年高考数学总复习.集合的概念与运算文新人教A版
新高考数学 A版讲义:第1节 集合的概念及表示
第1节集合的概念及表示要点一:集合及其相关概念知识点一元素与集合的概念生活中很多东西都是由一堆元素组成的整体,如《哈利波特七部曲》、考试后密封袋里的试卷,我们班的同学,一条直线等等,都可以看做一个个集合。
一般地,我们把研究对象统称为元素(element),常用小写的拉丁字母a,b,c…表示.把一些元素组成的总体叫做集合(set),(简称为集),常用大写拉丁字母A,B,C…表示.集合相等:指构成两个集合的元素是一样的.集合中元素的特性:给定的集合,它的元素必须是确定的、互不相同的,与顺序无关。
思考我班所有的“追梦人”能否构成一个集合?答案不能构成集合,因为“追梦人”没有明确的标准.知识点二元素与集合的关系1.属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.2.不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.知识点三常见的数集及表示符号一、对集合的理解例1(1)考察下列每组对象,能构成集合的是()①中国各地的美丽乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④截止到2019年1月1日,参加一带一路的国家.A.③④B.②③④C.②③D.②④解析①中“美丽”标准不明确,不符合确定性,②③④中的元素标准明确,均可构成集合,故选B.(2)下列说法中,正确的有______.(填序号)①单词book的所有字母组成的集合的元素共有4个;②集合M中有3个元素a,b,c,其中a,b,c是△ABC的三边长,则△ABC不可能是等腰三角形;③将小于10的自然数按从小到大的顺序排列和按从大到小的顺序排列分别得到不同的两个集合.解析①不正确. book的字母o有重复,共有3个不同字母,元素个数是3.②正确. 集合M中有3个元素a,b,c,所以a,b,c都不相等,它们构成的三角形三边不相等,故不可能是等腰三角形.③不正确. 小于10的自然数不管按哪种顺序排列,里面的元素都是0,1,2,3,4,5,6,7,8,9这10个数,集合是相同的,和元素的排列顺序无关.反思感悟判断一组对象是否为集合的三依据(1)确定性:负责判断这组元素是否构成集合.(2)互异性:负责判断构成集合的元素的个数.(3)无序性:表示只要一个集合的元素确定,则这个集合也随之确定,与元素之间的排列顺序无关.二、元素与集合的关系例2下列关系中正确的个数为()①2∈Q;②-1∉N;③π∉R;④|-4|∈Z.A.1 B.2 C.3 D.4解析①∵2是无理数,∴2∉Q,故①错误;②-1∉N,②正确;③∵π是实数,∴π∈R,故③错误;④∵|-4|=4是整数,∴|-4|∈Z,故④正确.反思感悟判断元素和集合关系的两种方法(1)直接法:集合中的元素是直接给出的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.跟踪训练1给出下列说法:①R中最小的元素是0;②若a∈Z,则-a∉Z;③若a∈Q,b∈N*,则a+b∈Q.其中正确的个数为()A.0 B.1 C.2 D.3解析实数集中没有最小的元素,故①不正确;对于②,若a∈Z,则-a也是整数,故-a∈Z,所以②也不正确;只有③正确.三、元素特性的应用例3已知集合A含有两个元素a-3和2a-1,若-3∈A,试求实数a的值.解∵-3∈A,∴-3=a-3或-3=2a-1,若-3=a-3,则a=0,此时集合A中含有两个元素-3,-1,符合题意;若-3=2a-1,则a=-1,此时集合A中含有两个元素-4,-3,符合题意;综上所述,a=0或a=-1.延伸探究若将“-3∈A”换成“a∈A”,求实数a的值.解∵a∈A,∴a=a-3或a=2a-1,解得a=1,此时集合A中有两个元素-2,1,符合题意.故所求a的值为1.反思感悟由集合中元素的特性求解字母取值(范围)的步骤跟踪训练2已知集合A中含有两个元素a和a2,若1∈A,则实数a=________.解析若1∈A,则a=1或a2=1,即a=±1.当a=1时,a=a2,集合A中有一个元素,∴a≠1.当a=-1时,集合A中含有两个元素1,-1,符合互异性.∴a=-1.要点二:集合的表示知识点一列举法把集合的所有元素一一列举出来,并用括号“{}”括起来表示集合的方法叫做列举法.知识点二描述法一般地,设A是一个集合,把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.思考不等式x-2<3的解集中的元素有什么共同特征?答案元素的共同特征为x∈R,且x<5.一、列举法表示集合例1 用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x 2=2x 的所有实数解组成的集合;(3)直线y =2x +1与y 轴的交点所组成的集合;(4)由所有正整数构成的集合.解 (1)因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是 {0,2,4,6,8,10}.(2)方程x 2=2x 的解是x =0或x =2,所以方程的解组成的集合为{0,2}.(3)将x =0代入y =2x +1,得y =1,即交点是(0,1),故交点组成的集合是{(0,1)}.(4)正整数有1,2,3,…,所求集合为{1,2,3,…}.反思感悟 用列举法表示集合应注意的两点(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素;(2)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素.跟踪训练1 用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A ;(2)方程x 2-9=0的实数根组成的集合B ;(3)一次函数y =x +2与y =-2x +5的图象的交点组成的集合D .解 (1)因为大于1且小于6的整数包括2,3,4,5,所以A ={2,3,4,5}.(2)方程x 2-9=0的实数根为-3,3,所以B ={-3,3}.(3)由⎩⎪⎨⎪⎧ y =x +2,y =-2x +5,得⎩⎪⎨⎪⎧x =1,y =3, 所以一次函数y =x +2与y =-2x +5的交点为(1,3),所以D ={(1,3)}.二、描述法表示集合例2 用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数集合;(3)平面直角坐标系中坐标轴上的点组成的集合.解 (1)偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.(2)设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N }.(3)坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故平面直角坐标系中坐标轴上的点的集合可表示为{(x,y)|xy=0}.反思感悟利用描述法表示集合应关注五点(1)写清楚该集合代表元素的符号.例如,集合{x∈R|x<1}不能写成{x<1}.(2)所有描述的内容都要写在花括号内.例如,{x∈Z|x=2k},k∈Z,这种表达方式就不符合要求,需将k∈Z也写进花括号内,即{x∈Z|x=2k,k∈Z}.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x2-2x+1=0的实数解集可表示为{x∈R|x2-2x+1=0},也可写成{x|x2-2x+1=0}.跟踪训练2下列三个集合:①A={x|y=x2+1};②B={y|y=x2+1};③C={(x,y)|y=x2+1}.(1)它们是不是相同的集合?(2)它们各自的含义分别是什么?解(1)不相同.(2)集合A={x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}=R,即A=R;集合B={y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{y|y =x2+1}={y|y≥1}.集合C={(x,y)|y=x2+1}的代表元素是(x,y),是满足y=x2+1的数对.可以认为集合C是由坐标平面内满足y=x2+1的点(x,y)构成的.三、集合表示法的综合应用例3集合A={x|kx2-8x+16=0},若集合A中只有一个元素,求实数k的值组成的集合.解(1)当k=0时,方程kx2-8x+16=0变为-8x+16=0,解得x=2,满足题意;(2)当k≠0时,要使集合A={x|kx2-8x+16=0}中只有一个元素,则方程kx2-8x+16=0有两个相等的实数根,所以Δ=64-64k=0,解得k=1,此时集合A={4},满足题意.综上所述,k=0或k=1,故实数k的值组成的集合为{0,1}.延伸探究1.本例若将条件“只有一个元素”改为“有两个元素”,其他条件不变,求实数k的值组成的集合.解由题意可知,方程kx2-8x+16=0有两个不等实根,故k≠0,且Δ=64-64k>0,即k<1,且k≠0.所以实数k组成的集合为{k|k<1,且k≠0}.2.本例若将条件“只有一个元素”改为“至少有一个元素”,其他条件不变,求实数k的取值范围.解由题意可知,方程kx2-8x+16=0至少有一个实数根.①当k=0时,由-8x+16=0得x=2,符合题意;②当k≠0时,要使方程kx2-8x+16=0至少有一个实数根,则Δ=64-64k≥0,即k≤1,且k ≠0.综合①②可知,实数k 的取值范围为{k |k ≤1}.反思感悟 (1)若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键,如例3集合A 中的元素就是所给方程的根,由此便把集合的元素个数问题转化为方程的根的个数问题.(2)在学习过程中要注意数学素养的培养,如本例中用到了等价转化思想和分类讨论的思想.集合及其相关概念1.以下各组对象不能组成集合的是( )A .中国古代四大发明B .地球上的小河流C .方程x 2-7=0的实数解D .周长为10 cm 的三角形答案 B 解析 因为没有明确的标准确定什么样的河流称为小河流,故地球上的小河流不能组成集合.2.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )A .3.14B .-5 C.37D.7 答案 D 解析 由题意知a 应为无理数,故a 可以为7.3.有下列说法:①集合N 中最小的数为1;②若-a ∈N ,则a ∈N ;③若a ∈N ,b ∈N ,则a +b 的最小值为2;④所有小的正数组成一个集合.其中正确命题的个数是( )A .0B .1C .2D .3答案 A 解析 N 中最小的数为0,所以①错;由-(-2)∈N ,而-2∉N 可知②错;若a ∈N ,b ∈N ,则a +b 的最小值为0,所以③错;“小”的正数没有明确的标准,所以④错。
高考数学一轮复习第一章集合与常用逻辑用语1集合的概念与运算课件新人教A版(文)
D.a>-1
(3)已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3}.若B⊆A,则实数
(-∞,-4)∪(2,+∞) .
a的取值范围为
思考若集合中的元素含有参数,求集合中的参数有哪些技巧?
