人教版七年级上册 一元一次方程的应用-追及相遇问题(含答案)
(完整word版)七年级一元一次方程解决实际问题及分析答案
1、列方程解行程问题例1:甲乙两地相距1500千米,两辆汽车同时从两地相向而行,其中吉普车每小时60千米,是另一辆客车的1.5倍。
①几小时后两车相遇?②若吉普车先开40分钟,那客车开出多长时间两车相遇?分析:若两车同时出发,则等量关系为:吉普车的路程+客车的路程=1500①解:设两车X小时后相遇,根据题意得60x (60 1.5)x 1500解得:x 15答:15小时后两车相遇。
②分析:吉普车先出发40分钟,则等量关系式为:吉普车先行路程+吉普车后行路程+客车行驶路程=1500, 即吉普车行驶路程+ 客车行驶路程=1500。
解:设客车开出X小时后两车相遇,根据题意得60 (2 x) (60 1.5)x 15003解得x 14.6答:客车开车14.6小时后两车相遇。
例2、甲乙两名同学练习百米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?分析:甲让乙先跑1秒,则等量关系为:乙先跑的路程+乙后跑的路程=甲跑到路程,也就是乙跑的路程=甲跑的路程。
解:设甲经过X秒追上乙,根据题意得6.5(x 1) 7x解:得x 13答:甲经过13秒后追上乙。
例3、小明、小亮两人相距40km,小明先出发1.5h,小亮再出发,小明在后小亮在前,两人同向而行,小明的速度是8km/h,小亮的速度是6km/h,小明出发后几小时追上小亮?分析:小明快,小亮慢,两人同向而行,等量关系式为:小明走的路程一小亮走的路程=相距路程解:设小明出发后x小时追上小亮,根据题意得8x 6(x 1.5) 40解得x 15.5答:小明出发后15.5小时追上小亮例4、一艘船从甲码头到乙码头顺水行驶,用了2小时,从乙码头返回甲码头,逆水行驶,用了 2.5小时, 已知水流速度是3千米/时,求船在静水中的速度。
分析:水流存在如下相等关系:顺水速度=船在静水中的速度+水流速度,逆水速度=船在静水中的速度-水流速度。
由顺水行程=逆水行程可列方程.解:设船在静水中的速度为x千米/时,则船在顺水中的速度为( x 3 )千米/时,船在逆水中的速度为(x 3 )千米/时,根据题意得2(x 3) 2.5(x 3)解得x 27答:船在静水中的速度为27千米/时。
七年级数学上册一元一次方程3应用题(行程问题相遇追及顺流…数字问题)知识点例题解析
七年级数学上册一元一次方程3应用题(行程问题相遇追及顺流…数字问题)知识点例题解析七年级数学上册一元一次方程1(方程等式性质解方程…)知识点易错题(附例题解析)七年级数学上册一元一次方程2 应用题(配套问题工程问题年龄问题)知识点例题解析行程问题1.相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间———————————————例题:甲乙两车站间的路程为360km,一列慢车从甲站开出,每小时行驶48km,一列快车从乙站开出,每小时行驶72km1.两车同时开出,相向而行,多少小时相遇?2.快车先开出25分钟,两车相向而行,慢车行驶多少小时两车相遇?解析:解答:—————————————————2.追及问题:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间———————————————例题:帅帅同学早上要在7:50之前赶到距家1000米的学校上学,帅帅以80m/min的速度出发,5min后他的爸爸发现他忘了带数学书,于是爸爸立即以180m/min的速度去追,并且中途追上了他.1.求帅帅爸爸追上他用了多长时间?2.爸爸追上帅帅时,求帅帅此时距离学校还有多远?解析:1.设帅帅爸爸追上他用了 x min长时间根据速度差×时间=路程差,列出方程.2.先求出追上帅帅时的路程,再用1000米减去该路程即可.解答:—————————————————3.行船问题:(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速顺流速度=船速+水速逆流速度=船速-水速—————————————————例题:解析:解答:—————————————————3.列车问题火车过桥:过桥时间=(车长+桥长)÷车速火车追及:追及时间=(甲车长+乙车长+距离)÷速度差火车相遇:相遇时间=(甲车长+乙车长+距离)÷速度和———————————————例题:解析:解答:———————————————例题:解析:解答:———————————————数字问题:(1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c,十位数可表示为10b+a,百位数可表示为100c+10b+a(其中a、b、c均为整数,且0≤a≤9, 0≤b≤9,1≤c≤9).(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.—————————————————例题:解析:解答:———————————————例题:解析:解答:。
人教版七年级上册数学第三章《一元一次方程》:相遇与追击类问题应用题 综合练习题(含答案)
人教版七年级上册数学第三章《一元一次方程》:
相遇与追击类问题应用题综合练习题1
1.今有12名旅客要赶往表40千米远的一个火车站去乘火车,离开车时间只有3小时了,他们的步行的速度为每小时4千米,靠走路时来不及了,唯一可以利用的脚用工具只有一辆小汽车,但这辆小汽车连司机在内最多能乘5人,汽车的速度为每小时60千米,这12名旅客能赶上火车吗?
