湖北省蕲春县2016_2017学年高二数学上学期期中试题文
2016-2017学年高二上学期期中考试数学试题 Word版含答案
2016-2017学年高二上学期期中考试数学试题一、选择题(本大题共8小题,每小题5分,共40分)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A .0.05B .0.35C .0.7D .0.95 2.全称命题“2,54x R x x ∀∈+=”的否定是( )A .2000,54x R x x ∃∈+=B .2,54x R x x ∀∈+≠C .2000,54x R x x ∃∈+≠D .以上都不正确3.在如图所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )A .6B .8C .10D .144.某程序框图如图所示,若输出的结果是62,则判断框中可以是( ) A .7?i ≥ B .6?i ≥ C .5?i ≥ D .4?i ≥5.对于实数,,a b c ,“a b >”是“22ac bc >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知椭圆22221(0)x y a b a b+=>>的一个焦点是圆22680x y x +-+=的圆心,且短轴长为8,则椭圆的左顶点为( )A .(2,0)-B .(3,0)-C .(4,0)-D .(5,0)- 7.点P 在边长为1的正方形ABCD 内运动,则动点P 到 定点A 的距离|PA |1<|的概率为( )A.πB.2π C.4π D .6π8.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅ 的最大值为( ) A .2 B .3 C .6 D .8二、填空题(每题5分,共6个小题,满分30分) 9.某课题组进行城市空气质量调查,按地域把24个城市分 成甲、乙、丙三组,对应城市数分别为 4、12、8.若用分层 抽样方法抽取6个 城市,则甲组中应抽取的城市数为________.10.执行如图所示的程序框图,若输入的x 的值为1, 则输出的n 的值为________.11.有一个容量为200的样本,其频率分布直方图如图所示, 据图知,样本数据在[8,10)内的频数为 12.已知点M 是圆224x y +=上任意一点,过点M 向x 轴作垂线,垂足为N ,则线段MN (包括MN 重合) 的中点的轨迹方程为13.在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点12,F F 在x轴上,离心率为2.过点1F 的直线L 交C 于,A B 两点,且2ABF ∆的周长为16,那么C 的方程为 . 14.有下列命题:①“若0x y +>,则00x y >>且”的否命题; ②“矩形的对角线相等”的否命题;③“若1m ≥,则22(m 1)x m 30mx -+++>的解集是R ”的逆命题; ④“若7a +是无理数,则a 是无理数”的逆否命题. 其中正确命题的序号是三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)15.(满分13分)设命题p :x y c =为R 上的减函数,命题q :函数2(x)234f x x c =-+>在1,22x ⎡⎤∈⎢⎥⎣⎦上恒成立.若p q ∨为真命题,p q ∧为假命题,求c 的取值范围.第18题图16.(满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查,调查问卷共10道题,答题情况如下表所示.(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率率;(2)从答对题目数小于8的出租车司机中任选出2人做进一步的调查,求选出的2人中至少有一名女出租车司机的概率.17.(满分13分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD,AC ,22AB BC ==,AC FB ⊥.(1)求证:⊥AC 平面FBC ;(II )线段AC 的中点为M ,求证EA //平面FDM18(满分14分).随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(Ⅰ)根据茎叶图判断哪个班的平均身高较高; (Ⅱ)计算甲班的样本方差;(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率.19.(满分14分)某同学利用国庆节期间进行社会实践活动,在[25,55]岁的人群中随机抽取n 人进行了一次生活习惯是否符合低碳生活的调查,若生活习惯符合低碳生活的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:(1)补全频率分布直方图,并求,,n a p 的值;(2)从年龄在[40,50)岁的“低碳族”中采用分层抽样的方法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.20.(满分14分)已知椭圆的标准方程为:22221(0)43x y a a a+=>(1)当1a =时,求椭圆的焦点坐标及椭圆的离心率; (2)过椭圆的右焦点2F 的直线与圆222:4(0)C x y a a +=>常数交于,A B 两点,求22|F ||F |A B ⋅的值.2016-2017学年高二上学期期中考试数学试题答案一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A .0.95B .0.7C .0.35D .0.05解析:“抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与“抽到一等品或二等品”是对立事件,故其概率为1-0.95=0.05.答案:D2.全称命题“∀x ∈R ,x 2+5x =4”的否定是( )A .∃x 0∈R ,x 20+5x 0=4 B .∀x ∈R ,x 2+5x ≠4 C .∃x 0∈R ,x 20+5x 0≠4 D .以上都不正确解析:选C 全称命题的否定为特称命题.3.在如图所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )A .6B .8C .10D .14解析:由甲组数据的众数为14得x =y =4,乙组数据中间两个数分别为6和14,所以中位数是6+142=10.答案:C4.某程序框图如图所示,若输出的结果是126,则判断框中可以是( )A .i >6?B .i >7?C .i ≥6?D .i ≥5?解析:根据题意可知该程序运行情况如下: 第1次:S =0+21=2,i =1+1=2; 第2次:S =2+22=6,i =3; 第3次:S =6+23=14,i =4; 第4次:S =14+24=30,i =5; 第5次:S =30+25=62,i =6; 第6次:S =62+26=126,i =7;此时S =126,结束循环,因此判断框应该是“i >6?”.答案:A5.“a <0”是“方程ax 2+1=0至少有一个负根”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:选C 方程ax 2+1=0至少有一个负根等价于x 2=-1a,故a <0,故选C.6.已知椭圆22221(0)x y a b a b+=>>的一个焦点是圆22680x y x +-+=的圆心,且短轴长为8,则椭圆的左顶点为( )A .(2,0)-B .(3,0)-C .(4,0)-D .(5,0)-【解析】圆心坐标为(3,0),∴c =3,又b =4,∴5a =. ∵椭圆的焦点在x 轴上,∴椭圆的左顶点为(-5,0). 【答案】 D7.点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离|PA |<1的概率为( )A.14B.12C.π4D .π 解析:如图所示,动点P 在阴影部分满足|PA |<1,该阴影是半径为1,圆心角为直角的扇形,其面积为S ′=π4,又正方形的面积是S =1,则动点P到定点A 的距离|PA |<1的概率为S ′S =π4. 答案:C 8.直线l 经过椭圆的一个短轴顶点顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13B .12C .23D .34解析:选B 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +yb=1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12.故选B .二、填空题(每题5分,共6个小题,满分30分)9.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4、12、8.若用分层抽样方法抽取6个城市,则甲组中应抽取的城市数为________.答案:110.执行如图所示的程序框图,若输入的x 的值为1, 则输出的n 的值为________.答案:311.有一个容量为200的样本,其频率分布直方图如图所示,据图知,样本数据在[8,10)内的频数为( )A .38B .57C .76D .95 答案:C12.已知点M 是圆224x y +=上任意一点,过点M 向x 轴作垂线,垂足为N ,则线段MN (包括MN 重合)的中点的轨迹方程为2214x y += 13.在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为2.过点1F 的直线L 交C 于,A B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.【答案】221168x y +=14.有下列命题:①“若x +y >0,则x >0且y >0”的否命题; ②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是 ①③④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)15.(满分13分)设命题p :x y c =为R 上的减函数,命题q :函数2(x)234f x x c =-+>在1,22x ⎡⎤∈⎢⎥⎣⎦上恒成立.若p q ∨为真命题,p q ∧为假命题,求c 的取值范围.解:由p ∨q 真,p ∧q 假,知p 与q 为一真一假,对p ,q 进行分类讨论即可. 若p 真,由y =c x为减函数,得0<c <1. .....................3分 当1,22x ⎡⎤∈⎢⎥⎣⎦时,由不等式2(x 1)22-+≥(x =1时取等号)知(x)f 在1,22⎡⎤⎢⎥⎣⎦上的最小值为2 ......................6分若q 真,则42c <,即12c < .......................8分 若p 真q 假,则112c ≤<; .......................10分 若p 假q 真,则0c ≤. ......................12分 综上可得,(]1,0,12c ⎡⎫∈-∞⎪⎢⎣⎭......................13分16.(满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查,调查问卷共10道题,答题情况如下表所示.(1)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,计算被调查的出租车司机对新法规知晓情况比较好的频率;(2)从答对题目数小于8的出租车司机中任选出2人做进一步的调查,求选出的2人中至少有一名女出租车司机的概率.解:(1)答对题目数小于9的人数为55,记“答对题目数大于等于9”为事件A ,P (A )=1-55100=0.45. .......................6分 (2)记“选出的2人中至少有一名女出租车司机”为事件M ,设答对题目数小于8的司机为A ,B ,C ,D ,E ,其中A ,B 为女司机,任选出2人包含AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE ,共10种情况,.......................9分(3)至少有一名女出租车司机的事件为AB ,AC ,AD ,AE ,BC ,BD ,BE ,共7种 ..12分则P (M )=710=0.7. ......13分16.(满分14分)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB //CD,AC ,22AB BC ==,AC FB ⊥.(1)求证:⊥AC 平面FBC ;(II )线段AC 的中点为M ,求证EA //平面FDM第3题图17.(本小题满分14分) (Ⅰ)证明:在△ABC 中,因为AC =,2AB =,1BC =,所以 BC AC ⊥. ………………3分 又因为 AC FB ⊥, 因为BC FB B =所以 ⊥AC 平面FBC . ………………6分 (Ⅱ)M 为AC 中点时,连结CE ,与DF 交于点N ,连结MN .因为 CDEF 为正方形,所以N 为CE 中点. ……………8分 所以 EA //MN . ……………10分 因为 ⊂MN 平面FDM ,⊄EA 平面FDM , ………12分 所以 EA //平面FDM . …………13分18(满分14分).随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(Ⅰ)根据茎叶图判断哪个班的平均身高较高; (Ⅱ)计算甲班的样本方差;(Ⅲ)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率. 规范解答不失分 (Ⅰ)由茎叶图可知:甲班身高集中于160179:之间, 而乙班身高集中于170180: 之间.因此乙班平均身高高于甲班 ...............4分 (Ⅱ)158162163168168170171179182170.10x ++++++++==...............6分 甲班的样本方差为:222222222221(158170)(162170)(163170)(168170)10(168170)(170170)(171170)(179170)(179170)(182170)57.2.s ⎡=-+-+-+-⎣+-+-+-+-+-+-=...............8分(Ⅲ)设身高为176cm的同学被抽中的事件为A;从乙班10名同学中抽中两名身高不低于173cm的同学有:(181,173)(181,176)(181,178)(181,179)(179,173)(179,176)(179,178)(178,173)(178, 176) (176,173)共10个基本事件,...............10分而事件A含有4个基本事件;...............12分所以42().105P A ...............14分19.(满分14分)某同学利用国庆节期间进行社会实践活动,在[25,55]岁的人群中随机抽取n人进行了一次生活习惯是否符合低碳生活的调查,若生活习惯符合低碳生活的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:(1)补全频率分布直方图,并求n,a,p的值;(2)从年龄在[40,50)岁的“低碳族”中采用分层抽样的方法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.解:(1)第二组的概率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以频率组距=0.35=0.06.............2分 频率分布直方图如下:............4分第一组的人数为1200.6=200,频率为0.04×5=0.2, 所以n =2000.2=1 000 .............6分 因为第二组的频率为0.3,所以第二组的人数为1 000×0.3=300,所以p =195300=0.65. 第四组的频率为0.03×5=0.15,所以第四组的人数为1 000×0.15=150.所以a =150×0.4=60 .............8分(2)因为年龄在[40,45)岁的“低碳族”与[45,50)岁的“低碳族”的人数的比为60∶30=2∶1,所以采用分层抽样法抽取6人,[40,45)中有4人,[45,50)中有2人.设[40,45)中的4人为a ,b ,c ,d ,[45,50)中的2人为m ,n ,则选取2人作为领队的情况有(a ,b ),(a ,c ),(a ,d ),(a ,m ),(a ,n ),(b ,c ),(b ,d ),(b ,m ),(b ,n ),(c ,d ),(c ,m ),(c ,n ),(d ,m ),(d ,n ),(m ,n ),共15种, ............10分(3)其中恰有1人年龄在[40,45)岁的情况有(a ,m ),(a ,n ),(b ,m ),(b ,n ),(c ,m ),(c ,n ),(d ,m ),(d ,n ),共8种, ............12分(4)所以选取的2名领队中恰有1人年龄在[40,45)岁的概率P =815.............14分 20.(满分14分)已知椭圆的标准方程为:22221(0)43x y a a a+=> (1)当1a =时,求椭圆的焦点坐标及离心率;(2)过椭圆的右焦点2F 的直线与圆222:4(0)C x y a a +=>常数交于,A B 两点,证明22|F ||F |A B ⋅为定值. 解:(1)焦点坐标12(1,0),F (1,0)F - ..........2分离心率12e = ..........3分(2)当斜率不存在时11|||F B |F A ===此时212|FA ||F B|3a ⋅= 5分当斜率不存在=时,设1122(x ,y ),B(x ,y )A:()AB y k x a =-由222(x a)x 4y k y a =-⎧⎨+=⎩ 得222222(1k )x 240ak x k a a +-+-= 7分 222212122224,11ak k a a x x x x k k -+==++ 9分11|FA |x a |==-22|F A |x a |==-所以22111212|FA||FB|(1)|x x a(x )a |k x ⋅=+-++ 12分 22222222242(1k )|a |11k a a a k k k -=+-+++23a = 13分 所以 22|F ||F |A B ⋅为定值23a .。
2016-2017年湖北省黄冈市蕲春县高二上学期期中数学试卷及参考答案(文科)