-24考点1
考点2
考点3
解析:(1)由A∪B=A得B⊆A,则m∈A,
故有 m=√或 m=3,即 m=3 或 m=1 或 m=0.
中的元素是离散的,则紧扣集合运算的定义求解;若集合中的元素
是连续的,则常结合数轴进行集合运算;若集合中的元素是抽象的,
则常用Venn图法进行求解.
-15考点1
考点2
考点3
考点 1
集合的基本概念
例1(1)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M
中的元素个数为(
(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.( × )
(3)A⊆B⇔A∩B=A⇔A∪B=B;(A∩B)⊆(A∪B).( √ )
(4)若A∩B=A∩C,则B=C. ( × )
(5)(教材习题改编P5T2(3))直线y=x+3与y=-2x+6的交点构成的集
合是{1,4}.( × )
符号
N
N*(或N+)
、
Venn图法
.
整数集 有理数集 实数集
Z
Q
R
-5知识梳理
双基自测
1
2
3
4
5
2.集合间的基本关系
关系 自然语言
符号表示
集合A 中的所有元素都在
高考数学总复习 11集合课件 新人教A版
(2011·安徽百校联考)已知集合M={-1,0,1},N={x|x= ab,a,b∈M且a≠b},则集合M与集合N的关系是( )
A.M=N B.M N C.N M D.M∩N=∅
解析:∵a、b∈M且a≠b,∴a=-1时,b=0或1,x=0 或-1;a=0时,无论b取何值,都有x=0;a=1时,b=-1 或0,x=-1或0.综上知N={0,-1},∴N M.
解析:A={x|x<-3或x>-1}. 由log3(2-x)≤1,得0<2-x≤3, 解得-1≤x<2,即B={x|-1≤x<2}. 故A∩B={x|-1<x<2},∁U(A∩B)={x|x≤-1或x≥2}.
答案:D
Venn图的理解与运用 [例5] 设全集U是实数集R,集合M={x|x2-4<0},N= {x|(x-2)2<1},则图中阴影部分所表示的集合是( )
思想方法技巧
一、“数形结合”思想 准确把握集合元素的特征性质,把集合用数轴、几何图 形、Venn图等直观表示,可方便地获得问题的解决. 关于不等式的解集的关系及运算借助数轴讨论尤其方便 二、解题技巧 弄清集合中元素的属性,掌握集合的关系与运算,用好 集合的性质,是熟练求解集合问题的关键.
考点典例讲练
2.简单的逻辑联结词 通过数学实例,了解逻辑联结词“或”、“且”、“非” 的含义. 3.全称量词与存在量词 (1)通过生活和数学中的丰富实例,理解全称量词与存在量 词的意义. (2)能正确地对含有一个量词的命题进行否定.
●命题趋势 1.集合的概念与运算,主要从以下三个方面考查:一是 对集合基本概念的认识和理解水平,如集合的表示法、元素与 集合的关系、集合与集合的关系、集合的运算;二是以集合为 工具考查对集合语言和集合思想的应用水平,在考查集合知识 的同时突出考查准确使用数学语言能力及用数形结合、分类讨 论思想解决问题的能力;三是以集合为载体考查对信息的收 集、捕捉、加工能力.
人教A版高考总复习一轮文科数学精品课件 第1章 集合与常用逻辑用语 第1节 集合的概念与运算
A∪B={x|x∈A,或 x
合 B 的元素所组成的集合
∈B}
由全集 U 中不属于集合 A 的
∁UA={x|x∈U,且
x∉A}
所有元素组成的集合
Venn 图
微点拨1.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的
条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁UA.
2.集合运算的基本性质
2.集合间的基本关系
关系
自然语言
集合 A 中 任意一个元素 都是集合 B
子集
中的元素
若 x∈A,则 x∈B
符号
表示
A⊆B
(或B⊇A)
真子
如果集合 A⊆B,但存在元素x∈B,且
A⫋B
集
x∉A,就称集合 A 是集合 B 的真子集
(或B⫌A)
Venn 图
或
关系
符号
自然语言
如果集合 A 是集合 B 的 子集
5.理解两个集合的并集与交集的含义,会求两个简
单集合的并集与交集.
6.理解在给定集合中一个子集的补集的含义,会求
给定子集的补集.
7.能使用Venn图表达集合的关系及运算.
衍生考点
核心素养
1.集合的含
义与表示
2.集合间的
1.直观想象
基本关系
2.逻辑推理
3.集合的基
3.数学运算
本运算
4.集合的新
定义问题
(3)A={x|x2+6x+8≤0}={x|-4≤x≤-2},B={x|x<a},因为A⊆B,所以实数a的取值
范围是(-2,+∞).
规律方法 集合间基本关系的两种判定方法和一个关键
(完整版)新课标人教A版高中数学必修一集合函数知识点总结
高中数学必修1集合与函数知识点总结
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
N表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.
(3)集合与元素间的关系
对象a与集合M的关系是a M
∉,两者必居其一.
∈,或者a M
(4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{x|x具有的性质},其中x为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合.
(5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.
③不含有任何元素的集合叫做空集(∅).
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等
(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.
【1.1.3】集合的基本运算
(8)交集、并集、补集。
高考数学一轮总复习 第1讲 集合的概念及运算课件 文 新人教A版
2元素与集合的关系有两种:① ________,
② ________ .
3集合中元素的性质:③ ____________________ . 4集合的表示法:④ ________________________ . 5集合的分类.按元素个数可分为:⑤ _______
第四十八页,共50页。
第四十九页,共50页。
1.理解集合语言、把握元素的特征是分析解决集 合问题的前提. 2.化简集合(具体化、一般化、特殊化)是求解集 合问题的基本策略. 3.注意集合元素的三要素(尤其是互异性)、不忘 空集是解集合问题与防止出错的诀窍(juéqiào). 4.数形结合、分类讨论、补集思想、转换化归是 解集合问题能力的具体体现.
的元素个数为( )
A.4
B.3
C.2
D.1
第十七页,共50页。
【解析】由题意知,A、B 都为点集,A∩B 即为直线与 圆的交点所组成的集合.
方法 1:由xx2++yy=2=1 1 ⇒xy==01 或yx==01 , 故 A∩B={(0,1),(1,0)},故选 C. 方法 2:由几何法易知直线 x+y=1 与圆 x2+y2=1 相交, 且有两个交点,故选 C.
1.(2012·湖南祁阳)i 为虚数单位,若集合 S={-1,0,1},则
() A.i∈S
B.i2∉S
C.i3∈S
D.i4∈S
第十五页,共50页。
【解析】由 i2=-1∈S,i4=1∈S,故选 D.
