Ⅲ族氮化物半导体具有强击穿电场、高饱和漂移速度、高热导率和良好化学稳定性等系列材料性能优势,是制备新一代功率电子器件的理想材料。

这一研究方向近年来成为国际上继GaN基发光二极管和微波功率器件之后的新兴研究热点。

我们小组在这一研究领域具有较好的基础,已经研制成功AlGaN/GaN平面功率二极管,其击穿电压大于1100V,功率优值系数高达280MW/cm2。

LED术语解释

LED术语解释

【LED术语】光通量/光强/亮度/照度(luminous flux/luminous intensity/luminance/illuminance)光通量是表示光源整体亮度的指标。

单位为lm(流明)。

在表示照明光源的明亮程度时经常使用。

是参考人眼的灵敏度(视觉灵敏度)来表示光源放射光亮度的物理量。

具体数值为各向同性的发光强度为1cd(堪德拉)的光源在1sr(立体弧度)的立体角内放射的光通量为1lm。

此处的sr为立体角的单位,表示从球面向球心截取的面积为半径(r)的2次方(r[size=+0]2)的圆锥体的顶角。

光强是表示光通量立体角密度的指标。

单位为cd。

多在表示显示用LED等的眩光时使用。

其定义为:发射540×1012Hz(波长555nm)频率单色光,在指定方向的光线发射强度为1/683W/sr的光源,在该方向的光强就定义为1cd。

亮度是表示从光源及反射面和透射面等二次光源向观测者发出的光的强度指标。

单位为cd/m2。

与光通量一样,是结合人眼的灵敏度表示的物理量。

大多在表示液晶面板和PDP等显示器画面的亮度时使用。

照度是表示照射到平面上的光的亮度指标。

单位为lx(勒克司),有时也标记为lm/m2。

是指光源射向平面状物体的光通量中,每单位面积的光通量。

用于比较照明器具照射到平面上的明亮程度。

【LED术语】GaN(gallium nitride)由镓(Ga)和氮(N)构成的化合物半导体。

带隙为 3.45eV(用光的波长表示相当于约365nm),比硅(Si)要宽3倍。

利用该特性,GaN主要应用于光元件。

通过混合铟(In)和铝(Al)调整带隙,所获得的LED和蓝紫色半导体激光器等发光元件已经实用化。

GaN由于带隙较宽,可产生蓝色和绿色等波长较短的光。

蓝色LED和蓝紫色半导体激光器,采用了在GaN中添加In形成的InGaN。

除了带隙较宽以外,GaN还具有绝缘破坏电场高、电场饱和速度快、导热率高等半导体材料的优异特性。

中村修二

中村修二

这篇综述的题目是:InGaN基蓝光二极管和激光二极管中结构缺陷的作用。

【The Roles of Structural Imperfections in InGaN-Based Blue Light—Emitting Diodes and Laser Diodes,Shuji Nakamura,14 AUGUST 1998 VOL 281 SCIENCE )】摘要中似乎没有什么特别的强调,大意如下:采用InGaN有源层取代GaN的有源层,从而获得了能够辐射琥珀色、绿色、蓝色以及紫外光颜色的高效率发光二极管。

InGaN有源层中的铟(In)组份涨落导致的局域能态与高效率发光有关。

虽然存在大量穿透位错(threading dislocations),但是依然取得了每瓦5到30流明的蓝光和绿光的InGaN量子阱结构的发光二极管。

穿透位错源于GaN和蓝宝石衬底之间,在蓝宝石衬底上外延生长GaN可以减少位错数,其后在有SiO2掩膜区上的GaN层上生长的InGaN多量子阱结构激光二极管寿命超过1万小时,位错使得激光二极管的阈值电流密度提高了。

(High efficiency light emitting diodes emitting amber, green,blue, and ultraviolet light have been obtained through the use of an InGaN active layer instead of a GaN active layer. The localized energy states caused by In composition fluctuation in the InGaN active layer are related to the high efficiency of the InGaN-based emitting devices. The blue and green InGaN quantum-well structure light-emitting diodes with luminousefficiencies of 5 and 30 lumens per watt, respectively, can be made despite the large number of threading dislocations (13 108 to 1 3 1012 cm22 ). Epitaxially laterally overgrown GaN on sapphire reduces the number of threading dislocations originating from the interface of the GaN epilayer with the sapphire substrate. InGaN multi-quantum-well structure laser diodes formed on the GaN layer above the SiO2 mask area can have a lifetime of more than 10,000 hours. Dislocations increase the threshold current density of the laser diodes.)蓝光究竟有什么用处,为什么如此吸引人?在正文的前言中,大致描述如下:亮度和耐用性使得发光二极管成为显示应用中的理想光源,半导体激光二极管在很多场合下,如从光通讯到CD光存储等方面得到了广泛的应用。