2016-2017学年湖北省黄冈市蕲春县高二(上)期中数学试卷(文科)一、本大题共12小题,每小题5分,在每小题列出的四个选项中,只有一项是符合题目要求的.1.(5分)下列否定不正确的是()A.“∀x∈R,x2>0””的否定是“∃x0∈R,x02≤0”B.“∃x0∈R,x02<0”的否定是“∀x∈R,x2<0”C.“∀θ∈R,sinθ≤1”的否定是∃θ0∈R,sinθ0>1D.“∃θ0∈R,sinθ0+cosθ0<1”的否定是“∀θ∈R,sinθ+cosθ≥1”2.(5分)已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为()A.x2+y2﹣2x﹣3=0 B.x2+y2+4x=0 C.x2+y2+2x﹣3=0 D.x2+y2﹣4x=03.(5分)方程+=1表示曲线C,给出下列四个命题,其中正确的命题个数是()①若曲线C为椭圆,则1<t<4②若曲线C为双曲线,则t<1或t>4③曲线C不可能是圆④若曲线C表示焦点在X轴上的椭圆,则1<t<.A.1 B.2 C.3 D.44.(5分)已知直线l:x﹣ky﹣5=0与圆O:x2+y2=10交于A,B两点且=0,则k=()A.2 B.±2 C.±D.5.(5分)过抛物线y2=4x的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则|AB|等于()A.10 B.8 C.6 D.46.(5分)方程=10化简结果是()A.B.C.D.7.(5分)已知F 1、F2是椭圆C:=1(a>b>0)的两个焦点,P为椭圆C上的一点,且⊥.求△PF 1F2的面积()A.9 B.6 C.9 D.68.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=19.(5分)下列命题中的说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1>0”D.命题“在△ABC中,若A>B,则sinA>sinB”的逆否命题为真命题10.(5分)已知双曲线﹣=1(a>)的两条渐近线的夹角为,则双曲线的离心率为()A.B.C.D.11.(5分)F1,F2是椭圆=1(a>b>0)的两焦点,P是椭圆上任意一点,从任一焦点引∠F1PF2的外角平分线的垂线,垂足为Q,则点Q的轨迹为()A.圆B.椭圆C.双曲线D.抛物线12.(5分)过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为()A.5 B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)已知条件p:x>1或x<﹣3,条件q:x>a,且q是p的充分不必要条件,则a的取值范围是.14.(5分)抛物线y=4x2的准线方程为.15.(5分)设m∈R,在平面直角坐标系中,已知向量=(mx,y+1),向量,⊥,动点M(x,y)的轨迹为E,则轨迹E的方程为.16.(5分)P是双曲线的右支上一点,M、N分别是圆(x+5)2+y2=4和(x﹣5)2+y2=1上的点,则|PM|﹣|PN|的最大值为.三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(10分)求满足下列各条件的椭圆的标准方程:(1)长轴是短轴的3倍且经过点A(3,0);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为.18.(12分)设命题p:∃x∈R,使x2+2ax+2﹣a=0;命题p:不等式ax2﹣ax+2>0对任意x∈R恒成立.若¬p为真,且p或q为真,求a的取值范围.19.(12分)圆x2+y2=8内有一点P0(﹣1,2),AB为过点P0且倾斜角为α的弦;(1)当时,求AB的长;(2)当弦AB被点P0平分时,求直线AB的方程.20.(12分)设双曲线C:相交于两个不同的点A、B.(1)求a的取值范围:(2)设直线l与y轴的交点为P,且.求a的值.21.(12分)(文)如图,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于A(x1,y1),B(x2,y2)两点.(1)求x1x2与y1y2的值;(2)求证:OA⊥OB.22.(12分)已知椭圆+=1(a>b>0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O的直线l:y=kx+m(k≠0),与该椭圆交于P、Q两点,直线OP、OQ的斜率依次为k1、k2,满足4k=k1+k2,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.2016-2017学年湖北省黄冈市蕲春县高二(上)期中数学试卷(文科)参考答案与试题解析一、本大题共12小题,每小题5分,在每小题列出的四个选项中,只有一项是符合题目要求的.1.(5分)下列否定不正确的是()A.“∀x∈R,x2>0””的否定是“∃x0∈R,x02≤0”B.“∃x0∈R,x02<0”的否定是“∀x∈R,x2<0”C.“∀θ∈R,sinθ≤1”的否定是∃θ0∈R,sinθ0>1D.“∃θ0∈R,sinθ0+cosθ0<1”的否定是“∀θ∈R,sinθ+cosθ≥1”【解答】解:推出明天的否定是全称命题,全称命题的否定是特称命题,考察选项,只有B不满足命题的否定形式,故选:B.2.(5分)已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为()A.x2+y2﹣2x﹣3=0 B.x2+y2+4x=0 C.x2+y2+2x﹣3=0 D.x2+y2﹣4x=0【解答】解:设圆心为(a,0)(a>0),由题意知圆心到直线3x+4y+4=0的距离d===r=2,解得a=2,所以圆心坐标为(2,0)则圆C的方程为:(x﹣2)2+y2=4,化简得x2+y2﹣4x=0故选:D.3.(5分)方程+=1表示曲线C,给出下列四个命题,其中正确的命题个数是()①若曲线C为椭圆,则1<t<4②若曲线C为双曲线,则t<1或t>4③曲线C不可能是圆④若曲线C表示焦点在X轴上的椭圆,则1<t<.A.1 B.2 C.3 D.4【解答】解:由4﹣t=t﹣1,可得t=,方程+=1表示圆,故①③不正确;由双曲线的定义可知:当(4﹣t)(t﹣1)<0时,即t<1或t>4时方程+=1表示双曲线,故③正确;由椭圆定义可知:当椭圆在x轴上时,满足4﹣t>t﹣1>0,即1<t<时方程+=1表示焦点在x轴上的椭圆,故④正确.故选:B.4.(5分)已知直线l:x﹣ky﹣5=0与圆O:x2+y2=10交于A,B两点且=0,则k=()A.2 B.±2 C.±D.【解答】解:由题意可得弦长AB对的圆心角等于90°,故弦心距等于半径的倍,等于=,故有=,求得k=±2,故选:B.5.(5分)过抛物线y2=4x的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则|AB|等于()A.10 B.8 C.6 D.4【解答】解:由题设知知线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1,d2,由抛物线的定义知:|AB|=|AF|+|BF|=d1+d2=2×4=8.故选:B.6.(5分)方程=10化简结果是()A.B.C.D.【解答】解:方程=10表示动点M(x,y)到两个定点(±2,0)的距离之和为定值10=2a,且10>2+2,由题意的定义可得:动点M的轨迹是椭圆,且b2=a2﹣c2=52﹣22=21.可得椭圆的方程为:.故选:B.7.(5分)已知F1、F2是椭圆C:=1(a>b>0)的两个焦点,P为椭圆C 上的一点,且⊥.求△PF 1F2的面积()A.9 B.6 C.9 D.6【解答】解:如图,由椭圆C:=1(a>b>0),得a2=16,b2=9,∴.∵⊥,∴,即,则.则.故选:A.8.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.9.(5分)下列命题中的说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1>0”D.命题“在△ABC中,若A>B,则sinA>sinB”的逆否命题为真命题【解答】解:A.根据否命题和原命题的关系可知:命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,所以A错误.B.由x2﹣5x﹣6=0,解得x=﹣1或x=6.所以“x=﹣1”是“x2﹣5x﹣6=0”的充分不必要条件,所以B错误.C.特称命题的否定是全称命题,所以命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1≥0”,所以C错误.D.由于原命题和逆否命题互为等价命题,所以直接判断原命题即可.在△ABC 中,若A>B,则a>b,由正弦定理得sinA>sinB,所以D正确.所以说法正确的是D.故选:D.10.(5分)已知双曲线﹣=1(a>)的两条渐近线的夹角为,则双曲线的离心率为()A.B.C.D.【解答】解:∵双曲线﹣=1(a>)的渐近线方程是y=∴由双曲线﹣=1(a>)的两条渐近线的夹角为,可知=,∴a2=6,c2=8,∴双曲线的离心率为,故选:B.11.(5分)F1,F2是椭圆=1(a>b>0)的两焦点,P是椭圆上任意一点,从任一焦点引∠F1PF2的外角平分线的垂线,垂足为Q,则点Q的轨迹为()A.圆B.椭圆C.双曲线D.抛物线【解答】解:由题意,延长F2P,与F1Q的延长线交于M点,连接QO,∵PQ是∠F1PF2的外角平分线,且PQ⊥MF1∴△F1MP中,|PF1|=|PM|且Q为MF1的中点由三角形中位线定理,得|OQ|=|MF2|=(|MP|+|PF2|)∵由椭圆的定义,得|PF1|+|PF2|=2a,(2a是椭圆的长轴)可得|MP|+|PF2|=2a,∴|OQ|=(|MP|+|PF2|)=a,可得动点Q的轨迹方程为x2+y2=a2∴点Q的轨迹为以原点为圆心半径为a的圆.故选:A.12.(5分)过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为()A.5 B.C.D.【解答】解:根据题意,抛物线y2=4x的焦点为F(1,0).设直线AB的斜率为k,可得直线AB的方程为y=k(x﹣1),由消去x,得y2﹣y﹣4=0,设A(x1,y1)、B(x2,y2),由根与系数的关系可得y1y2=﹣4.根据抛物线的定义,得|AF|=x1+=x1+1=5,解得x1=4,代入抛物线方程得:y12=4×4=16,解得y1=±4,∵当y1=4时,由y1y2=﹣4得y2=﹣1;当y1=﹣4时,由y1y2=﹣4得y2=1,∴|y1﹣y2|=5,即AB两点纵坐标差的绝对值等于5.因此△AOB的面积为:S=△AOB=S△AOF+S△BOF=|OF|•|y1|+|OF|•|y2|=|OF|•|y1﹣y2|=×1×5=.故选:B.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)已知条件p:x>1或x<﹣3,条件q:x>a,且q是p的充分不必要条件,则a的取值范围是[1,+∞).【解答】解:由p:x>1或x<﹣3,条件q:x>a,且q是p的充分不必要条件,得出:x>a是x>1或x<﹣3的子集,所以a≥1.故答案为:[1,+∞).14.(5分)抛物线y=4x2的准线方程为.【解答】解:整理抛物线方程得x2=y,∴p=∵抛物线方程开口向上,∴准线方程是y=﹣故答案为:.15.(5分)设m∈R,在平面直角坐标系中,已知向量=(mx,y+1),向量,⊥,动点M(x,y)的轨迹为E,则轨迹E的方程为mx2+y2=11.【解答】解:∵向量=(mx,y+1),向量,⊥,∴mx2+(y+1)(y﹣1)=0∴mx2+y2=1,故答案为mx2+y2=1.16.(5分)P是双曲线的右支上一点,M、N分别是圆(x+5)2+y2=4和(x﹣5)2+y2=1上的点,则|PM|﹣|PN|的最大值为9.【解答】解:双曲线中,∵a=3,b=4,c=5,∴F1(﹣5,0),F2(5,0),∵|PF1|﹣|PF2|=2a=6,∴|MP|≤|PF1|+|MF1|,|PN|≥|PF2|﹣|NF2|,∴﹣|PN|≤﹣|PF2|+|NF2|,所以,|PM|﹣|PN|≤|PF1|+|MF1|﹣|PF2|﹣|NF2|=6+1+2=9.故答案为:9.三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(10分)求满足下列各条件的椭圆的标准方程:(1)长轴是短轴的3倍且经过点A(3,0);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为.【解答】解:(1)若焦点在x轴上,设方程为.∵椭圆过点A(3,0),∴,得a=3,∵2a=3×2b,∴b=1.∴方程为.若焦点在y轴上,设方程为.∵椭圆过点A(3,0),∴,得b=3,又2a=3×2b,∴a=9,∴方程为.综上所述,椭圆方程为或;(2)由已知,有,解得,从而b2=a2﹣c2=9,∴所求椭圆方程为,或.18.(12分)设命题p:∃x∈R,使x2+2ax+2﹣a=0;命题p:不等式ax2﹣ax+2>0对任意x∈R恒成立.若¬p为真,且p或q为真,求a的取值范围.【解答】解:若:∃x∈R,使x2+2ax+2﹣a=0成立,则△≥0,即△=4a2﹣4(2﹣a)≥0,得a≤﹣2或a≥1,即p:a≤﹣2或a≥1,若x∈R,恒成立,当a=0时,2>0恒成立,满足条件.当a≠0,要使不等式恒成立,则,解得0<a<4,综上0≤a<4.即q:0≤a<4.若¬p为真,则p为假,又p或q为真,∴q为真,,∴a的取值范围为[0,1).19.(12分)圆x2+y2=8内有一点P0(﹣1,2),AB为过点P0且倾斜角为α的弦;(1)当时,求AB的长;(2)当弦AB被点P0平分时,求直线AB的方程.【解答】解:(1)直线AB的斜率k=tan=﹣1,∴直线AB的方程为y﹣2=﹣(x+1),即x+y﹣1=0∵圆心O(0,0)到直线AB的距离d==∴弦长|AB|=2=2=.(2)∵P 0为AB的中点,OA=OB=r,∴OP0⊥AB又==﹣2,∴k AB=∴直线AB的方程为y﹣2=(x+1),即x﹣2y+5=020.(12分)设双曲线C:相交于两个不同的点A、B.(1)求a的取值范围:(2)设直线l与y轴的交点为P,且.求a的值.【解答】解:(1)由C与l相交于两个不同的点,故知方程组有两个不同的实数解.消去y并整理得(1﹣a2)x2+2a2x﹣2a2=0①,.所以a的取值范围为:.(2)设A(x1,y1),B(x2,y2),P(0,1)∵.由于x1,x2都是方程①的根,且1﹣a2≠0,.21.(12分)(文)如图,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于A(x1,y1),B(x2,y2)两点.(1)求x1x2与y1y2的值;(2)求证:OA⊥OB.【解答】解:(1)设直线l的方程为:y=k(x﹣2)(k≠0),由得k2x2﹣(4k2+2)x+4k2=0,k≠0,△>0,则,x1x2==4,y1y2=k2(x1﹣2)(x2﹣2)=k2[x1x2﹣2(x1+x2)+4]=k2•[4﹣2×+4]=k2•(﹣)=﹣4.所以x1x2=4,y1y2=﹣4.(2)由(1)知,x1x2=4,y1y2=﹣4,所以=(x1,y1)•(x2,y2)=x1x2+y1y2=4﹣4=0,所以,即OA⊥OB.22.(12分)已知椭圆+=1(a>b>0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O的直线l:y=kx+m(k≠0),与该椭圆交于P、Q两点,直线OP、OQ的斜率依次为k1、k2,满足4k=k1+k2,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.【解答】解:(1)依题意可得,解得a=2,b=1所以椭圆C的方程是…(4分)(2)当k变化时,m2为定值,证明如下:由得,(1+4k2)x2+8kmx+4(m2﹣1)=0.…(6分)设P(x1,y1),Q(x2,y2).则x1+x2=,x1x2=…(•)…(7分)∵直线OP、OQ的斜率依次为k1,k2,且4k=k1+k2,∴4k==,得2kx1x2=m(x1+x2),…(9分)将(•)代入得:m2=,…(11分)经检验满足△>0.…(12分)赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
蕲春县2015-2016学年高二下学期期中考试数学试题及答案(文)科试题
蕲春县2016年春高中期中教学质量检测高二数学(文)试题本试卷共4页,考试时间120分钟一、选择题(本大题共12小题,每小题5分,共60分.) 1.复数5i 2-的共轭复数是( ) A .i 2+ B .i 2-C .2i --D .2i -2.在如图所示的知识结构图中:“求简单函数的导数”的“上位”要素有( ). A .1个 B .2个 C .3个 D .4个3.要证:a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0C .(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥04.用反证法证明命题:若整系数一元二次方程20ax bx c ++=(0)a ≠有有理数根,那么,,a b c 中至少有一个是偶数时,下列假设中正确的是( )A .假设,,a b c 都是偶数B .假设,,a b c 都不是偶数C .假设,,a b c 至多有一个偶数D .假设,,a b c 至多有两个偶数 5.已知x 、y 的取值如右表所示:如果y 与x 呈线性相关,且线性回归方程为213ˆˆ+=x b y,则=b ( ) A .31B .21-C .21D .16.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( ) A .r 2<r 1<0 B .0<r 2<r 1C .r 2<0<r 1D .r 2=r 17.已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为两切点,求⋅的最小值( ) A .322-B .122-C .322+D .122+8.已知322322=+,833833=+,15441544=+,…,若ta t a 66=+(a ,t 均为正 实数).类比以上等式,可推测a ,t 的值,则t +a =( ). A .41B .42C .39D .389.有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选 手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5, 6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜 对比赛结果,此人是( )A .甲B .乙C .丙D .丁10.已知函数()y f x =的图象是下列四个图象之一,且其导函数()y f x '=的图象如右图所 示,则该函数的图象可能是( )A B C D11.已知点P 是抛物线y x 22=上的一动点,焦点为F ,若定点)21(,M ,则当P 点在抛物 线上移动时,PF PM +的最小值等于( )A .25B .2C .23D .3 12.若函数x a x x f ln 21)(2+-=在区间),(∞+1上是减函数,则实数a 的取值范围为( )A .[)∞+,1B .),(∞+1C .(]1-,∞D .),(1-∞二、填空题(本大题共4小题,每小题5分,共20分.)13.若复数232)(1)i -++-a a a (是纯虚数,则实数a 的值为 . 14.已知函数,5)2()(2x f x x f +'⋅=则=')2(f .10题图()y f x '=15.同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第4个图案中需用黑色 瓷砖___________块.则按此规律第n 个图案中需用黑色瓷砖___________块.(用含n 的代 数式表示)16.设F 为椭圆141622=+y x 的左焦点,A ,B ,C 为椭圆上的三点,若=++,则=+ .三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题10分)已知m ∈R ,复数(1)i =-+z m m ,设命题p :复数z 在复平面内对应的 点位于第二象限;命题q :5≤z .⑴若为真命题,求m 的取值范围; ⑵若“p ∨q ”为真,求m 的取值范围.18.(本小题12分)为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查,得到如下的列联表:p ⌝已知在全部50人中随机抽取1人抽到喜欢打篮球的学生的概率为5. ⑴请将上面的列联表补充完整(不用写计算过程);⑵能否在犯错误的概率不超过0.005的前提下认为喜欢打篮球与性别有关?请说明你的理由;参考公式及数据:))()()(()(22d b c a d c b a bc ad n K ++++-=,其中n =a +b +c +d19.(本小题12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据⑴请画出上表数据的散点图;⑵请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=bx+a;⑶已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值3×2.5+4×3+5×4+6×4.5=66.5)20.(本小题12分)已知某单位由50名职工,将全体职工随机按1-50编号,并且按编号顺序平均分成10组,先要从中抽取10名职工,各组内抽取的编号依次增加5进行系统抽样。
2016-2017年第一学期高二数学期中试题及答案
2
3
4
5
6
7
8
9
10
11
12
礼券额
20
40
60
80
100
120
100
80
60
40
20
方案3总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.
