2012年普通高等学校招生统一考试江西省数学(理)卷word版
2012年高考理科数学江西卷(含详细答案)
数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前2012年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页.满分150分,考试时间120分钟. 考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题 卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 锥体体积公式13V Sh =其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为( )A .5B .4C .3D .2 2.下列函数中,与函数y =定义域相同的函数为( )A .1sin y x=B .ln xy x=C .e x y x =D .sin xy x= 3.若函数21,1()lg ,1x x f x x x ⎧+=⎨⎩≤>,则((10))f f =( )A .lg101B .2C .1D .0 4.若1tan 4tan θθ+=,则sin 2θ=( )A .15B .14C .13D .125.下列命题中,假命题为( )A .存在四边相等的四边形不.是正方形 B .1212,,z z z z ∈+C 为实数的充分必要条件是12,z z 互为共轭复数 C .若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1D .对于任意01,nn n nn C C C ∈+++N 都是偶数 6.观察下列各式:221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+=则1010a b +=( ) A .28B .76C .123D .1997.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则 222||||||PA PB PC += ( )A .2B .4C .5D .108.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54 万元,假设种为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为 ( ) A .50,0 B .30,20C .20,30D .0,509.样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z x y αα=+-,其中102α<<,则,n m 的大小关系为( )A .n m <B .n m >C .n m =D .不能确定10.如右图,已知正四棱锥S ABCD -所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分,记(01),SE x x =<<截面下面部分的体积为(),V x 则函数()y V x =的图像大致为( )ABCD--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)2012年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注意事项:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.二、填空题:本大题共4小题,每小题5分,共20分. 11.计算定积分121(sin )x x dx -+=⎰ .12.设数列{},{}n n a b 都是等差数列,若117a b +=,3321a b +=,则55a b += .13.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||A F F F FB 成等比数列,则此椭圆的离心率为 . 14.下图为某算法的程序框图,则程序运行后输出的结果是 .三、选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分.本题共5分.15.(1)(坐标系与参数方程选做题)曲线C 的直角坐标方程为2220x y x +-=,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 . 15.(2)(不等式选做题)在实数范围内,不等式|21||21|6x x -++≤的解集为 . 四、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知数列{}n a 的前n 项和212n S n kn =-+(其中k ∈+N ),且n S 的最大值为8. (Ⅰ)确定常数k ,并求n a ; (Ⅱ)求数列92{}2nna -的前n 项和n T . 17.(本小题满分12分)在ABC △中,角,,A B C 的对边分别为,,a b c .已知π4A =,ππsin()sin()44b Cc B a +-+=.(Ⅰ)求证:π2B C -=(Ⅱ)若a =求ABC △的面积. 18.(本题满分12分)如图,从1(1,0,0)A ,2(2,0,0)A ,1(0,1,0)B ,2(0,2,0)B ,1(0,0,1)C , 2(0,0,2)C 这6个点中随机选取3个点,将这3个点及原点O 两两 相连构成一个“立体”,记该“立体”的体积为随机变量V (如果 选取的3个点与原点在同一个平面内,此时“立体”的体积0V =). (Ⅰ)求0V =的概率;(Ⅱ)求V 的分布列及数学期望EV .19.(本题满分12分)在三棱柱111ABC A B C -中,已知1AB AC AA ==4BC =,在1A 在底面ABC 的投影是线段BC 的中点O . (Ⅰ)证明在侧棱1AA 上存在一点E ,使得OE ⊥平面 11BB C C ,并求出AE 的长;(Ⅱ)求平面11A B C 与平面11BB C C 夹角的余弦值.20.(本题满分13分)已知三点(0,0)O ,(2,1)A -,(2,1)B ,曲线C 上任意一点(,)M x y 满足||()2MA MB OM OA OB +=⋅++.(Ⅰ)求曲线C 的方程;(Ⅱ)动点000(,)(22)Q x y x -<<在曲线C 上,曲线C 在点Q 处的切线为l .问:是否 存在定点(0,)(0)P t t <,使得l 与,PA PB 都相交,交点分别为,D E ,且QAB △与 PDE △的面积之比是常数?若存在,求t 的值.若不存在,说明理由. 21.(本小题满分14分)若函数()h x 满足(1)(0)1h =,(1)0h =;(2)对任意[0,1]a ∈,有(())h h a a =; (3)在(0,1)上单调递减.则称()h x 为补函数.已知函数11()()(1,0)1p ppx h x p x λλ-=>->+. (Ⅰ)判函数()h x 是否为补函数,并证明你的结论;(Ⅱ)若存在[0,1]m ∈,使得()h m m =,称m 是函数()h x 的中介元.记1()p n n=∈+N 时()h x 的中介元为n x ,且1()ni i S x x ==∑,若对任意的n ∈+N ,都有12n S <,求λ的取值 范围;(Ⅲ)当0λ=,(0,1)x ∈时,函数()y h x =的图像总在直线1y x =-的上方,求p 的取 值范围.1,0)(0,)+∞.+∞,而答案中只有,0)(0,) >,∴【解析】101【提示】通过分段函数,直接求出- 3 - / 13- 4 -【提示】以A B C ,,,为原点,AB 所在直线为x 轴,建立坐标系,由题意得以AB 为直径的圆必定经过因此设2AB r =,CDB α∠=,得到A 、B 、C 和P 各点的坐标,运用两点的距离公式求出2PA- 5 - / 13故选B .102a <<【提示】通过特殊值判断- 6 -33a b +=12d d ∴+=【提示】根据等差数列的通项公式,可设数列【考点】等差数列的性质. 【答案】55- 7 - / 1316.【答案】(1)92n a n =- (2)1242n n n T -+=-【解析】(1)当=n k +∈Ν时,21=2n S n kn -+取最大值,即222118=22k k k =-+,故4k =,- 8 -从而19(2)n n n a S S n n -=-=-≥,(步骤1) 又11a S ==2)922n b -=2n n T T =-=可求通项,由922n b -=【考点】错位相减法求和.整理得:sin cos cos sin 1B C B C -=,sin()1B C ∴-=,(步骤2)又0B <,3ππ2)由(- 9 - / 13AA 1AO ⊥平面AB AC =BC ∴⊥平面OE ∴⊥平面又AO AB =2)如图所示,分别以1(0,0,2)A )可知1AE AA =得点E ⎝,设平面11A B C 的法向量(,,)n x y z =- 10 -00n AB n A C ⎧⨯=⎪⎨⨯=⎪⎩,得1=,得2x =,即(2,1,1)n =-30,10OE n OE n OE n⨯==⨯(步骤12)A B C 与平面11BB C C 夹角的余弦值是10AE ,分别以,z 轴,建立空间直角坐标系,求出平面11A B C 的法向量是(,,)n x y z =,利用OE ,n 夹角求平面)依题意可得(2MA =--,(2MB =--由已知得()()()(22222,,MA MB x y OM OA OB x y +=-+-⨯+=2(22)22y y +-=+(步骤2)又FP=-x x-=【提示】用坐标表示MA,MB,从而可得MA MB+,利用向量的数量积,结合=()2MA MB OM OA OB+++,可得曲线的方程12ty x t-=+,直线PB的方程是- 11 - / 13- 12 - 1,p λ>-()h x 在(0,1)(2)当p 2n x = ⎪⎝⎭1111- 13 - / 13又(0)ϕϕ=综上:p 的取值范围为。
2012年江西省高考数学试卷(理科)学生版
2012年江西省高考数学试卷(理科)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•江西)若集合A={﹣1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为()A.5B.4C.3D.22.(5分)(2012•江西)下列函数中,与函数y=定义域相同的函数为()A.y=B.y=C.y=xe x D.y=3.(5分)(2012•江西)若函数f(x)=,,>,则f(f(10))=()A.lg101B.2C.1D.04.(5分)(2012•江西)若tanθ+=4,则sin2θ=()A.B.C.D.5.(5分)(2012•江西)下列命题中,假命题为()A.存在四边相等的四边形不是正方形B.z1,z2∈C,z1+z2为实数的充分必要条件是z1,z2互为共轭复数C.若x,y∈R,且x+y>2,则x,y至少有一个大于1D.对于任意n∈N*,++…+都是偶数6.(5分)(2012•江西)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28B.76C.123D.1997.(5分)(2012•江西)在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=()A.2B.4C.5D.108.(5分)(2012•江西)某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表为使一年的种植总利润(总利润=总销售收入﹣总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为()A.50,0B.30,20C.20,30D.0,509.(5分)(2012•江西)样本(x1,x2…,x n)的平均数为,样本(y1,y2,…,y m)的平均数为(≠).若样本(x1,x2…,x n,y1,y2,…,y m)的平均数=α+(1﹣α),其中0<α<,则n,m的大小关系为()A.n<m B.n>m C.n=m D.不能确定10.(5分)(2012•江西)如图,已知正四棱锥S﹣ABCD所有棱长都为1,点E 是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图象大致为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(5分)(2012•江西)计算定积分(x2+sinx)dx=.12.(5分)(2012•江西)设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=.13.(5分)(2012•江西)椭圆+=1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为.14.(5分)(2012•江西)下图是某算法的程序框图,则程序运行后输出的结果是.三、选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分.本题共5分.15.(5分)(2012•江西)(1)(坐标系与参数方程选做题)曲线C的直角坐标方程为x2+y2﹣2x=0,以原点为极点,x轴的正半轴为极轴建立积坐标系,则曲线C的极坐标方程为.(不等式选做题)在实数范围内,不等式|2x﹣1|+|2x+1|≤6的解集为.(2)四.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2012•江西)已知数列{a n}的前n项和S n=﹣n2+kn(其中k∈N+),且S n的最大值为8.(1)确定常数k,求a n;(2)求数列的前n项和T n.17.(12分)(2012•江西)在△ABC中,角A,B,C的对边分别为a,b,c.已知A=,bsin(+C)﹣csin(+B)=a,(1)求证:B﹣C=(2)若a=,求△ABC的面积.18.(12分)(2012•江西)如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).(1)求V=0的概率;(2)求V的分布列及数学期望EV.19.(12分)(2012•江西)在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1=,BC=4,点A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值.20.(13分)(2012•江西)已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足|+|=•(+)+2.(1)求曲线C的方程;(2)动点Q(x0,y0)(﹣2<x0<2)在曲线C上,曲线C在点Q处的切线为直线l:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值.若不存在,说明理由.21.(14分)(2012•江西)若函数h(x)满足①h(0)=1,h(1)=0;②对任意a∈[0,1],有h(h(a))=a;③在(0,1)上单调递减.则称h(x)为补函数.已知函数h(x)=(λ>﹣1,p>0)(1)判函数h(x)是否为补函数,并证明你的结论;(2)若存在m∈[0,1],使得h(m)=m,若m是函数h(x)的中介元,记p=(n∈N+)时h(x)的中介元为x n,且S n=,若对任意的n∈N+,都有S n<,求λ的取值范围;(3)当λ=0,x∈(0,1)时,函数y=h(x)的图象总在直线y=1﹣x的上方,求P的取值范围.。
(完整版)2012年江西省高考数学试卷(理科)答案与解析