无机半导体LED高被引论文

无机半导体LED高被引论文

第1 条,共10 条标题: Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes来源出版物: JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAP卷: 38 期: 7A 页: 3976-3981出版年: JUL 1999在Web of Science 中的被引频次: 439被引频次合计: 445入藏号: WOS:000083278000003ISSN: 0021-4922IDS 号: 248MD--------------------------------------------------------------------------------第2 条,共10 条标题: White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors来源出版物: IEEE PHOTONICS TECHNOLOGY LETTERS 卷: 15期: 1页: 18-20出版年: JAN 2003在Web of Science 中的被引频次: 285被引频次合计: 305入藏号: WOS:000180371700006ISSN: 1041-1135IDS 号: 634ZE--------------------------------------------------------------------------------第3 条,共10 条标题: Blue light-emitting diode based on ZnO来源出版物:JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS 卷: 44 期: 20-23 页: L643-L645出版年: 2005在Web of Science 中的被引频次: 257被引频次合计: 261入藏号: WOS:000229947100009ISSN: 0021-4922IDS 号: 937SY--------------------------------------------------------------------------------第4 条,共10 条标题: Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm(2)来源出版物:APPLIED PHYSICS LETTERS 卷: 91 期: 24 文献号: 243506出版年: DEC 10 2007在Web of Science 中的被引频次: 229被引频次合计: 232入藏号: WOS:000251678700078ISSN: 0003-6951IDS 号: 241TM--------------------------------------------------------------------------------第5 条,共10 条标题: InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode来源出版物: JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTER 卷: 41 期: 12B 页: L1431-L1433出版年: DEC 15 2002在Web of Science 中的被引频次: 216被引频次合计: 223入藏号: WOS:000182826700005ISSN: 0021-4922IDS 号: 677UQ--------------------------------------------------------------------------------第6 条,共10 条标题: Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film来源出版物: ADV ANCED MATERIALS 卷: 21 期: 27 页: 2767-+出版年: JUL 20 2009在Web of Science 中的被引频次: 213被引频次合计: 216入藏号: WOS:000268607900004ISSN: 0935-9648IDS 号: 478SF--------------------------------------------------------------------------------第7 条,共10 条标题: Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {1122} GaN bulk substrates来源出版物: JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS 卷: 45 期: 24-28 页: L659-L662出版年: JUL 2006在Web of Science 中的被引频次: 208被引频次合计: 207入藏号: WOS:000239640700016ISSN: 0021-4922IDS 号: 071YV--------------------------------------------------------------------------------第8 条,共10 条标题: InGaN-GaN multiquantum-well blue and green light-emitting diodes来源出版物: IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS卷: 8 期: 2 页: 278-283出版年: MAR-APR 2002在Web of Science 中的被引频次: 207被引频次合计: 211入藏号: WOS:000175399500011ISSN: 1077-260XIDS 号: 548QF--------------------------------------------------------------------------------第9 条,共10 条标题: On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers来源出版物: APPLIED PHYSICS LETTERS 卷: 93 期: 12 文献号: 121107出版年: SEP 22 2008在Web of Science 中的被引频次: 161被引频次合计: 156入藏号: WOS:000259799100007ISSN: 0003-6951IDS 号: 356SY--------------------------------------------------------------------------------第10 条,共10 条标题: Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature AlN interlayers and in situ SixNy masking来源出版物: APPLIED PHYSICS LETTERS 卷: 80 期: 20 页: 3670-3672出版年: MAY 20 2002在Web of Science 中的被引频次:135被引频次合计:130入藏号: WOS:000175564100002ISSN: 0003-6951IDS 号: 551LX。

LED的量子效率和光谱特征

LED的量子效率和光谱特征

生长方法:MOCVD 样品质量:
高分辨X射线衍射仪(HRXRD) 用于评估该结构的界面质量、 结构参数。高级次的卫星峰被 清楚地观察到----反映了一个较 好的周期性。
AlGaN覆盖层(0.1μm)
12个周期的MQW (3 nm In0.18Ga0.82N势阱
4.5nm GaN势垒) GaN缓冲层(1.8μm)
Appl. Phys. Lett. 73,1370 (1998).
【论文概要】
InGaN/GaN MQWs 的PБайду номын сангаас光谱的温度依赖性:
随着温度的增加,峰值能量Ep发生红移 即所谓的 “S-shaped” 现象。
蓝移
红移 ,
当Ep红移时,光谱变窄;当Ep蓝移时,光谱变宽。 较高的温度导致了InGaN相关PL的淬灭。
LED的量子效率
常用的提高量子效率的主要方法
-----提高提取效率
五、芯片键合技术
对于GaAs和蓝宝石衬底,它们的导热性能都较差。为了更有效的散热和降 低结温,可通过减薄衬底或去掉原来用于生长外延层的衬底,然后将外延层 键合转移倒导电和导热性能良好热导率大的衬底上,如铜、铝、金锡合金、 氮化铝等。键合可用合金焊料如AuSn、PbSn、In等来完成(Si的热导率也比 GaAs和蓝宝石都好) 。
LED的量子效率
常见的分析、测量量子效率的方法(3)
-----变温PL谱测试
实例:
300 80 50
10 K
根据数据分析得出300K时的内 量子效率为14%。图中的拐点
出现在50-80 K附近。
(注:前页及本页内容参考: APL. 73, 1370 (1998),及与曲博士、朱 博士的相关交流)
LED的量子效率

白光LED色温的非线性动态预测模型

白光LED色温的非线性动态预测模型

白光LED色温的非线性动态预测模型周锦荣;陈焕庭;周小方【摘要】LED灯的色温受到注入电流和结温变化的同步影响.通过分析实验系统采集到的HL001WY型GaN基白光LED在不同管脚温度和注入电流作用下色温变化的实验数据,利用曲线拟合与趋势回归方法建立色温、注入电流以及管脚温度三者之间动态变化的非线性预测模型,并对非线性模型的系数采用二次回归来补偿模型系数引起的预测值波动,提高模型计算精度.抽样测验和模型计算对比表明,利用该方法建立的动态非线性色温控制模型得到的计算数值与实验测量值的相对误差小于1.5%.【期刊名称】《发光学报》【年(卷),期】2016(037)001【总页数】6页(P106-111)【关键词】非线性动态模型;色温;光电热转换;二次回归【作者】周锦荣;陈焕庭;周小方【作者单位】闽南师范大学物理与信息工程学院,福建漳州363000;闽南师范大学物理与信息工程学院,福建漳州363000;闽南师范大学物理与信息工程学院,福建漳州363000【正文语种】中文【中图分类】TN312+.8新型高效环保型LED电光源与传统的白炽灯和荧光灯相比,具有电光转换效率高、寿命长、色温可调等优势,广泛用于照明、植物培育、景观陈列和显示等领域。

LED亮度和色温等光学特性、光电转换效率不仅和光源(LED)材料有关,也与驱动电路的注入电流和LED结温有关。

注入电流和结温是影响LED光谱、色温等光电特性的主要因素,电流以及结温的动态变化直接影响到系统光学颜色的变化规律。

GaN基LED芯片的发光光谱变化的本质是载流子和温度对器件能带及载流子态密度分布的影响,其峰值波长的变化同时受到电流以及温度效应作用[1-3],峰值波长偏移将引起色温明显的非线性变化[4-5]。

通过控制LED光源的颜色可以更好地控制专用光源的光谱变化特性,提供色温在实际应用中的调控功能[6-7]。

LED的色温可以通过逐点法、曲线拟合法等方法进行计算[8],如McCamy通过三次曲线方程对相关色温与色坐标的关系进行拟合,得出光源的相关色温(TC)公式[9]。

LED专有名词解释

LED专有名词解释

LED專有名詞AlGaN 氮化鋁鎵: 其特性為band gap 大於GaN 所以一般其function 為block layer 降低電子速度提高電子電洞復合率進而提高光產出效率。

Ambient[Lv](輝度) 從某一指定方向所觀察到單位投影面積上的發光強度,也可以表示物體或光源等的光輝程度。

也就是說單位正射影面積內的光度。

BEOL, Back-End-of-the-Line(後段製程) BEOL 指Chip 後段製程,後段製程為依照電性將相同光電特性規格(同一bin) 放在同一個blue tape 因為排列為方形所以產出又稱為方片。