总点数
2
3
4567891011
12
礼券额
120
100
80
60
40
20
40
60
80
100
120
如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.
17.(10分)用秦九韶算法求多项式
当 时的值。
18.(12分)为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为 ,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多 少?
(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为 时的销售价格.
21.(12分)甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.
(1)如果甲船和乙船的停泊的时间都是4小时,求它们中的任何一条船不需要等待码头空出的概率;
(2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一条船不需要等待码头空出的概率.
(2)记“3个矩形颜色都不同”为事件B,由图可知,事件B的基本事件有2×3=6个,故P
湖北省黄冈市蕲县高二数学上学期期中试题 文
蕲春县2015年秋高中期中教学质量检测高二数学(文)试题温馨提示:本试卷共4页。
考试时间120分钟。
请将答案填写在答题卡上。
一、本大题共12小题,每小题5分,在每小题列出的四个选项中,只有一项是符合题目要求的。
1.已知a ,b ,c ∈R 命题“若3=++c b a ,则3222≥++c b a ”的否命题是( ) A .若3=++c b a ,则3222<++c b a B .若3≠++c b a ,则3222<++c b a C .若3≠++c b a ,则3222≥++c b a D .若3222≥++c b a ,则3=++c b a2.在一次射击训练中,某战士连续射击了两次。
命题p :“第一次射击击中目标”q :“第二次射击击中目标”,则“两次至少有一次击中目标”表示正确的是:( ) A .)()(q p ⌝∨⌝ B .))()((q p ⌝∧⌝⌝ C .)(q p ∨⌝D .)()(q p ⌝∧⌝3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .(x -2)2+(y -2)2=1 B .x 2+(y -2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=14.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A .22134x y +=B .22143x y += C .22143x y += D .2214x y +=5.设命题2:34,:34p x x q x x =+=+,则p q ⌝⌝是( )A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件6.已知双曲线的渐近线方程是x y 21±=,焦点在x 轴上,焦距为20,则它的方程为( ) A .1208022=-x y B .1208022=-y x C .1802022=-x y D .1802022=-y x 7.设F 1,F 2是椭圆14922=+y x 的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于( ).A .5B .4C .3D .18.已知实数1,m ,4构成一个等比数列,则圆锥曲线221x y m +=的离心率为( )A .22B .3C .22或3 D .22或629.圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于1的点有( ) A .1个B .2个C .3个D .4个10.设F 为抛物线y 2=4x 的焦点,过F 且倾斜角为30°的直线交抛物线于A 、B 两点,则|AB |=( )A .16B .6C .12D .3711.已知双曲线22221x y a b-=的两焦点分别为12,F F ,一条垂直于x 轴的直线交双曲线的右支于,M N 两点,且121,MF MF F MN ⊥∆为等边三角形,则双曲线的离心率为( )A .5B .13+C .3D .31-12.已知条件:p 31x -≤<,条件:q a a x x -<+22,且p 是q 的必要不充分条件,则a 的取值范围是( ) A .]21,1[-B .]2,21[C .]2,1[-D .),2[]21,1(+∞-Y二、填空题(本大题共4小题,每小题5分,共20分.)13.若,a b ≤则22ac bc ≤,则命题的原命题、逆命题、否命题和逆否命题中正确命题的个数是______.14.圆2240x y +-=与圆2244120x y x y +-+-=的公共弦长为 .15.已知线段AB 的端点B 的坐标是(4,0),端点A 在圆224x y +=上运动,则线段AB 的中点M 的轨迹方程是 . 16.抛物线214y x =-上的动点M 到两定点F (0,-1),E (1,-3)的距离之和的最小值为____________.三、解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求适合下列条件的曲线方程⑴焦点在y 轴上,焦距是4,且经过点M (3,2)的椭圆标准方程;⑵顶点在原点,对称轴为坐标轴,顶点到准线的距离为4的抛物线的标准方程.18.(本小题满分12分)圆x 2+y 2=8内有一点P 0(-1,2),AB 为过点P 0且倾斜角为α的弦. ⑴当α=135°时,求AB 的长; ⑵若7AB =AB 的方程.19.(本小题满分12分)已知命题:p 方程22192x y k k+=-表示焦点在y 轴上的椭圆;命题:q 方程2212x y k-=表示双曲线,且离心率(3,2)e ∈,若命题p q ∧为假命题,p q ∨为真命题,求实数k 的取值范围.20.(本小题满分12分)是否存在同时满足下列两条件的直线l :⑴与抛物线x y 82=有两个不同的交点A 和B ;⑵线段AB 被直线1:550l x y +-= 垂直平分.若不存在,说明理由,若存在,求出直线l 的方程.21.(本小题满分12分)已知F 1、F 2分别是椭圆C :22221,(0)x y a b a b+=>>的左焦点和右焦点,O 是坐标系原点,且椭圆C 的焦距为6,过F 1的弦AB 两端点A 、B 与F 2所成2ABF ∆的周长是2(Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知点P (x 1,y 1),Q(x 2,y 2)是椭圆C 上不同的两点,线段PQ 的中点为M (2,1), 求直线PQ 的方程.22.(本小题满分12分)如图,在圆C :(x +1)2+y 2=16内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线与C ,Q 的连线交于点M .⑴求点M 的轨迹方程.⑵在x 轴上是否存在一定点N (t ,0),使得点M 与点N 的距离和它到直线:4l x =的距离的比是常数λ?若存在,求出点N及 .高二文科数学参考答案及评分标准一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BBBCABBCCABC二、填空题13.2 14.22 15.1)2(22=+-y x 16.4 三、解答题17.⑴由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2).由椭圆的定义知2a =32+(2+2)2+32+(2-2)2=8,所以a =4,所以b 2=a 2-c 2=16-4=12. 又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1.……………………(5分)⑵由抛物线的标准方程对应的图形知:顶点到准线的距离为p 2,故p2=4,p =8.因此,所求抛物线的标准方程为y 2=±16x 或x 2=±16y . ……………………(10分)18.⑴1tan -==αk Θ)1(12+-=-∴x y 即:01=-+y x21=∴d AB 的距离圆心到直线302182222=-=-=∴d R AB…………………………(5分)⑵(I)当直线AB 的斜率不存在时,1:-=x l此时1=d 72182222=-=-=∴d R AB 满足题意1:-=∴x l AB ………(7分)(II)设AB 的斜率为k ,则)1(2:+=-x k y l 即:0)2(=++-k y kx 122++=∴k k d AB 的距离圆心到直线,7214472144822222222=++-=+++-=-=∴k k k k k k d R AB ,解得43-=k此时AB 的方程为:0543=-+y x…………………………(11分)综上所述:直线AB 的方程为:1-=x 或0543=-+y x…………………………(12分)19.若p 为真命题,则⎪⎩⎪⎨⎧<->>-k k k k 290029,解得293<<k…………………………(2分)若q 为真命题,则()⎪⎩⎪⎨⎧∈+=>2,3220k e k ,解得64<<k …………………………(4分)因为q p ∧为假命题,q p ∨为真命题,所以p 真q 假或p 假q 真。
数学-高二-湖北省部分重点中学联考高二(上)期中数学试卷(文科)
2016-2017学年湖北省部分重点中学联考高二(上)期中数学试卷(文科)一、选择题(5×12=60分)1.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面2.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()A.40 B.30 C.20 D.123.已知直线l⊥平面α,直线m⊂平面β,给出下列命题①α∥β=l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是()A.①②③ B.②③④ C.①③D.②④4.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?5.有5根细木棍,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率为(()A.B.C.D.6.如图是歌手大奖赛中,七位评委为甲,乙两名选手打出的分数的茎叶图(其中m为数字0﹣9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小不确定7.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A.1 B.2 C.3 D.48.两条异面直线a,b所成的角是60°,A为空间一定点,则过点A作一条与直线a,b均成60°的直线,这样的直线能作几条()A.1条B.2条C.3条D.4条9.如图是正方体的平面展开图.在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A.①②③ B.②④C.③④D.②③④10.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,给出以下四个命题:①异面直线C1P与CB1所成的角为定值;②二面角P﹣BC1﹣D的大小为定值;③三棱锥D﹣BPC1的体积为定值;其中真命题的个数为()A.0 B.1 C.2 D.311.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为=0.8x﹣155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为m(如表所示),则利用回归方程可求得实数m的值为()x 196 197 200 203 204y 1 3 6 7 mA.8.3 B.8.2 C.8.1 D.812.已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC 的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.二、填空题(5×4=20分)13.已知A表示点,a,b,c表示直线,M,N表示平面,给出以下命题:①a⊥M,若M⊥N,则a∥N②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b③a⊥M,b⊄M,若b∥M,则b⊥a④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b.其中命题成立的是.14.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为.15.如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是.16.甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,则有一艘船停靠泊位时必需等待一段时间的概率为.三、解答题(10+12×5=70分)17.某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段80,85),90,95),(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.18.已知:四棱锥P﹣ABCD的底面为正方形,PA⊥底面ABCD,E、F分别为AB、PD的中点,PA=a,∠PDA=45°(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求点D到平面PCE的距离.19.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:60,70),80,90),.(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在hslx3y3h50,90)之外的人数.分数段hslx3y3h50,60)hslx3y3h60,70)hslx3y3h70,80)hslx3y3h80,90)x:y 1:1 2:1 3:4 4:520.已知四棱锥P﹣GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4(Ⅰ)求异面直线GE与PC所成角的余弦值;(Ⅱ)若F点是棱PC上一点,且DF⊥GC,PF:FC=k,求k的值.21.等边三角形ABC的边长为2沿平行于BC的线段PQ折起,使平面APQ⊥平面PBCQ,设点A到直线PQ的距离为x,AB的长为d.(Ⅰ)x为何值时,d2取得最小值,最小值是多少;(Ⅱ)若∠BAC=θ,求cosθ的最小值.22.如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D﹣ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.2016-2017学年湖北省部分重点中学联考高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题(5×12=60分)1.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面【考点】平面的基本性质及推论.【分析】根据公理2以及推论判断A、B、D,再根据空间四边形判断C.【解答】解:A、根据公理2知,必须是不共线的三点确定一个平面,故A不对;B、根据一条直线和直线外的一点确定一个平面知,故B不对;C、比如空间四边形则不是平面图形,故C不对;D、两两相交且不共点的三条直线,则三个交点不共线,故它们确定一个平面,由公理1知三条直线都在此平面内,故D正确.故选D.2.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔(抽样距)K为()A.40 B.30 C.20 D.12【考点】系统抽样方法.【分析】系统抽样中,分段的间隔(抽样距)=【解答】解:抽样距==40.故选A3.