2012年江西省高考数学试卷(理科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•江西)若集合A={﹣1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为()A.5B.4C.3D.2考点:元素与集合关系的判断.专题:集合.分析:根据题意,计算元素的和,根据集合中元素的互异性,即可得到结论.解答:解:由题意,∵集合A={﹣1,1},B={0,2},﹣1+0=﹣1,1+0=1,﹣1+2=1,1+2=3 ∴{z|z=x+y,x∈A,y∈B}={﹣1,1,3}∴集合{z|z=x+y,x∈A,y∈B}中的元素的个数为3故选C.点评:本题考查集合的概念,考查集合中元素的性质,属于基础题.2.(5分)(2012•江西)下列函数中,与函数y=定义域相同的函数为()A.y=B.y=C.y=xe x D.y=考点:正弦函数的定义域和值域;函数的定义域及其求法.专题:计算题.分析:由函数y=的意义可求得其定义域为{x∈R|x≠0},于是对A,B,C,D逐一判断即可得答案.解答:解:∵函数y=的定义域为{x∈R|x≠0},∴对于A,其定义域为{x|x≠kπ}(k∈Z),故A不满足;对于B,其定义域为{x|x>0},故B不满足;对于C,其定义域为{x|x∈R},故C不满足;对于D,其定义域为{x|x≠0},故D满足;综上所述,与函数y=定义域相同的函数为:y=.故选D.点评:本题考查函数的定义域及其求法,正确理解函数的性质是解决问题之关键,属于基础题.3.(5分)(2012•江西)若函数f(x)=,则f(f(10))=()A.l g101 B.2C.1D.0考点:函数的值.专题:计算题.分析:通过分段函数,直接求出f(10),然后求出f(f(10)的值.解答:解:因为函数f(x)=,所以f(10)=lg10=1;f(f(10)=f(1)=2.故选B.点评:本题考查分段函数的值的求法,考查计算能力.4.(5分)(2012•江西)若tanθ+=4,则sin2θ=()A.B.C.D.考点:二倍角的正弦;同角三角函数间的基本关系.专题:三角函数的求值.分析:先利用正弦的二倍角公式变形,然后除以1,将1用同角三角函数关系代换,利用齐次式的方法化简,可求出所求.解答:解:sin2θ=2sinθcosθ=====故选D.点评:本题主要考查了二倍角公式,以及齐次式的应用,同时考查了计算能力,属于基础题.5.(5分)(2012•江西)下列命题中,假命题为()A.存在四边相等的四边形不是正方形B.z1,z2∈C,z1+z2为实数的充分必要条件是z1,z2互为共轭复数C.若x,y∈R,且x+y>2,则x,y至少有一个大于1D.对于任意n∈N*,++…+都是偶数考点:二项式系数的性质;充要条件.专题:综合题.分析:通过特例判断A的正误;通过复数的共轭复数判断B的正误;通过不等式的基本性质判断C 的正误;通过二项式定理系数的形状判断D 的正误.解答:解:例如菱形,满足四边相等的四边形不是正方形,所以A正确;z1,z2∈C,z1+z2为实数的充分必要条件是z1,z2互为共轭复数,不正确;例如z1=2+i,z2=6﹣i,z1+z2为实数,但是z1,z2不是共轭复数,所以B不正确.若x,y∈R,且x+y>2,则x,y至少有一个大于1,显然正确;对于任意n∈N*,++…+=2n≥2,都是偶数正确;不正确是命题是B.故选B.点评:本题考查充要条件的判断,二项式定理,复数等有关知识,考查基本知识的灵活运用,是基础题.6.(5分)(2012•江西)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28 B.76 C.123 D.199考点:归纳推理.专题:阅读型.分析:观察可得各式的值构成数列1,3,4,7,11,…,所求值为数列中的第十项.根据数列的递推规律求解.解答:解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a10+b10=123,.故选C.点评:本题考查归纳推理,实际上主要为数列的应用题.要充分寻找数值、数字的变化特征,构造出数列,从特殊到一般,进行归纳推理.7.(5分)(2012•江西)在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD 的中点,则=()A.2B.4C.5D.10考点:向量在几何中的应用.专题:计算题;综合题.分析:以D为原点,AB所在直线为x轴,建立坐标系,由题意得以AB为直径的圆必定经过C点,因此设AB=2r,∠CDB=α,得到A、B、C和P各点的坐标,运用两点的距离公式求出|PA|2+|PB|2和|PC|2的值,即可求出的值.解答:解:以D为原点,AB所在直线为x轴,建立如图坐标系,∵AB是Rt△ABC的斜边,∴以AB为直径的圆必定经过C点设AB=2r,∠CDB=α,则A(﹣r,0),B(r,0),C(rcosα,rsinα)∵点P为线段CD的中点,∴P(rcosα,rsinα)∴|PA|2=+=+r2cosα,|PB|2=+=﹣r2cosα,可得|PA|2+|PB|2=r2又∵点P为线段CD的中点,CD=r∴|PC|2==r2所以:==10故选D点评:本题给出直角三角形ABC斜边AB上中线AD的中点P,求P到A、B距离的平方和与PC平方的比值,着重考查了用解析法解决平面几何问题的知识点,属于中档题.8.(5分)(2012•江西)某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表年产量/亩年种植成本/亩每吨售价黄瓜4吨 1.2万元0.55万元韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入﹣总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为()A.50,0 B.30,20 C.20,30 D.0,50考点:函数最值的应用.专题:计算题.分析:设种植黄瓜和韭菜的种植面积分别为x,y亩,种植总利润为z万元,然后根据题意建立关于x与y的约束条件,得到目标函数,利用线性规划的知识求出最值时的x和y的值即可.解答:解:设种植黄瓜和韭菜的种植面积分别为x,y亩,种植总利润为z万元.由题意可知一年的种植总利润为z=0.55×4x+0.3×6y﹣1.2x﹣0.9y=x+0.9y作出约束条件如下图阴影部分,平移直线x+0.9y=0,当过点A(30,20)时,一年的种植总利润为z取最大值.故选B.点评:本题主要考查了线性规划,解题的关键是得到约束条件和目标函数,同时考查了作图的能力,属于基础题.9.(5分)(2012•江西)样本(x1,x2…,x n)的平均数为x,样本(y1,y2,…,y m)的平均数为(≠).若样本(x1,x2…,x n,y1,y2,…,y m)的平均数=α+(1﹣α),其中0<α<,则n,m的大小关系为()A.n<m B.n>m C.n=m D.不能确定考点:众数、中位数、平均数.专题:计算题;压轴题.分析:通过特殊值判断α的范围,是否满足题意即可得到选项.解答:解:法一:不妨令n=4,m=6,设样本(x1,x2…,x n)的平均数为=6,样本(y1,y2,…,y m)的平均数为=4,所以样本(x1,x2…,x n,y1,y2,…,y m)的平均数=α+(1﹣α)=6α+(1﹣α)4=,解得α=0.4,满足题意.解法二:依题意nx+my=(m+n)[ax+(1﹣a)y],∴n(x﹣y)=a(m+n)(x﹣y),x≠y,∴a=∈(0,),m,n∈N+,∴2n<m+n,∴n<m.故选:A.点评:本题考查众数、中位数、平均数,考查计算能力,特殊值法是解题的常用方法.10.(5分)(2012•江西)如图,已知正四棱锥S﹣ABCD所有棱长都为1,点E是侧棱SC 上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图象大致为()A .B.C.D.考点:函数的图象与图象变化.专题:计算题;压轴题.分析:由题意可知截面下面部分的体积为V(x),不是SE的线性函数,可采用排除法,排除C,D,进一步可排除B,于是得答案.解答:解:由题意可知截面下面部分的体积为V(x),不是SE=x的线性函数,可采用排除法,排除C,D;又当截面为BDE,即x=时,V(x)=,当侧棱SC上的点E从SC的中点向点C移动时,V(x)越来越小,故排除B;故选:A.点评:本题考查函数的图象与图象变化,着重考查排除法的应用,考查学生冷静地分析问题解决问题的能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)11.(5分)(2012•江西)计算定积分(x2+sinx)dx=.考点:定积分.专题:计算题.分析:求出被积函数的原函数,再计算定积分的值.解答:解:由题意,定积分===.故答案为:.点评:本题考查定积分的计算,确定被积函数的原函数是关键.12.(5分)(2012•江西)设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5= 35.考点:等差数列的性质.专题:计算题.分析:根据等差数列的通项公式,可设数列{a n}的公差为d1,数列{b n}的公差为d2,根据a1+b1=7,a3+b3=21,可得2(d1+d2)=21﹣7=14.最后可得a5+b5=a3+b3+2(d1+d2)=2+14=35.解答:解:∵数列{a n},{b n}都是等差数列,∴设数列{a n}的公差为d1,设数列{b n}的公差为d2,∴a3+b3=a1+b1+2(d1+d2)=21,而a1+b1=7,可得2(d1+d2)=21﹣7=14.∴a5+b5=a3+b3+2(d1+d2)=21+14=35故答案为:35点评:本题给出两个等差数列首项之和与第三项之和,欲求它们的第五项之和,着重考查了等差数列的概念与通项公式和等差数列的性质,属于基础题.13.(5分)(2012•江西)椭圆+=1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为.考点:椭圆的简单性质;等比数列的性质.专题:计算题;压轴题.分析:直接利用椭圆的定义,结合|AF1|,|F1F2|,|F1B|成等比数列,即可求出椭圆的离心率.解答:解:因为椭圆+=1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,|AF1|=a﹣c,|F1F2|=2c,|F1B|=a+c,所以(a﹣c)(a+c)=4c2,即a2=5c2,所以e=.故答案为:.点评:本题考查椭圆的基本性质的应用,离心率的求法,考查计算能力.14.(5分)(2012•江西)下图是某算法的程序框图,则程序运行后输出的结果是3.考点:循环结构.专题:算法和程序框图.分析:直接计算循环后的结果,当k=6时不满足判断框的条件,推出循环输出结果即可.解答:解:第1次,满足循环,a=1,T=1,K=2,第2次满足2<6;sin,不成立,执行a=0,T=1,k=3,第3次有,不满足条件循环,a=0,T=1,k=4,满足,a=1,T=2,k=5,满足k<6,此时成立,a=1,T=3,k=6,不满足6<6,退出循环,输出结果T=3.故答案为:3.点评:本题考查循环结构的作用,循环中两次判断框,题目比较新,考查学生分析问题解决问题的能力.三、选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分.本题共5分.15.(5分)(2012•江西)(1)(坐标系与参数方程选做题)曲线C的直角坐标方程为x2+y2﹣2x=0,以原点为极点,x轴的正半轴为极轴建立积坐标系,则曲线C的极坐标方程为ρ=2cosθ.(2)(不等式选做题)在实数范围内,不等式|2x﹣1|+|2x+1|≤6的解集为{}.考点:简单曲线的极坐标方程;绝对值不等式的解法.专题:计算题;压轴题.分析:(1)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得(2)利用绝对值的几何意义求解.解答:解:(1)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换,得出ρ2﹣2ρcosθ=0.即ρ=2cosθ故答案为:ρ=2cosθ(2)不等式|2x﹣1|+|2x+1|≤6化为不等式|x﹣|+|x+|≤3,如图所示数轴上点,到点的距离之和为3,所以解集为{}故答案为:{}点评:本题考查极坐标和直角坐标的互化,绝对值不等式求解,其中(2)利用了绝对值的几何意义,避免了分类讨论.四.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2012•江西)已知数列{a n}的前n项和S n=﹣n2+kn(其中k∈N+),且S n的最大值为8.(1)确定常数k,求a n;(2)求数列的前n项和T n.考点:数列的求和;等差数列的通项公式.专题:综合题.分析:(1)由二次函数的性质可知,当n=k时,取得最大值,代入可求k,然后利用a n=s n﹣s n﹣1可求通项(2)由=,可利用错位相减求和即可解答:解:(1)当n=k时,取得最大值即=k2=8∴k=4,S n=﹣n2+4n从而a n=s n﹣s n﹣1=﹣[﹣(n﹣1)2+4(n﹣1)]=又∵适合上式∴(2)∵=∴=两式相减可得,==∴点评:本题主要考查了由数列的递推公式求解数列的通项公式,及数列求和的错位相减求和方法是数列求和中的重要方法,也是高考在数列部分(尤其是理科)考查的热点,要注意掌握17.(12分)(2012•江西)在△ABC中,角A,B,C的对边分别为a,b,c.已知A=,bsin(+C)﹣csin(+B)=a,(1)求证:B﹣C=(2)若a=,求△ABC的面积.考点:解三角形.专题:计算题;证明题.分析:(1)通过正弦定理以及两角和与差的三角函数化简已知表达式,推出B﹣C的正弦函数值,然后说明B﹣C=.(2)利用a=,通过正弦定理求出b,c,然后利用三角形的面积公式求△ABC的面积.解答:解:(1)证明:由bsin(+C)﹣csin()=a,由正弦定理可得sinBsin(+C)﹣sinCsin()=sinA.sinB()﹣sinC()=.整理得sinBcosC﹣cosBsinC=1,即sin(B﹣C)=1,由于0<B,C,从而B﹣C=.(2)解:B+C=π﹣A=,因此B=,C=,由a=,A=,得b==2sin,c==2sin,所以三角形的面积S==cos sin=.点评:本题考查三角形的解法,正弦定理的应用,两角和与差的三角函数的应用,考查计算能力.18.(12分)(2012•江西)如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).(1)求V=0的概率;(2)求V的分布列及数学期望EV.考点:n次独立重复试验中恰好发生k次的概率;列举法计算基本事件数及事件发生的概率.专题:计算题.分析:(1)基本事件空间即6个点中随机取3个点,共有20种取法,研究的事件即4点共面所占基本事件为先选一个面,再选3个点,共有12种选法,故由古典概型概率计算公式即可得所求;(2)先确定随机变量V的所有可能取值,再利用古典概型概率计算公式分别计算随机变量取值的概率,最后列出分布列,利用期望计算公式计算V的期望解答:解:(1)从6个点中随机选取3个点共有=20种取法,选取的三个点与原点在一个平面内的取法有=12种,∴V=0的概率P(V=0)==(2)V的所有可能取值为0,,,,P(V=0)=P(V=)==P(V=)==P(V=)==P(V=)==∴V的分布列为V 0P由V的分布列可得EV=0×++++=点评:本题主要考查了古典概型的概率的计算方法和计算公式,利用组合数公式进行计数的方法,离散型随机变量分布列的意义和期望的计算,属中档题19.(12分)(2012•江西)在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1=,BC=4,点A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:综合题.分析:(1)连接AO,在△AOA1中,作OE⊥AA1于点E,则E为所求.可以证出OE⊥BB1,BC⊥OE而得以证明.在RT△A1OA中,利用直角三角形射影定理得出AE.(2)如图,分别以OA,OB,OA1所在直线为x,y,z轴,建立空间直角坐标系,求出平面A1B1C的法向量是=(x,y,z),利用,夹角求平面A1B1C与平面BB1C1C 夹角的余弦值.解答:(1)证明:连接AO,在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,所以OE⊥BB1,因为A1O⊥平面ABC,所以BC⊥平面AA1O,所以BC⊥OE,所以OE⊥平面BB1C1C,又AO==1,AA1=,得OE===,则AE==(2)解:如图,分别以OA,OB,OA1所在直线为x,y,z轴,建立空间直角坐标系,则A(1,0,0),B(0,2,0),C(0,﹣2,0),A1(0,0,2)由,得点E得坐标是(),设平面A1B1C的法向量是=(x,y,z),由得令y=1,得x=2,z=﹣1,所以=(2,1,﹣1),所以cos<,>==即平面A1B1C与平面BB1C1C夹角的余弦值为.