CB layer CB (current block 縮寫) 其主要功能為阻檔finger 正下方通過電流而發光,此層可以幫助提升光取出效率, 缺點operation volatage 會上升。

Chip 晶粒, 在磊晶上製作出電極以及切出一顆顆元件其元件稱為晶粒。

Direcrivily Characteristics(指向特性)光度的空間分佈,為一相對值。

Domain Wavelength[WD](主波長)簡單的說就是人類視覺上的波長。

E-Gun Electron Gun 是指電子槍,這是一個非正式的稱呼,是指利用電子槍產生電子後加熱蒸鍍源,所以應該算是蒸鍍一種,目前ITO 與Pad metal 接是用E-gun機台進行鍍覆。

Electric Thermal Cooler[ETC](電冷卻溫度控制)將電能轉換為溫度差的一種冷卻方式。

Electroluminescent[EL] (電致發光)電能直接轉變為可見光而不產熱的發光技術。

Epi 磊晶, Epitaxy 縮寫一般通稱在單一結晶方向上的基板wafer (在blue LED 為單一方向氧化鋁基板),再長上有方向性排列的薄膜(在Blue LED 中是為多層的GaN)。

EPI wafer 長在基板上的EPI 一般稱為Epi wafer Epitaxy 同Epi.Etching 蝕刻: 配合黃光製程定義出需要移除部份利用蝕刻製程將其移除,一般有分乾式蝕刻如MESA etching 利用ICP 另一個為濕式蝕刻如ITO etchingFEOL, Front-End-of-the-Line(前段製程) FEOL 指Chip 前段製程,前段製程包含5 pep Chip process 以及研磨切割,此段產出為大圓片。

LED专有名词解释

LED专有名词解释
FEOL, Front-End-of-the-Line
(前段製rrent[If] (順向電流)
Forward Voltage[Vf] (順向電壓)
GaN長在基板上的EPI一般稱為Epi wafer同Epi.蝕刻:配合黃光製程定義出需要移除部份利用蝕刻製程將其移除,一般有分乾式蝕刻如MESA etching利用ICP另一個為濕式蝕刻如ITO etching FEOL指Chip前段製程,前段製程包含5 pep Chip process以及研磨切割,此段產出為大圓片。薄膜沉積;一般是利用PVD (physical vapor deposition) or CVD (chemical vapor deposition)沉積出薄膜(thin film)在規定的量測條件下,對應規定之順向電壓值的電極電流。在規定的量測條件下,對應規定之順向電流值的電極電壓或電極間電壓。氮化鎵:在LED磊晶中依照function分作1. p-type GaN (Mg doped) 2.主動
光度的空間分佈,為一相對值。Ambient[Lv](輝度) BEOL, Back-End-of-the-Line (後段製程) CB layer Chip Direcrivily Characteristics
(指向特性)
Domain Wavelength[WD]
(主波長)簡單的說就是人類視覺上的波長。
BEOL指Chip後段製程,後段製程為依照電性將相同光電特性規格(同一bin)
放在同一個blue tape因為排列為方形所以產出又稱為方片。
CB (current block縮寫)其主要功能為阻檔finger正下方通過電流而發光,此
層可以幫助提升光取出效率,缺點operation volatage會上升。晶粒,在磊晶上製作出電極以及切出一顆顆元件其元件稱為晶粒。

何谓发光二极体

何谓发光二极体

何謂發光二極體一個典型的發光二極體,包含晶粒、封裝體、金線、支架等,主要發光的部分則是封裝體裡面的晶粒。

封裝體的主要成分是環氧樹酯,用來固定支架,且可以把封裝體的頂端製成可聚光的透鏡,以控制LED 的發光角度。

金線是把電流由支架導入發光晶粒,聚光碗杯則是把LED 發出的光線反射至上方出光,以增加發光效率。

隨著應用的不同,封裝體可以任意改變成為不同的型態。

一顆LED 的主要發光源是晶粒,而晶粒依材料不同會發出不同波長,也就是不同顏色的光。

可見光的波長範圍從400 奈米到700 奈米,依序是紫、靛、藍、綠、黃、橙、紅。

以氮化鎵LED 為例,它可以發出藍光或綠光,鋁銦鎵磷LED 則可以發出紅光、綠光或黃光。

諸如此類,可以利用材料的選擇製作出不同色光的發光二極體。

LED的發光原理LED是利用電能轉化為光能的方式發光。

發光二極體晶粒的組成材料是半導體,其中含有帶正電的電洞比率較高的稱為P 型半導體,含有帶負電的電子比率較高的稱為N 型半導體。

P 型半導體與N 型半導體相接處的接面稱作PN 接面。

在發光二極體的正負極兩端施予電壓,當電流通過時,會使得電子與電洞結合,結合的能量便以光的形式發出,依使用材料的能階高低決定發光的波長,因此就會發出不同顏色的光。

大多數的發光二極體歸類於三五族半導體,因為它們的組成元素屬於周期表中的三族及五族,三族元素如鋁、鎵、銦等,五族元素如砷、氮、磷等。

磷化鎵與鋁砷化鎵,因為亮度低,開發時間早,且內含2種或3 種元素,多稱為傳統二元或三元LED。

而鋁銦鎵磷因發光亮度較高,且由4種元素組成,多稱為四元LED。

氮化鎵材料則因為可以發出以上材料不能發出的藍光,一般另稱為氮化物LED。

LED的製作方法發光二極體主要由晶粒發光,在此以氮化鎵LED 為例,簡介其中晶粒的製作方法發光二極體是半導體材料,需要先進行磊晶成長,也就是在基板上成長P型及N型半導體。

氮化鎵LED 多成長在藍寶石基板上,成長的方法以有機金屬化學氣相沉積法(metal organic chemical -vapor deposition,MOCVD)為大宗。