已知直线l⊥平面α,直线m⊂平面β,给出下列命题①α∥β=l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是()A.①②③ B.②③④ C.①③D.②④【考点】平面与平面之间的位置关系.【分析】由两平行平面中的一个和直线垂直,另一个也和平面垂直得直线l⊥平面β,再利用面面垂直的判定可得①为真命题;当直线与平面都和同一平面垂直时,直线与平面可以平行,也可以在平面内,故②为假命题;由两平行线中的一条和平面垂直,另一条也和平面垂直得直线m⊥平面α,再利用面面垂直的判定可得③为真命题;当直线与平面都和同一平面垂直时,直线与平面可以平行,也可以在平面内,如果直线m 在平面α内,则有α和β相交于m,故④为假命题.【解答】解:l⊥平面α且α∥β可以得到直线l⊥平面β,又由直线m⊂平面β,所以有l⊥m;即①为真命题;因为直线l⊥平面α且α⊥β可得直线l平行与平面β或在平面β内,又由直线m⊂平面β,所以l与m,可以平行,相交,异面;故②为假命题;因为直线l⊥平面α且l∥m可得直线m⊥平面α,又由直线m⊂平面β可得α⊥β;即③为真命题;由直线l⊥平面α以及l⊥m可得直线m平行与平面α或在平面α内,又由直线m⊂平面β得α与β可以平行也可以相交,即④为假命题.所以真命题为①③.故选C.4.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前1 1/第一圈2 4 是第二圈3 11 是第三圈4 26 是第四圈5 57 否故退出循环的条件应为k>4故答案选A.5.有5根细木棍,长度分别为1、3、5、7、9(cm),从中任取三根,能搭成三角形的概率为(()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】由组合数公式可得从5根木棒中任取3根的情况数目,由三角形的三边关系分析可得取出的三根可以搭成三角形的情况数目,由等可能事件的概率公式,计算可得答案.【解答】解:根据题意,从5根木棒中任取3根,有C53=10种情况,其中能构撘成三角形的有3、5、7,3、7、9,5、7、9,共3种情况,则能搭成三角形的概率为;故选D.6.如图是歌手大奖赛中,七位评委为甲,乙两名选手打出的分数的茎叶图(其中m为数字0﹣9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小不确定【考点】众数、中位数、平均数;茎叶图.【分析】由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,根据样本平均数的计算公式,代入数据可以求得甲和乙的平均分,把两个平均分进行比较,得到结果.【解答】解:由题意知去掉一个最高分和一个最低分以后,两组数据都有五个数据,代入数据可以求得甲和乙的平均分,,∴a2>a1故选B.7.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A.1 B.2 C.3 D.4【考点】极差、方差与标准差.【分析】由题意知这组数据的平均数为10,方差为2可得到关于x,y的一个方程组,解这个方程组需要用一些技巧,因为不要直接求出x、y,只要求出|x﹣y|,利用换元法来解出结果.【解答】解:由题意这组数据的平均数为10,方差为2可得:x+y=20,(x﹣10)2+(y﹣10)2=8,解这个方程组需要用一些技巧,因为不要直接求出x、y,只要求出|x﹣y|,设x=10+t,y=10﹣t,由(x﹣10)2+(y﹣10)2=8得t2=4;∴|x﹣y|=2|t|=4,故选D.8.两条异面直线a,b所成的角是60°,A为空间一定点,则过点A作一条与直线a,b均成60°的直线,这样的直线能作几条()A.1条B.2条C.3条D.4条【考点】空间中直线与直线之间的位置关系.【分析】过P作a′∥a,b′∥b,设直线a′、b′确定的平面为α,异面直线a、b成60°角,直线a′、b′所成锐角为60°,过点P与a′、b′都成60°角的直线,可以作3条.【解答】解:过P作a′∥a,b′∥b,设直线a′、b′确定的平面为α,∵异面直线a、b成60°角,∴直线a′、b′所成锐角为60°.①当直线l在平面α内时,若直线l平分直线a′、b′所成的钝角,则直线l与a、b都成60°角;②当直线l与平面α斜交时,若它在平面α内的射影恰好落在直线a′、b′所成的锐角平分线上时,直线l与a、b所成角相等.此时l与a′、b′所成角的范围为,适当调整l的位置,可使直线l与a、b也都成60°角,这样的直线l有两条.综上所述,过点P与a′、b′都成60°角的直线,可以作3条.∵a′∥a,b′∥b,∴过点P与a′、b′都成60°角的直线,与a、b也都成60°的角.故选:C.9.如图是正方体的平面展开图.在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是()A.①②③ B.②④C.③④D.②③④【考点】棱柱的结构特征.【分析】正方体的平面展开图复原为正方体,不难解答本题.【解答】解:由题意画出正方体的图形如图:显然①②不正确;③CN与BM成60°角,即∠ANC=60°正确;④DM⊥平面BCN,所以④正确;故选C.10.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,给出以下四个命题:①异面直线C1P与CB1所成的角为定值;②二面角P﹣BC1﹣D的大小为定值;③三棱锥D﹣BPC1的体积为定值;其中真命题的个数为()A.0 B.1 C.2 D.3【考点】棱柱的结构特征.【分析】对于①由题意及图形利用异面直线所成角的概念及求异面直线间的方法及可求解;对于②由题意及平面具有延展性可知实质为平面ABC1D1与平面BDC1所成的二面角;对于③由题意及三棱锥的体积的算法中可以进行顶点可以轮换性求解体积,和点P的位置及直线AD1与平面BDC1的位置即可判断正误.【解答】解:对于①因为在棱长为1的正方体ABCD﹣A1B1C1D1中,点P在线段AD1上运动,有正方体的及题意易有B1C⊥平面ABC1D1,而C1P⊂平面ABC1D1,所以B1C⊥C1P,故这两个异面直线所成的角为定值90°,所以①正确;对于②因为二面角P﹣BC1﹣D的大小,实质为平面ABC1D1与平面BDC1所成的二面角而这两的平面为固定的不变的平面所以夹角也为定值,故②正确;对于③三棱锥D﹣BPC1的体积还等于三棱锥的体积P﹣DBC1的体积,而平面DBC1为固定平面且大小一定,又因为P∈AD1,而AD1∥平面BDC1,所以点A到平面DBC1的距离即为点P到该平面的距离,所以三棱锥的体积为定值,故③正确.故选D.11.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为=0.8x﹣155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为m(如表所示),则利用回归方程可求得实数m的值为()x 196 197 200 203 204y 1 3 6 7 mA.8.3 B.8.2 C.8.1 D.8【考点】线性回归方程.【分析】根据回归直线经过样本数据中心点,求出x、y的平均数,即可求出m值.【解答】解:根据题意,计算=×=200,=×(1+3+6+7+m)=,代入回归方程=0.8x﹣155中,可得=0.8×200﹣155=25,解得m=8.故选:D.12.已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC 的中点,则异面直线AB与CC1所成的角的余弦值为()A.B.C.D.【考点】异面直线及其所成的角.【分析】首先找到异面直线AB与CC1所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB即为异面直线AB 与CC1所成的角;并设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选B.二、填空题(5×4=20分)13.已知A表示点,a,b,c表示直线,M,N表示平面,给出以下命题:①a⊥M,若M⊥N,则a∥N②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b③a⊥M,b⊄M,若b∥M,则b⊥a④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b.其中命题成立的是②③④.【考点】命题的真假判断与应用.【分析】根据空间线面之间的位置关系及几何特征,逐一分析四个命题的真假,可得答案.【解答】解:①a⊥M,若M⊥N,则a∥N,或a⊂N,故错误;②a⊥M,若b∥M,c∥a,则a⊥b,c⊥b,故正确;③a⊥M,b⊄M,若b∥M,则b⊥a,故正确;④a⊂β,b∩β=A,c为b在β内的射影,若a⊥c,则a⊥b,故正确.故答案为:②③④14.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为8.【考点】循环结构.【分析】由已知中的程序框图及已知中输入8,可得:进入循环的条件为i<8,即i=2,4,6模拟程序的运行结果,即可得到输出的s值.【解答】解:当i=2,k=1时,s=2,;当i=4,k=2时,s=(2×4)=4;当i=6,k=3时,s=(4×6)=8;当i=8,k=4时,不满足条件“i<8”,退出循环,则输出的s=8故答案为:815.如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是90°.【考点】异面直线及其所成的角.【分析】以D为坐标原点,建立空间直角坐标系,利用向量的方法求出与夹角求出异面直线A1M与DN所成的角.【解答】解:以D为坐标原点,建立如图所示的空间直角坐标系.设棱长为2,则D(0,0,0),N(0,2,1),M(0,1,0),A1(2,0,2),=(0,2,1),=(﹣2,1,﹣2)•=0,所以⊥,即A1M⊥DN,异面直线A1M与DN所成的角的大小是90°,故答案为:90°.16.甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.甲、乙两船停靠泊位的时间分别为4小时与2小时,则有一艘船停靠泊位时必需等待一段时间的概率为.【考点】几何概型.【分析】分析知如两船到达的时间间隔超过了停泊的时间则不需要等待,要求一艘船停靠泊位时必须等待一段时间的概率;即计算一船到达的时间恰好另一船还没有离开,此即是所研究的事件.【解答】解:设甲船在x点到达,乙船在y点到达,必须等待的事件需要满足如下条件:,画出不等式组表示的平面区域如图所示;所以p(A)=1﹣=;所以一艘船停靠泊位时必须等待一段时间的概率是.故答案为:.三、解答题(10+12×5=70分)17.某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段80,85),90,95),(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.【考点】古典概型及其概率计算公式.【分析】(I)利用频率分布直方图,求出频率,进而根据频数=频率×样本容量,得到答案;(II)先计算从参加社区服务时间不少于90小时的学生中任意选取2人的情况总数,再计算所选学生的参加社区服务时间在同一时间段内的情况数,代入古典概型概率计算公式,可得答案.【解答】解:(Ⅰ)由题意可知,参加社区服务在时间段95,10090,95)的学生有4人,记为a,b,c,d;参加社区服务在时间段的学生有2人,记为A,B.从这6人中任意选取2人有ab,ac,ad,aA,aB,bc,bd,bA,bB,cd,cA,cB,dA,dB,AB共15种情况.事件A包括ab,ac,ad,bc,bd,cd,AB共7种情况.所以所选学生的服务时间在同一时间段内的概率.…18.已知:四棱锥P﹣ABCD的底面为正方形,PA⊥底面ABCD,E、F分别为AB、PD的中点,PA=a,∠PDA=45°(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求点D到平面PCE的距离.【考点】平面与平面垂直的判定;直线与平面平行的判定;点、线、面间的距离计算.【分析】(1)取PC的中点G,连接FG、EG,证出AF∥EG,由线面平行的判定定理,即可证出:AF∥平面PCE.(2)先证出AF⊥平面PCD,再由(1),可证EG⊥平面PCD,由面面垂直的判定定理即可证出平面PCE⊥平面PCD;(3)过点D作DH⊥PC于H,DH的长为点D到平面PEC的距离.【解答】(1)证明:取PC的中点为G,连结FG、EG∵FG∥DC,FG=DC,DC∥AB,AE=AB∴FG∥AE且FG=A∴四边形AFGE为平行四边形,∴AF∥EG.又∵AF⊄平面PCE,EG⊂平面PCE,∴AF∥平面PCE…(2)证明:∵PA⊥平面ABCD,AD⊥D,∴PD⊥DC∴∠PDA为二面角P﹣CD﹣B的平面角,∴∠PDA=45°,即△PAD为等腰直角三角形又∵F为PD的中点,∴AF⊥PD ①由DC⊥AD,DC⊥PD,AD∩PD=D,得:DC⊥平面PAD.而AF⊂平面PAD,∴AF⊥DC ②由①②得AF⊥平面PDC.而EG∥AF∴EG⊥平面PDC,又EG⊂平面PCE,∴平面PCE⊥平面PDC…(3)解:过点D作DH⊥PC于H.∵平面PCE⊥平面PDC,∴DH⊥平面PEC.即DH的长为点D到平面PEC的距离.在Rt△PAD中,PA=AD=a,PD= a在Rt△PDC中,PD=a,CD=a,PC=a,DH=a.即:点D到平面PCE的距离为a…19.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:60,70),80,90),.(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在hslx3y3h50,90)之外的人数.分数段hslx3y3h50,hslx3y3h60,hslx3y3h70,hslx3y3h80,60)70)80)90)x:y 1:1 2:1 3:4 4:5【考点】用样本的频率分布估计总体分布;频率分布直方图;众数、中位数、平均数.【分析】(1)由频率分布直方图的性质可10(2a+0.02+0.03+0.04)=1,解方程即可得到a 的值;(2)由平均数加权公式可得平均数为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05,计算出结果即得;(3)按表中所给的数据分别计算出数学成绩在分数段的人数,从总人数中减去这些段内的人数即可得出数学成绩在50,60)的人数为:100×0.05=5,数学成绩在70,80)的人数为:,数学成绩在50,90)之外的人数为:100﹣5﹣20﹣40﹣25=10.20.已知四棱锥P﹣GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4(Ⅰ)求异面直线GE与PC所成角的余弦值;(Ⅱ)若F点是棱PC上一点,且DF⊥GC,PF:FC=k,求k的值.【考点】异面直线及其所成的角.【分析】(Ⅰ)直接作出异面直线所成角的平面角,通过余弦定理求解.(Ⅱ)由线线垂直转化为线面垂直及面面垂直然后建立比例关系,最后求参数的值.【解答】解:(Ⅰ)在平面ABCD内,过C点作CH∥EG交AD于H,连结PH,则∠PCH(或其补角)就是异面直线GE与PC所成的角.在△PCH中,由余弦定理得,cos∠PCH=∴异面直线GE与PC所成角的余弦值为.(Ⅱ)在平面GBCD内,过D作DM⊥GC,M为垂足,连结MF,又因为DF⊥GC∴GC⊥平面MFD,∴GC⊥FM由平面PGC⊥平面GBCD,∴FM⊥平面GBCD∴FM∥PG由得GM⊥MD,∴GM=GD•cos45°=∵,∴k=321.等边三角形ABC的边长为2沿平行于BC的线段PQ折起,使平面APQ⊥平面PBCQ,设点A到直线PQ的距离为x,AB的长为d.(Ⅰ)x为何值时,d2取得最小值,最小值是多少;(Ⅱ)若∠BAC=θ,求cosθ的最小值.【考点】直线与平面垂直的判定;余弦定理.【分析】(I)如图(1)为折叠前对照图,图(2)为折叠后的空间图形.利用面面垂直和线面垂直的判定与性质定理和二次函数的单调性即可得出;(II)在等腰△ADC中,使用余弦定理和利用余弦函数的单调性即可得出.【解答】解:(Ⅰ)如图(1)为折叠前对照图,图(2)为折叠后的空间图形.∵平面APQ⊥平面PBCQ,又∵AR⊥PQ,∴AR⊥平面PBCQ,∴AR⊥RB.在Rt△BRD中,BR2=BD2+RD2=,AR2=x2.故d2=BR2+AR2=.∴当时,d2取得最小值.(Ⅱ)∵AB=AC=d,BC=2,∴在等腰△ADC中,由余弦定理得,即,∴当时,cosθ取得最小值.22.如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D﹣ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.【考点】棱锥的结构特征.【分析】(1)分别作出三角形的高,求出四个三角形的面积,然后求三棱锥D﹣ABC的表面积;(2)要证AC⊥平面DEF,先证AC⊥DE,再证AC⊥EF,即可.(3)M为BD的中点,连CM,设CM∩DE=O,连OF,只要MN∥OF即可,求出CN.【解答】解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.设G为CD的中点,则CG=,AG=.∴,,.三棱锥D﹣ABC的表面积为.(2)取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.∴当CF=CN时,MN∥OF.∴CN=.2016年11月26日。