点评:本题考查空间直线和平面位置关系的确定,要熟练掌握应用空间有关的性质、定理;还考查了二面角大小求解,本题具有建立空间直角坐标系的良好空间特征,故用向量法为宜.20.(13分)(2012•江西)已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足|+|=•(+)+2.(1)求曲线C的方程;(2)动点Q(x0,y0)(﹣2<x0<2)在曲线C上,曲线C在点Q处的切线为直线l:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE 的面积之比是常数?若存在,求t的值.若不存在,说明理由.考点:圆锥曲线的轨迹问题;利用导数研究曲线上某点切线方程.专题:综合题;压轴题.分析:(1)用坐标表示,,从而可得+,可求|+|,利用向量的数量积,结合M(x,y)满足|+|=•(+)+2,可得曲线C的方程;(2)假设存在点P(0,t)(t<0),满足条件,则直线PA的方程是y=,直线PB的方程是y=分类讨论:①当﹣1<t<0时,l∥PA,不符合题意;②当t≤﹣1时,,,分别联立方程组,解得D,E的横坐标,进而可得△QAB与△PDE 的面积之比,利用其为常数,即可求得结论.解答:解:(1)由=(﹣2﹣x,1﹣y),=(2﹣x,1﹣y)可得+=(﹣2x,2﹣2y),∴|+|=,•(+)+2=(x,y)•(0,2)+2=2y+2.由题意可得=2y+2,化简可得x2=4y.(2)假设存在点P(0,t)(t<0),满足条件,则直线PA的方程是y=,直线PB的方程是y=∵﹣2<x0<2,∴①当﹣1<t<0时,,存在x0∈(﹣2,2),使得∴l∥PA,∴当﹣1<t<0时,不符合题意;②当t≤﹣1时,,,∴l与直线PA,PB一定相交,分别联立方程组,,解得D,E的横坐标分别是,∴∵|FP|=﹣∴=∵∴=×∵x0∈(﹣2,2),△QAB与△PDE的面积之比是常数∴,解得t=﹣1,∴△QAB与△PDE的面积之比是2.点评:本题考查轨迹方程,考查向量知识的运用,考查分类讨论的数学思想,考查三角形面积的计算,同时考查学生的探究能力,属于难题.21.(14分)(2012•江西)若函数h(x)满足①h(0)=1,h(1)=0;②对任意a∈[0,1],有h(h(a))=a;③在(0,1)上单调递减.则称h(x)为补函数.已知函数h(x)=(λ>﹣1,p>0)(1)判函数h(x)是否为补函数,并证明你的结论;(2)若存在m∈[0,1],使得h(m)=m,若m是函数h(x)的中介元,记p=(n∈N+)时h(x)的中介元为x n,且S n=,若对任意的n∈N+,都有S n<,求λ的取值范围;(3)当λ=0,x∈(0,1)时,函数y=h(x)的图象总在直线y=1﹣x的上方,求P的取值范围.考点:综合法与分析法(选修);进行简单的演绎推理.专题:综合题;压轴题;新定义;转化思想.分析:(1)可通过对函数h(x)=(λ>﹣1,p>0)进行研究,探究其是否满足补函数的三个条件来确定函数是否是补函数;(2)由题意,先根据中介元的定义得出中介元x n通式,代入S n=,计算出和,然后结合极限的思想,利用S n<得到参数的不等式,解出它的取值范围;(3)λ=0,x∈(0,1)时,对参数p分类讨论由函数y=h(x)的图象总在直线y=1﹣x的上方这一位置关系进行转化,解出p的取值范围.解答:解:(1)函数h(x)是补函数,证明如下:①h(0)==1,h(1)==0;②任意a∈[0,1],有h(h(a))=h()==a③令g(x)=(h(x))p,有g′(x)==,又因为λ>﹣1,p>0,所以当x∈(0,1)时,g′(x)<0,所以g(x)在(0,1)上是减函数,故h(x)在(0,1)上是减函数由上证,函数h(x)是补函数(2)当p=(n∈N*),由h(x)=x得,(i)当λ=0时,中介元x n=,(ii)当λ>﹣1且λ≠0时,由(*)得=∈(0,1)或=∉(0,1),得中介元x n=,综合(i)(ii):对任意的λ>﹣1,中介元为x n=,于是当λ>﹣1时,有S n===,当n无限增大时,无限接近于0,S n无限接近于,故对任意的非零自然数n,S n<等价于,即λ∈[3,+∞)(3)当λ=0时,h(x)=,中介元为.(i)0<p≤1时,,中介元为≤,所以点(x p,h(x p))不在直线y=1﹣x的上方,不符合条件;(ii)当p>1时,依题意只需>1﹣x在x∈(0,1)时恒成立,也即x p+(1﹣x)p<1在x∈(0,1)时恒成立设φ(x)=x p+(1﹣x)p,x∈(0,1),则φ′(x)=p(x p﹣1﹣(1﹣x)p﹣1)令φ′(x)=0,得x=,且当x∈(0,)时,φ′(x)<0,当x∈(,1)时,φ′(x)>0,又φ(0)=φ(1)=1,所以x∈(0,1)时,φ(x)<1恒成立.综上,p的取值范围是(1,+∞)点评:本题考查综合法与分析法,探究性强,难度较大,综合考查了转化的思想,导数在最值中的运用,极限的思想,综合性强,运算量大,对逻辑推理要求较高,极易出错或者找不到转化的方向,解题时要严谨认真,避免马虎出错。
2012年理数高考试题答案及解析-江西
2012 年普通高等学校招生全国统一考试(江西卷)数学(理科) 本试卷分第 I 卷(选择题)和第 卷第 3 至第 4 页。
满分150 分,考试时间考生注意:II 卷(非选择题)两部分,第120 分钟。
I 卷第 1 至2 页,第 II1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。
考生要认真核对答题卡上粘贴的条形码的 “准考证号、姓名、考试科目 ”与考生本人准考证号、姓名是否一致。
2.第 I 卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后, 再选涂其他答案标号。
第 II 卷用 0.5 毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答题无效。
3.考试结束,务必将试卷和答题卡一并上交。
参考公式:锥体体积公式 V= 1Sh ,其中 S 为底面积, h 为高。
3第 I 卷一.选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合 A= { -1,1},B={0,2},则集合{ z ︱ z=x+y,x ∈A,y ∈ B }中的元素的个数为( )A .5 B.4 C.3D.2 1 定义域相同的函数为( ) 2.下列函数中,与函数y= 3 x A . y =1B.y= 1nxC.y=xe xD . sin xsin x x x3.若函数 f ( x) x 21(x 1) f ( f (10)) =(lg x(x 1) ,则 ) A.lg101 B.bC.1 D.04.若 tan 1 =4,则sin2 =( )+1 tan 1 1 1 B. D.A . 4 C. 25 35.下列命题中,假命题为()A .存在四边相等的四边形不.是正方形B. z1 ,z2C, z1z2为实数的充分必要条件是z1 , z2为共轭复数C.若 x, y R,且 xy2, 则 x, y 至少有一个大于 1D.对于任意n N , C n0C n1C n n都是偶数6.观察下列各式: a b 1,a2b23, a3b34,a4b47,a5b511, 则 a10b10第 - 1- 页共 14 页( )A .28B . 76 C . 123 D . 1997.在直角三角形ABC 中,点 D 是斜边 AB 的中点,点 P 为线段 CD 的中点,P A 2 2 PB则PC 2 =( ) A .2 B . 4 C . 5 D . 108.某农户计划种植黄瓜和韭菜,种植面积不超过 50 计,投入资金不超过 54 万元,假设种植 黄瓜和韭菜的产量、成本和售价如下表年产量 /亩 年种植成本 /亩 每吨售价黄瓜4 吨 1.2 万元 0.55 万元 韭菜6 吨 0.9 万元 0.3 万元为使一年的种植总利润(总利润 =总销售收入 总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为() A .50, 0 B . 30, 20 C . 20,30 D .0,509.样本( x 1, x 2, , x n )的平均数为 x ,样本( y 1 , y 2 , y m )的平均数为 y(x y) ,若样本( x 1, x 2 , , x n , y 1 , y 2, y m )的平均数 z ax (1 a) y ,其中 0 1,则 n,m 的大小2关系为 ( )A . n mB . n mC .n m D .不能确定10.如右图, 已知正四棱锥S ABCD 所有棱长都为 1,点 E 是侧棱 SC 上一动点, 过点 E 垂 直于 SC 的截面将正四棱锥分成上、下两部分,记SE x(0 x 1), 截面下面部分的体积为 V ( x), 则函数 yV (x) 的图像大致为第 - 2 - 页共 14 页理科数学 第Ⅱ卷注:第Ⅱ卷共 2 页,须用黑色墨水签字笔在答题卡上书写作答。
2012年高考真题——理科数学(江西卷)
2012年高考真题——理科数学(江西卷)若集合A={-1,1},B={0,2},则集合{z︱z=x+y,x∈A,y∈B}中的元素的个数为A.5 B.4 C.3 D.2【答案解析】C【命题立意】本题考查集合的概念和表示。
因为,所以当时,,此时。
当时,,此时,所以集合共三个元素,选C.下列函数中,与函数定义域相同的函数为A.B. C.y=xex D.【答案解析】D【命题立意】本题考查函数的概念和函数的性质定义域。
函数的定义域为。
的定义域为,的定义域为,函数的定义域为,所以定义域相同的是D,选D.若函数,则f(f(10)=A.lg101B.2C.1D.0【答案解析】B【命题立意】本题考查分段函数的概念和求值。
,所以,选B.若tan+=4,则sin2=A.B. C.D.【答案解析】D【命题立意】本题考查三角函数的倍角公式以及同角的三角函数的基本关系式。
由得,,即,所以,选D.下列命题中,假命题为A.存在四边相等的四边形不是正方形B.为实数的充分必要条件是为共轭复数C.若R,且则至少有一个大于1D.对于任意都是偶数【答案解析】B【命题立意】本题考查命题的真假判断。
对于B,若为共轭复数,不妨设,则,为实数。
设,则,若为实数,则有,当没有关系,所以B为假命题,选B.观察下列各式:则A.28 B.76 C.123 D.199【答案解析】C【命题立意】本题考查合情推理中的归纳推理以及递推数列的通项公式。
等式右面的数构成一个数列1,3,4,7,11,数列的前两项相加后面的项,即,所以可推出,选C.在直角三角形中,点是斜边的中点,点为线段的中点,则=A.2 B.4 C.5D.10【答案解析】D将直角三角形放入直角坐标系中,如图,设,则,,所以,,,所以,所以,选D.某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表年产量/亩年种植成本/亩每吨售价黄瓜4吨1.2万元0.55万元韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入减去总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为A.50,0B.30,20 C.20,30 D.0,50【答案解析】B【命题立意】本题考查函数的简单应用,以及简单的线性规划问题。
2012年高考真题——数学理(江西卷)word版含答案
2012年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页。
满分150分,考试时间120分钟。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答题无效。
3.考试结束,务必将试卷和答题卡一并上交。
参考公式: 锥体体积公式V=13Sh ,其中S 为底面积,h 为高。
第I 卷一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x ∈A,y ∈B }中的元素的个数为 A .5 B.4 C.3 D.2 2.下列函数中,与函数定义域相同的函数为 A .y=1sin xB.y=1nx xC.y=xe xD. sin x x3.若函数f(x)= 21,1lg ,1x x x x ⎧+≤⎨>⎩,则f(f(10)=A.lg101B.bC.1D.04.若tan θ+1tan θ =4,则sin2θ= A .15 B. 14 C. 13 D. 125.下列命题中,假命题为A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数 C .若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1D .对于任意01,nn n nn N C C C ∈+++都是偶数 6.观察下列各式:221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+=则1010a b +=A .28B .76C .123D .1997.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则222PA PB PC+=A .2B .4C .5D .108.某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植为使一年的种植总利润(总利润=总销售收入 总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为A .50,0B .30,20C .20,30D .0,50 9.样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z ax a y =+-,其中102α<<,则n,m 的大小关系为A .n m <B .n m >C .n m =D .不能确定10.如右图,已知正四棱锥S ABCD -所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分,记(01),SE x x =<<截面下面部分的体积为(),V x 则函数()y V x =的图像大致为2012年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答。
2012年全国高考江西卷理科数学试题及标准答案【word版】
2012年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
满分150分,考试时间120分钟。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
第II卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答题无效。
3.考试结束,务必将试卷和答题卡一并上交。
参考公式:锥体体积公式V=13Sh,其中S为底面积,h为高。
第I卷一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合A={-1,1},B={0,2},则集合{z︱z=x+y,x∈A,y∈B}中的元素的个数为A.5 B.4 C.3 D.22.下列函数中,与函数y=定义域相同的函数为A.y=1sin xB.y=1nxxC.y=xe xD.sin xx3.若函数f(x)=21,1lg,1x xx x⎧+≤⎨>⎩,则f(f(10)=A.lg101 B.b C.1 D.04.若tanθ+1tanθ=4,则sin2θ=A.15B.14C.13D.125.下列命题中,假命题为A.存在四边相等的四边形不是正方形B.z1,z2∈c,z1+z2为实数的充分必要条件是z1,z2互为工复数C.若x,y∈CR,且x+y>2,则x,y至少有一个大于1D.对于任意n∈N,C°+C1.…+C°。
都是偶数6.观察下列各式:a+b=1.a²+b2=3,a3+b3=4 ,a4+b4=7,a5+b5=11,…,则a10+b10=A.28B.76 C.123D.1997.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则A.2 B.4 C.5 D.108.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表年产量/亩年种植成本/亩每吨售价黄瓜4吨1.2万元0.55万元韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为A.50,0 B.30.0 C.20,30 D.0,509.样本(x1,x2…,x n)的平均数为x,样本(y1,y2,…,yn)的平均数为。