GaN和InGaN多量子阱插入层的目的

GaN和InGaN多量子阱插入层的目的
barrier layer
n-pad
阱前插入低In 组分的InGaN 超薄层 阱后插入低In 组分的InGaN 超薄层
实验方案:
1. 在Si(111)面上生长100nm 厚的AlN。 T=1010℃; 2. AlN上刻蚀出条纹状沟槽,(沿 AlN (10-10方向),3um-3um,深度
2.5um; 3. 在凸起的地方继续生长AlN (或者GaN) 直到合并; 4. 合并之后在整个平面上生长LED结构。 5. HF:HNO3:CH3COOH=1:1:1 剥离Si 衬底以达到背面出光。
Improved ESD characteristic of GaN-based blue light-emitting diodes with a low temperature n-type GaN insertion layer
Enhanced Output Power in an InGaN–GaN Multiquantum-Well Light-Emitting Diode With an InGaN Current-Spreading Layer
Hole escape processes detrimental to photoluminescence efficiency in a blue InGaN multiple-quantum-well diode under reverse bias conditions
Appl. Phys. Lett. 90, 161109 , 2007
Improved Performance of GaN-Based Blue LEDs With the InGaN Insertion Layer Between the MQW Active Layer and the n-GaN Cladding Layer

氮化镓2deg发生速度饱和时电压

氮化镓2deg发生速度饱和时电压

氮化镓2deg发生速度饱和时电压1. 简介氮化镓(GaN)是一种重要的宽禁带半导体材料,具有优异的电学和光学性能。

在特定条件下,氮化镓可以形成2度偏差结构(2deg),这种结构对于一些特殊应用非常重要。

本文将探讨当氮化镓2deg发生速度饱和时的电压情况。

2. 氮化镓2deg的形成氮化镓2deg是通过在氮化镓晶体表面施加一个特定方向的外力来实现的。

这个外力会扭曲晶格结构,使得晶体表面形成一个特殊角度(通常为2度)的倾斜面。

这种倾斜面可以改变晶体内部电子结构,从而影响器件性能。

3. 氮化镓器件中的电压问题在氮化镓器件中,电压是一个关键参数。

当器件工作在低电压下时,通常会出现速度饱和现象。

速度饱和指的是载流子在电场作用下达到最大漂移速度,并且无法再继续增加。

4. 氮化镓2deg发生速度饱和时的电压当氮化镓2deg发生速度饱和时,电压也会达到一个饱和值。

这个饱和值取决于材料的特性以及器件结构。

一般来说,氮化镓2deg的电压饱和值比普通氮化镓器件要高。

5. 影响氮化镓2deg电压饱和的因素有几个因素会影响氮化镓2deg的电压饱和情况:5.1 材料特性氮化镓材料的特性对于器件性能有重要影响。

例如,杂质浓度、晶格缺陷等都会影响载流子运动速度以及电场分布,从而改变器件的电压特性。

5.2 器件结构氮化镓2deg器件的结构也会对其电压饱和情况产生影响。

例如,掺杂浓度、层结构等都可以改变载流子运动情况,进而影响电压饱和值。

5.3 温度温度是另一个重要因素。

在高温下,载流子散射增加,可能导致速度饱和现象更早发生,电压饱和值也会受到影响。

5.4 其他因素除了上述因素外,还有其他一些因素可能会对氮化镓2deg的电压饱和情况产生影响,例如应力、界面效应等。

这些因素的具体影响需要进一步研究和实验验证。

6. 应用领域氮化镓2deg器件在许多领域有着广泛的应用。

其中包括:•高功率电子器件:氮化镓2deg可以提供更高的工作电压,适用于高功率应用,如功率放大器、开关等。

俄歇复合、电子泄漏和空穴注入对深紫外发光二极管效率衰退的影响

俄歇复合、电子泄漏和空穴注入对深紫外发光二极管效率衰退的影响
further increases the electron leakage level
[9]
. The
process of Auger recombination is that an electron
recombines with a hole and transfers the recombina-
2. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China)
∗Corresponding Authors, E-mail: chuchunshuang@ hotmail. com; zhangyh@ hebut. edu. cn
tion energy to a third carrier in the quantum wells,
which involves three-carrier participation. Therefore, Auger recombination will cause a very remark-
Hole Injection on Efficiency Droop for DUV LEDs
WANG Wei-dong1,2 , CHU Chun-shuang1,2∗ , ZHANG Dan-yang1,2 ,
BI Wen-gang1,2 , ZHANG Yong-hui1,2∗ , ZHANG Zi-hui1,2
(1. 河北工业大学电子信息工程学院 天津市电子材料与器件重点实验室, 天津 300401;
2. 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室, 天津 300401)