2016-2017学年湖北省部分重点中学联考高二上学期期中数学试卷与解析(理科)
2016-2017学年湖北省部分重点中学联考高二(上)期中数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)两个二进制数101(2)与110(2)的和用十进制数表示为()A.12 B.11 C.10 D.92.(5分)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④3.(5分)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底边均为1的等腰梯形,则这个平面图形的面积是()A.B.C.D.4.(5分)α和β是两个不重合的平面,在下列条件中可判定平面α和β平行的是()A.α和β都垂直于同一平面B.α内不共线的三点到β的距离相等C.l,m是平面α内的直线且l∥β,m∥βD.l,m是两条异面直线且l∥α,m∥α,m∥β,l∥β5.(5分)将边长为2的正方形ABCD沿对角线BD折起,则三棱锥C﹣ABD的外接球表面积为()A.8πB.12πC.16πD.4π6.(5分)已知平面α的法向量为=(3,﹣1,2),=(﹣3,1,﹣2),则直线AB与平面α的位置关系为()A.AB∥αB.AB⊂αC.AB与α相交D.AB⊂α或AB∥α7.(5分)下列的算法流程图中,其中能够实现求两个正整数的最大公约数的算法有()个.A.1 B.2 C.3 D.08.(5分)下列四种说法中:①有两个面平行,其余各面都是平行四边形的几何体叫棱柱②相等的线段在直观图中仍然相等③一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥④用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台正确的个数是()A.0 B.1 C.2 D.39.(5分)过正三棱锥S﹣ABC侧棱SB与底面中心O作截面SBO,已知截面是等腰三角形,则侧面和底面所成角的余弦值为()A.B.C.或D.或10.(5分)球O与锐二面角α﹣l﹣β的两半平面相切,两切点间的距离为,O点到交线l的距离为2,则球O的体积为()A. B.4πC.12πD.11.(5分)如图,在正四棱锥S﹣ABCD中,E是BC的中点,P点在侧面△SCD 内及其边界上运动,并且总是保持PE⊥AC.则动点P的轨迹与△SCD组成的相关图形是()A.B.C.D.12.(5分)已知如图1,点E,F,G分别是正方体ABCD﹣A1B1C1D1的棱AA1,CC1,DD1的中点,点M,N,Q,P分别在线段DF,AG,BE,C1B1上,以M,N,Q,P为顶点的三棱锥P﹣MNQ的俯视图在下列四个图(图2)中有可能的情形有()种.A.1 B.2 C.3 D.4二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知圆锥的母线长为5cm,侧面积为20πcm2,则此圆锥的体积为cm3.14.(5分)如图是用二分法求方程x2﹣2=0在[﹣2,2]的近似解的程序框图,要求解的精确度为ε,①处填的内容是,②处填的内容是.15.(5分)如图,已知平行六面体ABCD﹣A 1B1C1D1中,底面ABCD是边长为2的正方形,侧棱AA1长为3,且∠A1AB=∠A1AD=120°,则AC1=.16.(5分)棱长均相等的四面体A﹣BCD中,P为BC中点,Q为直线BD上一点,则平面APQ与平面ACD所成二面角的正弦值的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)运行如图所示的程序框图,当输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;(Ⅱ)求满足不等式f(x)>1的x的取值范围.18.(12分)(1)已知如图1平面α,β,γ和直线l,若α∩β=l,α⊥γ,β⊥γ,求证:l⊥γ;(2)已知如图2平面α和β,直线l和α,且α∩β=l,若a∥α,a∥β,求证:a∥l.19.(12分)如图,在平面内直线EF与线段AB相交于C点,∠BCF=30°,且AC=CB=4,将此平面沿直线EF折成60°的二面角α﹣EF﹣β,BP⊥平面α,点P为垂足.(Ⅰ)求△ACP的面积;(Ⅱ)求异面直线AB与EF所成角的正切值.20.(12分)在如图所示三棱锥D﹣ABC中,AD⊥DC,AB=4,AD=CD=2,∠BAC=45°,平面ACD⊥平面ABC,E,F分别在BD,BC上,且BD=3BE,BC=2BF.(1)求证:BC⊥AD;(2)求平面AEF将三棱锥D﹣ABC分成两部分的体积之比.21.(12分)如图所示的几何体中,ABCD为菱形,ACEF为平行四边形,△BDF 为等边三角形,O为AC与BD的交点.(Ⅰ)求证:BD⊥平面ACEF;(Ⅱ)若∠DAB=60°,AF=FC,求二面角B﹣EC﹣D的正弦值.22.(12分)如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.(1)求证:BD⊥平面POA;(2)设点Q满足,试探究:当PB取得最小值时,直线OQ与平面PBD所成角的大小是否一定大于?并说明理由.2016-2017学年湖北省部分重点中学联考高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)两个二进制数101(2)与110(2)的和用十进制数表示为()A.12 B.11 C.10 D.9【解答】解:∵由题意可得,(101)2=1×22+0×21+1×20=5.110(2)=1×22+1×21+0×20=6.∴5+6=11.故选:B.2.(5分)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④【解答】解:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确答案为D.故选:D.3.(5分)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底边均为1的等腰梯形,则这个平面图形的面积是()A.B.C.D.【解答】解:水平放置的图形为一直角梯形,由题意可知上底为1,高为2,下底为1+,S=(1++1)×2=2+.故选:B.4.(5分)α和β是两个不重合的平面,在下列条件中可判定平面α和β平行的是()A.α和β都垂直于同一平面B.α内不共线的三点到β的距离相等C.l,m是平面α内的直线且l∥β,m∥βD.l,m是两条异面直线且l∥α,m∥α,m∥β,l∥β【解答】解:利用排除法:对于A:如图所示对于B:α内不共线的三点到β的距离相等,必须是α内不共线的三点在β的同侧.对于C:l,m是α内的两条直线且l∥β,m∥β,l和m不是平行直线.故选:D.5.(5分)将边长为2的正方形ABCD沿对角线BD折起,则三棱锥C﹣ABD的外接球表面积为()A.8πB.12πC.16πD.4π【解答】解:将边长为2的正方形ABCD沿对角线BD折起,得到三棱锥C﹣ABD,如图所示:则BC⊥CD,BA⊥AD,OA=OB=OC=OD,三棱锥C﹣ABD的外接球直径为BD=2,外接球的表面积为4πR2=(2)2π=8π.故选:A.6.(5分)已知平面α的法向量为=(3,﹣1,2),=(﹣3,1,﹣2),则直线AB与平面α的位置关系为()A.AB∥αB.AB⊂αC.AB与α相交D.AB⊂α或AB∥α【解答】解:∵=﹣,∴∥,∴直线AB与平面α的位置关系为相交.故选:C.7.(5分)下列的算法流程图中,其中能够实现求两个正整数的最大公约数的算法有()个.A.1 B.2 C.3 D.0【解答】解:①辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里得算法,算法如下:第一步,输入两个正整数m,n,第二步,m除以n的余数是r,接下来,将原来的除数作为新的被除数,原来的余数作为除数,继续上面的过程,直到余数r=0,退出程序,输出两个正整数的最大公约数m.②更相减损术,是出自《九章算术》的一种求最大公约数的算法,算法如下:第一步:任意给定两个正整数;判断它们是否都是偶数.若是,则用2约简;若不是则执行第二步.第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的减数和差相等为止.则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数.结合算法,模拟执行流程图,即可得解能够实现两个正整数的最大公约数的算法有3个.故选:C.8.(5分)下列四种说法中:①有两个面平行,其余各面都是平行四边形的几何体叫棱柱②相等的线段在直观图中仍然相等③一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥④用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台正确的个数是()A.0 B.1 C.2 D.3【解答】解:有两个面平行,其余各面都是平行四边形,并且相邻的两个平行四边形的公共边都相互平行,这些面围成的几何体叫棱柱,故①错误.②相等的线段在直观图中仍然相等,不一定相等,不正确;③根据一个直角三角形绕其一个直角边边旋转一周所形成的封闭图形叫圆锥,可得不正确;④用平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,不正确.故选:A.9.(5分)过正三棱锥S﹣ABC侧棱SB与底面中心O作截面SBO,已知截面是等腰三角形,则侧面和底面所成角的余弦值为()A.B.C.或D.或【解答】解:延长BO交AC于D,则D为AC中点.截面为△SBD.由正棱锥的性质,SO⊥面ABC,SD⊥AC,BD⊥AC,∠SDC为侧面和底面所成角的平面角.设底面边长BC=2.易知SB≠SD.(1)若SD=BD,则SC=BC,正三棱锥S﹣ABC为正四面体.BD==,在△SDB中,由余弦定理得cos∠SDB===.(2)若SB=BD=,在RT△SDA中,SD=,在△SDB中,由余弦定理得cos∠SDB===故选:C.10.(5分)球O与锐二面角α﹣l﹣β的两半平面相切,两切点间的距离为,O点到交线l的距离为2,则球O的体积为()A. B.4πC.12πD.【解答】解:设OAB平面与棱l交于点C,则△OAC为直角三角形,且AB⊥OC,OC=2设OA=x,AC=y,则由等面积可得xy=∵x2+y2=4∴或时,∠ACO=30°,∠ACB=60°,满足题意,球的体积为π;时,∠ACO=60°,∠ACB=120°,不满足题意,故选:A.11.(5分)如图,在正四棱锥S﹣ABCD中,E是BC的中点,P点在侧面△SCD 内及其边界上运动,并且总是保持PE⊥AC.则动点P的轨迹与△SCD组成的相关图形是()A.B.C.D.【解答】解:取CD中点F,AC⊥EF,又∵SB在面ABCD内的射影为BD且AC⊥BD,∴AC⊥SB,取SC中点Q,∴EQ∥SB∴AC⊥EQ,又AC⊥EF,∴AC⊥面EQF,因此点P在FQ上移动时总有AC⊥EP.故选:A.12.(5分)已知如图1,点E,F,G分别是正方体ABCD﹣A1B1C1D1的棱AA1,CC1,DD1的中点,点M,N,Q,P分别在线段DF,AG,BE,C1B1上,以M,N,Q,P为顶点的三棱锥P﹣MNQ的俯视图在下列四个图(图2)中有可能的情形有()种.A.1 B.2 C.3 D.4【解答】解:在底面ABCD上考察,P、M、N、Q四点在俯视图中它们分别在BC、CD、DA、AB上,先考察形状,再考察俯视图中的实虚线,可判断C不可能,因为该等腰三角形且当中无虚线,说明有两个顶点投到底面上重合了,只能是Q、N投射到点A或者M、N投射到点D,此时俯视图不可能是等腰三角形.故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知圆锥的母线长为5cm,侧面积为20πcm2,则此圆锥的体积为16πcm3.【解答】解:∵圆锥的母线长是5cm,侧面积是20πcm2,设圆锥的半径为r,∴有πr×5=20π⇒r=4,∴圆锥的高为=3,∴圆锥的体积为×π×r2×3=16πcm3.故答案:16πcm3.14.(5分)如图是用二分法求方程x2﹣2=0在[﹣2,2]的近似解的程序框图,要求解的精确度为ε,①处填的内容是f(x1)•f(m)<0,②处填的内容是|x1﹣x2|<ε.【解答】解:由已知得该程序的作用是用二分法求方程x2﹣2=0在[﹣2,2]的近似解,①框的作用是判断零在二分区间后的哪个区间上,根据零存在定理,及判断框的“是”、“否”指向,不难得到该框是判断a,m的函数值是否异号故①框填:f(x1)•f(m)<0;而由要求解的精确度为0.0001故可知②框是判断精度是否满足条件,以决定是否继续循环的语句,故②框应填:|x1﹣x2|<ε故答案为f(x 1)•f(m)<0;|x1﹣x2|<ε.15.(5分)如图,已知平行六面体ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,侧棱AA1长为3,且∠A1AB=∠A1AD=120°,则AC1=.【解答】解:==4+4+9+0+2×2×3×(﹣)+2×2×3×(﹣)=5.∴AC1=.故答案为.16.(5分)棱长均相等的四面体A﹣BCD中,P为BC中点,Q为直线BD上一点,则平面APQ与平面ACD所成二面角的正弦值的取值范围是.【解答】解:由题意把正四面体A﹣BCD放到正方体BK内,则平面ACD与平面APQ所成角的正弦值等于平面ACD的法向量BK与平面APQ 所成角的余弦值,问题等价于平面APQ绕AP转动,当平面ACD与平面APQ所成角等于BK与AP夹角时,平面APQ与平面ACD所成二面角的正弦值取最小值,此时该正弦值为:;当平面APQ与BK平行时,所成角为0°,此时正弦值为1.∴平面APQ与平面ACD所成二面角的正弦值的取值范围为[,1].故答案为:[,1].三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)运行如图所示的程序框图,当输入实数x的值为﹣1时,输出的函数值为2;当输入实数x的值为3时,输出的函数值为7.(Ⅰ)求实数a,b的值;并写出函数f(x)的解析式;(Ⅱ)求满足不等式f(x)>1的x的取值范围.【解答】解:(Ⅰ)由程序框图知:算法的功能是求f(x)=的值,∵输入x=﹣1<0,输出f(﹣1)=﹣b=2,∴b=﹣2.∵输入x=3>0,输出f(3)=a3﹣1=7,∴a=2.∴.(Ⅱ)由(Ⅰ)知:①当x<0时,f(x)=﹣2x>1,∴;②当x≥0时,f(x)=2x﹣1>1,∴x>1.综上满足不等式f(x)>1的x的取值范围为或x>1}.18.(12分)(1)已知如图1平面α,β,γ和直线l,若α∩β=l,α⊥γ,β⊥γ,求证:l⊥γ;(2)已知如图2平面α和β,直线l和α,且α∩β=l,若a∥α,a∥β,求证:a∥l.【解答】证明:(1)如图,在平面内γ任取一点P,过点P作PA⊥l1,PB⊥l2,A,B为垂足,…(1分)∵α∩γ=l1,α⊥γ,PA⊂γ,∴PA⊥α又∵l⊂α,∴PA⊥l…(3分)同理:PB⊥l…(5分)∴l⊥γ…(6分)(2)过直线a作平面γ1,γ2使得α∩γ1=l1,β∩γ2=l2…(1分)∵a∥α,α∩γ1=l1,a⊂γ1,∴a∥l1…(3分)同理a∥l2,∴l1∥l2,又l1⊂α,l2⊂β,∴l1∥β,∴l1∥l…(5分)∴a∥l…(6分)19.