第十六页,共50页。
2.(2011·广东卷)已知集合 A={(x,y)|x,y 为实数,且
x2+y2=1},B={(x,y)|x,y 为实数,且 x+y=1},则 A∩B
2021年高考文科数学(人教A版)一轮复习讲义:第1讲集合的概念与运算
第 1 讲 集合的概念与运算一、知识梳理 1.集合与元素(1) 集合元素的三个特征: 确定性、互异性、无序性. ⑵元素与集合的关系是属于或不属于关系,用符号€或 ?表示.⑶集合的表示法: 列举法、描述法、图示法.[注意]N 为自然数集(即非负整数集),包含0,而N *和N +的含义是一样的,表示正整数集,不包含0.2.集合间的基本关系⑴A U B= A? B? A, A AB= A? A? B.(2) A A A= A, A A? = ?.(3) A U A= A, A U ? = A.(4)A A (?U A)= ?, A U (?U A) = U , ?u(?u A) = A.二、习题改编1. (必修1P12A 组T5 改编)若集合P = {x€ N|xW[ 2 018}, a= 2 .2,则()A . a€ P B. {a} € PC. {a}? PD. a?P解析:选D.因为a = 2 2不是自然数,而集合P是不大于,2 018的自然数构成的集合,所以a?P.故选D.2. (必修1P12B 组T1 改编)已知集合M = {0 , 1 , 2, 3, 4}, N= {1 , 3, 5},则集合M U N的子集的个数为__________ .解析:由已知得M U N = {0,1 , 2, 3, 4, 5},所以M U N的子集有26= 64(个).答案:64一、思考辨析判断正误(正确的打“V”,错误的打“X”)(1) 若集合A= {x|y= x2} , B= {y|y= x2}, C= {(x, y)|y= x2},贝U A, B, C 表示同一个集合.()(2) 若a在集合A中,则可用符号表示为a? A.( )(3) 若A B,贝U A? B 且A工B.( )(4) N* N Z.( )(5) 若A n B= A A C,贝U B = C.( )答案:(1)X (2) X (3) V ⑷V (5) X二、易错纠偏常见误区⑴忽视集合的互异性致错;(2) 集合运算中端点取值致错;(3) 忘记空集的情况导致出错.1. _____________________________________________________________ 已知集合U = { —1, 0, 1} , A= {x|x= m2, m€ U},则?U A=_______________________________ .解析:因为A= {x|x= m2, m€ U} = {0 , 1},所以?u A = { —1}.答案:{ —1}2. 已知集合___________________________________________________ A = {x|(x —1)(x—3)<0} , B = {x|2<x<4},贝U A A B = ____________________________________________ , A U B =_________ ,(?R A) U B= ____________ .解析:由已知得 A = {x|1<x<3} , B= {x|2<x<4},所以 A A B = {x|2<x<3} ,A U B= {x|1<x<4}, (?R A)U B = {x|x w 1 或x>2}.答案:(2, 3) (1 , 4)(―汽 1]U (2,+s )3. 已知集合M = {xX—a= 0} ,N = {x|ax—1 = 0},若M n N= N,则实数a的值是解易得M = {a}.因为M n N= N,所以N? M ,所以N= ?或N = M ,所以a= 0或析:a= ±1.答0或1或—1案:集合的基本概念(师生共研)(1)已知集合A = {1 , 2, 3, 4, 5}, B = {(x, y)|x€ A且y€ A且x—y€ A},则B中所含元素的个数为()A. 3B. 6C. 8D. 10(2)已知集合A = {m+ 2, 2m2+ m},若3€ A,贝V m的值为_________ .【解析】(1)由x€ A, y€ A, x—y€ A,得x—y = 1 或x—y= 2 或x—y= 3 或x—y= 4, 所以集合 B = {(2 , 1), (3, 1), (4, 1), (5, 1) , (3 , 2) , (4 , 2) , (5 , 2) , (4 , 3) , (5 , 3),(5 , 4)},所以集合B中有10个元素.(2)因为3€ A,所以m + 2= 3 或2m2+ m= 3.当m+ 2 = 3,即m= 1 时,2m2+ m= 3 ,此时集合A中有重复元素3 ,所以m= 1不符合题意,舍去;3当2m2+ m= 3时,解得m=—?或m= 1(舍去),当m=—多时,m+ 2 =扌工3,符合题意•所以m=— 2.【答案】(1)D (2) —2与集合中元素有关问题的求解策略31•已知集合AWx €乙且尸* Z},则集合A 中的元素个数为()B. 3D . 5解析:选C.因为一J € Z ,2-x所以2-x 的取值有一3,— 1,1,3,又因为x € Z ,所以x 的值分别为5, 3, 1, — 1,故集合A 中的元素个数为4.b2.设 a , b € R ,集合{1 , a +b , a} = 0, j b ,则 b — a =()A . 1B .— 1 C. 2D .— 2b解析:选 C.因为{1 , a + b , a} = 0,, b , a ^O ,所以 a + b = 0,贝9一 = — 1 ,所以 a = a a—1, b = 1.所以 b — a = 2.3.设集合A = {0 , 1 , 2 , 3}, B = {x|— x € A , 1 — x?A},贝燦合B 中元素的个数为()A . 1B . 2C . 3D . 4解析:选A.若x € B ,则一x € A ,故x 只可能是0 , — 1 , — 2, — 3,当0 € B 时,1 — 0当一3€ B 时,1— (— 3) = 4?A ,C . 4 当一1€ B 时,1— (— 1) = 2 € A ;当一2€ B 时, 1— (— 2) = 3 €A ;所以B = { —3},故集合B中元素的个数为1.集合间的基本关系(师生共研)(1)已知集合A = {x|x2—3x+ 2= 0, x€ R} ,B = {x|0<x<5, x€ N},则满足条件A? C? B的集合C的个数为()A.1 B.2C.3 D.4(2)已知集合A = {x—1 v x v 3} ,B = {x|—m<x<m},若B? A,贝U m的取值范围为_______ .【解析】(1 )由题意可得,A={1,2},B={1,2,3,4},又因为A? C? B,所以C={1 ,2}或{1 ,2,3}或{1 ,2,4}或{1 ,2,3,4}.(2)当m w 0 时,B= ?,显然B? A.当m>0 时,因为A= {x|—1<x<3} .当B? A 时,在数轴上标出两集合,如图,—m> —1,所以m w 3, 所以0<m w 1.—m<m.综上所述,m的取值范围为(—g, 1].【答案】(1)D (2)( —g, 1][提醒]题目中若有条件B? A,则应分B= ?和B丰?两种情况进行讨论.1 .已知集合A= {x|x2—2x>0} , B = {x|—5<x< 5},则()A . A A B= ? B. A UB = RC. B? AD. A? B解析:选 B.因为A = {x|x>2 或x<0},因此A U B= {x|x>2 或x<0} U{x|—5<x< 5} = R. 故选B.2.已知集合A= {x|x2—2x—3W 0, x€ N*},则集合A的真子集的个数为()A. 7B. 8C. 15D. 16解析:选A.法一:A= {x|—1 W x< 3, x€ N*} = {1 , 2, 3},其真子集有:?,{1} , {2}, {3} , {1 , 2} , {1 , 3}, {2 , 3}共7 个.法二:因为集合A中有3个元素,所以其真子集的个数为23- 1= 7(个).3. 设集合A = {x|1<x<2} , B = {x|x<a},若An B= A,贝U a 的取值范围是()A . {a|a< 2} B. {a^< 1}C. {a|a> 1}D. {a|a> 2}解析:选 D.由 A n B= A,可得A? B,又A= {x|1<x<2} , B= {x|x<a},所以a>2•故选D.集合的基本运算(多维探究)角度一集合的运算(1)(2019高考全国卷I )已知集合U = {1 ,2,3,4,5,6,7},A= {2 ,3,4,5},B= {2 ,3,6,7},贝B n ?U A= ()A. {1 ,6}B. {1 ,7}C. {6 ,7}D. {1 ,6,7}(2)(2020郑•州市第一次质量预测)设全集U = R,集合A ={x|—3<x<1} , B = {x|x+ 1 >0}, 则?U(A U B)=( )A . {x|x<—3 或x> 1} B. {xx< —1 或x> 3}C. {x|x w 3}D. {xx<—3}【解析】⑴依题意得?u A= {1 , 6, 7},故B A ?u A={6 , 7}.故选C.(2)因为B = {x|x> —1} , A = {x|—3<x<1},所以A U B= {x|x> —3},所以?u(A U B) = {x|x<—3} .故选 D.【答案】(1)C (2)D集合基本运算的求解策略角度二利用集合的运算求参数{x|x<a},若A n B M ?,则a的取值范围是(A 1<a w 2C. a》一1⑵集合A= {0 , 2, a} , B= {1 , a1 2},若A. 0C. 2【解析】(1)设集合A = {x| —1w x<2} , B =)B. a>21 因为A n B M ?,所以集合A, B有公共元素,作出数轴,如图所示,易知a> — 1.2 根据并集的概念,可知{a, a2} = {4 , 16},故a= 4.【答案】(1)D (2)D D. a>—1A U B= {0 , 1, 2, 4, 16},贝U a 的值为()B. 1D. 4根据集合的运算结果求参数的值或取值范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到.(2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.(3)根据求解结果来确定参数的值或取值范围.1. (2019 高考天津卷)设集合A= { —1 , 1 , 2, 3, 5} , B= {2 , 3,4}, C= {x€ R|1< x<3}, 则(A nC) U B =( )A. {2}B. {2, 3}C. {—1, 2, 3}D. {1 , 2, 3, 4}。
新人教版高三数学专题总复习Word完整版.doc