ZnO纳米阵列增强大功率蓝光LED出光效率的研究

ZnO纳米阵列增强大功率蓝光LED出光效率的研究

ZnO纳米阵列增强大功率蓝光LED出光效率的研究徐冰;赵俊亮;张检明;孙小卫;诸葛福伟;李效民【摘要】采用低成本的化学溶液法在大功率GaN基蓝光LED芯片上生长ZnO纳米阵列,以提高LED芯片的出光效率.通过改变生长溶液中氨水及锌离子浓度实现对纳米阵列结构形貌的可控性,进而得到不同形貌的ZnO纳米阵列.在此基础上,进一步研究纳米结构形貌对LED芯片出光性能的影响,探讨纳米结构增强LED芯片发光效率的机理.结果表明,较高密度、锥形形貌的ZnO纳米阵列更有利于增强LED芯片的出光效率.在优化的实验条件下,表面沉积ZnO纳米阵列的LED芯片比普通LED的出光效率高出60%以上,并且纳米阵列不影响LED器件的电学性能和发光稳定性.%ZnO nano-arrays were grown on high power GaN blue LED chip by low-cost chemical solution methods, which aimed to enhance the light extraction efficiency of LED chip. Various morphology was achieved by adjusting the concentration of ammonia and Zn2+ in the growth solution. With different growth solution, ZnO nano-arrays exhibited different morphologies and densities. The effect of nano-array morphology on the light extraction performance of the ZnO nano-array coated LED chip were studied. The mechanism of light extraction efficiency enhancement by nano-arrays was also discussed based on the experimental results. The result shows that ZnO nano-arrays with higher density and cone-shaped morphology are favorable for the improvement of light extraction in LED chip. ZnO nano-arrays grown at the optimum conditions can enhance the light extraction of LED chip by more than 60%. Meanwhile, ZnO nano-arrays have no significant effect on the electrical properties and electroluminescence stability of LED chip.【期刊名称】《无机材料学报》【年(卷),期】2012(027)007【总页数】5页(P716-720)【关键词】ZnO纳米阵列;大功率LED芯片;出光效率;化学溶液法【作者】徐冰;赵俊亮;张检明;孙小卫;诸葛福伟;李效民【作者单位】天津大学理学院,应用物理系,天津市低维功能材料物理与制备技术重点实验室,天津300072;天津大学理学院,应用物理系,天津市低维功能材料物理与制备技术重点实验室,天津300072;天津大学理学院,应用物理系,天津市低维功能材料物理与制备技术重点实验室,天津300072;天津大学理学院,应用物理系,天津市低维功能材料物理与制备技术重点实验室,天津300072;中国科学院上海硅酸盐研究所,高性能陶瓷和超微结构国家重点实验室,上海200050;中国科学院上海硅酸盐研究所,高性能陶瓷和超微结构国家重点实验室,上海200050【正文语种】中文【中图分类】O472半导体照明(LED)光源是近些年快速发展的一种新型固态光源, 具有微型化、高效率、长寿命[1]、无汞、色彩丰富等显著优点, 成为世界公认的“第四代绿色照明光源”, 并且LED光源的效率理论上高达50%以上[2], 有望大幅度降低照明能耗. 目前, 固态白光照明LED面临的关键问题是提高效率和降低成本. 改善白光LED效率的有效途径之一是提高InGaN基蓝光LED芯片的发光效率(外量子效率). LED的外量子效率由内量子效率和光子提取效率(出光效率)共同决定, 现在LED内量子效率可达到 80%以上[3-4]. 内量子效率的提升空间很小, 出光效率成为制约LED 发光效率的瓶颈. 目前,大多数研究采用在 LED器件出光面通过纳米加工技术形成微凸透镜或光子晶体阵列[5-6]来增强 LED芯片的出光效率. 然而, 此方法通常需要昂贵的纳米精密加工设备, 增加了LED的成本. 最近研究发现在InGaN基LED的出光面上生长ZnO纳米阵列,可以使LED的出光效率提高50%以上[7-9]. ZnO纳米阵列可以通过自组装生长而无需复杂的纳米加工工艺[10], 并且ZnO作为新型宽禁带半导体材料具有高透光率、原料成本和加工成本较低等优势, 有望成为制作高效率低成本LED光源的可靠方法. 本工作主要通过水溶液法在GaN基蓝光LED芯片上生长ZnO纳米阵列, 并通过改变生长溶液中氨水和Zn2+的浓度控制纳米阵列的形貌、尺寸及排列密度来改善芯片的出光效率.1.1 实验原料采用的化学试剂均为分析纯级, 实验原料为六亚甲基四胺(C6H2N4), 乙二醇甲醚(C3H8O2), 单乙醇胺(C2H7NO), 二乙醇胺(C4H11NO2), PEI, 丙酮(C3H6O), 乙醇(C2H5OH), 硝酸锌(Zn(NO3)2·6H2O),盐酸(HCl), 氨水(NH3·H2O).1.2 实验过程用乙二醇甲醚做溶剂配置醋酸锌与单乙醇胺的溶胶溶液, 密封后放入烘箱中加热至60℃. 先将LED芯片放置在250℃的电热板上预热, 再放入上述溶胶溶液中通过浸渍—提拉法生长一层 ZnO籽晶层. 将生长好籽晶层的 LED芯片放入由Zn(NO3)2·6H2O、HMT(六亚甲基四胺溶液体系)、氨水和 PEI组成的生长溶液中密封, 并放入烘箱中90℃加热 2 h, 生长 ZnO 纳米阵列. 生长溶液中HMT和 PEI 的浓度分别固定在 0.125 mol/L与0.0059 mol/L, 而Zn2+(Zn(NO3)2·6H2O)浓度在 0.25~0.8 mol/L范围内变化, 氨水浓度在0.33~0.48 mol/L范围内变化. 1.3 性能表征通过场发射扫描电子显微镜(FESEM, JEOL公司, JSM–6700F)观察纳米ZnO阵列的微观形貌和结构, 分析纳米阵列的直立性、尺寸与密度.LED芯片的电学性能通过 I-V特性测试表征,测试在Keithley 2400数字源表与Keithley 2015万用表上完成, 样品放置在探针台(无锡市赛更特电子设备厂生产)上, 两个探针分别接触芯片的正负极,通过探针施加电压测试. 对表面生长有ZnO纳米阵列的LED芯片, 测试之前需要用微探针将覆盖在电极上的纳米阵列刮除, 以保证探针与电极的接触.LED芯片的光谱测试通过GSI80型紫外–可见–近红外波段光纤光谱仪(天津津科浩强公司生产)进行, 样品同样放置在探针台上, 通过探针施加电压发光后, 通过光纤传输至光谱仪收集.2.1 ZnO纳米阵列的微观结构图1为生长溶液中氨水浓度对纳米ZnO阵列形貌的影响. 可以发现, 随着氨水浓度增大, 纳米阵列长度明显变短. 这是由于氨水浓度较高时, 溶液中较高浓度的OH–离子降低Zn(NO3)2·6H2O的水解反应速率, 从而降低纳米ZnO阵列的生长速率.图2为不同Zn2+离子浓度溶液生长出的ZnO纳米阵列的 SEM 照片. 可能看出, Zn2+浓度从0.25 mol/L增加到0.4 mol/L时, 密度明显增大, 直径与长度也增加, 并且出现明显的锥形结构. 当Zn2+离子浓度继续增加时, 密度变化不再明显, 长度增加也不明显.图 3为在优化条件下生长的 ZnO纳米阵列的XRD 图谱, 除 ZnO(002)衍射峰外未发现其他衍射峰, 这表明纳米阵列为典型的纤锌矿ZnO晶体结构,并沿(002)面择优取向, 即沿 c轴垂直于衬底生长,与SEM观察到的结果一致.2.2 LED芯片的电学性能不同生长条件下LED芯片上生长ZnO纳米阵列之后的I-V曲线如图4和图5所示(图中均以未生长ZnO纳米阵列的LED芯片做参考, 在图中表示为reference).从图4与图5可以看出在不同浓度的氨水及不同浓度Zn2+下生长ZnO纳米阵列, LED芯片的电学性能没有显着变化, 都维持着很好的整流特性, 开启电压也基本维持在 2.6 V左右, 而正向电流与未生长纳米阵列的器件相比略有增加, 其原因为: 在生长ZnO纳米阵列之前生长了一层致密籽晶层, 该籽晶层可以沿衬底表面形成导电通道, 从而在一定程度上降低了器件的电阻, 但是由于ZnO薄膜电阻较大, 对于电流的增加贡献较小, 所以正向电流的增加不太明显. 由此可见, ZnO纳米阵列并不会对LED芯片的电学性能产生显着影响.2.3 LED芯片的光学性能文献[11-13]研究中发现, ZnO纳米阵列可以显著增强LED芯片的出光效率[11-13], 这是由于纳米阵列可以显著改善光子在LED芯片与空气界面处的全反射. ZnO 折射率介于 GaN与空气之间,在芯片表面生长纳米阵列后, 部分满足全反射条件的光线可以传输至纳米 ZnO中, 经过多次反射最终从顶端出射, 由此增强了LED芯片的出光效率.LED芯片在不同氨水浓度溶液中生长的 ZnO纳米阵列的发光光谱如图 6. 可以看出, 生长完纳米阵列后LED芯片的发光强度有所增加, 氨水浓度从0.33 mol/L增加到0.405 mol/L时, 芯片发光强度略有下降. 浓度进一步增加至 0.48 mol/L时, 芯片发光强度又提高至0.33 mol/L对应的水平. 由图6可以看出, 氨水浓度的变化对于发光强度的影响不显著.LED芯片在不同Zn2+浓度溶液中生长纳米阵列的发光光谱如图 7. 与氨水浓度相比, Zn2+浓度对LED芯片的发光强度影响更大. Zn2+浓度为0.4 mol/L时样品发光强度最强, 与参照LED芯片相比, 出光效率提高60%以上, 说明该条件下生长的纳米阵列具有最有效的光子提取作用. 而当 Zn2+浓度达到0.8 mol/L时发光强度又远低于参照LED芯片.由图 2可知, Zn2+浓度由 0.25 mol/L增加至0.4 mol/L时, 发光强度增强是由密度增加引起的,这与前期文献研究中有人提出高密度的纳米阵列可以更有效地增强LED出光效率一致[6]. 而 Zn2+浓度为0.4 mol/L的样品呈现出明显的锥形结构[8], 更利于提高LED芯片的出光效率. 而Zn2+浓度从0.4 mol/L增加至0.8 mol/L时, 纳米阵列结构并没有明显的变化, 但是出光效率明显下降, 这可能是由于溶液中过多的Zn2+增加了ZnO晶体中Zn间隙缺陷的浓度,缺陷对LED所发出的蓝光产生吸收, 从而降低了芯片的出光效率.为了进一步研究LED芯片的电致发光性能, 研究了表面长有纳米阵列的LED芯片与参照LED芯片的发光强度随电流关系曲线如图 8. 可以看出,各电流下纳米阵列LED芯片的发光强度都高于未生成纳米阵列的LED芯片, 并且LED芯片的发光强度随电流增加基本保持线性增加, 说明纳米阵列在增强LED芯片出光效率的同时, 不会对器件稳定性造成明显影响.采用低成本化学溶液方法在 GaN基大功率蓝光LED芯片上制备出ZnO纳米阵列, 阵列沿c轴垂直衬底生长, 具有较好的直立性. 纳米阵列生长溶液中氨水浓度与Zn2+浓度对纳米阵列形貌产生影响,进而影响 LED芯片的出光效率. 