(12分)如图,在平面内直线EF与线段AB相交于C点,∠BCF=30°,且AC=CB=4,将此平面沿直线EF折成60°的二面角α﹣EF﹣β,BP⊥平面α,点P为垂足.(Ⅰ)求△ACP的面积;(Ⅱ)求异面直线AB与EF所成角的正切值.【解答】解:(Ⅰ)如图,在平面α内,过点P作PM⊥EF,点M为垂足,连接BM,则∠BMP为二面角α﹣EF﹣β的平面角.在Rt△BMC中,由∠BCM=30°,CB=4,得CM=,BM=2.在Rt△BMP中,由∠BMP=60°,BM=2,得MP=1.在Rt△CMP中,由CM=,MP=1,得CP=,cos∠PCM=,sin∠PCM=.=.…(7分)故sin∠ACP=sin(150°﹣∠PCM)=.所以S△ACP(Ⅱ)如图,过点A作AQ∥EF,交MP于点Q,则∠BAQ是AB与EF所成的角,且AQ⊥平面BMQ.在△BMQ中,由∠BMQ=60°,BM=MQ=2,得BQ=2.…(10分)在Rt△BAQ中,由AQ=AC•cos30°+CM=4,BQ=2,得tan∠BAQ=.因此AB与EF所成角的正切值为.…(13分)20.(12分)在如图所示三棱锥D﹣ABC中,AD⊥DC,AB=4,AD=CD=2,∠BAC=45°,平面ACD⊥平面ABC,E,F分别在BD,BC上,且BD=3BE,BC=2BF.(1)求证:BC⊥AD;(2)求平面AEF将三棱锥D﹣ABC分成两部分的体积之比.【解答】(1)证明:在Rt△ADC中,AD=DC=2,AD⊥DC,∴,在△ABC中,∵∠BAC=45°,AB=4,∴BC2=AC2+AB2+2AC•AB•cos45°=,可得:,∴AC2+BC2=AB2.则AC⊥BC.又∵平面ACD⊥平面ABC,平面ACD∩平面ABC=AC,∴BC⊥平面ACD,得AD⊥BC;(2)解:取线段AC的中点O,连接DO,∵AD=CD,∴DO⊥AC.又∵平面ACD⊥平面ABC,平面ACD∩平面ABC=AC,DO⊂平面ACD,∴DO⊥平面ABC,,,∴V D===,﹣ABC过点E作EG∥DO交BO于G,∴EG⊥平面ABC,∵BD=3BE,∴,∵BC=2BF,∴,V A﹣EBF═=,=V D﹣ABC﹣V E﹣ABF=,∴V A﹣EFCD∴平面AEF将三棱锥D﹣ABC分成的两部分的体积之比.21.(12分)如图所示的几何体中,ABCD为菱形,ACEF为平行四边形,△BDF 为等边三角形,O为AC与BD的交点.(Ⅰ)求证:BD⊥平面ACEF;(Ⅱ)若∠DAB=60°,AF=FC,求二面角B﹣EC﹣D的正弦值.【解答】证明:(Ⅰ)∵ABCD为菱形,∴BD⊥AC∵O为AC与BD的交点,∴O为BD的中点,又△BDF为等边三角形,∴BD⊥OF,∵AC⊂平面ACEF,OF⊂平面ACEF,AC∩OF=O,∴BD⊥平面ACEF.(Ⅱ)∵AF=FC,O为AC中点,∴AC⊥OF,∵BD⊥OF,∴OF⊥平面ABCD,建立空间直角坐标系O﹣xyz,不妨设AB=2,∵∠DAB=60°,∴B(0,1,0),C(﹣,0,0),D(0,﹣1,0),A(,0,0),F(0,0,),∵=,∴E(﹣2,0,),=(﹣,﹣1,0),=(﹣2,﹣1,),设=(x,y,z)为平面BEC的法向量,则,取x=1,得=(1,﹣,1),则理求得平面ECD的法向量=(1,,1),设二面角B﹣EC﹣D的平面角为θ,则cosθ==,∴sinθ==,∴二面角B﹣EC﹣D的正弦值为.22.(12分)如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O.沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.(1)求证:BD⊥平面POA;(2)设点Q满足,试探究:当PB取得最小值时,直线OQ与平面PBD所成角的大小是否一定大于?并说明理由.【解答】(1)证明:∵菱形ABCD的对角线互相垂直,∴BD⊥AC,∴BD⊥AO,∵EF⊥AC,∴PO⊥EF.∵平面PEF⊥平面ABFED,平面PEF∩平面ABFED=EF,且PO⊂平面PEF,∴PO⊥平面ABFED,∵BD⊂平面ABFED,∴PO⊥BD.∵AO∩PO=O,∴BD⊥平面POA.…(4分)(2)解:如图,以O为原点,建立空间直角坐标系O﹣xyz.设AO∩BD=H.因为∠DAB=60°,所以△BDC为等边三角形,故BD=4,.又设PO=x,则,,所以O(0,0,0),P(0,0,x),,,故,所以,当时,.此时,…(6分)设点Q的坐标为(a,0,c),由(1)知,,则,,,.∴,,∵,∴.∴,∴.(10分)设平面PBD的法向量为,则.∵,,∴取x=1,解得:y=0,z=1,所以.…(8分)设直线OQ与平面E所成的角θ,∴=.…(10分)又∵λ>0∴.∵,∴.因此直线OQ与平面E所成的角大于,即结论成立.…(12分)。
湖北省普通高中联考协作体高二数学上学期期中试题文(
湖北省普通高中联考协作体2016-2017学年高二数学上学期期中试题文(扫描版)2016年秋季湖北省普通高中联考协作体期中考试高二文科参考答案及评分细则 一、 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B B D C B A A A B B D A二、13、5 14、5800 15、102116、10 三、17、解:AC 与:250BH x y --=垂直,故AC 的斜率为12-,又点A 的坐标为(1,2),∴直线AC 的方程为:12(1)2y x -=--,即250x y +-=.(4分) 由250(5,0)250x y C x y +-=⎧⎨--=⎩解得.(8分),AC ∴==故AC边的长为(10分)18、设顶点C 的坐标为(,)x y 在ABC ∆中,因SinB =,b ∴=,即AC .(2分)化简得:22610x y x +-+=.(4分)故轨迹T 的方程22610(0)x y x y +-+=≠.(5分)∴T 是以点(3,0)为圆心,(除去与x 轴的两个交点),其圆心(3,0)到直线5y x =-的距离为d ,(6分)设所求过点(0,1)p 的直线方程为1y kx =+.=,解得:7k =-或1k =.(9分)71y x ∴=-+或1y x =+.又直线过(3M -和(3N +时,也满足题意,又求得直线PM 的方程为(330x y +--+=,PN的方程为(330x y ++--=(11分).故所求直线方程为710x y +-=或10x y -+=或(330x y +--+=或(330x y ++--=.(12分)19. 解:(1)由(0.003+0.005×2+0.011+2a+0.018+0.021+0.007+0.002)×10=1得0.014a =,依题意有:1200(0.0180.0210.0140.0070.0050.002)10804⨯+++++⨯=.故本次期中考试数学成绩在90分以上(包括90分)的人数约为804人.(4分) (2)设本次期中考试数学成绩的中位数为x ,因前5组的频率之和为0.03+0.05+0.11+0.14+0.18=0.51>0.5,90100x ∴<<.(5分)0.030.050.110.140.18(90)0.18(100)0.210.140.070.050.02x x ∴++++-=-+++++解得97.28x ≈.故本次期中考试数学成绩的中位数约为97.28分.(8分)(3)数学成绩的平均分x =55×0.03+65×0.05+0.11×75+85×0.14+95×0.18+105×0.21+115×0.14+125×0.07+135×0.05+145×0.02=1.65+3.25+8.25+11.9+17.1+22.05+16.1+8.75+6.75+2.9=98.7. 故本次期中考试数学成绩的平均分约为98.7.(12分)20、解:(1) ABC ∆中,因222(1),sin A sin B =由正弦定理可得222(1).a b =又b c =,由余弦定理可得22222cos 2(1cos )a b c bc A b A =+-=-cos A A =,tan A ∴=.又0A π<<,6A π∴=.(4分).又在ADC ∆中,4,AC b AD ===,由余弦定理得2224()244m =+-⨯⨯=,而0m >,2m ∴=.(6分)(2)由(1)知,131,5a a ==.(7分)又{}n a 为等差数列,∴公差312.2a a d -== 12(1)21n a n n ∴=+-=-.(9分)111111()(21)(21)22121n n a a n n n n +∴==--+-+.(10分) 111111(1)()()23352121n S n n ⎡⎤∴=⨯-+-++-⎢⎥-+⎣⎦11(1)22121n n n =⨯-=++.(12分) 21、(1)证明:ABEF 为正方形,AF EF ∴⊥.又AD = DF =2, AF =4,222DF AF AD ∴+=, ∴AF DF ⊥.又DFEF F =, AF ∴⊥平面DCEF.又AF ⊂平面ABEF, ABEF ∴⊥平面平面EFDC .(4分) (2)证明:法1:取AB 的中点H, 连结HG,CH,BF. 作DO EF ⊥,CM EF ⊥,O ,M 为垂足. ABCD 为正方形,G 为其中心,∴BF 经过点G 且G 为BF 的中点,HG ∴∥AF .又HG ⊄平面ADF ,HG ∴∥平面AFD .060DFE ∠=,2DF =,.1,OF DO ∴==同理可得EM=1,CM =.∴DO ∥CM ,DO CM =,故DOMC 为平行四边形.DC ∴∥EF ,且2DC OM ==.又AB ∥EF ,且AB EF =,∴ CD ∥AH ,且CD AH =,故ADCH 为平行四边形. CH ∴∥AD ,又CH ⊄平面ADF ,CH ∴∥平面AFD .而HG HC H =,∴平面CGH ∥平面ADF ,又CG ⊂平面CGH ,CH ∴∥平面ADF .法2:取AF 的中点N,连DN ,BF,NG.因G 为正方形ABEF 的中心,∴BF 过点G,且G 为BF 中点,GN ∴∥AB ,且122GN AB ==,由法1知DC ∥GN ,且DC GN =.故四边形DCGN 为平行四边形.CG ∴∥DN .又CG ⊄平面ADF ,DN ⊂平面ADF , CG ∴∥平面ADF .(8分)(其它证法酌情给分).(3)解:分别作OQ AB ⊥,MR AB ⊥,,Q R 为垂足,边结DQ 、CR .由(1)、(2)知:ABCD FE D AQOF DOQ CMR C BEMR V V V V ----=++112144222=⨯⨯⨯⨯=,故此五面体的体积为3.(12分) 22、解:(1)设1(,0)C a ,则1C 到直线3470x y -+=的距离为375a d r +==,(1分)又223a r +=.2294249325a a a ++∴+=. 2821130a a ∴-+=.1a ∴=或138a =.(2分) 又213r π<,213r π∴<. 2133a π∴+<. 2133 1.2a ππ-∴<<. 而131.58>. 1a ∴=. 故圆1C 的方程为22(1)4x y -+=.(4分) (2)可知直线1y kx =+经过圆1C 内的点(0,1),故该直线必与圆1C 有两个交点A ,B. 由221(1)4y kx x y =+⎧⎨-+=⎩可得22(1)(22)20k x k x ++--=,则122221k x x k -+=-+, 12221x x k =-+.(5分)1212OA OB x x y y ∴⋅=+=221212222(1)()1211k kk x x k x x k-++++=--++ 22231k k +=-++ (7分) 令221,()1(1)22t tt k f t t t t =+==+--+,0,1k t >∴>. 1()2f t t t∴=≤=+-当且仅当t =1k =时等号成立.故OA OB ⋅2.(9分)(3)设000(,)(0)R x y y ≠,则2200(1)4x y -+=,又可得(1,0),(3,0)M N -.故直线RM 的方程为00(1)1y y x x =++, 00(,)1y p o x ∴+.又直线RN 的方程为00(3)3yy x x =--, 003(0,)3y Q x -∴-.故圆2C 的方程为200003()()013y y x y y x x +-+=+-, 即2200003()3031y yx y y x x ++-+=-+. 当0y =时,x =2C过定点(和,而点在圆1C 的内部,故当点R 变化时,以PQ 为直径的圆2C 总是经过圆1C内部的定点.(12分)。
2016-2017学年高二上学期期中数学试卷(文科) Word版含解析
2016-2017学年高二上学期期中试卷数学(文科)一、选择题(共9小题,每小题4分,满分36分)1.已知圆C :x 2+y 2﹣4x=0,l 为过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能2.圆x 2+y 2﹣4x=0在点P (1,)处的切线方程为( )A .x+y ﹣2=0B .x+y ﹣4=0C .x ﹣y+4=0D .x ﹣y+2=03.直线x+﹣2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2B .2C .D .14.已知点A (2,3),B (﹣3,﹣2).若直线l 过点P (1,1)且与线段AB 相交,则直线l 的斜率k 的取值范围是( )A .B .C .k ≥2或D .k ≤25.已知双曲线C :的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A .B .C .D .6.已知双曲线﹣=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A .B .C .3D .57.如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .8.过点()引直线l 与曲线y=相交于A ,B 两点,O 为坐标原点,当△ABO 的面积取得最大值时,直线l 的斜率等于( )A .B .C .D .9.设F 1、F 2是椭圆的左、右焦点,P 为直线x=上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A .B .C .D .二、填空题(共6小题,每小题4分,满分24分)10.已知圆C 的方程为x 2+y 2﹣2y ﹣3=0,过点P (﹣1,2)的直线l 与圆C 交于A ,B 两点,若使|AB|最小,则直线l 的方程是______.11.过直线x+y ﹣2=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是______.12.设AB 是椭圆Γ的长轴,点C 在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为______.13.椭圆Γ: =1(a >b >0)的左右焦点分别为F 1,F 2,焦距为2c ,若直线y=与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于______.14.在平面直角坐标系xOy ,椭圆C 的中心为原点,焦点F 1F 2在x 轴上,离心率为.过F l 的直线交于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为______.15.已知过抛物线y 2=9x 的焦点的弦AB 长为12,则直线AB 的倾斜角为______.三、解答题(共4小题,满分40分)16.如图,圆x 2+y 2=8内有一点P (﹣1,2),AB 为过点P 且倾斜角为α的弦,(1)当α=135°时,求|AB|(2)当弦AB 被点P 平分时,写出直线AB 的方程.(3)求过点P 的弦的中点的轨迹方程.17.椭圆E : +=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e=,过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)若直线AB 的斜率为,求△ABF 2的面积.18.已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若=2,求直线l的方程.19.