新人教版高三数学专题总复习Word完整版2018年高考数学复习专题专题一集合、逻辑与不等式集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关简易逻辑的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.不等式是高中数学的重点内容之一,是工具性很强的一部分内容,解不等式、不等式的性质等都有很重要的应用.关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.§1-1 集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【例题分析】例1 给出下列六个关系:(1)0∈N* (2)0{-1,1} (3)∈{0}∉∅(4){0} (5){0}∈{0,1} (6){0}{0}∅∉⊆其中正确的关系是______.解答:(2)(4)(6)【评析】1.熟悉集合的常用符号:不含任何元素的集合叫做空集,记作;N 表示自然数集;N+或N*表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.∅2.明确元素与集合的关系及符号表示:如果a是集合A的元素,记作:a∈A;如果a不是集合A的元素,记作:aA.∉3.明确集合与集合的关系及符号表示:如果集合A 中任意一个元素都是集合B 的元素,那么集合A 叫做集合B 的子集.记作:AB 或BA .⊆⊇如果集合A 是集合B 的子集,且B 中至少有一个元素不属于A ,那么,集合A 叫做集合B 的真子集.AB 或BA .4.子集的性质:①任何集合都是它本身的子集:AA ;⊆②空集是任何集合的子集:A ;∅⊆提示:空集是任何非空集合的真子集.③传递性:如果AB ,BC ,则AC ;如果AB ,BC ,则AC .⊆⊆⊆例2 已知全集U ={小于10的正整数},其子集A ,B 满足条件(UA)∩(UB)={1,9},A ∩B ={2},B ∩(UA)={4,6,8}.求集合A ,B .解:根据已知条件,得到如图1-1所示的韦恩图,图1-1于是,韦恩图中的阴影部分应填数字3,5,7.故A ={2,3,5,7},B ={2,4,6,8}.【评析】1、明确集合之间的运算对于两个给定的集合A 、B ,由既属于A 又属于B 的所有元素构成的集合叫做A 、B 的交集.记作:A ∩B .对于两个给定的集合A 、B ,把它们所有的元素并在一起构成的集合叫做A 、B 的并集.记作:A ∪B .如果集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合叫做A 在U 中的补集.记作UA .2、集合的交、并、补运算事实上是较为复杂的“且”、“或”、“非”的逻辑关系运算,而韦恩图可以将这种复杂的逻辑关系直观化,是解决集合运算问题的一个很好的工具,要习惯使用它解决问题,要有意识的利用它解决问题.例3 设集合M ={x |-1≤x <2},N ={x |x <a}.若M ∩N =,则实数a 的取值范围是______.∅答:(-∞,-1].【评析】本题可以通过数轴进行分析,要特别注意当a 变化时是否能够取到区间端点的值.象韦恩图一样,数轴同样是解决集合运算问题的一个非常好的工具.例4 设a ,b ∈R ,集合,则b -a =______.},,0{},,1{b ab a b a =+【分析】因为,所以a +b =0或a =0(舍去,否则没有意义),},,0{},,1{b a ba b a =+a b 所以,a +b =0,=-1,所以-1∈{1,a +b ,a},a =-1,ab 结合a +b =0,b =1,所以b -a =2.练习1-1一、选择题1.给出下列关系:①;②Q ;③|-3|N*;④.其中正确命题的个数是( )R ∈212∉∉Q ∈-|3|(A)1 (B)2 (C)3 (D)42.下列各式中,A 与B 表示同一集合的是( )(A)A ={(1,2)},B ={(2,1)} (B)A ={1,2},B ={2,1}(C)A ={0},B = (D)A ={y |y =x2+1},B ={x |y =x2+1}∅3.已知M ={(x ,y)|x >0且y >0},N ={(x ,y)|xy >0},则M ,N 的关系是( )(A)MN (B)NM (C)M =N (D)M ∩N =∅4.已知全集U =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则下式中正确的关系是( )(A)U =A ∪B (B)U =(UA)∪B (C)U =A ∪(UB) (D)U =(UA)∪(UB)二、填空题5.已知集合A ={x |x <-1或2≤x <3},B ={x |-2≤x <4},则A ∪B =______.6.设M ={1,2},N ={1,2,3},P ={c |c =a +b ,a ∈M ,b ∈N},则集合P 中元素的个数为______.7.设全集U =R ,A ={x |x ≤-3或x ≥2},B ={x |-1<x <5},则(UA)∩B =______.8.设集合S ={a0,a1,a2,a3},在S 上定义运算为:aiaj =ak ,其中k 为i +j 被4除的余数,i ,j =0,1,2,3.则a2a3=______;满足关系式(xx)a2=a0的x(x ∈S)的个数为______.⊕⊕⊕⊕⊕三、解答题9.设集合A ={1,2},B ={1,2,3},C ={2,3,4},求(A ∩B)∪C .10.设全集U ={小于10的自然数},集合A ,B 满足A ∩B ={2},(UA)∩B ={4,6,8},(UA)∩(UB)={1,9},求集合A 和B .11.已知集合A ={x |-2≤x ≤4},B ={x |x >a},①A ∩B ≠,求实数a 的取值范围;∅②A ∩B ≠A ,求实数a 的取值范围;③A ∩B ≠,且A ∩B ≠A ,求实数a 的取值范围.∅§1-2 常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p 则q .逆命题:若q 则p .否命题:若p ,则q .逆否命题:若q ,则p .注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.⌝⌝⌝⌝4.充要条件如果pq ,则p 叫做q 的充分条件,q 叫做p 的必要条件.⇒如果pq 且qp ,即qp 则p 叫做q 的充要条件,同时,q 也叫做p 的充要条件.⇒⇒⇔5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例1 分别写出由下列命题构成的“p∨q”“p∧q”“p”形式的复合命题,并判断它们的真假.⌝(1)p:0∈N,q:1N;∉(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.解:(1)p∨q:0∈N,或1N;∉p∧q:0∈N,且1N;p:0N.∉⌝∉因为p真,q假,所以p∨q为真,p∧q为假,p为假.⌝(2)p∨q:平行四边形的对角线相等或相互平分.p∧q:平行四边形的对角线相等且相互平分.⌝p:存在平行四边形对角线不相等.因为p假,q真,所以p∨q为真,p∧q为假,p为真.⌝【评析】判断复合命题的真假可以借助真值表.例2 分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则AB.解:(1)逆命题:若ab=0,则a2+b2=0;是假命题.否命题:若a2+b2≠0,则ab≠0;是假命题.逆否命题:若ab≠0,则a2+b2≠0;是真命题.(2)逆命题:若AB,则A∩B=A;是真命题.否命题:若A∩B≠A,则A不是B的真子集;是真命题.逆否命题:若A不是B的真子集,则A∩B≠A.是假命题.评述:原命题与逆否命题互为逆否命题,同真同假;逆命题与逆否命题也是互为逆否命题.例3 指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.【分析】由定义知,若pq且qp,则p是q的充分不必要条件;⇒若pq且qp,则p是q的必要不充分条件;⇒若pq且qp,p与q互为充要条件.⇒⇒于是可得(1)中p是q的必要不充分条件;q是p的充分不必要条件.(2)中p是q的充分不必要条件;q是p的必要不充分条件.【评析】判断充分条件和必要条件,首先要搞清楚哪个是条件哪个是结论,剩下的问题就是判断p与q之间谁能推出谁了.例4 设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M ∩N”的( )(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件解:条件p:x∈M或x∈N,即为x∈R;条件q:x∈M∩N,即为{x∈R|2<x <3}.又R{x∈R|2<x<3},且{x∈R|2<x<3}R,所以p是q的必要非充分条件,选B.⊆【评析】当条件p和q以集合的形式表现时,可用下面的方法判断充分性与必要性:设满足条件p的元素构成集合A,满足条件q的元素构成集合B,若AB 且BA,则p是q的充分非必要条件;若AB且BA,则p是q的必要非充分条件;若A=B,则p与q互为充要条件.⊆⊆例5 命题“对任意的x∈R,x3-x2+1≤0”的否定是( )(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0 (D)对任意的x∈R,x3-x2+1>0【分析】这是一个全称命题,它的否定是一个特称命题.其否定为“存在x ∈R,x3-x2+1>0.”答:选C.【评析】注意全(特)称命题的否定是将全称量词改为存在量词(或将存在量词改为全称量词),并把结论否定.练习1-2一、选择题1.下列四个命题中的真命题为( )(A)x∈Z,1<4x<3 (B)x∈Z,3x-1=0∃∃(C)x∈R,x2-1=0 (D)x∈R,x2+2x+2>0∀∀2.如果“p或q”与“非p”都是真命题,那么( )(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈Ax∈B,则称AB”.那么“A不是B的子集”可用数学语言表达为( )⇒⊆(A)若x∈A但xB,则称A不是B的子集∀∉(B)若x∈A但xB,则称A不是B的子集∃∉(C)若xA但x∈B,则称A不是B的子集∃∉(D)若xA但x∈B,则称A不是B的子集∀∉二、填空题5.“p 是真命题”是“p ∨q 是假命题的”__________________条件.⌝6.命题“若x <-1,则|x |>1”的逆否命题为_________.7.已知集合A ,B 是全集U 的子集,则“AB ”是“UBUA ”的______条件.⊆⊆8.设A 、B 为两个集合,下列四个命题:①AB 对任意x ∈A ,有xB ②ABA ∩B =⇔∉⇔∅③ABAB ④AB 存在x ∈A ,使得xB ⇔⇔∉ 其中真命题的序号是______.(把符合要求的命题序号都填上)三、解答题9.判断下列命题是全称命题还是特称命题并判断其真假:(1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除;(3)x ∈{x |x ∈Z},log2x >0;∃ (4).041,2≥+-∈∀x x x R 10.