实验结果表明,Zn2+浓度对纳米阵列LED芯片出光性能的影响大于氨水的影响, 当Zn2+浓度为0.4 mol/L, 氨水浓度为0.48 mol/L 时, 纳米阵列具有锥形尖端形貌, 阵列密度较高, 此时LED芯片的出光性能最好. 与没有生长纳米阵列的LED芯片相比, ZnO纳米阵列可以增强LED出光效率60%以上, 并且不会对器件电学性能与发光稳定性造成影响.【相关文献】[1] 胡耀祖, 李丽玲, 李宏俊, 等. 照明节能技术发展趋势. 照明工程学报. 2008, 19(2): 1−6.[2] Phillips J M, Coltrin M E, Crawford M H, et al. Research challenges to ultra-efficient inorganic solid-state lighting. Laser &Photon Rev., 2007, 1(4): 307−333.[3] Nishida T, Saito H, Kobayashi N, et al. Milliwatt operation of Al-GaN-based single-quantum-well light emitting diode in the ultraviolet region. Appl. Phys. Lett., 2001, 78(25): 3927−3928.[4] Fujii T, Gao Y, Sharma R, et al. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening.Appl. Phys. Lett., 2004, 84(6): 855−857.[5] McGroddy K, David A, Matioli E, et al. Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes. Appl. Phys. Lett., 2008, 93(10): 103502−1−3.[6] Kwon M K, Kim J Y, Park I K, et al. Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal. Appl. Phys. Lett., 2008, 92(25):251110−1−3.[7] Zhong J, Chen H, Saraf G, et al. Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency. Appl. Phys.Lett., 2007, 90(20): 203515−1−3.[8] Chiu C H, Lee C E, Chao C L, et al. Enhancement of light output intensity by integrating ZnO nanorod arrays on GaN-based LLO vertical LEDs. Electrochemical and Solid-State Letters. 2008,11(4): 84−87.[9] An Sung Jin, Chae JeeHae, Yi Gyu-Chul, et al. Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays. Appl. Phys. Lett., 2008, 92(12):121108−1−3.[10] Qiu Jijun, Li Xiaomin, Zhuge Fuwei, et al. Solution-derived 40 μm vertically aligned ZnO nanowire arrays as photoelectrodes in dye-sensitized solar cells. Nanotechnology. 2010, 21(19): 1−9.[11] Kim Kyoung-Kook, Lee Sam-dong, Kim Hyunsoo, et al. Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution. Appl. Phys.Lett., 2009, 94(7): 071118−1−3.[12] Kuo C H, Chen C M, Kuo C W, et al. Improvement of near-ultraviolet nitride-based light emitting diodes with mesh indium tin oxide contact layers. Appl. Phys. Lett., 2006, 89(20):201104−1−3.[13] Ye Jing, Zhao Yu, Tang Libin, et al. Ultraviolet electroluminescence from two-dimensional ZnO nanomesh/GaN heterojunction light emitting diodes. Appl. Phys. Lett., 2011, 98(26):263101−1−3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriersYen-Kuang Kuo, Jih-Yuan Chang, Miao-Chan Tsai, and Sheng-Horng YenCitation: Appl. Phys. Lett. 95, 011116 (2009); doi: 10.1063/1.3176406View online: /10.1063/1.3176406View Table of Contents: /resource/1/APPLAB/v95/i1Published by the American Institute of Physics.Related ArticlesElectroluminescence and electric current response spectroscopy applied to the characterization of polymer light-emitting electrochemical cellsAPL: Org. Electron. Photonics 5, 211 (2012)Electroluminescence and electric current response spectroscopy applied to the characterization of polymer light-emitting electrochemical cellsAppl. Phys. Lett. 101, 113305 (2012)Uniform and refreshable liquid electroluminescent device with a back side reservoirAPL: Org. Electron. Photonics 5, 208 (2012)Magnetic field dependence of the spin relaxation length in spin light-emitting diodesAppl. Phys. Lett. 101, 112402 (2012)Uniform and refreshable liquid electroluminescent device with a back side reservoirAppl. Phys. Lett. 101, 113302 (2012)Additional information on Appl. Phys. Lett.Journal Homepage: /Journal Information: /about/about_the_journalTop downloads: /features/most_downloadedInformation for Authors: /authorsAdvantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriersYen-Kuang Kuo,1,a ͒Jih-Yuan Chang,1Miao-Chan Tsai,2and Sheng-Horng Yen 31Department of Physics,National Changhua University of Education,Changhua 500,Taiwan 2Institute of Photonics,National Changhua University of Education,Changhua 500,Taiwan 3R&D Division,Epistar Co.,Ltd.,Science-based Industrial Park,Hsinchu 300,Taiwan͑Received 18April 2009;accepted 17June 2009;published online 10July 2009͒The advantages of blue InGaN light-emitting diodes ͑LEDs ͒with InGaN barriers are studied.The L -I curves,carrier concentrations in the quantum wells,energy band diagrams,and internal quantum efficiency are investigated.The simulation results show that the InGaN/InGaN LED has better performance over its conventional InGaN/GaN counterpart due to the enhancement of electron confinement,the reduced polarization effect between the barrier and well,and the lower potential barrier height for the holes to transport in the active region.The simulation results also suggest that the efficiency droop is markedly improved when the traditional GaN barriers are replaced by InGaN barriers.©2009American Institute of Physics .