已知点F为抛物线C:y2=4x的焦点,点P是准线l上的动点,直线PF交抛物线C于A,B两点,若点P的纵坐标为m(m≠0),点D为准线l与x轴的交点.(Ⅰ)求直线PF的方程;(Ⅱ)求△DAB的面积S范围;(Ⅲ)设,,求证λ+μ为定值.2016-2017学年高二上学期期中试卷数学(文科)参考答案与试题解析一、选择题(共9小题,每小题4分,满分36分)1.已知圆C:x2+y2﹣4x=0,l为过点P(3,0)的直线,则()A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能【考点】直线与圆的位置关系.【分析】将圆C的方程化为标准方程,找出圆心C坐标和半径r,利用两点间的距离公式求出P与圆心C间的长,记作d,判断得到d小于r,可得出P在圆C内,再由直线l过P点,可得出直线l与圆C相交.【解答】解:将圆的方程化为标准方程得:(x﹣2)2+y2=4,∴圆心C(2,0),半径r=2,又P(3,0)与圆心的距离d==1<2=r,∴点P在圆C内,又直线l过P点,则直线l与圆C相交.故选A.2.圆x2+y2﹣4x=0在点P(1,)处的切线方程为()A.x+y﹣2=0 B.x+y﹣4=0 C.x﹣y+4=0 D.x﹣y+2=0【考点】圆的切线方程.【分析】本题考查的知识点为圆的切线方程.(1)我们可设出直线的点斜式方程,联立直线和圆的方程,根据一元二次方程根与图象交点间的关系,得到对应的方程有且只有一个实根,即△=0,求出k值后,进而求出直线方程.(2)由于点在圆上,我们也可以切线的性质定理,即此时切线与过切点的半径垂直,进行求出切线的方程.【解答】解:法一:x2+y2﹣4x=0y=kx﹣k+⇒x2﹣4x+(kx﹣k+)2=0.该二次方程应有两相等实根,即△=0,解得k=.∴y﹣=(x﹣1),即x﹣y+2=0.法二:∵点(1,)在圆x2+y2﹣4x=0上,∴点P为切点,从而圆心与P的连线应与切线垂直.又∵圆心为(2,0),∴•k=﹣1.解得k=,∴切线方程为x﹣y+2=0.故选D3.直线x+﹣2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于()A.2 B.2 C.D.1【考点】直线与圆相交的性质.【分析】由直线与圆相交的性质可知,,要求AB,只要先求圆心(0,0)到直线x+﹣2=0的距离d,即可求解【解答】解:∵圆心(0,0)到直线x+﹣2=0的距离d=由直线与圆相交的性质可知,即∴故选B4.已知点A(2,3),B(﹣3,﹣2).若直线l过点P(1,1)且与线段AB相交,则直线l的斜率k的取值范围是()A.B.C.k≥2或 D.k≤2【考点】直线的斜率.【分析】首先求出直线PA、PB的斜率,然后结合图象即可写出答案.【解答】解:直线PA的斜率k==2,直线PB的斜率k′==,结合图象可得直线l的斜率k的取值范围是k≥2或k≤.故选C.5.已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.B.C.D.【考点】双曲线的标准方程.【分析】利用双曲线C:的焦距为10,点P(2,1)在C的渐近线上,建立方程组,求出a,b 的值,即可求得双曲线的方程.【解答】解:∵双曲线C:的焦距为10,点P(2,1)在C的渐近线上,∴a2+b2=25, =1,∴b=,a=2∴双曲线的方程为.故选:A.6.已知双曲线﹣=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于()A.B. C.3 D.5【考点】双曲线的简单性质;抛物线的简单性质.【分析】确定抛物线y2=12x的焦点坐标,从而可得双曲线的一条渐近线方程,利用点到直线的距离公式,即可求双曲线的焦点到其渐近线的距离.【解答】解:抛物线y2=12x的焦点坐标为(3,0)∵双曲线的右焦点与抛物线y2=12x的焦点重合∴4+b2=9∴b2=5∴双曲线的一条渐近线方程为,即∴双曲线的焦点到其渐近线的距离等于故选A.7.如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A .B .C .D .【考点】椭圆的简单性质.【分析】不妨设|AF 1|=x ,|AF 2|=y ,依题意,解此方程组可求得x ,y 的值,利用双曲线的定义及性质即可求得C 2的离心率.【解答】解:设|AF 1|=x ,|AF 2|=y ,∵点A 为椭圆C 1:+y 2=1上的点,∴2a=4,b=1,c=;∴|AF 1|+|AF 2|=2a=4,即x+y=4;①又四边形AF 1BF 2为矩形,∴+=,即x 2+y 2=(2c )2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C 2的实轴长为2m ,焦距为2n ,则2m=|AF 2|﹣|AF 1|=y ﹣x=2,2n=2c=2,∴双曲线C 2的离心率e===. 故选D .8.过点()引直线l 与曲线y=相交于A ,B 两点,O 为坐标原点,当△ABO 的面积取得最大值时,直线l 的斜率等于( )A .B .C .D .【考点】直线与圆的位置关系;直线的斜率.【分析】由题意可知曲线为单位圆在x 轴上方部分(含与x 轴的交点),由此可得到过C 点的直线与曲线相交时k 的范围,设出直线方程,由点到直线的距离公式求出原点到直线的距离,由勾股定理求出直线被圆所截半弦长,写出面积后利用配方法转化为求二次函数的最值.【解答】解:由y=,得x 2+y 2=1(y ≥0). 所以曲线y=表示单位圆在x 轴上方的部分(含与x 轴的交点),设直线l 的斜率为k ,要保证直线l 与曲线有两个交点,且直线不与x 轴重合,则﹣1<k <0,直线l 的方程为y ﹣0=,即.则原点O 到l 的距离d=,l 被半圆截得的半弦长为.则===.令,则,当,即时,S △ABO 有最大值为.此时由,解得k=﹣. 故答案为B .9.设F 1、F 2是椭圆的左、右焦点,P 为直线x=上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A .B .C .D . 【考点】椭圆的简单性质.【分析】利用△F 2PF 1是底角为30°的等腰三角形,可得|PF 2|=|F 2F 1|,根据P 为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F 2PF 1是底角为30°的等腰三角形,∴|PF 2|=|F 2F 1|∵P 为直线x=上一点∴∴故选C .二、填空题(共6小题,每小题4分,满分24分)10.已知圆C 的方程为x 2+y 2﹣2y ﹣3=0,过点P (﹣1,2)的直线l 与圆C 交于A ,B 两点,若使|AB|最小,则直线l 的方程是 x ﹣y+3=0 .【考点】直线与圆相交的性质;直线的一般式方程.【分析】先判断点P (﹣1,2)在圆内,故当AB ⊥CP 时,|AB|最小,此时,k CP =﹣1,k l =1,用点斜式写直线l 的方程,并化为一般式.【解答】解:圆C 的方程为x 2+y 2﹣2y ﹣3=0,即 x 2+(y ﹣1)2=4,表示圆心在C (0,1),半径等于2的圆.点P (﹣1,2)到圆心的距离等于,小于半径,故点P (﹣1,2)在圆内.∴当AB ⊥CP 时,|AB|最小,此时,k CP =﹣1,k l =1,用点斜式写直线l 的方程y ﹣2=x+1,即x ﹣y+3=0.11.过直线x+y ﹣2=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是 (,) . 【考点】圆的切线方程;两直线的夹角与到角问题. 【分析】根据题意画出相应的图形,设P 的坐标为(a ,b ),由PA 与PB 为圆的两条切线,根据切线的性质得到OA 与AP 垂直,OB 与BP 垂直,再由切线长定理得到PO 为角平分线,根据两切线的夹角为60°,求出∠APO 和∠BPO 都为30°,在直角三角形APO 中,由半径AO 的长,利用30°角所对的直角边等于斜边的一半求出OP 的长,由P 和O 的坐标,利用两点间的距离公式列出关于a 与b 的方程,记作①,再由P 在直线x+y ﹣2=0上,将P 的坐标代入得到关于a 与b 的另一个方程,记作②,联立①②即可求出a 与b 的值,进而确定出P 的坐标.【解答】解:根据题意画出相应的图形,如图所示:直线PA 和PB 为过点P 的两条切线,且∠APB=60°,设P 的坐标为(a ,b ),连接OP ,OA ,OB ,∴OA ⊥AP ,OB ⊥BP ,PO 平分∠APB ,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圆x 2+y 2=1,即圆心坐标为(0,0),半径r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴=2,即a 2+b 2=4①,又P 在直线x+y ﹣2=0上,∴a+b ﹣2=0,即a+b=2②,联立①②解得:a=b=,则P 的坐标为(,).故答案为:(,)12.设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为.【考点】椭圆的标准方程;椭圆的简单性质.【分析】由题意画出图形,设椭圆的标准方程为,由条件结合等腰直角三角形的边角关系解出C 的坐标,再根据点C在椭圆上求得b值,最后利用椭圆的几何性质计算可得答案.【解答】解:如图,设椭圆的标准方程为,由题意知,2a=4,a=2.∵∠CBA=,BC=,∴点C的坐标为C(﹣1,1),因点C在椭圆上,∴,∴b2=,∴c2=a2﹣b2=4﹣=,c=,则Γ的两个焦点之间的距离为.故答案为:.13.椭圆Γ: =1(a >b >0)的左右焦点分别为F 1,F 2,焦距为2c ,若直线y=与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于 . 【考点】直线与圆锥曲线的关系;椭圆的简单性质.【分析】由直线可知斜率为,可得直线的倾斜角α=60°.又直线与椭圆Γ的一个交点M满足∠MF 1F 2=2∠MF 2F 1,可得,进而.设|MF 2|=m ,|MF 1|=n ,利用勾股定理、椭圆的定义及其边角关系可得,解出a ,c 即可.【解答】解:如图所示,由直线可知倾斜角α与斜率有关系=tan α,∴α=60°.又椭圆Γ的一个交点满足∠MF 1F 2=2∠MF 2F 1,∴,∴.设|MF 2|=m ,|MF 1|=n ,则,解得.∴该椭圆的离心率e=.故答案为.14.在平面直角坐标系xOy ,椭圆C 的中心为原点,焦点F 1F 2在x 轴上,离心率为.过F l 的直线交于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为 +=1 . 【考点】椭圆的简单性质. 【分析】根据题意,△ABF 2的周长为16,即BF 2+AF 2+BF 1+AF 1=16,结合椭圆的定义,有4a=16,即可得a 的值;又由椭圆的离心率,可得c 的值,进而可得b 的值;由椭圆的焦点在x 轴上,可得椭圆的方程.【解答】解:根据题意,△ABF 2的周长为16,即BF 2+AF 2+BF 1+AF 1=16;根据椭圆的性质,有4a=16,即a=4;椭圆的离心率为,即=,则a=c ,将a=c ,代入可得,c=2,则b 2=a 2﹣c 2=8;则椭圆的方程为+=1;故答案为:+=1.15.已知过抛物线y 2=9x 的焦点的弦AB 长为12,则直线AB 的倾斜角为或 .【考点】直线与抛物线的位置关系.【分析】首先根据抛物线方程,求得焦点坐标为F (,0),从而设所求直线方程为y=k (x ﹣).再将所得方程与抛物线y 2=9x 消去y ,利用韦达定理求出x 1+x 2,最后结合直线过抛物线y 2=9x 焦点截得弦长为12,得到x 1+x 2+3=12,求出k ,得到直线的倾斜角.【解答】解:∵抛物线方程是y 2=9x ,∴2p=9,可得 =,焦点坐标为F (,0)设所求直线方程为y=k (x ﹣),与抛物线y 2=9x 消去y ,得k 2x 2﹣(k 2+9)x+k 2=0设直线交抛物线与A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=, ∵直线过抛物线y 2=9x 焦点,交抛物线得弦长为12,∴x 1+x 2+=12,可得x 1+x 2=,因此, =,解之得k2=3,∴k=tanα=±,结合α∈[0,π),可得α=或.故答案为:或.三、解答题(共4小题,满分40分)16.如图,圆x2+y2=8内有一点P(﹣1,2),AB为过点P且倾斜角为α的弦,(1)当α=135°时,求|AB|(2)当弦AB被点P平分时,写出直线AB的方程.(3)求过点P的弦的中点的轨迹方程.【考点】直线和圆的方程的应用.【分析】(1)过点O做OG⊥AB于G,连接OA,依题意可知直线AB的斜率,求得AB的方程,利用点到直线的距离求得OG即圆的半径,进而求得OA的长,则OB可求得.(2)弦AB被P平分时,OP⊥AB,则OP的斜率可知,利用点斜式求得AB的方程.(3)设出AB的中点的坐标,依据题意联立方程组,消去k求得x和y的关系式,即P的轨迹方程.【解答】解:(1)过点O做OG⊥AB于G,连接OA,当α=1350时,直线AB的斜率为﹣1,故直线AB的方程x+y﹣1=0,∴OG=∵r=∴,∴=﹣2,(2)当弦AB被P平分时,OP⊥AB,此时KOP∴AB的点斜式方程为(x+1),即x﹣2y+5=0(3)设AB的中点为M(x,y),AB的斜率为K,OM⊥AB,则消去K,得x2+y2﹣2y+x=0,当AB的斜率K不存在时也成立,故过点P的弦的中点的轨迹方程为x2+y2﹣2y+x=017.椭圆E : +=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e=,过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)若直线AB 的斜率为,求△ABF 2的面积.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)利用椭圆的离心率以及△ABF 2的周长为8,求出a ,c ,b ,即可得到椭圆的方程,(2)求出直线方程与椭圆方程联立,求出A ,B 坐标,然后求解三角形的面积即可.【解答】解:(1)由题意知,4a=8,所以a=2,又e=,可得=,c=1.∴b 2=22﹣1=3.从而椭圆的方程为:.(2)设直线方程为:y=(x+1)由得:5x 2+8x=0.解得:x 1=0,x 2=, 所以y 1=,y 2=,则S=c|y 1﹣y 2|=.18.已知椭圆C 的中心在原点,焦点在x 轴上,焦距为2,离心率为.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若=2,求直线l 的方程.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)根据椭圆的焦距为2,离心率为,求出a ,b ,即可求椭圆C 的方程;(Ⅱ)分类讨论,设直线l 方程为y=kx+1,代入椭圆方程,由=2,得x 1=﹣2x 2,利用韦达定理,化简求出k ,即可求直线l 的方程.【解答】解:(Ⅰ)由题意知,c=1, =,…∴a=2,b= … 故椭圆方程为. …(Ⅱ)设A (x 1,y 1),B (x 2,y 2),当k 不存在时,直线方程为x=0,不符合题意. …当k 存在时,设直线方程为y=kx+1,代入椭圆方程,消去y ,得:(3+4k 2)x 2+8kx ﹣8=0,且△>0,…x 1+x 2=﹣①,x 1x 2=﹣②…若=2,则x 1=﹣2x 2,③… ①②③,可得k=±.…所求直线方程为y=x+1.即x ﹣2y+2=0或x+2y ﹣2=0 …19.已知点F 为抛物线C :y 2=4x 的焦点,点P 是准线l 上的动点,直线PF 交抛物线C 于A ,B 两点,若点P 的纵坐标为m (m ≠0),点D 为准线l 与x 轴的交点.(Ⅰ)求直线PF 的方程;(Ⅱ)求△DAB 的面积S 范围;(Ⅲ)设,,求证λ+μ为定值.【考点】直线的一般式方程;抛物线的应用.【分析】(Ⅰ)由题知点P ,F 的坐标分别为(﹣1,m ),(1,0),求出斜率用点斜式写出直线方程. (Ⅱ)设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),用弦长公式求出线段AB 的长,再由点到直线的距离公式求点D 到直线AB 的距离,用三角形面积公式表示出面积关于参数m 的表达式,再根据m 的取值范围求出面积的范围.(Ⅲ),,变化为坐标表示式,从中求出参数λ,μ用两点A ,B 的坐标表示的表达式,即可证明出两者之和为定值.【解答】解:(Ⅰ)由题知点P ,F 的坐标分别为(﹣1,m ),(1,0),于是直线PF 的斜率为,所以直线PF 的方程为,即为mx+2y ﹣m=0.(Ⅱ)设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),由得m 2x 2﹣(2m 2+16)x+m 2=0,所以,x 1x 2=1.于是.点D 到直线mx+2y ﹣m=0的距离,所以. 因为m ∈R 且m ≠0,于是S >4,所以△DAB 的面积S 范围是(4,+∞).(Ⅲ)由(Ⅱ)及,,得(1﹣x 1,﹣y 1)=λ(x 2﹣1,y 2),(﹣1﹣x 1,m ﹣y 1)=μ(x 2+1,y 2﹣m ),于是,(x 2≠±1).所以. 所以λ+μ为定值0.。