已知实数a ,b ∈R .试写出命题:“a2+b2=0,则ab =0”的逆命题,否命题,逆否命题,并判断四个命题的真假,说明判断的理由.§1-3 不等式(含推理与证明)【知识要点】1.不等式的性质.(1)如果a >b ,那么b <a ;(2)如果a >b ,且b >c ,那么a >c ;(3)如果a >b ,那么a +c >b +c(如果a +c >b ,那么a >b -c);(4)如果a >b ,c >d ,那么a +c >b +d ;(5)如果a >b ,c >0,那么ac >bc ;如果a >b ,c <0,那么ac <bc ;(6)如果a >b >0,c >d >0,那么ac >bd ;(7)如果a >b >0,那么an >bn(n ∈N +,n >1);(8)如果a >b >0,那么;)1,N (>∈>+n x b a n n2.进行不等式关系判断时常用到的实数的性质:若a ∈R ,则.)R (0.0||;02+∈≥≥≥a a a a3.会解一元一次不等式,一元二次不等式,简单的分式不等式、绝对值不等式.简单的含参数的不等式.4.均值定理:如果a 、b ∈R +,那么当且仅当a =b 时,式中等号成立..2ab b a ≥+ 其他常用的基本不等式:如果a 、b ∈R ,那么a2+b2≥2ab ,(a -b)2≥0. 如果a 、b 同号,那么.2≥+b a a b5.合情推理之归纳推理与类比推理;演绎推理;综合法、分析法与反证法.【复习要求】1.运用不等式的性质解决以下几类问题:(1)根据给定的条件,判断给出的不等式能否成立;(2)利用不等式的性质,实数的性质以及函数的有关性质判断实数值的大小关系;(3)利用不等式的性质等判断不等式变换中条件与结论间的充分必要关系.2.熟练掌握一元一次不等式,一元二次不等式、简单的分式不等式、绝对值不等式的解法.并会解简单的含参数的不等式.3.了解合情推理和演绎推理的含义,能利用归纳和类比等进行简单的推理.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.能较为灵活的运用综合法、分析法与反证法证明数学问题.熟练运用比较法比较数与式之间的大小关系.比较法:常有“作差比较法”和“作商比较法”;综合法:从已知推导致结果的思维方法;分析法:从结果追溯到产生这一结果的原因的思维方法;反证法:由证明pq 转向证明qr …t ,而t 与假设矛盾,或与某个真命题矛盾,从而判定q 为假,进而推出q 为真的方法,叫做反证法.⇒⌝⇒⇒⇒⌝一般来讲,由分析法得到的证明思路往往用综合法的方式来书写.【例题分析】例1 若a >b >c ,则一定成立的不等式是( )A .a |c |>b |c |B .ab >acC .a -|c |>b -|c |D .cb a 111<< 【分析】关于选项A .当c =0时,a |c |>b |c |不成立.关于选项B .当a <0时,ab >ac 不成立.关于选项C .因为a >b ,根据不等式的性质a -|c |>b -|c |,正确. 关于选项D .当a >b >0>c 时,不成立.所以,选C .c b a 111<< 例2 a ,b ∈R ,下列命题中的真命题是( )A .若a >b ,则|a |>|b |B .若a >b ,则b a 11<C .若a >b ,则a3>b3D .若a >b ,则1>b a 【分析】关于选项A .当a =-1,b =-2时,|a |>|b |不成立. 关于选项B .当a >0,b <0时,不成立.ba 11< 关于选项C .因为a >b ,根据不等式的性质a3>b3,正确. 关于选项D .当b <0时,不成立.所以,选C .1>b a【评析】判断不等关系的正误,其一要掌握判断的依据,依据相关的理论判断,切忌仅凭感觉进行判断;其二要掌握判断的方法.判断不等式的理论依据参看本节的知识要点,另外,后面专题讲到的函数的相关知识尤其是函数的单调性也是解决不等式问题的非常重要的方法.判断一个不等式是正确的,就应该给出一个合理的证明(或说明),就像例1、例2对正确的选项判断那样.判断一个不等式是不正确的,应举出反例.例3 解下列不等式:(1)x2-x -1>0;(2)x2-3x +2>0;(3)2x2-3x +1≤0;(4)(5)|2x -1|<3;(6);021>--x x .1212≤--x x 解:(1)方程x2-x -1=0的两个根是结合函数y =x2-x -1的图象,可得不等式x2-x -1>0的解集为251,21±=x x }.251251|{+>-<x x x 或 (2)不等式x2-3x +2>0等价于(x -1)(x -2)>0,易知方程(x -1)(x -2)=0的两个根为x1=1,x2=2,结合函数y =x2-3x +2的图象,可得不等式x2-3x +2>0的解集为{x |x <1或x >2}.(3)不等式2x2-3x +1≤0等价于(2x -1)(x -1)≤0,以下同(2)的解法, 可得不等式的解集为}.121|{≤≤x x(4)等价于(x -1)(x -2)>0,以下同(2)的解法,可得不等式的解集为{x |x <1或x >2}.021>--x x (5)不等式|2x -1|<3等价于-3<2x -1<3,所以-2<2x <4,即-1<x <2,所以不等式|2x -1|<3的解集为{x |-1≤x <2}.(6)不等式可以整理为1212≤--x x ,021≤-+x x ,021≤-+x x 等价于以下同(4)的解法,可得不等式的解集为{x |-1≤x <2}..021021=-+<-+x x x x 或 【评析】一元一次不等式、一元二次不等式的解法要熟练掌握.其他不等式的解法适当掌握.1.利用不等式的性质可以解一元一次不等式.2.解一元二次不等式要注意函数、方程、不等式三者之间的联系,通过研究与一元二次不等式相对应的一元二次方程的根的情况、进而结合相应的二次函数的图象就可以解决一元二次不等式解集的问题了.所以,解一元二次不等式的步骤为:计算二次不等式相应的方程的判别式;求出相应的一元二次方程的根(或根据判别式说明无根);画出相应的二次函数的简图;根据简图写出二次不等式的解集.3、不等式与(x -a)(x -b)>0同解;不等式与(x -a)(x -b)<0同解;0>--bx a x 0<--b x a x 4*、不等式|f(x)|<c 与-c <f(x)<c 同解;不等式|f(x)|>c 与“f(x)>c 或f(x)<-c ”同解.在解简单的分式不等式时要注意细节,例如(5)题关于“≤”号的处理.例4 解下列关于x 的不等式;(1)ax +3<2;(2)x2-6ax +5a2≤0.解:(1)由ax +3<2得ax <-1,当a =0时,不等式解集为;∅当a >0时,不等式解集为;}1|{ax x -<当a <0时,不等式解集为.}1|{a x x -> (2)x2-6ax +5a2≤0等价于不等式(x -a)(x -5a)≤0,当a =0时,不等式解集为{x |x =0};当a >0时,不等式解集为{x |a ≤x ≤5a};当a <0时,不等式解集为{x |5a ≤x ≤a}.【评析】含参数的不等式的解法与不含参数的不等式的解法、步骤是完全一致的.要注意的是,当进行到某一步骤具有不确定性时,需要进行分类讨论.如(2)的解决过程中,当解出方程(x -a)(x -5a)=0的两根为x1=a ,x2=5a 之后,需要画出二次函数y =x2-6ax +5a2的草图,这时两根a 与5a 的大小不定,需要讨论,当分a =0,a >0,a <0三种情况之后,就可以在各自情况下确定a 与5a 的大小,画出二次函数y =x2-6ax +5a2的草图写出解集了.例5 已知a >b >0,c <d <0,m <0.求证:⋅->-db mc a m 证明:方法一(作差比较)由已知b -a <0,c -d <0,又m <0,所以m[(b -a)+(c -d)]>0,因为a >b >0,c <d <0,所以a -c >0,b -d >0, 所以,所以0))(()]()[(>---+-d b c a d c a b m ⋅->->---db mc a md b m c a m 即,0 方法二因为c <d <0,所以c -d <0,又a >b >0,所以a -b >0,所以a -b >c -d ,所以a -c >b -d >0,所以,又因为m <0,所以d b c a -<-11⋅->-db mc a m 例6 已知a +b +c =0,a >b >c ,求证:(1)a >0;(2).2->a c证明:(1)假设a ≤0,因为a >b >c ,所以b <0,c <0.所以a +b +c <0,与a +b +c =0矛盾.(2)因为b =-a -c ,a >b ,所以,所以2a >-c ,又a >0,所以,所以a c ->2.2->a c 例7 已知a ,b ,c ∈(0,1),求证:(1-a)b ,(1-b)c ,(1-c)a 中至少有一个不大于.41 证明:假设(1-a)b ,(1-b)c ,(1-c)a 均大于,41 即,41)1(,41)1(,41)1(>->->-a c c b b a 因为a ,b ,c ∈(0,1),所以1-a ,1-b ,1-c ∈(0,1),所以,同理(1-b)+c >1,(1-c)+a >1,1)1(2)1(>-≥+-b a b a所以(1-a)+b +(1-b)+c +(1-c)+a >3,即0>0,矛盾.所以(1-a)b ,(1-b)c ,(1-c)a 中至少有一个不大于.41 【评析】证明常用的方法有比较法、综合法、分析法与反证法等.证明不等式也是如此.1、例5中的方法一所用到的比较法从思维、书写的角度都较为容易,也相对易于把握,要熟练掌握.2、例5中的方法二所用到的综合法是一般证明题常用的方法,其书写方法简明、易读,但要注意的是,这样的题的思路常常是分析法.比如,例5中的方法二的思路我们可以认为是这样得到的:欲证只需证明m(b -d)>m(a -c)(因为b -d >0,a -c >0),即只需证明b -d <a -c ,即只需证明a -b >c -d ,,db mc a m ->- 而由已知a -b >0,c -d <0,所以可以循着这个思路按照相反的顺序书写.所以,在很多情况下,分析法更是思考问题的方法,而综合法更是一种书写方法.3、适合用反证法证明的常见的命题一般是非常显而易见的问题(如例6(1))、否定式的命题、存在性的命题、含至多至少等字样的命题(如例7)等等.证明的步骤一般是:(1)假设结论的反面是正确的;(2)推出矛盾的结论;(3)得出原来命题正确的结论.例8 根据图中图形及相应点的个数找规律,第8个图形相应的点数为______.【分析】第一个图有1行,每行有1+2个点;第二个图有2行,每行有2+2个点;第三个图有3行,每行有3+2个点;……第八个图有8行,每行有8+2个点,所以共有8×10=80个点.答:80.练习1-3一、选择题1.若则下列各式正确的是( )011>>b a (A)a >b(B)a <b (C)a2>b2 (D)2211b a < 2.