2012年高考真题——数学理(江西卷)解析版.pdf
第一部分 单元知识复习 第三章 函 数 第3讲 反比例函数 考点梳理 一、考试要求: 1.结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式. 2.能画出反比例函数图象,根据图象和解析表达式
y=(k≠0) 探索并理解其性质 (k>0或k0时,图象的两个分支分别在一、三象限,在每一象限内,y随x的增大而
___________; ③k0) 的图象交于点 A (4,2) ,与x轴交于点B. (1)求k的值及点B的坐标. 考点:求反比例函数的解析式 【方法点拨】(1)将A点坐标代入反比例函数解析式,可求k,令y=0,代入直线方程,可得点B的坐标;
课堂精讲 (2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由. 【方法点拨】(2)过A作AD⊥x轴,利用BD=CD即可求得 考点:求反比例函数的解析式 课堂精讲 例2.(2012·肇庆) 已知反比例函数图象的两个分支分别位于第一、第三象限. (1)求k的取值范围; 考点:反比例函数的性质 【方法点拨】(1)充分利用反比例函数性质; 课堂精讲 (2)若一次函数的图象与该反比例函数的图象有一个交点的纵坐标是4. ①求当时反比例函数y的值; ②当时,求此时一次函数y的取值范围. 【方法点拨】(2)可设交点坐标为 (a,4),代入两个函数解析式求解.。
2012年新课标数学高考试题(理科数学理科数学高考试题,word教师版【免费下载】)
2012年普通高等学校招生全国统一考试(新课标) 理科数学第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种()B 10种 ()C 9种()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种 (3)下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)iz i ii i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,∆21F P F 是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【解析】选C ∆21F P F 是底角为30的等腰三角形221332()224c P F F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7()B 5 ()C -5()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B +为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年普通高等学校招生全国统一考试江西卷答案及解析
2012年普通高等学校招生全国统一考试(江西卷)答案及解析语文一、(18分,每小题3分)1.下列词语中,加点的字读音全都正确的一组是A.谥.(shì)号提.(dī)防花蕊.(ruǐ)歃.(chā)血为盟B.熟稔.(rěn)青荇.(xìng)中.(zhōng)肯锱.(zī)铢必较C.整饬.(chì)优渥.(wò)尺牍.(dú)无色无臭.(xiù)D.监.(jiān)生执拗.(niù)觊.(jì)觎孑.(jié)然一身答案:C(A、歃shà考查形近字的读音,比较容易排除;B、中肯zhòng考查多音字;D、监生jiàn,也是多音字的考查;字音基本来源于教材中的注解。
江西这两年特别注重每个选项只错一个。
2.下列词语中,没有错别字的一组是A.家具赝品气概水乳交融B.萎靡帐篷更叠暴殄天物C.国粹输赢蛰伏旁证博引D.惭怍诟病九洲呕心沥血答案:A(B、更迭;C、旁征博引;D、九州。
)3.下列各句中,加点的词语使用恰当的一项是A.汶川县某领导在灾后重建工作总结会上,如数家珍....般介绍了当地连年发生的较大地震灾害的情况。
B.那位著名学者去年在北京大学所作的关于人与自然相互关系的演讲,观点鲜明,切中时弊,真可谓不刊之论....啊!C.无论东方还是西方,婚丧嫁娶,对普通人家来说都不是小事,对皇家而言,就更不同凡响....了。
D.滚滚长江水,滔滔黄河浪,翻卷起中国历史上多少为争夺权力而相互杀戮、茹毛饮血....的残酷故事。
答案:B(A、如数家珍:数:点数。
家珍:家藏的珍宝。
如同点数家里的珍宝,言下之意就不能“自己的东西’------这是解题重点,比喻对所讲的事情非常熟悉;B、不刊之论,指不可磨灭和不可改动的言论;C、不同凡响,凡响,平凡的音乐。
形容事物不同寻常,多指文艺作品;D、茹毛饮血,茹:吃。
指原始人不懂得用火,捕到禽兽就连毛带血生吃。
2012年普通高等学校招生全国统一考试(江西卷)答案及详解
2012年普通高等学校招生全国统一考试(江西卷)语文本试卷分第Ⅰ卷(选择题)和第Ⅱ卷两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至8页,共150分。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷用黑色水签字笔在答题卡上书写作答。
在试题卷上作答,答案无效、3.考试结束,监考员将试题卷、答题卡一并收回第Ⅰ卷(选择题,共36分)一、(18分,每小题3分)1.下列词语中,加点字的读音全都正确的一项是A. 谥.号(shì)提.防(dī)花蕊.(ruǐ)歃.血为盟(chā)B. 熟稔.(rěn)青荇.(xìng)中.肯(zhōng)锱.铢必较(zī)C. 整饬.(chì)优渥.(wò)尺牍.(dú)无色无臭.(xiù)D. 监.生(jiān)执拗.(niù)觊.觎(jì)孑.然一身(jié)【答案】C【解析】A chā—shà;B zhōng—zhòng;D jiān—jiàn。
2.下列词语中,没有..错别字的一组是A. 家具赝品气概水乳交融B. 萎靡帐篷更叠暴殄天物C. 国粹输赢蛰伏旁证博引D. 惭怍诟病九洲呕心沥血【答案】A【解析】B更叠—更迭;B旁征博引—旁征博引;D九洲—九州。
3.下列各句中,加点的词语使用恰当的一项是A. 汶川县某领导在灾后重建工作总结会上,如数家珍....般介绍了当地连年发生的较大地震灾害的情况。
B. 那位著名学者去年在北京大学所作的关于人与自然相互关系的演讲,观点鲜明,切中时弊,真可谓不.刊之论...啊!C. 无论东方还是西方,婚丧嫁娶,对普通人家来说都不是小事,对皇家而言,就更不同凡响....了。
2012年全国统一考试理科数学(新课标)(word完整版)
2012年普通高等学校招生全国统一考试理科数学第I 卷一、选择题:本大题共12小题,每小题5分,1. 已知集合A={1,2,3,4,5},B={(x ,y )|x ∈A ,y ∈A ,x-y ∈A},则B 中所含元素的个数为( )A. 3B. 6C. 8D. 102. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1名教师和2名学生组成,不同的安排方案共有( ) A. 12种 B. 10种 C. 9种 D. 8种3.下面是关于复数z=21i-+的四个命题P1:z =2 p2: 2z =2i P3: z 的共轭复数为1+I P4:z 的虚部为-1 其中真命题为( )A . P2, P3B . P1, P2 C. P2, P4 D. P3, P44.设F1,F2是椭圆E :22x a +22yb=1 (a >b >0)的左、右焦点 ,P 为直线x=23a 上的一点,△F2PF1是底角为30°的等腰三角形,则E 的离心率为( ) A.12 B. 23 C. 34 D. 455. 已知{a n }为等比数列, a 4+a 1=2 a 5a 6=-8 则a 1+a 10 =( ) A. 7 B. 5 C. -5 D. -76. 如果执行右边的程序图,输入正整数N (N ≥2)和实数a 1.a 2,…a n ,输入A,B,则( ) A . A+B 为a 1a 2,…,a n 的和 B.2A B+为a 1a 2.…,a n 的算式平均数 C. A 和B 分别是a 1a 2,…a n 中最大的数和最小的数 D. A 和B 分别是a 1a 2,…a n 中最小的数和最大的数 7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A. 6B. 9C. 12D. 188. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A ,B 两点,34||=AB ,则C 的实轴长为( )B. C. 4 D . 8 9. 已知w >0,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则w 的取值范围是( )A. ]45,21[B. ]43,21[ C. ]21,0( D. ]2,0(10. 已知函数x f =1)(,则)(x f y =的图像大致为()11. 已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为O 的直径,且SC=2,则此棱锥的体积为( )12. 设点P 在曲线x ey 21=上,点Q 在曲线)2ln(x y =上,则|PQ|的最小值为( ) A. 2ln 1- B.)2ln 1(2- C. 2ln 1+ D.)2ln 1(2+第Ⅱ卷 二。
2012年全国高考江西数学(理)试题解析(学生版)
2012年普通高等学校招生统一考试(江西卷)数学试题卷(理)学生版本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页。
满分150分,考试时间120分钟。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
3.考试结束,务必将试卷和答题卡一并上交。
参考公式: 锥体体积公式V=13Sh ,其中S 为底面积,h 为高。
第I 卷一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
2.下列函数中,与函数y=3x 1定义域相同的函数为 A .y=1sin x 1nx x x D. sin x x 7.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则.4 C9.样本(x 1,x 2…,x n )的平均数为x ,样本(y 1,y 2,…,y n )的平均数为()y x y ≠。
若样本(x 1,x 2…,x n ,y 1,y 2,…,y n )的平均数y )(a 1x a z -+=,其中0<α<12,则n ,m 的大小关系为D.不能确定2012年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答。
若在试题卷上作答,答案无效。
二。
填空题:本大题共4小题,每小题5分,共20分。
14下图为某算法的程序框图,则程序运行后输出的结果是______________.三、选做题:请在下列两题中任选一题作答。
若两题都做,则按第一题评阅计分。
本题共5分。
15.(1)(坐标系与参数方程选做题)曲线C的直角坐标方程为x2+y2-2x=0,以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为___________。
15.(2)(不等式选做题)在实数范围内,不等式|2x-1|+|2x+1|≤6的解集为___________。
2012年江西高考数学理科试卷(带详解)
2012年普通高等学校招生全国统一考试(江西卷)数学(理科)第I 卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合11A =-{,}02B ={,},,则集合,,Z Z x y x A y B =+∈∈{}中的元素的个数为( )A .5 B. 4 C. 3 D. 2 【测量目标】集合的含义.【考查方式】考查了集合的互异性. 【难易程度】容易 【参考答案】C【试题解析】集合A 、B 中元素两两相加得到1-,1,1,3,由集合的互异性可知集合 ,,Z Z x y x A y B =+∈∈{}中的元素的个数为3. 2.下列函数中,与函y =定义域相同的函数为 ( ) A .1sin y x =B. ln x y x =C. 2e y x = D. sin x x【测量目标】函数的定义域.【考查方式】考查了有关对数函数、指数函数、分式函数的定义域. 【难易程度】容易 【参考答案】D 【试题解析】函数y =的定义域为()(),00,-∞+∞,而答案中只有sin xy x=的定义域为 ()(),00,-∞+∞.故选D.3.若函数21(1)()lg (1)x x f x x x ⎧+=⎨>⎩,则((10))f f = ( )A. lg101B.2C. 1D. 0 【测量目标】分段函数.【考查方式】考查分段函数的求值. 【难易程度】容易 【参考答案】B【试题解析】101>,(10)lg101f ∴==.2((10))(1)112f f f ∴==+=.4.若1tan 4tan θθ+=,则sin 2θ= ( )A .15 B.14 C. 13 D. 12【测量目标】二倍角.【考查方式】考查三角恒等变形式以及转化与化归的数学思想. 【难易程度】容易 【参考答案】D【试题解析】221sin cos sin cos 1tan 41tan cos sin sin cos sin 22θθθθθθθθθθθ++=+===, 1sin 22θ∴=. 5.下列命题中,假命题为 ( ) A .存在四边相等的四边形不.是正方形. B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数. C .若,x y ∈R ,且2x y +>则,x y 至少有一个大于1.D .对于任意01,C C n n n ∈++N …C nn +都是偶数.【测量目标】四种命题及其之间的关系.【考查方式】以命题的真假为切入点,综合考查了充要条件,复数、特称命题、全称命题、二项式定理等. 【难易程度】容易 【参考答案】B【试题解析】(验证法)对于B 项,令121i,9i()z m z m m =-+=-∈R ,显然128z z +=∈R ,但12,z z 不互为共轭复数,故B 为假命题,应选B.6.观察下列各式:223344551,3,4,7,11a b a b a b a b a b +=+=+=+=+=,…,则1010a b += ( )A .28B .76C .123D .199 【测量目标】合情推理.【考查方式】考查归纳推理的思想方法. 【难易程度】中等 【参考答案】C【试题解析】观察各等式的右边,它们分别为1,3,4,7,11,…,发现从第3项开始,每一 项就是它的前两项之和,故等式的右边依次为1,3,4,7,11,18,29,47,76,123,…,故1010123a b +=.7.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点, 则222PA PB PC+= ( )A .2B .4C .5D .10【测量目标】三种距离公式.【考查方式】主要考查两点间的距离公式,以及坐标法这一重要的解题方法和数形结合的数学思想.【难易程度】中等 【参考答案】D【试题解析】取特殊的等腰直角三角形,令4AC BC ==,42AB =,1222CD AB ==122PC PD CD ===,22PA PB AD PD ==+()()2222210=+=2221010102PA PB PC++∴==. 8.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植 年产量/亩年种植成本/亩每吨售价黄瓜 4吨 1.2万元 0.55万元 韭菜6吨 0.9万元 0.3万元为使一年的种植总利润(总利润总销售收入总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为 ( ) A .50,0 B .30,20 C .20,30 D .0,50 【测量目标】二元线性规划的实际应用.【考查方式】考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及 实践能力.