湖南省蕲春县2016-2017学年高二上学期期中考试理科数学试卷 含解析
2016-2017学年湖南省蕲春县高二上学期期中考试理科数学一、选择题:共12题1.下列否定不正确的是A。
“”的否定是“”B.“”的否定是“"C。
“"的否定是“”D。
“"的否定是“”【答案】B【解析】本题主要考查全称命题与特称命题的否定。
由全称命题与特称命题否定的定义可知,答案为B.2.方程表示的曲线为C,给出下面四个命题,其中正确命题的个数是①若曲线C为椭圆,则1<t<4;②若曲线C为双曲线,则t<1或t>4;③曲线C不可能是圆;④若曲线C表示焦点在x轴上的椭圆,则。
A。
1 B。
2 C。
3 D。
4【答案】B【解析】本题主要考查圆锥曲线的方程、命题真假的判断. ①若曲线C为椭圆,则,所以1〈t<4,且,故①错误;②若曲线C为双曲线,则,所以t<1或t>4,故②正确;当时,曲线C是圆,故③错误;④若曲线C表示焦点在x轴上的椭圆,则,所以,故④正确,因此答案为B.3.已知直线l:与圆O:交于A、B两点且,则k=A。
2 B。
± C.±2 D.【答案】C【解析】本题主要考查直线与圆的位置关系、平面向量的数量积、点到直线的位置关系,考查了转化思想。
由题意,因为,所以与垂直,则三角形OAB是等腰直角三角形,所以点O到直线的距离等于,所以k=±24.过抛物线的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则|AB|等于A。
10 B。
8 C.6 D.4【答案】B【解析】本题主要考查抛物线的定义、中点坐标公式.设A、B的横坐标分别为x1,x2,由题意可得x1+x2=6,由可知p=2,设焦点为F,由抛物线的定义可知|AB|=|AF|+|BF|=x1++x2+=8。
5.已知定点F,定直线l和动点M,设M到l的距离为d,则“”是“M的轨迹是以F为焦点,l为准线的抛物线”的A.充分不必要条件B。
必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】本题主要考查充分条件与必要条件、抛物线的定义,考查了逻辑推理能力.必要性:若“M的轨迹是以F为焦点,l为准线的抛物线",则“”;若“",当直线l过定点F,则点M的轨迹是一条直线;当直线l不过F,则“M的轨迹是以F为焦点,l为准线的抛物线",即充分性不正确,因此答案为B。
高二数学上学期期中习题
2016—2017学年度第一学期期中测试高二数学试题毫米黑色签字笔填写在试卷一、填空题:本大题共14小题,每小题5分,共70分。
1.命题“x R ∀∈,210x +>”的否定是 ▲ .2.若直线220ax y ++=与直线20x y --=垂直,则a = ▲ . 3.已知圆锥的底面半径为2cm ,高为1cm ,则圆锥的侧面积是 ▲ 2cm . 4.两条平行直线0634=-+y x 和034=++a y x 之间的距离等于2,则实数 a = ▲ .5.命题“若0a =或0b =,则0ab =”的否命题是 ▲ .6. 已知点)3,1(A 在圆4:22=+y x C 上,则过点A 的圆C 的切线方程为▲ .7.已知圆C 经过三个点)1,4(A ,)3,6(-B ,)0,3(-C ,则圆C 的方程为 ▲ . 8. 若直线043=-+m y x 与圆044222=+-++y x y x 始终有公共点,则实数m 的取 值范围是 ▲ .9. 若两圆422=+y x ,012222=-+-+m mx y x 相外切,则实数m 的值为 ▲ . 10. 已知命题4143:≤-x p ,命题0)1)((:≤---a x a x q ,若q p 是成立的充分非必要 条件,则实数a 的取值范围是 ▲ .11. 在平面直角坐标系xoy 中,以点)2,0(为圆心,且与直线)(013R m m y mx ∈=--- 相切的所有圆中,半径最大的圆的标准方程为 ▲ .12.设α,β为两个不重合的平面,m ,n 为两条不重合的直线,给出下列四个命题: (1) 若n m ⊥,α⊥m ,α⊄n ,则α//n ;(2) 若βα⊥,m =βα ,α⊂n ,m n ⊥,则β⊥n ; (3) 若n m ⊥,α//m ,β//n ,则βα⊥;(4) 若α⊂n ,β⊂m ,α与β相交且不垂直,则n 与m 不垂直. 其中所有真命题的序号是 ▲ .13. 过点)1,21(P 的直线l 与圆4)1(:22=+-y x C 交于A ,B 两点,当ACB ∠最小时,三 角形ACB 的面积为 ▲ .14.在平面直角坐标系xoy 中,已知圆O :122=+y x ,1O :44-22=+y x )(,动点P在直线03=++b y x 上,过P 分别作圆O ,1O 的切线,切点分别为A ,B ,若满 足PA PB 2=的点P 有且只有两个,则实数b 的取值范围是 ▲ . 二、解答题:本大题共90分,解答应写出文字说明,证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蕲春县2016年秋高中期中教学质量检测高二数学(文)试题蕲春县教研室命制 2016年11月8日 下午2:00—4:00温馨提示:本试卷共4页。
考试时间120分钟。
请将答案填写在答题卡上。
一、本大题共12小题,每小题5分,在每小题列出的四个选项中,只有一项是符合题目要求的。
1.下列否定不正确的是( )A .“2,0x R x ∀∈>”的否定是“200,0x R x ∃∈≤” B .“200,0x R x ∃∈<”的否定是“2,0x R x ∀∈<”C .“,sin 1R θθ∀∈≤”的否定是00,sin 1R θθ∃∈>D .“000,sin cos 1R θθθ∃∈+<”的否定是“,sin cos 1R θθθ∀∈+≥”2.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为( )A .x 2+y 2-2x -3=0 B .x 2+y 2+4x =0 C .x 2+y 2+2x -3=0D .x 2+y 2-4x =03.方程11422=-+-t y t x 表示的曲线为C ,给出下面四个命题,其中正确命题的个数是( ) ①若曲线C 为椭圆,则41<<t ;②若曲线C 为双曲线,则1<t 或4<t ; ③曲线C 不可能是圆; ④若曲线C 表示焦点在x 轴上的椭圆,则251<<t A .1 B .2 C .3 D .44.已知直线l :50x ky --=与圆O :2210x y +=交于A 、B 两点且0=⋅OB OA ,则k =( )A .2B .C .2±D 5.过抛物线24y x =的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则|AB |等于( ) A .10B .8C .6D .46.方程(x -2)2+y 2+(x +2)2+y 2=10化简的结果是( ).A .x 225+y 216=1B .x 225+y 221=1 C .x 225+y 24=1 D .y 225+x 221=17.已知12F 、F 是椭圆)0(1916:22>>=+b a y x C 的两个焦点,p 为椭圆C 上的一点,且求12PF F ∆的面积( ). A .9B .6C .D .8.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y += 9.下列命题中的说法正确的是( )A .命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”B .“1x =-”是“2560x x --=”的必要不充分条件C .命题“0x R ∃∈,使得20010x x ++<”的否定是:“x R ∀∈,均有210x x ++>”D .命题“在ABC ∆中,若A B >,则sin sin A B >”的逆否命题为真命题10.已知双曲线x 2a 2-y 22=1(a >2)的两条渐近线的夹角为π3,则双曲线的离心率为( ).A .33B .233C .433D .3511.F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,P 是椭圆上任一点,从任一焦点引∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹为(A .圆B .椭圆C .抛物线12.过抛物线24y x =的焦点F 原点,若||5AF =,则△AOB 的面积为(A .5B .52 C .32D .178二、填空题(本大题共4小题,每小题5分,共20分.)13.已知条件 :1p x >或3x <-,条件 q : x a >,且 q 是p 的充分而不必要条件,则 a 的取值范围是________.l14.抛物线24y x =的准线方程为___________.15.设m R ∈,在平面直角坐标系中,已知向量)1,(+=y mx ,向量),1,(-=y x a ⊥b ,动点(,)M x y 的轨迹为E ,则轨迹E 的方程为___________.16.P 是双曲线116922=-y x 的右支上一点,M ,N 分别是圆4)5(22=++y x 和1)5(22=+-y x 上的点,则PN PM -的最大值为______________.三、解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本小题10分)求满足下列各条件的椭圆的标准方程: ⑴长轴是短轴的3倍且经过点()3,0A ;⑵短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为3;18.(本小题满分12分)设命题2:,220p x R x ax a ∃∈++-=使;命题q :不等式0222>+-ax ax 对任意x R ∈恒成立.若p ⌝为真,且p 或q 为真,求a 的取值范围.19.已知圆228x y +=内有一点P 0(-1,2),AB 为过点P 0且倾斜角为α的弦.⑴当34πα=时,求AB 的长; ⑵当弦AB 被点P 0平分时,写出直线AB 的方程.20.(本小题12分)设双曲线C :x 2a2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A 、B .⑴求实数a 的取值范围;⑵设直线l 与y 轴的交点为P ,若PA →=512PB →,求a 的值.21.(本小题12分)如图所示,O 为坐标原点,过点P (2,0)且斜率为k的直线l交抛物线y 2=2x 于M (x 1,y 1),N (x 2,y 2)两点.⑴求x 1x 2与y 1y 2的值; ⑵求证:OM ⊥ON .22.(本小题12分)已知椭圆22a x +22b y =1(a >b >0).⑴求椭圆方程;⑵设不过原点O 的直线l :y kx m =+(0)k ≠,与该椭圆交于P 、Q 两点,直线OP 、OQ 的斜率依次为1k 、2k ,满足124k k k =+,试问:当k 变化时,2m 是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.蕲春县2016年秋高中期中数学质量检测高二数学(文)参考答案一、选择题:BDB CB BAADB AB 二、填空题13.1a ≥ 14.116y =- 15.221mx y += 1 16.9.三、解答题17.【答案】 (1) 22+y =19x 或22y +=1819x (2) 22y +=1129x ,或22y +=1912x 【解析】 (1)若焦点在x 轴上,设方程为2222+=1(a>b>0)x y a b.∵椭圆过点()3,0A ,∴29=1a=3a ∴,,∵232a b ⨯=,∴1b =.∴方程为22+y =19x . 16.若焦点在y 轴上,设方程为2222y +=1(a>b>0)x a b.∵椭圆过点()3,0A ,∴29=1b=3b ∴,,, 又232a b ⨯=,∴9a =,∴方程为22y +=1819x . 综上所述,椭圆方程为22+y =19x 或22y +=1819x .…………………………5分(2)由已知,有2a ca c =⎧⎪⎨-=⎪⎩,解得a c ⎧=⎪⎨=⎪⎩,从而2229b a c =-=,∴所求椭圆方程为22y +=1129x ,或22y +=1912x ………………10分 18. 解析:由命题p ,得 2-≤a 或 1≥a ,………………4分对于命题q ,因 R x ∈, 0222>+-ax a恒成立,所以或a=0,即 40<≤a ,由题意知p 为假命题,q 为真命题。
………………8分 ∴ 104012<≤⇒⎩⎨⎧<≤<<-a a a ,∴a 的取值范围为[)1,0………………12分19. 解:⑴当πα43=时,直线AB 的方程为:2(1)10y x x y -=-+⇒+-=设圆心到直线AB 的距离为d,则d =∴||AB =………………………………6分⑵当弦AB 被点P 0平分时 OP 0⊥AB ∵02OP K =- ∴12AB K =故直线AB 的方程为:12(1)2y x -=+ 即250x y -+=………………12分 20. 解:(1)将y =-x +1代入双曲线方程x 2a2-y 2=1(a >0)中得(1-a 2)x 2+2a 2x -2a 2=0.依题意⎩⎪⎨⎪⎧1-a 2≠0,Δ=4a 4+8a 2(1-a 2)>0, 所以 0<a <2且a ≠1.…………………4分(2)设A (x 1,y 1),B (x 2,y 2),P (0,1),因为PA →=512PB →,所以(x 1,y 1-1)=512(x 2,y 2-1).由此得x 1=512x 2.…………………8分由于x 1,x 2是方程(1-a 2)x 2+2a 2x -2a 2=0的两根,且1-a 2≠0,所以1712x 2=-2a 21-a 2,512x 22=-2a21-a2. 消去x 2得-2a 21-a 2=28960. 由a >0,解得a =1713.…………………12分21. (1)解 过点P (2,0)且斜率为k 的直线方程为:y =k (x -2).把y =k (x -2)代入y 2=2x ,消去y 得k 2x 2-(4k 2+2)x +4k 2=0,由于直线与抛物线交于不同两点,故k 2≠0且Δ=(4k 2+2)2-16k 4=16k 2+4>0,x 1x 2=4,x 1+x 2=4+2k2,∵M 、N 两点在抛物线上,∴y 21·y 22=4x 1·x 2=16,而y 1·y 2<0,∴y 1y 2=-4. …………6分 (2)证明 ∵ OM →=(x 1,y 1),ON →=(x 2,y 2),OM →·ON →=x 1·x 2+y 1·y 2=4-4=0.OM →⊥ON →,即OM ⊥ON .…………………12分22. 试题解析:⑴依题意可得2221,a b c⎧⎪=+⎩解得.1,2==b a所以椭圆C 的方程是.1422=+y x …………………4分⑵当k 变化时,2m 为定值,证明如下:由2214y kx m x y =+⎧⎪⎨+=⎪⎩得,()2221484(1)0k x kmx m +++-=. …………………6分设P ),(11y x ,Q ),(22y x .则122814kmx x k +=-+,()()212241,*14m x x k -=⋅⋅⋅⋅⋅+ ………8分直线OP 、OQ 的斜率依次为12,k k ,且124k k k =+,∴121212124y y kx m kx m k x x x x ++=+=+,得()12122kx x m x x =+,将()*代入得:212m =,经检验满足0∆>. ………12分.。