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) (A)a2<b2 (B)a2b <ab2 (C) (D)b a ab 2211<b a a b < 3.已知A ={x ||x |<a},B ={x |x >1},且A ∩B =,则a 的取值范围是( )∅(A){a |a ≤1} (B){a |0≤a ≤1} (C){a |a <1} (D){a |0<a <1}4.设集合M ={1,2,3,4,5,6},S1,S2,…,Sk 都是M 的含有两个元素的子集,且满足:对任意的Si ={ai ,bi}、Sj ={aj ,bj}(i ≠j ,i ,j ∈{1,2,3,…,k})都有,(min{x ,y}表示两个数x ,y 中的较小者),则k 的最大值是( )},min{},min{j j j j i i i i a b b a a bb a =/ (A)10 (B)11 (C)12 (D)13二、填空题5.已知数列{an}的第一项a1=1,且,请计算出这个数列的前几项,并据此归纳出这个数列的通项公式an =______.),3,2,1(11 =+=+n a aa n n n6.不等式x2-5x +6<0的解集为____________.7.设集合A ={x ∈R ||x |<4},B ={x ∈R |x2-4x +3>0},则集合{x ∈R |x ∈A ,且xA ∩B}=____________.∉8.设a ∈R 且a ≠0,给出下面4个式子:①a3+1;②a2-2a +2;③;④a a 1+⋅+221aa 其中恒大于1的是______.(写出所有满足条件式子的序号)三、解答题9.解下列不等式:(1)2x2+x >0;(2)x2+3x +1<0;(3);(4)|2-x |<3;(5).032<-x x 21>-x x 10.已知a +b +c =0,求证:ab +bc +ca ≤0.11.解下列关于x 的不等式:(1)x2-2ax -3a2<0;(2)ax2-x >0;习题1一、选择题1.命题“若x 是正数,则x =|x |”的否命题是( )(A)若x 是正数,则x ≠|x | (B)若x 不是正数,则x =|x |(C)若x 是负数,则x ≠|x | (D)若x 不是正数,则x ≠|x |2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是( )(A)(M ∩N)∪P (B)(M ∩N)∩P(C)(M ∩N)∪(UP) (D)(M ∩N)∩(UP)3.“”是“对任意的正数”的( )81=a 12,≥+xa x x(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件4.已知集合P ={1,4,9,16,25,…},若定义运算“&”满足:“若a ∈P ,b ∈P ,则a&b ∈P ”,则运算“&”可以是( )(A)加法 (B)减法 (C)乘法 (D)除法5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( )(A)ab >ac (B)c(b -a)<0 (C)cb2<ab2 (D)ac(a -c)<0二、填空题6.若全集U ={0,1,2,3}且UA ={2},则集合A =______.7.命题“x ∈A ,但xA ∪B ”的否定是____________.∃∉8.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A},则B =____________.9.已知集合A ={x |x2-3x +2<0},B ={x |x <a},若AB ,则实数a 的取值范围是____________.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a2+b2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号)三、解答题11.解不等式.21<x12.若0<a <b 且a +b =1.(1)求b 的取值范围;(2)试判断b 与a2+b2的大小.13.设a ≠b ,解关于x 的不等式:a2x +b2(1-x)≥[ax +b(1-x)]2.14.设数集A 满足条件:①AR ;②0A 且1A ;③若a ∈A ,则⊆∉∉.11A a ∈- (1)若2∈A ,则A 中至少有多少个元素;(2)证明:A 中不可能只有一个元素.专题一 集合、逻辑与不等式参考答案练习1-1一、选择题1.B 2.B 3.A 4.C提示:4.集合A 表示非负偶数集,集合B 表示能被4整除的自然数集,所以{正奇数}(UB),从而U =A ∪(UB).二、填空题5.{x |x <4} 6.4个 7.{x |-1<x <2} 8.a1;2个(x 为a1或a3).三、解答题9.(A ∩B)∪C ={1,2,3,4}10.分析:画如图所示的韦恩图:得A ={0,2,3,5,7},B ={2,4,6,8}.11.答:①a <4;②a ≥-2;③-2≤a <4提示:画数轴分析,注意a 可否取到“临界值”.练习1-2一、选择题1.D 2.A 3.B 4.B二、填空题5.必要不充分条件 6.若|x |≤1,则x ≥-1 7.充要条件 8.④ 提示:8.因为AB ,即对任意x ∈A ,有x ∈B .根据逻辑知识知,AB ,即为④.⊆ 另外,也可以通过文氏图来判断.三、解答题9.答:(1)全称命题,真命题.(2)特称命题,真命题.(3)特称命题,真命题;(4)全称命题,真命题.10.略解:答:逆命题:若ab =0,则a2+b2=0;是假命题;例如a =0,b =1否命题:若a2+b2≠0,则ab ≠0;是假命题;例如a =0,b =1逆否命题:若ab ≠0,则a2+b2≠0;是真命题;因为若a2+b2=0,则a =b =0,所以ab =0,即原命题是真命题,所以其逆否命题为真命题.练习1-3一、选择题1.B 2.C 3.A 4.B二、填空题5. 6.{x |2<x <3} 7.{x ∈R |1≤x ≤3| 8.④n1 三、解答题9.答:(1);(2);}210|{-<>x x x 或}253253|{+-<<--x x (3);(4){x |-1<x <5};(5).}230|{<<x x }310|{<<x x 10.证明:ab +bc +ca =b(a +c)+ac =-(a +c)(a +c)+ac =-a2-ac -c2所以ab +bc +ca ≤0.11.解:(1)原不等式(x +a)(x -3a)<0.⇔分三种情况讨论:①当a <0时,解集为{x |3a <x <-a};②当a =0时,原不等式x2<0,解集为;⇔∅③当a >0时,解集为{x |-a <x <3a}.(2)不等式ax2-x >0x(ax -1)>0.⇔分三种情况讨论:①当a =0时,原不等式-x >0,解集为{x |x <0};⇔②当a >0时,x(ax -1)>0x(x -)>0,解集为;⇔a 1}10|{ax x x ><或 ③当a <0时,x(ax -1)>0x(x -)<0,解集为.⇔a 1}01|{<<x a x 习题1一、选择题1.D 2.D 3.A 4.C 5.C提示:5.A 正确.B 不正确.D .正确.当b ≠0时,C 正确;当b =0时,C 不正确,∴C 不一定成立.二、填空题6.{0,1,3} 7.x ∈A ,x ∈A ∪B 8.{0,1,2} 9.{a |a ≥2} 10.③.∀ 提示:10、均可用举反例的方式说明①②④⑤不正确.对于③:若a 、b 均小于等于1.即,a ≤1,b ≤1,则a +b ≤2,与a +b >2矛盾,所以③正确.三、解答题11.解:不等式即21<x ,021,021<-<-xx x 所以,此不等式等价于x(2x -1)>0,解得x <0或,012>-x x 21>x 所以,原不等式的解集为{x |x <0或}.21>x 12.解:(1)由a +b =1得a =1-b ,因为0<a <b , 所以1-b >0且1-b <b ,所以.121<<b(2)a2+b2-b =(1-b)2+b2-b =2b2-3b +1=⋅--81)43(22b 因为,所以121<<b ,081)43(22<--b即a2+b2<b .13.解:原不等式化为(a2-b2)x +b2≥(a -b)2x2+2b(a -b)x +b2,移项整理,得(a -b)2(x2-x)≤0.因为a ≠b ,故(a -b)2>0,所以x2-x ≤0.故不等式的解集为{x |0≤x ≤1}.14.解:(1)若2∈A ,则.22111,21)1(11,1211A A A ∈=-∴∈=--∴∈-=- ∴A 中至少有-1,,2三个元素.21 (2)假设A 中只有一个元素,设这个元素为a ,由已知,则.即a2-a +1=0,此方程无解,这与A 中有一个元素a 矛盾,所以A 中不可能只有一个元素.A a∈-11a a -=11专题二函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f作用下x的象为2x+x.所以,2的象是22+2=6;设象20的原象为x,则x的象为20,即2x+x=20.由于x∈N,2x+x随着x的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数则f(1)=______;若f(0)+f(a)=-2,则a的所有可能值为______.⎩⎨⎧>++-≤-=,0,22,0,1)(2x x x x x x f 【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则. 所以f(1)=3.又f(0)=-1,所以f(a)=-1,当a ≤0时,由a -1=-1得a =0;当a >0时,由-a2+2a +2=-1,即a2-2a -3=0得a =3或a =-1(舍). 综上,a =0或a =3.例3 下列四组函数中,表示同一函数的是( )(A) (B)22)(,t y x y ==2|,|t y x y ==(C) (D)1,112+=--=x y x x y x x y x y 2,== 【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y =|x |及y =|t |,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域(1)(2);11--=x y ;3212-+=x x y (3) (4);)1()3lg(0-+-=x xx y ;2|2|12---=x x y 解:(1)由|x -1|-1≥0,得|x -1|≥1,所以x -1≥1或x -1≤-1,所以x ≥2或x ≤0.所以,所求函数的定义域为{x |x ≥2或x ≤0}.。
高考数学一轮复习专题一集合与常用逻辑用语1集合综合集训含解析新人教A版