【难易程度】较难 【参考答案】B【试题解析】设黄瓜和韭菜的种植面积分别为,x y 亩,总利润为z 万元,则目标函数为()()0.554 1.20.360.90.9z x x y y x y =⨯-+⨯-=+.(步骤1)线性约束条件为50,1.20.954,0,0,x y x y x y +⎧⎪+⎪⎨⎪⎪⎩ 即50,43180,0,0,x y x y x y +⎧⎪+⎪⎨⎪⎪⎩(步骤2)做出不等式组50,43180,0,0,x y x y x y +⎧⎪+⎪⎨⎪⎪⎩表示的可行域,易求得点()0,50A ,()30,20B ,()0,45C .(步骤3)平移直线0.9z x y =+,可知当直线0.9z x y =+经过点()30,20B ,即30,20x y ==时,z 取得最大值,且max 48z =(万元).(步骤4)故选B.第8题图9.样本(1x ,2x ,…,)n x 的平均数为x ,样本(1y ,2y ,…,)m y 的平均数为()y x y ≠,若样本(1x ,2x ,…,n x ,1y ,2y ,…,)m y 的平均数()1z ax a y =+-,其中102a <<,则,n m 的大小关系为 ( )A .n m <B .n m >C .n m =D .不能确定 【测量目标】用样本数字特征估计总体数字特征.【考查方式】考查统计中的平均数,作差法比较大小以及整体思想. 【难易程度】较难 【参考答案】A【试题解析】由统计学知识,可得12x x ++…n x nx +=,12y y ++…m y my +=,12x x ++…n x ++12y y ++…()()()1m y m n z m n ax a y ⎡⎤+=+=++-⎣⎦()()()1m n ax m n a y =+++-,()()()1nx my m n ax m n a y ∴+=+++-.(步骤1)()()(),1.n m n a m m n a =+⎧⎪∴⎨=+-⎪⎩故()()()()121n m m n a a m n a -=+--=+-⎡⎤⎣⎦.(步骤2)10,2102a a <<∴-<.0n m ∴-<.即n m <.(步骤3)10.如图,已知正四棱锥S —ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分,记(01)SE x x =<<,截面下面部分的体积为()V x ,则函数()y V x =的图像大致为 ( )第10题图A B C D第10题图【测量目标】函数图象的判断.【考查方式】本题综合考查了棱锥的体积公式,线面垂直,同时考查了函数的思想,导数法解决几何问题等重要的解题方法. 【难易程度】较难 【参考答案】A【试题解析】(定性法)当102x <<时,随着x 的增大,观察图形可知,()V x 单调递减,且递减的速度越来越快;当112x <时,随着x 的增大,观察图形可知,()V x 单调递减,且递减的速度越来越慢;再观察各选项中的图象,发现只有A 图象符合.故选A. 第Ⅱ卷注:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 二.填空题:本大题共4小题,每小题5分,共20分. 11.计算定积分()121sin xx dx -+=⎰___________【测量目标】微积分基本定理求定积分.【考查方式】考查有关多项式函数,三角函数定积分的应用. 【难易程度】中等 【参考答案】23【试题解析】()31211111112sin cos cos1cos1333333x x x dx x --⎛⎫-⎛⎫⎛⎫+=-=---=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰. 12.设数列{}n a ,{}n b 都是等差数列,若117a b +=,3321a b +=,则55a b += ___________ 【测量目标】等差数列的性质.【考查方式】考查等差中项的性质及整体代换的数学思想. 【难易程度】中等【参考答案】35 【试题解析】解法一:数列{}n a ,{}n b 都是等差数列,∴数列{}n n a b +也是等差数列.故由等差中项的性质,得551133()()2()a b a b a b +++=+,即55()7221a b ++=⨯,解得5535a b +=.解法二:设数列{}n a ,{}n b 的公差分别为1d ,2d ,()()()()()3311121112122227221a b a d b d a b d d d d +=+++=+++=++=,127d d ∴+=,()()553312235a b a b d d ∴+=+++=.13.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是1F ,2F .若1AF ,12F F ,1F B 成等比数列,则此椭圆的离心率为_______________.【测量目标】椭圆的简单几何性质与等比数列的性质.【考查方式】着重考查等比中项的性质,以及椭圆的离心率等几何性质,同时考查了函数与方程,转化与化归思想. 【难易程度】中等 【参考答案】5 【试题解析】利用椭圆及等比数列的性质解题.由椭圆的性质可知:1AF a c =-,122F F c =,1F B a c =+.又已知1AF ,12F F ,1F B 成等比数列,故()()()22a c a c c -+=,即2224a c c -=,则225a c =.故5c e a ==.即椭圆的离心率为5. 14.下图为某算法的程序框图,则程序运行后输出的结果是______________.第14题图【测量目标】循环结构的程序框图.【考查方式】考查算法程序框图的应用以及运算求解的能力. 【难易程度】容易 【参考答案】3【试题解析】由程序框图可知: 第一次:π0,1,sin1sin 002T k ===>=成立,1,1,2,26a T T a k ==+==<,满足判断条件,继续循环; (步骤1) 第二次:πsin π0sin12=>=不成立,0,1,3,36a T T a k ==+==<,满足判断条件,继续循环; (步骤2) 第三次: 3πsin1sin π02=->=不成立,0,1,4,46a T T a k ==+==<, 满足判断条件,继续循环; (步骤3) 第四次: 3πsin 2π0sin 12=>=-成立,1,2,5a T T a k ==+==, 满足判断条件,继续循环; (步骤4)第五次: 5πsin1sin 2π02=>=成立,1,2,666a T T a k ==+==<,不成立,不满足判断条件,跳出循环,故输出T 的值3. (步骤5)三、选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分.本题共5分. 15.(1)(坐标系与参数方程选做题)曲线C 的直角坐标方程为2220x y x +-=,以原点为 极点,x 轴的正半轴为极轴建立积坐标系,则曲线C 的极坐标方程为___________. 【测量目标】极坐标方程与直角坐标方程的互化.【考查方式】考查极坐标方程与直角坐标方程的互化及转化与化归的数学思想. 【难易程度】中等 【参考答案】2cos ρθ=【试题解析】由极坐标方程与直角坐标方程的互化公式cos ,sin ,x y ρθρθ=⎧⎨=⎩得22222cos 0x y x ρρθ+-=-=,又0ρ>,所以2cos ρθ=.15.(2)(不等式选做题)在实数范围内,不等式21216x x -++的解集为___________.【测量目标】绝对值不等式的解法.【考查方式】考查绝对值不等式的解法以及转化与划归、分类讨论的数学思想. 【难易程度】中等 【参考答案】3322x x⎧⎫-⎨⎬⎭⎩【试题解析】原不等式可化为1,212216,x x x ⎧-⎪⎨⎪---⎩①或11,2221216x x x ⎧-<<⎪⎨⎪---⎩②或 1,221216,x x x ⎧⎪⎨⎪-++⎩③由①得3122x--;由②得1122x -<<;由③得1322x, 综上,得原不等式的解集为3322x x⎧⎫-⎨⎬⎭⎩.四.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知数列{}n a 的前n 项和21()2n S n kn k +=-+∈Ν,且n S 的最大值为8. (1)确定常数k ,求n a ; (2)求数列922n na -⎧⎫⎨⎬⎩⎭的前n 项和n T . 【测量目标】错位相减法求和.【考查方式】考查了数列的通项公式n a 与前n 项和n S 之间的关系以及错位相减法求和的应用能力.【难易程度】中等【试题解析】(1)当n k +=∈Ν时,212n S n kn =-+取最大值,即22211822k k k =-+=,故4k =,从而19(2)2n n n a S S n n -=-=-,(步骤1)又1172a S ==,92n a n ∴=-. (步骤2) (2)19222n n n n a n b --==,12n T b b =++...223122n b +=+++ (2)1122n n n n---++, 212111112221 (44222222)n n n n n n n n n n n T T T -----+∴=-=++++-=--=-.(步骤3)17.(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .已知π4A =, ππsin sin 44b C c B a ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭.(1)求证: π2B C -=; (2)若a =ABC △的面积.【测量目标】诱导公式与正弦定理.【考查方式】给出三角形的三条边长及一个角,求证另外两角差为定值,并求三角形的面积. 【难易程度】中等 【试题解析】(1)由ππsin sin 44b C c B a ⎛⎫⎛⎫+-+=⎪ ⎪⎝⎭⎝⎭及正弦定理得: ππsin sin sin sin sin 44B C C B A ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,(步骤1)即22222sin cos sin sin cos sin B C C C B B ⎛⎫⎛⎫+-+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 整理得:sin cos cos sin 1B C B C -=,()sin 1B C ∴-=,(步骤2)又0B <,3π4C <,π2B C ∴-=.(步骤3) (2) 由(1)及3π4B C +=可得5π8B =,π8C =,又π4A =,2a =,sin 5π2sin sin 8a B b A ∴==,sin π2sin sin 8a C c A ==,(步骤4)15ππππ2π1sin 2sin sin 2sin cos sin 28888242ABC S bc A =====△. (步骤5)18.(本题满分12分)如图,从()11,0,0A ,()22,0,0A ,()10,1,0B ,()20,2,0B ,()10,0,1C ,()20,0,2C 这6 个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积0V =).(1)求0V =的概率;(2)求V 的分布列及数学期望.第18题图【测量目标】几何概型.【考查方式】给出样本数据,求概率及其分布列和数学期望. 【难易程度】容易【试题解析】(1)从6个点中随机地选取3个点共有36C 20=种选法,选取的3个点与原点O在同一个平面上的选法有1334C C 12=种,因此0V =的概率()1230205P V ===.(步骤1) (2)V 的所有可能值为0,16,13,2343,因此V 的分布列为: V16 13 2343 P35120320320120(步骤2)由V 的分布列可得:31113234190562032032032040EV =⨯+⨯+⨯+⨯+⨯=(步骤3) 19.(本题满分12分)在三棱柱ABC —111A B C 中,已知15AB AC AA ===,4BC =,1A 在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱1AA 上存在一点E ,使得OE ⊥平面11BB C C ,并求出AE 的长; (2)求平面11A B C 与平面11BB C C 夹角的余弦值.第19题图【测量目标】线面垂直的判定,二面角.【考查方式】给出三棱柱的点、线、面之间的位置关系,求证线面垂直及二面角的余弦值. 【难易程度】较难【试题解析】(1)证明:连接AO ,在1AOA △中,作1OE AA ⊥于点E ,(步骤1)1AA ∥1BB ,1OE BB ∴⊥,(步骤2) 1A O ⊥平面ABC ,1A O BC ∴⊥,(步骤3)AB AC =,OB OC =,∴AO BC ⊥,(步骤4) BC ∴⊥平面1AA O ,BC OE ∴⊥,(步骤5) OE ∴⊥平面11BB C C , (步骤6)又221AO AB BO =-=,15AA =,2215AO AE AA ∴==.(步骤7) (2)如图所示,分别以OA ,OB ,1OA 所在的直线为x ,y ,z 轴建立空间直角坐标系,则()()()()11,0,0,0,2,0,0,0,2,0,2,0A C A B -,(步骤8)由(1)可知115AE AA =得点E 的坐标为42,0,55⎛⎫⎪⎝⎭,由(1)可知平面11BB C C 的法向量是 42,0,55⎛⎫⎪⎝⎭,设平面11A B C 的法向量(),,x y z =n ,(步骤9) 由100AB A C ⎧⨯=⎪⎨⨯=⎪⎩n n ,得200x y y z -+=⎧⎨+=⎩,(步骤10)令1y =,得2,1x z ==-,即()2,1,1=-n (步骤11)30cos ,OE OE OE ⨯∴==⨯n n n(步骤12) 即平面11A B C 与平面11BB C C 夹角的余弦值是3010.(步骤13)第19题图20. (本题满分13分)已知三点()()()0,0,2,1,2,1O A B -,曲线C 上任意一点(),M x y 满足()2MA MB OM OA OB +=++.(1) 求曲线C 的方程;(2)动点()()000,22Q x y x -<<在曲线C 上,曲线C 在点Q 处的切线为l :20024x x y x =-,是否存在定点()()0,0P t t <,使得l 与PA ,PB 都相交,交点分别为D ,E ,且QAB △与PDE △的面积之比是常数?若存在,求t 的值.若不存在,说明理由.【测量目标】平面向量的坐标运算,曲线与方程.【考查方式】给出三点坐标及曲线C 上的点所满足的等式,求曲线方程及动点问题的应用. 【难易程度】较难【试题解析】(1)依题意可得()()2,1,2,1MA x y MB x y =---=--,(步骤1) 由已知得()()()()()22222,,0,22MA MB x y OM OA OB x y y+=-+-⨯+=⨯=,22y =+,(步骤2)化简得曲线C 的方程:24x y = .(步骤3)(2)假设存在点()()0,0P t t <满足条件,则直线PA 的方程是12t y x t -=+,直线PB 的方 程是12ty x t -=+,曲线C 在点Q 处的切线l 的方程为20024x x y x =-,它与y 轴的交点为20,4x F ⎛⎫- ⎪⎝⎭,由于22x -<<,因此0112x -<<.(步骤4)①当10t -<<时,11122t --<<-,存在()02,2x ∈-,使得0122x t -=,即l 与直线PA 平 行,故当10t -<<时不符合题意(步骤5) ②当1t-时,01122x t --<,01122x t->,所以l 与直线PA ,PB 一定相交,分别联立 方程组2001224t y x t x x y x -⎧=+⎪⎪⎨⎪=-⎪⎩,2001224t y x t x x y x -⎧=+⎪⎪⎨⎪=-⎪⎩,(步骤6) 解得D ,E 的横坐标分别是()200421D x tx x t -=+-,()200421E x t x x t +=+-,(步骤7)则()2022041(1)E D x tx x t x t +-=---,(步骤8) 又204x FP t =--,有()22220411=28(1)PDE E D x t t S FP x x t x +-⨯-=⨯--△, (步骤9)又22004141242QABx x S ⎛⎫-=⨯⨯-=⎪⎝⎭△, 于是()()22242220000242220004(1)4(1)4(1)44118164QAB PDEx x t x t x t S S t t x tx t x t ⎡⎤⎡⎤+---+-+-⎣⎦⎣⎦=⨯=⨯--+++△△. (步骤10)对任意()02,2x ∈-,要使QAB △与PDE △的面积之比是常数,只需t 满足()()2224184116t t t t⎧---=⎪⎨-=⎪⎩,(步骤11) 解得1t =-,此时QAB △与PDE △的面积之比为2,故存在1t =-,使QAB △与PDE △的面积之比是常数2.