͓DOI:10.1063/1.3176406͔The quantum efficiency ͑QE ͒of conventional InGaN/GaN multiquantum well ͑MQW ͒light-emitting diodes ͑LEDs ͒reaches its peak at low current density and mono-tonically decreases with further increasing drive current.1–4This phenomenon,commonly referred to as efficiency droop,is a critical restriction for the usage of LEDs in high power applications.Many suggestions to its mechanism have been reported,such as the Auger recombination,5electron leakage,2,3,6,7carrier injection efficiency,6–8polarization field,2,3and filling of localized states.9Nevertheless,the physical origin of efficiency droop remains debatable and,hence,an overall solution is still a lack.For the exploration of efficiency droop in blue InGaN LEDs,the carrier injection and distribution in the active re-gion may be a key issue.It has been reported that only the last QW next to the p -type region contributes to radiative recombination in the InGaN MQW LEDs.8,10This is because that holes in GaN based materials have a relatively high ef-fective mass and therefore a very low mobility.Moreover,the electron blocking layer ͑EBL ͒is considered to act as a potential barrier also for holes.Under this circumstance,it is difficult for holes to inject into the active region and trans-port in the active region.Thus,a large amount of holes ac-cumulate in the last QW next to the p -type region.As for the electrons,due to the opposite characters to holes and the insufficient blocking efficiency of EBL under polarization fields,they can transport easily in the active region and even overflow across the EBL to the p -type region.As a result,nonuniform distribution of carriers is expected,which ex-plains why not every QW contributes to radiative recombi-nation.In this paper,the optical and electrical properties of conventional InGaN/GaN MQW LEDs and new designed InGaN/InGaN MQW LEDs are investigated numerically with the APSYS simulation program,which was developed by the Crosslight Software Inc.11The original blue InGaN LED used as a reference was grown on a c -plane sapphire sub-strate,followed by a 50-nm-thick undoped GaN layer,and a4.5-␮m-thick n -GaN layer ͑n -doping=5ϫ1018cm −3͒.The active region consisted of five 2-nm-thick In 0.21Ga 0.79N QWs,separated by six 15-nm-thick GaN barriers.On top of the active region was a 20-nm-thick p -Al 0.15Ga 0.85N EBL and a 0.5-␮m-thick p -GaN cap layer ͑p -doping=1.2ϫ1018cm −3͒.The device geometry was designed with a rectangular shape of 300ϫ300␮m 2.The internal absorption within the LED device is assumed to be 500m −1and the operating temperature is assumed to be 300K.To simplify the simulation,the light extraction efficiency is assumed to be 0.78.Other material parameters of the semiconductors used in the simulation can be found in Ref.12.The surface charges at the interfaces are calculated by the methods de-veloped by Fiorentini et al.13The experimental and simulated light-current-voltage ͑L -I -V ͒performance curves of the original InGaN/GaN structure are plotted in ͓Fig.1͑a ͔͒,which shows good agree-ment between the experimental data and our simulations.The distribution of carrier concentrations near the active re-gion of the original InGaN/GaN structure at an injection cur-rent of 150mA is shown in ͓Fig.1͑b ͔͒.It indicates that both electrons and holes distributions are quite nonuniform among QWs;namely,most carriers concentrate on the last QW next to the p -type region.There also exists a severe electron leak-age in this LED structure.a ͒Electronic mail:ykuo@.tw.Tel.:ϩ886-4/724-8812.FAX:ϩ886-4/721-1153.FIG.1.͑Color online ͒͑a ͒Experimental and simulated L -I -V performance curves of original InGaN/GaN structure.͑b ͒Distribution of carrier concen-trations of original InGaN/GaN structure at 150mA ͑gray regions represent the location of QWs ͒.APPLIED PHYSICS LETTERS 95,011116͑2009͒0003-6951/2009/95͑1͒/011116/3/$25.00©2009American Institute of Physics95,011116-1For the above phenomenon,Park and co-workers 2,3re-ported that the polarization field induced sloped triangular barriers will hinder the transportation of electrons and cause the conduction band on the n -side to be higher than that on the p -side.This in turn results in a large electron leakage current.In a recent paper,Xu et al.14proposed to use the polarization-matched InGaN/InGaN MQW structure to re-duce the potential difference of conduction band between the n -side and p -side,and to improve the device performance.In their article,however,the experimental data do not show much decrease of forward voltage under the same injection current that can diminish the above potential difference for the InGaN/InGaN MQW LEDs.Therefore,there might exist other mechanisms which are responsible for the improve-ment of LED performance.Figure 2shows the energy band diagram of the original InGaN/GaN structure and its local enlargements at 150mA.In these plots,a severe situation of bend bending,i.e.,sloped triangular barriers and wells,is observed.The sloped trian-gular barriers cause the conduction band edge of barriers to be higher than the conduction band of EBL,as shown in ͓Fig.2͑b ͔͒.Note that the conduction band of EBL is also deformed by polarization fields.Thus,insufficient electron blocking efficiency and thereby serious electron current leak-age can be expected in this structure.7Figure 2͑c ͒shows the enlarged band diagram of the last QW and the electron and hole wave functions.Due to the quantum confined Stark ef-fect ͑QCSE ͒,the electron and hole