专题一集合与常用逻辑用语备考篇【考情探究】课标解读考情分析备考指导主题内容一、集合的概念与运算1.理解集合的含义,能用自然语言、图形语言、集合语言(列举法或描述法)表示集合.2.理解集合之间的包含关系,能识别给定集合的子集,在具体问题中了解全集与空集的含义.3.理解两个集合的并集与交集的含义,并会求它们的交集与并集;理解给定一个集合的子集的补集含义,会求给定子集的补集;会用韦恩(Venn)图表示集合间的基本关系及运算.1.考查内容:从近五年高考看,本专题重点考查集合的交、并、补运算,所给的数集既有连续型(如2020新高考Ⅰ卷第1题直接给出了两个连续型集合,求它们的并集,而2020课标Ⅰ卷理数第1题则是先求出一元一次、一元二次不等式的解集,后给定了集合交集来求参数的值)、又有离散型的数集(如2020课标Ⅱ卷文数第1题与2020天津卷第1题);对充分条件、必要条件的考查常与其他知识结合(如2020北京卷的第9题以三角函数中的诱导公式为背景考查了充分、必要条件的推理判断);全(特)称命题的考查相对较少.2.本专题是历年必考的内容,在选择题、填空题中出现较多,多以给定的集合或不等式的解集为载体,以集合1.对于给定的集合,首先应明确集合的表示方法,对于描述法表述的集合,要明确集合的元素是什么(是数集、点集等),明确集合是不等式的解集,是函数的定义域还是值域,把握集合中元素的属性是重点.2.了解命题及其逆命题、否命题与逆否命题;通过对概念的理解,会分析四种命题的关系,会写出一个命题的其他三个命题,并判断其真假.能用逻辑联结词正确地表达相关的数学命题.3.对于充分、必要条件的判断问题,必须明确题目中的条件与结论分别是什么,它们之间的互推关系是怎样的,要加强这方面的训练.4.关于全称命题与特称二、常用逻辑用语1.理解必要条件、充分条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.语言和符号语言为表现形式,考查集合的交、并、补运算;也会与解不等式、函数的定义域、值域相结合进行考查.3.对于充分、必要条件的判断,含有一个量词的命题的否定可以与每一专题内容相关联,全称命题及特称命题是重要的数学语言,高考考题充分体现了逻辑推理的核心素养.命题,一般考查命题的否定.对含有一个量词的命题进行真假判断,要学会用特值检验.【真题探秘】命题立意已知给定的两个连续型的数集,求它们的并集.解题指导1.进行集合运算时,首先看集合是否最简,能化简先化简,再运算.2.注意数形结合思想的应用(1)离散型数集或抽象集合间的运算,常借助Venn图求解. (2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.拓展延伸1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到,解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意等号能否取到.3.空集是任何集合的子集,是任何非空集合的真子集,关注对空集的讨论,防止漏解.4.解题时注意区分两大关系:一是元素与集合的从属关系:二是集合与集合的包含关系.5.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法.[教师专用题组]1.真题多维细目表考题涉分题型难度考点考向解题方法核心素养2020新高考Ⅰ,1 5单项选择题易集合的运算集合的并集运算数轴法数学运算2020新高考Ⅱ,1 5单项选择题易集合的运算集合的并集运算定义法数学运算2020课标Ⅰ理,2 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020课标Ⅰ文,1 5选择题易集合的运算解不等式、集合的交集运算定义法数学运算2020北京,1 4选择题易集合的运算集合的交集运算定义法数学运算2020天津,1 5选择题易集合的运算集合的交、补集运算定义法数学运算2020天津,2 5选择题易充分、必要条件解不等式、充分、必要条件的判断定义法逻辑推理2020北京,9 4选择题难充分、必要条件诱导公式、角的终边位置与角大小关系、充分、必要条件的判断定义法逻辑推理风格.2.2020年新高考考查内容主要体现在以下方面:①新高考Ⅰ卷第1题,新高考Ⅱ卷第1题直接给出了两个集合求它们的并集或交集,课标Ⅰ卷理数则是需要求出一元一次、一元二次不等式的解集,同时通过它们的交集确定参数的值,北京卷与新高考Ⅰ卷相近,直接求两个给定集合的交集;②2020年新高考Ⅰ卷第5题以学生参加体育锻炼为背景考查了利用韦恩(Venn)图求两个集合交集中元素所占总体的比例问题,体现了集合的应用价值;③2020年北京卷第9题以三角函数中的诱导公式为背景考查了充分、必要条件的判断.3.在备考时还要适当关注求集合的补集运算,对含有一个量词的命题的真假判断,集合与充分、必要条件相结合的命题方式,在不同背景下抽象出数学本质的方法等.应强化在知识的形成过程、知识的迁移中渗透学科素养.§1.1 集合 基础篇 【基础集训】考点一 集合及其关系1.若用列举法表示集合A ={(x ,x )|{2x +x =6x -x =3},则下列表示正确的是 ( )A.A ={x =3,y =0}B.A ={(3,0)}C.A ={3,0}D.A ={(0,3)} 答案 B2.若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则 ( ) A.M =N B.M ⊆N C.M ∩N =⌀ D.N ⫋M 答案 D3.已知集合A ={x ∈R|x 2+x -6=0},B ={x ∈R|ax -1=0},若B ⊆A ,则实数a 的值为 ( ) A.13或-12B.-13或12C.13或-12或0 D.-13或12或0答案 D4.已知含有三个实数的集合既可表示成{x ,x x,1},又可表示成{a 2,a +b ,0},则a 2021+b 2021等于 . 答案 -1考点二 集合的基本运算5.已知集合M ={x |-1<x <3},N ={x |-2<x <1},则M ∩N = ( )A .(-2,1)B .(-1,1)C .(1,3)D .(-2,3) 答案 B6.已知全集U =R,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( ) A.{x |x ≥0} B.{x |x ≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D7.已知集合A={x|x2-2x-3>0},B={x|lg(x+1)≤1},则(∁R A)∩B= ()A.{x|-1≤x<3}B.{x|-1≤x≤9}C.{x|-1<x≤3}D.{x|-1<x<9}答案 C8.全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},则A∪B=.答案{1,2,3,5,8,9}[教师专用题组]【基础集训】考点一集合及其关系1.(2018广东茂名化州二模,1)设集合A={-1,0,1},B={x|x>0,x∈A},则B= ()A.{-1,0}B.{-1}C.{0,1}D.{1}答案D由题意可知,集合B由集合A中为正数的元素组成,因为集合A={-1,0,1},所以B={1}.2.设集合A={y|y=x2+2x+5,x∈R},有下列说法:①1∉A;②4∈A;③(0,5)∈A.其中正确的说法个数是()A.0B.1C.2D.3答案C易知A={y|y≥4},所以①②都是正确的;(0,5)是点,而集合A中元素是数,所以③是错误的.故选C.3.(2020陕西西安中学第一次月考,1)已知集合A={x|x≥-1},则正确的是 ()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A答案D对于A,0∈A,故A错误;对于B,{0}⊆A,故B错误;对于C,空集⌀是任何集合的子集,即⌀⊆A,故C错误;对于D,由于集合{0}是集合A的子集,故D正确.故选D.4.(2019辽宁沈阳质量检测三,2)已知集合A={(x,y)|x+y≤2,x,y∈N},则A中元素的个数为()A.1B.5C.6D.无数个答案C由题意得A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},所以A中元素的个数为6.故选C.5.(2020广西桂林十八中8月月考,1)已知集合A={1,a},B={1,2,3},那么 ()A.若a=3,则B⊆AB.若a=3,则A⫋BC.若A⊆B,则a=2D.若A⊆B,则a=3答案B当a=3时,A={1,3},又因为B={1,2,3},所以A⫋B.若A⊆B,则a=2或3.故选B. 6.(2019辽宁师大附中月考,2)已知集合A={0,1},B={x|x⊆A},则下列集合A与B的关系中正确的是()A.A⊆BB.A⫋BC.B⫋AD.A∈B答案D因为x⊆A,所以B={⌀,{0},{1},{0,1}},则集合A={0,1}是集合B中的一个元素,所以A∈B,故选D.,x≠0},集合B={x|x2-4 7.(2020安徽江淮十校第一次联考,1)已知集合A={x|x=x+1x≤0},若A∩B=P,则集合P的子集个数为()A.2B.4C.8D.16答案B A={y|y≤-2或y≥2},B={-2≤x≤2},则P=A∩B={-2,2},所以P的子集个数为4,故选B.8.(2019广东六校9月联考,2)已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}答案D因为B⊆A,所以当B=⌀,即a=0时满足条件;},又知B⊆A,当B≠⌀时,a≠0,∴B={x|x=-1x∈A,∴a=±1.∴-1x综上可得实数a的所有可能取值集合为{-1,0,1},故选D.易错警示由于空集是任何集合的子集,又是任何非空集合的真子集,所以遇到“A⊆B或A⫋B且B≠⌀”时,一定要注意讨论A=⌀和A≠⌀两种情况,A=⌀的情况易被忽略,从而导致失分.9.(2019河南豫南九校第一次联考,13)已知集合A={1,2,3},B={1,m},若3-m∈A,则非零实数m的值是.答案 2解析若3-m=1,则m=2,符合题意;若3-m=2,则m=1,此时集合B中的元素不满足互异性,故m≠1;若3-m=3,则m=0,不符合题意.故答案为2.考点二集合的基本运算1.(2019金丽衢十二校高三第一次联考,1)若集合A=(-∞,5),B=[3,+∞),则(∁R A)∪(∁R B)=()A.RB.⌀C.[3,5)D.(-∞,3)∪[5,+∞)答案D∁R A=[5,+∞),∁R B=(-∞,3),所以(∁R A)∪(∁R B)=(-∞,3)∪[5,+∞).2.(2019河南中原联盟9月联考,1)已知集合A={x|(x-1)·(x-2)>0},B={x|y=√2x-1},则A ∩B= ()A.[12,1)∪(2,+∞) B.[12,1)C.(12,1)∪(2,+∞) D.R答案A因为集合A={x|(x-1)(x-2)>0}={x|x<1或x>2},B={x|y=√2x-1}={x|x≥12},所以A∩B=[12,1)∪(2,+∞),故选A.3.(2018河北石家庄3月质检,1)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}答案B∵A={x|-1<x≤2},B={x|x<0},∴∁R A={x|x≤-1或x>2},∁R B={x|x≥0}.