(步骤12)21. (本小题满分14分) 若函数()h x 满足 (1)(0)1,(1)0h h ==;(2)对任意[]0,1a ∈,有(())h h a a =; (3)在()0,1上单调递减.则称()h x 为补函数.已知函数()11()1,01ppp x h x p x λλ⎛⎫-=>-<⎪+⎝⎭.(1)判函数()h x 是否为补函数,并证明你的结论;(2)若存在[]0,1m ∈,使得()h m m =,称m 是函数()h x 的中介元,记()1p n n+=∈N 时()h x 的中介元为i x ,且1nn i i S x ==∑,若对任意的n +∈N ,都有12n S <,求λ的取值范围; (3)当0λ=,()0,1x ∈时,函数()y h x =的图像总在直线1y x =-的上方,求P 的取值范围.【测量目标】函数单调性的判断,不等式恒成立问题.【考查方式】给出一个新函数的定义,证明函数()h x 是否为此类函数,再求解不等式恒成立问题.【难易程度】较难【试题解析】(1)函数()h x 是补函数.证明如下:①111011(0),(1)0101p ph h λ--⎛⎫⎛⎫===⎪ ⎪++⎝⎭⎝⎭;(步骤1)②()1111111(())(())11111ppp p pp pp p a a a a h h a h a aa a λλλλλλ⎛⎫-- ⎪⎛⎫+-+==== ⎪ ⎪-++ ⎪⎝⎭+⎪+⎝⎭;(步骤2)③令()(())pg x h x =,有()()()()()11122111()11p p p p p p p px x x px p x g x x x λλλλλ----+---+'==++,(步骤3)1,0p λ>->,∴当()0,1x ∈时,()0g x '<,()g x ∴在()0,1上单调递减,故函数()h x 在()0,1上单调递减.(步骤4)(2) 当()1p n n+=∈N ,由()h x x =,得:21210n n x x λ+-= ……(*)(步骤5)①当0λ=时,中介元12nn x ⎛⎫= ⎪⎝⎭; (步骤6)②当1λ>-且0λ≠时,由(*)可得()10,1nx =或()10,1n x =; (步骤7)得中介元n n x =,综上有对任意的1λ>-,中介元nn x =()n +∈N(步骤8)于是,当1λ>-时,有111inn nn i i i S x ==⎛⎫===-<⎪⎪⎭∑∑ (步骤9) 当n 无限增大时,n 无限接近于0,n Sn +∈N ,12n S <12,即 [)3,λ∈+∞.(步骤10)(3) 当0λ=时,()1()1p ph x x =-,中介元是112pp x ⎛⎫= ⎪⎝⎭(步骤11)①当01p <时,11p ,中介元为11122pp x ⎛⎫= ⎪⎝⎭,所以点(),()p p x h x 不在直线1y x =-的上方,不符合条件;(步骤12) ②当1p >时,依题意只须()111ppxx ->-在()0,1x ∈时恒成立,也即()11pppx x+-<在()0,1x ∈时恒成立,(步骤13)设()()1pppx x x ϕ=+-,[]0,1x ∈,则()11()1p p px p x x ϕ--⎡⎤'=--⎢⎥⎣⎦,(步骤14)由()0x ϕ'=可得12x =,且当10,2x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'<;当1,12x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'>, (步骤15) 又(0)(1)1ϕϕ==,∴当()0,1x ∈时,()1x ϕ<恒成立.(步骤16)综上:p 的取值范围为()1,+∞.(步骤17)。
2012年普通高等学校招生全国统一考试(江西
2012年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
满分150分,考试时间120分钟。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
第II卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答题无效。
3.考试结束,务必将试卷和答题卡一并上交。
参考公式:锥体体积公式V=13Sh,其中S为底面积,h为高。
第I卷一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合A={-1,1},B={0,2},则集合{z︱z=x+y,x∈A,y∈B}中的元素的个数为A.5 B.4 C.3 D.22.下列函数中,与函数y=定义域相同的函数为A.y=1sin xB.y=1nxxC.y=xe xD.sin xx3.若函数f(x)=21,1lg,1x xx x⎧+≤⎨>⎩,则f(f(10)=A.lg101B.bC.1D.04.若tanθ+1tanθ=4,则sin2θ=A.15B.14C.13D.125.下列命题中,假命题为A.存在四边相等的四边形不是正方形B.z1,z2∈c,z1+z2为实数的充分必要条件是z1,z2互为工复数C.若x,y∈CR,且x+y>2,则x,y至少有一个大于1D.对于任意n∈N,C°+C1.…+C°。
都是偶数6.观察下列各式:a+b=1.a²+b2=3,a3+b3=4 ,a4+b4=7,a5+b5=11,…,则a10+b10=A.28B.76C.123D.1997.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则A.2B.4C.5D.108.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为A.50,0 B.30.0 C.20,30 D.0,509.样本(x1,x2…,x n)的平均数为x,样本(y1,y2,…,y n)的平均数为。
2012高考数学(理)真题精校精析(江西卷)(纯word书稿)汇总
2012·江西卷(数学理科)1.[2012·江西卷] 若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为( )A .5B .4C .3D .21.C [解析] 考查集合的含义与表示;解题的突破口为列出所有结果,再检验元素的互异性.当x =-1,y =0时,z =-1,当x =-1,y =2时,z =1,当x =1,y =0时,z =1,当x =1,y =2时,z =3,故集合{z |z =x +y ,x ∈A ,y ∈B }中的元素个数为3,故选C.2.[2012·江西卷] 下列函数中,与函数y =13x 定义域相同的函数为( )A .y =1sin xB .y =ln x xC .y =x e xD .y =sin x x2.D [解析] 考查函数的定义域解不等式等;解题的突破口为列出函数解析式所满足的条件,再通过解不等式达到目的.函数y =13x 的定义域为{x |x ≠0}.y =1sin x 的定义域为{x |x ≠k π},y =ln x x 的定义域为{x |x >0},y =x e x 的定义域为,y =sin x x 的定义域为{x |x ≠0},故选D.3.[2012·江西卷] 若函数f (x )=⎩⎨⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( ) A .lg101 B .2 C .1 D .03.B [解析] 考查分段函数的定义对数的运算分类讨论思想;解题的突破口是根据自变量取值范围选择相应的解析式解决问题.∵10>1,∴f (10)=lg10=1≤1,∴f (f (10))=f (1)=12+1=2,故选B.4.[2012·江西卷] 若tan θ+1tan θ=4,则sin2θ=( )A.15B.14C.13D.124.D [解析] 考查同角三角函数的关系二倍角公式,以及“1”的代换及弦切互化等方法.解题的突破口是通过“1”的代换,将整式转化为齐次分式,再通过同除以cos θ达到化切目的.∵tan θ+1tan θ=tan 2θ+1tan θ=4,∴sin2θ=2sin θcos θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=24=12,故选D.5.[2012·江西卷] 下列命题中,假命题为( )A .存在四边相等的四边形不.是正方形 B .z 1,z 2∈,z 1+z 2为实数的充分必要条件是z 1,z 2互为共轭复数C .若x ,y ∈,且x +y >2,则x ,y 至少有一个大于1D .对于任意n ∈*,C 0n +C 1n +…+C n n 都是偶数5.B [解析] 考查命题的真假的判断含量词命题真假的判断组合数性质以及逻辑推理能力等;∵菱形四边相等,但不是正方形,∴A 为真命题;∵z 1,z 2为任意实数时,z 1+z 2为实数,∴B 为假命题;∵x ,y 都小于等于1时,x +y ≤2,∴C 为真命题;∵C 0n +C 1n +C 2n +…+C n n =2n ,又n ∈*,∴D 为真命题.故选B.6.[2012·江西卷] 观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1996.C [解析] 考查归纳推理,以及观察能力;解题的突破口是通过观察得到后一项与前两项结果之间的关系.由于a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,通过观察发现,从第三项起,等式右边的常数分别为其前两项等式右边的常数的和.因此,a 6+b 6=11+7=18,a 7+b 7=18+11=29,a 8+b 8=29+18=47,a 9+b 9=47+29=76,a 10+b 10=76+47=123,故选C.7.[2012·江西卷] 在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|P A |2+|PB |2|PC |2=( )A .2B .4C .5D .107.D [解析] 考查向量基本定理向量的线性运算向量的数量积及其应用,考查化归转化能力.解题的突破口是建立平面直角坐标系转化为平面向量坐标运算问题求解,或利用平面向量基本定理,将问题转化为只含基底的两个向量的运算问题求解.方法一:∵D 是AB 中点,∴CD →=12(CA →+CB →).∵P 是CD 中点,∴CP →=14(CA →+CB →),∴AP →=CP →-CA →=-34CA →+14CB →,BP →=CP →-CB →=14CA →-34CB →. ∵CA →·CB →=0,∴AP →2=916CA →2+116CB →2,BP →2=116CA →2+916CB →2,CP →2=116CA →2+116CB→2, ∴|P A |2+|PB |2|PC |2=10.方法二:∵D 是AB 中点,∴P A →+PB →=2PD →,P A →-PB →=BA →,∴P A →2+2P A →·PB→+PB →2=4PD →2,P A →2-2P A →·PB →+PB →2=BA →2,∴2(|P A |2+|PB |2)=4|PD |2+|AB |2.∵D 是AB 的中点,∴2|CD |=|AB |.∵P 是CD 中点,∴|CD |=2|PC |,∴|P A |2+|PB |2=10|CP |2,故|P A |2+|PB |2|PC |2=10.方法三:以C 为坐标原点,AC ,BC 所在的直线为x 轴,y 轴,建立平面直角坐标系,设A (a,0),B (0,b ),则D ⎝ ⎛⎭⎪⎫a 2,b 2,P ⎝ ⎛⎭⎪⎫a 4,b 4,|P A |2+|PB |2=9a 216+b 216+9b 216+a 216=10(a 2+b 2)16,而|PC |2=a 2+b 216,故|P A |2+|PB |2|PC |2=10.8.[2012·江西卷] 某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量成本和售价如下表:和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,508.B [解析] 考查二元一次不等式组表示的平面区域线性规划的实际应用数形结合思想,以及阅读理解和数学建模能力;解题的突破口是按照线性规划解决实际问题的步骤求解,即①设出 xyz ;②列出约束条件,确定目标函数;③画出可行域;④判断最优解;⑤求出目标函数的最值,并回到原问题中作答.设种植黄瓜x 亩,种植韭菜y 亩,因此,原问题转化为在条件⎩⎪⎨⎪⎧ x +y ≤50, 1.2x +0.9y ≤54,x ≥0,y ≥0 下,求z =0.55×4x +0.3×6y -1.2x -0.9y =x +0.9y 的最大值.画出可行域如图.利用线性规划知识可知,当x ,y 取⎩⎪⎨⎪⎧x +y =50,1.2x +0.9y =54的交点(30,20)时,z 取得最大值.故选B.9.[2012·江西卷] 样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y n )的平均数为y (x ≠y ).若样本(x 1,x 2,…,x n ,y 1,y 2,…,y n )的平均数z =αx+(1-α)y ,其中0<α<12,则n ,m 的大小关系为( )A .n <mB .n >mC .n =mD .不能确定9.A [解析] 考查平均数的计算不等式的性质等;解题的突破口是利用样本平均数的计算公式,建立m ,n ,α之间的关系后求解.∵z =1n +m (n x +m y )= n n +m x ⎝ ⎛⎭⎪⎫1-n n +m y ,∴n n +m =α,∵0<α<12,∴0<n n +m<12,∴n <m ,故选A.图1-110.[2012·江西卷] 如图1-2,已知正四棱锥S -ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上下两部分,记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图像大致为()图1-210.A[解析] 考查空间中的线面位置关系的转化空间几何体体积的计算函数的表示法导数的几何意义等,考查分类讨论思想化归转化思想数形结合思想函数与方程思想等;解题的突破口是将所求几何体的体积通过“割补法”求解.设AC,BD交于O,当E为SC中点时,∵SB=SD=BC=CD,∴SE⊥BE,SE⊥DE,∴SE⊥面BDE.当x=12时,截面为三角形EBD.又∵SA=SC=1,AC=2,SO=22. 当12≤x<1时,设截面交CD于H,交CB于I,∴V(x)=V E-CHI=13⎣⎢⎡⎦⎥⎤12×(2-2x)222(1-x)=23(1-x)3;当0<x <12时,设截面交SD于F,交SB于G,交AD于H,交AB于I,连接SH,SI,由于S五边形EFHIG=S三角形EFG+S矩形FHIG=2x2+22x(1-2x)=22x-32x2,V(x)=V S-CDHIB-V S-EFHIG=26(1-2x2)-13( 22x-32x2)x=2x3-2x2+26,故选A.11.[2012·江西卷] 计算定积分⎠⎛1-1(x2+sin x)d x=________.11.23 [解析] 考查定积分的计算诱导公式,以及运算能力;解题的突破口是通过基本初等函数的导数公式的逆向使用确定被积函数的原函数.⎠⎛1-1(x 2+sin x)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x 33-cos x 1-1=13-cos 1-⎝ ⎛⎭⎪⎫-13+cos (-1)=23.12.[2012·江西卷] 设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.12.35 [解析] 考查等差数列的定义性质;解题的突破口是利用等差数列的性质,将问题转化为研究数列的项与项数之间的关系求解.方法一:设c n =a n +b n ,∵{a n },{b n }是等差数列,∴{c n }是等差数列,设其公差为d ,则c 1=7,c 3=c 1+2d =21,解得d =7,因此,c 5=a 5+b 5=7+(5-1)×7=35.