2.甲骑自行车从A地出发,以每小时15km的速度驶向B地,经半小时后乙骑自行车从B 地出发,以每小时20km的速度驶向A地,两人相遇时,乙已超过AB两地的中点5km,求
A、B两地的距离.
3.甲、乙两地相距360千米,A从甲地出发开车去乙地,每小时行72千米,A出发25分钟后,B从乙地出发开往甲地,每小时行48千米,A、B相遇后,各自仍按原速度,原方向继续前进,那么相遇后两车相距100千米时,A从出发开始共行驶了多少小时?
4.一辆长10米的汽车,以每小时28.8千米的速度由甲站开往乙站,下午2点整,在距乙站3000米处迎面遇到一行人,1秒钟后汽车离开这个行人,汽车到达乙站休息6分钟后返回甲站,那么汽车追上那位行人是什么时间?(要有解答过程)
5.甲地与丙地由公路连接,乙地在甲、丙两地之间,一辆汽车在下午1点钟从离甲地10千米的M地出发向乙地匀速前进,15分钟后离甲地20千米,当汽车行驶到离甲地150千米的乙地时,接到通知要在下午5点前赶到离乙地30千米的丙地.汽车若按原速能否按时到达?若能,是在几点几时到达;若不能,车速应提高到多少才能按时到达?
6.若A、B两地相距480千米,一列慢车从A地开出,每小时走60千米,一列快车从B地开出,每小时走65千米.两车同时开出,相向而行,过几小时后两车相遇?
分析:先画线段图:
写解题过程:。
初一数学一元一次方程应用题-行程问题-追击和相遇
初一数学一元一次方程追击和相遇应用题行程问题(行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点)行程中的基本关系:路程=速度×时间相遇问题(相向而行):这类问题的相等关系是:甲走的路程+乙走的路程=全路程追及问题(同向而行):这类问题的等量关系是:同时不同地:甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程同地不同时:甲的时间=乙的时间-时间差甲的路程=乙的路程解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
【例】甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
【解析】(1)分析:相遇问题,画图表示为:甲乙等量关系是:慢车走的路程+快车走的路程=480公里。
解:设快车开出x 小时后两车相遇,由题意得,140x+90(x+1)=480解这个方程,230x=390∴ x=11623答:略.(2)分析:相背而行,画图表示为:600甲 乙等量关系是:两车所走的路程和+480公里=600公里。
解:设x 小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120∴ x=1223答:略.(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。
人教版七年级上册 一元一次方程的应用-追及相遇问题(含答案)
人教版七年级上册一元一次方程的应用-追及相遇问题(含答案)一、单选题1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米.若甲让乙先跑10米,设甲跑x秒后可以追上乙,则下列四个方程中不正确的是()A.7x=6.5x+10B.7x-10=6.5x C.(7-6.5)x=10D.7x=6.5x-102.甲、乙两列火车在平行轨道上相向而行,已知两车自车头相遇到车尾相离共需8 s.若甲、乙两车的速度之比为3∶2,甲车长200 m,乙车长280 m,则甲、乙两车的速度分别为( ) A.30 m/s,20 m/s B.36 m/s,24 m/sC.38 m/s,22 m/s D.60 m/s,40 m/s3.明月从家里骑车去游乐场,若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟,设她家到游乐场的路程为xkm,根据题意可列出方程为()A.851060860x x-=-B.851060860x x-=+C.851060860x x+=-D.85108x x+=+4.如图,甲船从北岸码头A向南行驶,航速为36千米/时;乙船从南岸码头B向北行驶,航速为27千米/时.两船均于7:15出发,两岸平行,水面宽为18.9千米,则两船距离最近时的时刻为()A.7:35B.7:34C.7:33D.7:325.甲乙两人练习跑步,甲先让乙跑10米,则甲5秒钟追上乙,若甲让乙先跑2秒,甲跑4秒就追上乙,甲乙两人每秒分别跑()A.4米、6米B.2米、4米C.6米、4米D.4米、2米6.甲、乙两人从学校到博物馆去,甲每小时走 4km ,乙每小时走 5km ,甲先出发 0.1h ,结果乙还比甲早到 0.1h .设学校到博物馆的距离为 xkm ,则以下方程正确的是( ) A.+0.1=0.145x x- B.-0.1=0.145x x+ C.=0.145x x- D.4x ﹣0.1=5x+0.17.甲、已两地相距50千米,小明、小刚分别以6?千米/时、4千米/时从甲乙两地同时出发,小明领一只小狗以10千米/时奔向小刚,碰到小刚后奔向小明,碰到小明后奔向小刚…一直到两人相遇,小狗共跑了多少路程?( ) A.25千米B.30千米C.35千米D.50千米8.A 、B 两地相距900千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是( ) A .4小时 B .4.5小时 C .5小时 D .4小时或5小时 二、填空题9.