对于选项A,(∁R A)∩B={x|x≤-1},故A错误;对于选项B,A∩B={x|-1<x<0},故B正确;对于选项C,A∪(∁R B)={x|x>-1},故C错误;对于选项D,A∪B={x|x≤2},故D错误.故选B.名师点拨 对于集合的交、并、补运算,利用数轴求解能减少失误.4.(2020山东夏季高考模拟,1)设集合A ={(x ,y )|x +y =2},B ={(x ,y )|y =x 2},则A ∩B = ( ) A.{(1,1)} B.{(-2,4)} C.{(1,1),(-2,4)} D.⌀ 答案 C 本题主要考查集合的含义及集合的运算. 联立{x +x =2,x =x 2,消y 可得x 2+x -2=0,∴x =1或-2, ∴方程组的解为{x =1,x =1或{x =-2,x =4,从而A ∩B ={(1,1),(-2,4)},故选C .5.(2019山东济南外国语学校10月月考,1)已知R 为实数集,集合A ={x |(x +1)2(x -1)x>0},B ={x |(x +1)(x -12)>0},则图中阴影部分表示的集合为 ( )A.{-1}∪[0,1]B.[0,12]C.[-1,12]D.{-1}∪[0,12] 答案 D ∵(x +1)2(x -1)x>0,∴x ≠-1且x (x -1)>0,∴x <-1或-1<x <0或x >1,∴A ={x |x <-1或-1<x <0或x >1}. ∵(x +1)(x -12)>0,∴x >12或x <-1,∴B ={x |x >12或x <-1}.∴A ∪B ={x |x <-1或-1<x <0或x >12}.故图中阴影部分表示的集合为∁R (A ∪B )={-1}∪{x |0≤x ≤12},即{-1}∪[0,12].故选D .综合篇 【综合集训】考法一 集合间基本关系的求解方法1.(2021届江苏扬州二中期初检测,2)已知集合A ={x |x 2+x =0,x ∈R},则满足A ∪B ={0,-1,1}的集合B 的个数是( )A.4B.3C.2D.1 答案 A2.(2020山东滨州6月三模)已知集合M ={x |x =4n +1,n ∈Z},N ={x |x =2n +1,n ∈Z},则 ( ) A.M ⫋N B.N ⫋M C.M ∈N D.N ∈M 答案 A3.(2019辽宁沈阳二中9月月考,14)设集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22}.若A⊆(A∩B),则实数a的取值范围为.答案(-∞,9]考法二集合运算问题的求解方法}, 4.(2021届河南郑州一中开学测试,1)已知全集U=R,集合A={x|y=lg(1-x)},B={x|x=√x 则(∁U A)∩B= ()A.(1,+∞)B.(0,1)C.(0,+∞)D.[1,+∞)答案 D5.(2020浙江超级全能生第一次联考,1)记全集U=R,集合A={x|x2-4≥0},集合B={x|2x≥2},则(∁U A)∩B= ()A.[2,+∞)B.⌀C.[1,2)D.(1,2)答案 C6.(2021届湖湘名校教育联合体入学考,1)设全集U=A∪B={x|-1≤x<3},A∩(∁U B)={x|2<x<3},则集合B= ()A.{x|-1≤x<2}B.{x|-1≤x≤2}C.{x|2<x<3}D.{x|2≤x<3}答案 B7.(2020山东德州6月二模,1)若全集U={1,2,3,4,5,6},M={1,3,4},N={2,3,4},则集合(∁U M)∪(∁U N)等于()A.{5,6}B.{1,5,6}C.{2,5,6}D.{1,2,5,6}答案 D8.(2021届重庆育才中学入学考试,1)已知集合A={x|0<x<4,x∈Z},集合B={y|y=m2,m∈A},则A∩B= ()A.{1}B.{1,2,3}C.{1,4,9}D.⌀答案 A[教师专用题组]【综合集训】考法一集合间基本关系的解题方法1.已知集合M={1,m},N={n,log2n},若M=N,则(m-n)2015=.答案-1或0解析 因为M =N ,所以{1,m }={n ,log 2n }. 当n =1时,log 2n =0,则m =0,所以(m -n )2015=-1; 当log 2n =1时,n =2,则m =2,所以(m -n )2015=0.故(m -n )2015=-1或0.2.已知集合A ={x |x =2x +13,x ∈Z },B =,则集合A 、B 的关系为 . 答案 A =B 解析 A =,B ={x |x =13(2x +3),x ∈Z }.∵{x |x =2n +1,n ∈Z}={x |x =2n +3,n ∈Z},∴A =B.故答案为A =B.3.设集合A ={-2},B ={x |ax +1=0,a ∈R},若A ∩B =B ,则a 的值为 . 答案 0或12解析 ∵A ∩B =B ,∴B ⊆A. ∵A ={-2}≠⌀,∴B =⌀或B ≠⌀.当B =⌀时,方程ax +1=0无解,此时a =0,满足B ⊆A. 当B ≠⌀时,a ≠0,则B ={-1x }, ∴-1x∈A ,即-1x=-2,解得a =12.综上,a =0或a =12.4.已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3}.若B ⊆A ,则实数a 的取值范围为 .答案 (-∞,-4)∪(2,+∞)解析 ①当B =⌀时,只需2a >a +3,即a >3; ②当B ≠⌀时,根据题意作出如图所示的数轴.可得{x +3≥2x ,x +3<-1或{x +3≥2x ,2x >4, 解得a <-4或2<a ≤3.综上可得,实数a的取值范围为(-∞,-4)∪(2,+∞).考法二集合运算问题的求解方法1.(2017北京东城二模,1)已知全集U是实数集R.如图所示的韦恩图表示集合M={x|x>2}与N={x|1<x<3}的关系,那么阴影部分所表示的集合为()A.{x|x<2}B.{x|1<x<2}C.{x|x>3}D.{x|x≤1}答案D由题中韦恩图知阴影部分表示的集合是∁U(M∪N).∵M∪N={x|x>1},∴∁U(M∪N)={x|x≤1}.2.(2017安徽淮北第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},则()A.a=12B.a≤12C.a=-12D.a≥12答案C∵log2(x-1)<1,∴x-1>0且x-1<2,即1<x<3,则N={x|1<x<3},∵U=R,∴∁U N={x|x≤1或x≥3},又∵M={x|x+2a≥0}={x|x≥-2a},M∩(∁U N)={x|x=1或x≥3},∴-2a=1,解得a=-12.故选C.3.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁U A)∩B=⌀,则m=.答案1或2解析A={-2,-1},由(∁U A)∩B=⌀,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠⌀.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验,m=1和m=2符合条件.∴m=1或2.11。
新课标人教A版高一数学必修知识点总结
高中数学必修1知识点 第一章 集合与函数概念一、集合有关概念:1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:〔1〕元素确实定性; 〔2〕元素的互异性; 〔3〕元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是公平的,没有先后顺序,因此判定两个集合是否一样,仅需比拟它们的元素是否一样,不需考查排列顺序是否一样。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 〔1〕用大写英文字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 〔2〕集合的表示方法:列举法与描述法。
〔Ⅰ〕列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
〔Ⅱ〕描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①言语描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x ∈R| x-3>2}或{x| x-3>2} 〔3〕图示法〔文氏图〕: 4、常用数集及其记法:非负整数集〔即自然数集〕记作:N正整数集 N*或 N+ 整数集 Z 有理数集Q 实数集 R 5、“属于〞的概念集合的元素通常用小写的英文字母表示,如:a 是集合A 的元素,就说a 属于集合A 记作 a ∈A ,相反,a 不属于集合A 记作 a ∉A 6、集合的分类:1.有限集 含有有限个元素的集合2.无限集 含有无限个元素的集合3.空集 不含任何元素的集合 二、集合间的根本关系 1.“包含〞关系———子集对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说两集合有包含关系,称集合A 为集合B 的子集,记作A ⊆B注意: 有两种可能〔1〕A 是B 的一局部,;〔2〕A 与B 是同一集合。
2021人教A版高考数学总复习《集合》
() A.a∈P
B.{a}∈P
然数,而集合 P 是不大于 2 021的自然数构成的集合,
所以 a∉P,只有 D 正确.
答案 D
3.(老教材必修1P44A组T5改编)已知集合A={(x,y)|x2+y2=1},B={(x,y)|x,y∈R且 y=x},则A∩B中元素的个数为________.
规律方法 1.若B⊆A,应分B=∅和B≠∅两种情况讨论. 2.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或 区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利 用数轴、Venn图,化抽象为直观进行求解.确定参数所满足的条件时,一定要 把端点值代入进行验证,否则易增解或漏解.
A.{1,-1}
B.{1,-1,0}
C.1,-1,-34
D.-1,-34
(2)设集合 A={x|(x-a)2<1},且 2∈A,3∉A,则实数 a 的取值范围为________.
解析 (1)由定义,当x=0时,z=1, 当 x=-2 时,z=1-2+-12=-1 或 z=2-2-1=-34.
因此 P⊙Q=1,-1,-34. (2)由题意得((32--aa))22≥<11,,解得1a<≤a2<或3,a≥4. 所以1<a≤2. 答案 (1)C (2)(1,2]
考点二 集合间的基本关系
【例2】 (1)(2019·湖北八校联考)已知集合A={-1,1},B={x|ax+1=0}.若B⊆A,则
实数a的所有可能取值的集合为( )
A.{-1}
B.{1}
C.{-1,1}
D.{-1,0,1}
(2)(2020·长沙长郡中学模拟)已知集合A={x|y=log2(x2-3x-4)},B={x|x2-3mx+ 2m2<0(m>0)},若B⊆A,则实数m的取值范围为( )