故填35.方法二:设c n =a n +b n ,∵{a n },{b n }是等差数列,∴{c n }是等差数列,∴2(a 3+b 3)=(a 1+b 1)+(a 5+b 5),即42=7+(a 5+b 5),因此a 5+b 5=42-7=35.故填35.13.[2012·江西卷] 椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别是A ,B ,左右焦点分别是F 1,F 2,若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为________.13.55 [解析] 考查椭圆的定义和性质等比数列的性质等;解题的突破口是建立关于a ,c 的齐次等式,然后转化为离心率e 的方程求解.由椭圆的定义知,|AF 1|=a -c ,|F 1F 2|=2c ,|BF 1|=a +c ,∵|AF 1|,|F 1F 2|,|BF 1|成等比数列,因此4c 2=(a -c )(a +c ),整理得5c 2=a 2,两边同除以a 2得5e 2=1,解得e =55.14.[2012·江西卷] 如图1-3为某算法的程序框图,则程序运行后输出的结果是________.图1-314.3[解析] 考查算法框图诱导公式特殊角的三角函数值;解题的突破口是列出每一次循环后各变量的结果.当k=1时,此时sin π2=1>sin0=0成立,因此a=1,T=0+1=1,k=1+1=2,k<6成立,再次循环;因sinπ=0>sin π2=1不成立,因此a=0,T=1+0=1,k=2+1=3,此时k<6成立,再次循环;因sin 3π2=-1> sinπ=0不成立,因此a=0,T=1+0=1,k=3+1=4,此时k<6成立,再次循环;因sin2π=0>sin 3π2=-1成立,因此a=1,T=1+1=2,k=4+1=5,此时k<6成立,再次循环;因sin 5π2=1> sin2π=0成立,因此a=1,T=2+1=3,k=5+1=6,此时k<6不成立,退出循环,此时T=3.15.[2012·江西卷] (1)(坐标系与参数方程选做题)曲线C的直角坐标方程为x2+y2-2x=0,以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为________.(2)(不等式选做题)在实数范围内,不等式|2x-1|+|2x+1|≤6的解集为________.15.(1)ρ=2cosθ[解析] 考查极坐标方程与普通方程的转化;解题的突破口是利用点P的直角坐标(x,y)与极坐标(ρ,θ)的关系转化.由于ρ2=x2+y2,ρcosθ=x,因此x2+y2-2x=0的极坐标方程为ρ=2cosθ.(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -32≤x ≤32 [解析] 考查绝对值不等式的解法,以及分类讨论思想;解题的突破口是利用零点讨论法去掉绝对值符号,将不等式转化为一般不等式(组)求解.当x >12时,原不等式可化为2x -1+2x +1≤6,解得x ≤32,此时12<x ≤32;当x <-12时,原不等式可化为-2x +1-2x -1≤6,解得x ≥-32,此时-32≤x <-12;当-12≤x ≤12时,原不等式可化为1-2x +2x +1≤6,解得x ∈,此时-12≤x ≤12.综上,原不等式的解集为⎣⎢⎡⎦⎥⎤-32,32.16.[2012·江西卷] 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈*),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫9-2a n 2n 的前n 项和T n .16.解:(1)当n =k ∈+时,S n =-12n 2+kn 取最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,因此k =4,从而a n =S n -S n -1=92-n (n ≥2),又a 1=S 1=72,所以a n =92-n .(2)因为b n =9-2a n 2n =n 2n -1, T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n 2n -1, 所以T n =2T n -T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1.17.[2012·江西卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a . (1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.17.解:(1)证明:由b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a ,应用正弦定理,得 sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A , sin B ⎝ ⎛⎭⎪⎫22sin C +22cos C -sin C ⎝ ⎛⎭⎪⎫22sin B +22cos B =22. 整理得sin B cos C -cos B sin C =1,即sin(B -C )=1,由于0<B ,C <34π,从而B -C =π2. (2)由(1)知B -C =π2,又B +C =π-A =3π4,因此B =5π8,C =π8.由a =2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8,所以△ABC 的面积S =12bc sin A =2sin 5π8sin π8=2cos π8sin π8=12.图1-418.[2012·江西卷] 如图1-4,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积V =0).(1)求V =0的概率;(2)求V 的分布列及数学期望EV .18.解:(1)从6个点中随机取3个点总共有C 36=20种取法,选取的3个点与原点在同一个平面内的取法有C 13C 34=12种,因此V =0的概率为P (V =0)=1220=35.(2)V 的所有可能取值为0,16,13,23,43,因此V 的分布列为由V 的分布列可得EV =0×35+16×120+13×320+23×320+43×120=940.19.[2012·江西卷] 如图1-5,在三棱柱ABC -A 1B 1C 1中,已知AB =AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长; (2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.图1-519.解:(1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1 于点E ,因为AA 1∥BB 1,所以OE ⊥BB 1.因为A 1O ⊥平面ABC ,所以A 1O ⊥BC .因为AB =AC ,OB =OC ,所以AO ⊥BC , 所以BC ⊥平面AA 1O . 所以BC ⊥OE ,所以OE ⊥平面BB 1C 1C ,又AO =AB 2-BO 2=1,AA 1=5, 得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),由AE →=15AA 1→得点E 的坐标是⎝ ⎛⎭⎪⎫45,0,25, 由(1)得平面BB 1C 1C 的法向量是OE→=⎝ ⎛⎭⎪⎫45,0,25,设平面A 1B 1C 的法向量=(x ,y ,z ),由⎩⎨⎧·AB →=0,n ·A 1C →=0得⎩⎪⎨⎪⎧-x +2y =0,y +z =0,令y =1,得x =2,z =-1,即=(2,1,-1),所以 cos 〈OE →,〉=OE →·n |OE →|·|n |=3010.即平面BB 1C 1C 与平面A 1B 1C 的夹角的余弦值是3010.20.[2012·江西卷] 已知三点O (0,0),A (-2,1),B (2,1),曲线C 上任意一点M (x ,y )满足|MA →+MB →|=OM →·(OA→+OB →)+2. (1)求曲线C 的方程;(2)动点Q (x 0,y 0)(-2<x 0<2)在曲线C 上,曲线C 在点Q 处的切线为l ,问:是否存在定点P (0,t )(t <0),使得l 与P A ,PB 都相交,交点分别为D ,E ,且△QAB 与△PDE 的面积之比是常数?若存在,求t 的值;若不存在,说明理由.20.解:(1)由MA →=(-2-x,1-y ),MB →=(2-x,1-y ),得|MA→+MB →|=(-2x )2+(2-2y )2,OM →·(OA →+OB →)=(x ,y )·(0,2)=2y , 由已知得(-2x )2+(2-2y )2=2y +2,化简得曲线C 的方程:x 2=4y . (2)假设存在点P (0,t )(t <0)满足条件,则直线P A 的方程是y =t -12x +t ,PB 的方程是y =1-t2x +t .曲线C 在Q 处的切线l 的方程是y =x 02x -x 204,它与y 轴交点为F ⎝ ⎛⎭⎪⎫0,-x 204.由于-2<x 0<2,因此-1<x 02<1.①当-1<t <0时,-1<t -12<-12,存在x 0∈(-2,2)使得x 02=t -12, 即l 与直线P A 平行,故当-1<t <0时不符合题意.②当t ≤-1时,t -12≤-1<x 02,1-t 2≥1>x 02,所以l 与直线P A ,PB 一定相交. 分别联立方程组⎩⎪⎨⎪⎧y =t -12x +t ,y =x 02x -x 204,⎩⎪⎨⎪⎧y =1-t 2x +t ,y =x 02x -x 204,解得D ,E 的横坐标分别是x D =x 20+4t2(x 0+1-t ),x E =x 20+4t2(x 0+t -1),则x E -x D =(1-t )x 20+4tx 20-(t -1)2. 又|FP |=-x 204-t ,有S △PDE =12·|FP |·|x E -x D |=1-t 8·(x 20+4t )2(t -1)2-x 2. 又S △QAB =12·4·⎝ ⎛⎭⎪⎫1-x 204=4-x 22, 于是S △QABS △PDE =41-t ·(x 20-4)[x 20-(t -1)2](x 20+4t )2=41-t ·x 40-[4+(t -1)2]x 20+4(t -1)2x 40+8tx 20+16t 2. 对任意x 0∈(-2,2),要使S △QABS △PDE 为常数,则t 要满足⎩⎪⎨⎪⎧-4-(t -1)2=8t ,4(t -1)2=16t 2,解得t =-1,此时S △QABS △PDE=2,故存在t =-1,使△QAB 与△PDE 的面积之比是常数2.21.[2012·江西卷] 若函数h (x )满足 ①h (0)=1,h (1)=0;②对任意a ∈[0,1],有h (h (a ))=a ; ③在(0,1)上单调递减.则称h (x )为补函数.已知函数h (x )=⎝ ⎛⎭⎪⎫1-x p1+λx p 1p (λ>-1,p >0).(1)判断函数h (x )是否为补函数,并证明你的结论;(2)若存在m ∈[0,1],使h (m )=m ,称m 是函数h (x )的中介元.记p =1n (n ∈*)时h (x )的中介元为x n ,且S n =∑i =1n x i ,若对任意的n ∈*,都有S n <12,求λ的取值范围;(3)当λ=0,x ∈(0,1)时,函数y =h (x )的图像总在直线y =1-x 的上方,求p 的取值范围.21.解:(1)函数h (x )是补函数,证明如下: ①h (0)=⎝ ⎛⎭⎪⎪⎫1-01+01p =1,h (1)=⎝ ⎛⎭⎪⎪⎫1-11+λ1p =0; ②对任意a ∈[0,1],有h (h (a ))=h ⎝ ⎛⎭⎪⎪⎫⎝ ⎛⎭⎪⎪⎫1-a p1+λa p1p =⎝ ⎛⎭⎪⎪⎫1-1-a p1+λa p1+λ1-a p 1+λa p1p =⎝ ⎛⎭⎪⎪⎫(1+λ)a p1+λ1p =a ;③令g (x )=(h (x ))p ,有g ′(x )=-px p -1(1+λx p )-(1-x p )λpx p -1(1+λx p )2=-p (1+λ)x p -1(1+λx p )2. 因为λ>-1,p >0,所以当x ∈(0,1)时,g ′(x )<0,所以函数g (x )在(0,1)上单调递减,故函数h (x )在(0,1)上单调递减.(2)当p =1n (n ∈*),由h (x )=x ,得λx 2n +2x 1n -1=0,(*) (i)当λ=0时,中介元x n =⎝ ⎛⎭⎪⎫12n;(ii)当λ>-1且λ≠0时,由(*)得x 1n =11+λ+1∈(0,1)或x 1n =11-1+λ∉[0,1];得中介元x n =⎝⎛⎭⎪⎫11+λ+1n .综合(i)(ii):对任意的λ>-1,中介元为x n =⎝⎛⎭⎪⎫11+λ+1n (n ∈*).于是,当λ>-1时, 有S n =∑ni =1⎝⎛⎭⎪⎫11+λ+1i=11+λ⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫11+λ+1n <11+λ,当n 无限增大时,⎝⎛⎭⎪⎫11+λ+1n无限接近于0,S n 无限接近于11+λ,故对任意的n ∈*,S n <12成立等价于11+λ≤12,即λ∈[3,+∞).(3)当λ=0时,h (x )=(1-x p)1p ,中介元为x p =⎝ ⎛⎭⎪⎫121p .(i)当0<p ≤1时,1p ≥1,中介元x p =⎝ ⎛⎭⎪⎫121p ≤12,所以点(x p ,h (x p ))不在直线y =1-x 的上方,不符合条件; (ii)当p >1时,依题意只需(1-x p )1p >1-x 在x ∈(0,1)时恒成立, 也即x p +(1-x )p <1在x ∈(0,1)时恒成立, 设φ(x )=x p +(1-x )p ,x ∈(0,1), 则φ′(x )=p [x p -1-(1-x )p -1],由φ′(x )=0得x =12,且当x ∈⎝ ⎛⎭⎪⎫0,12时,φ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫12,1时,φ′(x )>0,又因为φ(0)=φ(1)=1,所以当x ∈(0,1)时,φ(x )<1恒成立. 综上:p 的取值范围是(1,+∞).。
2012年普通高等学校招生全国统一考试全国卷(数学理)word版缺答案
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos 3αα+=,则cos 2α=(A )3- (B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年高考真题——理科数学(全国卷)Word版含答案
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数131ii-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{A =,{1,}B m =,A B A =U ,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =u u u r r ,CA b =u u u r r ,0a b ⋅=r r ,||1a =r ,||2b =r ,则AD =u u u r(A )1133a b -r r (B )2233a b -r r (C )3355a b -r r (D )4455a b -r r(7)已知α为第二象限角,sin cos αα+=,则cos2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= (A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年高考理科数学江西卷(含答案解析)