wave functions separate partially,which results in poor overlap between the two wave functions,as well as the reduction of radiative recombination rate and internal QE ͑IQE ͒.In order to improve the above shortcomings,an InGaN/InGaN MQW structure,with an indium composition of 10%in the InGaN barriers,is proposed.As shown in ͓Figs.3͑a ͒and 3͑b ͔͒,the effective barrier height between the last barrier and EBL is increased dramatically due to the lower conduc-tion band energy of InGaN barrier.The electron blocking efficiency of EBL is influenced by the thickness and alumi-num composition;the thicker EBL and the higher aluminum composition in AlGaN layer,the better electron confinement.However,on the other hand,this also increases the difficulty for holes to transport in valence band.Therefore,replacing the traditional GaN barrier with a lower band gap InGaN barrier is beneficial for enhancing the electron confinement without the price of blocking the holes.Moreover,the InGaN barriers may help the holes to transport in the QW region more easily because of the lower barrier height in valence band,which is also beneficial for reducing the electron cur-rent leakage.Besides,because of the better match of lattice constants between the InGaN barrier and InGaN well,the band bending situation is less severe,as shown in ͓Fig.3͑c ͔͒,which in turn results in less QCSE and better light emission efficiency.Figure 4shows the carrier concentrations of InGaN/InGaN structure near the active region at 150mA.It indi-cates that both electron and hole distributions in the QWs are more uniform than those of the InGaN/GaN structure.Note also that the electron leakage current is minimal,indicating the effectiveness of EBL in the InGaN/InGaN structure.The two peaks in the curve of electron concentration in the left-hand side and right-hand side of QW region represent the massive electrons accumulating in the first and lastbarriersFIG.2.͑Color online ͒͑a ͒Energy band diagram of original InGaN/GaN structure at 150mA.͑b ͒Enlarged drawing of the conduction band near EBL.͑c ͒Enlarged drawing near lastQW.FIG.3.͑Color online ͒͑a ͒Energy band diagram of proposed InGaN LED structure with In 0.1Ga 0.9N barriers at 150mA.͑b ͒Enlarged drawing of the conduction band near EBL.͑c ͒Enlarged drawing near lastQW.FIG.4.͑Color online ͒Carrier concentrations of InGaN/InGaN structure near active region at 150mA.which have sloped triangular barriers,as indicated in Fig.3, due to the large amount of polarization charges at GaN–InGaN and InGaN–AlGaN interfaces.Because of the advantages in carrier injection and elec-tron blocking,the performance of the InGaN/InGaN LED is expected to be superior to the conventional InGaN/GaN LED.Figure5shows the IQE and light output power as a function of current for the two LED structures under study, which indicates that the InGaN/InGaN LED has better light-ing efficiency,especially at high current.It is noteworthy that there is almost no efficiency droop for the InGaN/InGaN LED.Note that the performance improvement of InGaN/ InGaN LED obtained in this study is much better than that observed in the experimental results reported by Xu et al.,10 which might result from the material quality degradation caused by increased indium incorporation into the barriers.In summary,when the GaN barriers are replaced by the InGaN barriers in blue InGaN LEDs,the carriers injection is enhanced,the electron current leakage is markedly reduced, and the efficiency droop becomes less severe due to the rela-tively small polarization effect between the barriers and wells,and the lower potential barrier height in the active region for holes.1Y.-L.Li,Y.-R.Huang,and i,Appl.Phys.Lett.91,181113͑2007͒. 2M.H.Kim,M.F.Schubert,Q.Dai,J.K.Kim,E.F.Schubert,J.Piprek, and Y.Park,Appl.Phys.Lett.91,183507͑2007͒.3M.F.Schubert,J.Xu,J.K.Kim,E.F.Schubert,M.H.Kim,S.Yoon,S. M.Lee,C.Sone,T.Sakong,and Y.Park,Appl.Phys.Lett.93,041102͑2008͒.4J.Xie,X.Ni,Q.Fan,R.Shimada,Ü.Özgür,and H.Morkoç,Appl.Phys. Lett.93,121107͑2008͒.5Y.C.Shen,G.O.Mueller,S.Watanabe,N.F.Gardner,A.Munkholm,and M.R.Krames,Appl.Phys.Lett.91,141101͑2007͒.6I.V.Rozhansky and D.A.Zakheim,Phys.Status Solidi C3,2160͑2006͒. 7I.V.Rozhansky and D.A.Zakheim,Phys.Status Solidi A204,227͑2007͒.8A.David,M.J.Grundmann,J.F.Kaeding,N.F.Gardner,T.G.Mihopou-los,M.R.Krames,T.G.Mihopoulos,and M.R.Krames,Appl.Phys. Lett.92,053502͑2008͒.9A.Y.Kim,W.Go,D.A.Steigerwald,J.J.Wierer,N.F.Gardner,J.Sun, S.A.Stockman,P.S.Martin,M.R.Krames,R.S.Kern,and F.M. Steranka,Phys.Status Solidi A188,15͑2001͒.10J.P.Liu,J.-H.Ryou,R.D.Dupuis,J.Han,G.D.Shen,and H.B.Wang, Appl.Phys.Lett.93,021102͑2008͒.11APSYS by Crosslight Software Inc.,Burnaby,Canada͑http:// ͒.12I.Vurgaftman and J.R.Meyer,J.Appl.Phys.94,3675͑2003͒.13V.Fiorentini,F.Bernardini,and O.Ambacher,Appl.Phys.Lett.80,1204͑2002͒.14J.Xu,M.F.Schubert,A.N.Noemaun,D.Zhu,J.K.Kim,E.F.Schubert, M.H.Kim,H.J.Chung,S.Yoon,C.Sone,and Y.Park,Appl.Phys.Lett. 94,011113͑2009͒.FIG.5.͑Color online͒͑a͒IQE and͑b͒light output power as a function of current for the two LED structures under study.。

相关文档
最新文档