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前2012年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页.满分150分,考试时间120分钟. 考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题 卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式:锥体体积公式13V Sh =其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为( )A .5B .4C .3D .2 2.下列函数中,与函数y =定义域相同的函数为( )A .1sin y x =B .ln xy x= C .e x y x =D .sin xy x= 3.若函数21,1()lg ,1x x f x x x ⎧+=⎨⎩≤>,则((10))f f =( )A .lg101B .2C .1D .0 4.若1tan 4tan θθ+=,则sin2θ=( )A .15B .14C .13D .125.下列命题中,假命题为( )A .存在四边相等的四边形不.是正方形 B .1212,,z z z z ∈+C 为实数的充分必要条件是12,z z 互为共轭复数 C .若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1D .对于任意01,nnn n n C C C ∈+++N 都是偶数6.观察下列各式:221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+=则1010a b +=( ) A .28B .76C .123D .1997.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则 222||||||PA PB PC += ( )A .2B .4C .5D .108.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54 万元,假设种为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为 ( ) A .50,0 B .30,20C .20,30D .0,509.样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z x y αα=+-,其中102α<<,则,n m 的大小关系为 ( ) A .n m < B .n m >C .n m =D .不能确定 10.如右图,已知正四棱锥S ABCD -所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分,记(01),SEx x =<<截面下面部分的体积为(),V x 则函数()y V x =的图像大致为 ( )ABCD--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)2012年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注意事项:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.二、填空题:本大题共4小题,每小题5分,共20分. 11.计算定积分121(sin )x x dx -+=⎰ .12.设数列{},{}n n a b 都是等差数列,若117a b +=,3321a b +=,则55a b += .13.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||A F F F FB 成等比数列,则此椭圆的离心率为 . 14.下图为某算法的程序框图,则程序运行后输出的结果是 .三、选做题:请在下列两题中任选一题作答.若两题都做,则按第一题评阅计分.本题共5分.15.(1)(坐标系与参数方程选做题)曲线C 的直角坐标方程为2220x y x +-=,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 . 15.(2)(不等式选做题)在实数范围内,不等式|21||21|6x x -++≤的解集为 . 四、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知数列{}n a 的前n 项和212n S n kn =-+(其中k ∈+N ),且n S 的最大值为8.(Ⅰ)确定常数k ,并求n a ;(Ⅱ)求数列92{}2nna -的前n 项和n T . 17.(本小题满分12分)在ABC △中,角,,A B C 的对边分别为,,a b c .已知π4A =,ππsin()sin()44b Cc B a +-+=.(Ⅰ)求证:π2B C -=(Ⅱ)若a 求ABC △的面积. 18.(本题满分12分)如图,从1(1,0,0)A ,2(2,0,0)A ,1(0,1,0)B ,2(0,2,0)B ,1(0,0,1)C ,2(0,0,2)C 这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果 选取的3个点与原点在同一个平面内,此时“立体”的体积0V =). (Ⅰ)求0V =的概率;(Ⅱ)求V 的分布列及数学期望EV .19.(本题满分12分)在三棱柱111ABC A B C -中,已知1AB AC AA ===,4BC =,在1A 在底面ABC 的投影是线段BC 的中点O . (Ⅰ)证明在侧棱1AA 上存在一点E ,使得OE ⊥平面11BB C C ,并求出AE 的长;(Ⅱ)求平面11A B C 与平面11BB C C 夹角的余弦值.20.(本题满分13分)已知三点(0,0)O ,(2,1)A -,(2,1)B ,曲线C 上任意一点(,)M x y 满足||()2MA MB OM OA OB +=⋅++.(Ⅰ)求曲线C 的方程;(Ⅱ)动点000(,)(22)Q x y x -<<在曲线C 上,曲线C 在点Q 处的切线为l .问:是否 存在定点(0,)(0)P t t <,使得l 与,PA PB 都相交,交点分别为,D E ,且QAB △与 PDE △的面积之比是常数?若存在,求t 的值.若不存在,说明理由. 21.(本小题满分14分)若函数()h x 满足(1)(0)1h =,(1)0h =;(2)对任意[0,1]a ∈,有(())h h a a =; (3)在(0,1)上单调递减.则称()h x 为补函数.已知函数11()()(1,0)1p ppx h x p x λλ-=>->+. (Ⅰ)判函数()h x 是否为补函数,并证明你的结论;(Ⅱ)若存在[0,1]m ∈,使得()h m m =,称m 是函数()h x 的中介元.记1()p n n=∈+N 时()h x 的中介元为n x ,且1()ni i S x x ==∑,若对任意的n ∈+N ,都有12n S <,求λ的取值 范围;(Ⅲ)当0λ=,(0,1)x ∈时,函数()y h x =的图像总在直线1y x =-的上方,求p 的取 值范围.1+∞,而答案中只有+∞.,0)(0,)【考点】函数的定义域.>,∴【解析】101【提示】通过分段函数,直接求出【考点】分段函数.数学试卷第5页(共16页)数学试卷第6页(共16页)数学试卷 第7页(共16页) 数学试卷 第8页(共16页)故选B .102a <<【提示】通过特殊值判断33ab +=12d d ∴+=【提示】根据等差数列的通项公式,数学试卷 第9页(共16页) 数学试卷 第10页(共16页)16.【答案】(1)2n a n =- (2)1242n n n T -+=-【解析】(1)当=n k +∈Ν时,21=2n S n kn -+取最大值,即222118=22k k k =-+,故4k =, 从而19(2)n n n a S S n n -=-=-≥,(步骤1) 又11a S ==2)922n b -=2n n T T =-=可求通项,由922n b -=数学试卷 第11页(共16页) 数学试卷 第12页(共16页)又0B <,2)由(1)及sin a AA 1AO ⊥平面AB AC =BC ∴⊥平面OE ∴⊥平面又AO AB =(2)如图所示,,1(0,0,2)A )可知1AE AA =得点E 5⎪⎭的法向量(,,)n x y z =0n AB n A C ⎧⨯=⎪⎨⨯=⎪⎩,得,(步骤10)数学试卷 第13页(共16页) 数学试卷 第14页(共16页)2,1z =-,即(2,1,1)n =-30,10OE n OE n OE n⨯==⨯即平面A B C 与平面11BB C C 夹角的余弦值是10OB ,1OA 所在直线为x ,,z 轴,建立空间直角坐标系,的法向量是(,,)n x y z =,利用OE ,n 夹角求平面 QAB 与PDE △的面积之比是常数(1)依题意可得(2,1)MA x y =---,(2,1MB x y =---()()()(22222,,MA MB x y OM OA OB x y +=-+-⨯+=(22)22y y +-=+化简得曲线C 的方程:24x y =又x FP =-E D x x -=【提示】用坐标表示MA ,MB ,从而可得MA MB +,利用向量的数量积,结合=()2M A M B O M O A O B +++,0)<,满足条件,则直线PA 的方程t y -=1,p λ>-()h x在(0,1)(2)当p又(0)ϕϕ=综上:p的取值范围为数学试卷第15页(共16页)数学试卷第16页(共16页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试(江西卷)
理科数学
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页。
满分150分,考试时间120分钟。
考生注意:
1.答题前,考生务必将自己的准考证号、姓名填写答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答题无效。
3.考试结束,务必将试卷和答题卡一并上交。
参考公式:
锥体体积公式V=13
Sh ,其中S 为底面积,h 为高。
第I 卷
一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x ∈A,y ∈B }中的元素的个数为
A .5 B.4 C.3 D.2
2.下列函数中,与函数y=
3x
1定义域相同的函数为 A .y=1sin x B.y=1nx x C.y=xe x D. sin x x
3.若函数f(x)= 21,1lg ,1x x x x ⎧+≤⎨>⎩,则f(f(10)=
A.lg101
B.2
C.1
D.0
4.若tan θ+
1tan θ
=4,则sin2θ= A .15 B. 14 C. 13 D. 12 5.下列命题中,假命题为
A.存在四边相等的四边形不.
是正方形 B .Z 1,z 2∈C,z 1+z 2为实数的充分必要条件是z 1,z 2互为共轭复数
C.若x,y ∈R ,且x+y >2,则x,y 至少有一个大于1
D .对于任意n ∈N,C n 0+C n 1. …+C n n 都是偶数
6.观察下列各式:a+b=1 ,a 2²+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=
A.28
B.76
C.123
D.199
7.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则 =+222PC PB
PA
A.2
B.4
C.5
D.10
8.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植
积(单位:亩)分别为 A.50,0 B.30.20 C.20,30 D.0,50
9.样本(x 1,x 2…,x n )的平均数为x ,样本(y 1,y 2,…,y n )的平均数为()
y x y ≠。
若样本(x 1,x 2…,x n ,y 1,y 2,…,y n )的平均数y )(a 1x a z -+=,其中0<α<12
,则n ,m 的大小关系为
A.n <m
B.n >m
C.n=m
D.不能确定 10.如图,已知正四棱锥S-ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分。
记SE=x (0<x <1),截面下面部分的体积为V (x ),则函数y=V (x )的图像大致为
2012年普通高等学校招生全国统一考试(江西卷)
理科数学
第Ⅱ卷
注:
第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答。
若在试题卷上作答,答案无效。
二。
填空题:本大题共4小题,每小题5分,共20分。
11.计算定积分⎰+11-2dx sinx x )(=________。
12.设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=___________。
13椭圆122
22=+b
y a x (a >b >0)的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2。
若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为_______________.
14下图为某算法的程序框图,则程序运行后输出的结果是______________.
三、选做题:请在下列两题中任选一题作答。
若两题都做,则按第一题评阅计分。
本题共5分。
15.(1)(坐标系与参数方程选做题)曲线C 的直角坐标方程为x 2+y 2-2x=0,以
原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为___________。
15.(2)(不等式选做题)在实数范围内,不等式|2x-1|+|2x+1|≤6的解集为___________。
四.解答题:本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
16.(本小题满分12分)
已知数列{a n }的前n 项和)(其中N S ∈+=k kn n 21-
2n ,且S n 的最大值为8. (1)确定常数k ,求a n ;
(2)求数列⎭
⎬⎫⎩⎨⎧n n 2a 2-9的前n 项和T n 。
17.(本小题满分12分)
在△ABC 中,角A,B,C 的对边分别为a ,b ,c 。
已知4π=
A ,。
a
B
C =++)()(4c s i n -4b s i n ππ (1)求证:2π
=-C B
(2)若ABC 的面积。
18.(本题满分12分)
如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0)。
(1)求V=0的概率;
(2)求V 的分布列及数学期望EV 。
19.(本题满分12分)
在三棱柱ABC-A 1B 1C 1中,已知AB=AC=AA 1BC=4,点A 1在底面ABC 的投影是线段BC 的中点O 。
(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长;
(2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值。
20. (本题满分13分)
已知三点O (0,0),A (-2,1),B (2,1),曲线C 上任意一点M (x ,y )满足()2
MA MB OM OA OB +=⋅++ . (1) 求曲线C 的方程;
(2)动点Q (x 0,y 0)(-2<x 0<2)在曲线C 上,曲线C 在点Q 处的切线为L ,问:是否存在定点P (0,t )(t <0),使得L 与PA ,PB 都相交,交点分别为D,E ,且△QAB 与△PDE 的面积之比是常数?若存在,求t 的值。
若不存在,说明理由。
21. (本小题满分14分)
若函数h(x)满足
(1)h(0)=1,h(1)=0;
(2)对任意[]0,1a ∈,有h(h(a))=a ;
(3)在(0,1)上单调递减。
则称h(x)为补函数。
已知函数)0,1()11()(1>->+-=p x
x x h p p p
λλ。
(1)判断函数h(x)是否为补函数,并证明你的结论;
(2)若存在[]0,1m ∈,使得h(m)=m ,若m 是函数h(x)的中介元,记)(N ∈=n n 1p 时h(x)的中介元为x n ,且∑=n 1-n 1n x S ,若对任意的n N +∈,都有S n <
12
,求λ的取值范围; (3)当λ=0,()0,1x ∈时,函数y= h(x)的图像总在直线y=1-x 的上方,求P 的取值范围。