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是_____千米/时.10.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是________分.11.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,若A ,C 两地距离为2千米,则A ,B 两地之间的距离是_____.12.甲、乙两人练习赛跑,若甲让乙先跑10米,则甲跑5秒种就能追上乙.若甲让乙先跑2秒钟,则甲跑4秒种就能追上乙,则甲每秒跑____米,乙每秒跑____米.13.在一段双轨铁道上,两人辆火车迎头驶过,A 列车车速为20米/秒,B 列车车速为25米/秒,若A 列车全长200米,B 列车全长160米,两列车错车的时间为____秒。
人教版七年级上册数学第三章《一元一次方程》:相遇与追击类问题应用题综合练习题2(含答案)
人教版七年级上册数学第三章《一元一次方程》:相遇与追击类问题应用题综合练习题21.某同学打算骑自行车到野生动物园去参观,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才能到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?2.小明早上赶到距家1000米的学校上学,一天,小明以60米/分的速度出发,5分钟后,小明的爸爸发现了他忘了带课文书,于是爸爸立即以110米/分的速度去追小明,并且在途中追上他.求:(1)爸爸追上小明用了多长时间?(2)爸爸追上小明时距离学校还有多远?3.列方程解应用题:武广高铁客运专线于12月26日正式通车运行,这标志着我国步入高速铁路新时代.武广铁路客运专线,是世界上一次建成最长、时速最快的高速铁路,其高速动车组“和谐号”是我国自主研发、目前世界上最先进的高速动车组.它的运行,使得旅客从广州到武汉的乘车时间缩短了7小时,平均速度达到每小时350千米,是普通客车平均时速的3倍.你知道从广州到武汉的高铁客运专线约多少千米吗?4.A,B两站间的路程为448千米,一列慢车从A站出发,每小时行驶60千米,一列快车从B站出发,每小时行驶80千米,问:(1)两车同时开出,相向而行,出发后多少小时相遇?(2)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?5.如图,A、B两地相距176 km,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分别从A、B两地同时出发赶往滑坡点疏通公路.10时,甲队赶到立即开始作业,半小时后乙队赶到,并迅速投入“战斗”,与甲队共同作业.若滑坡受损公路长1 km,甲队行进的速度是乙队的倍多5 km,求甲、乙两队赶路的速度.6.小明和小亮的家以及他们所在的学校都在一条东西走向的马路旁,其中,小明家在学校西边3千米处,小亮家在学校的东边(见图).一天放学后,小亮邀小明到自己家观看自己新配置的电脑.他们约定,小亮直接从学校步行回自己家,小明先回自己家取自行车(取车时间忽略不计),然后骑车去小亮家.设小明和小亮的步行速度相同,小明骑自行车的速度是步行速度的4倍.如果小明在距离小亮家西边0.2千米处追上小亮,求小亮家到学校的距离.。
人教版七年级上册数学一元一次方程应用题及答案
人教版七年级上册数学一元一次方程应用题及答案For the n problem of linear ns。
we need to XXX the profit of a product is the selling price minus the cost price。
The profitXXX the profit by the cost price and multiplying by 100%。
The sales amount of a product is the XXX by the sales volume。
The profit from the sales of a product can be XXX price and the cost price by the sales volume。
When a product is sold at a discount。
XXX 100% and dividing the result by 100%。
2.In order to attract customers。
a store offers an 20% discount on all products。
If a certain type of leather shoes has a cost price of 60 yuan per pair and the store earns a profit margin of 40% after the discount。
what is the original price and the discounted price of the shoes。
3.A store increases the cost price of a type of clothing by 40% and then offers an 20% discount on it。
人教版七年级上册数学第3章《一元一次方程》实际问题应用题分类训练(含答案)
一.行程问题1.相遇问题1.快车以200km/h的速度由甲地开往乙地再返回甲地,慢车以75km/h的速度同时从乙地出发开往甲地.已知当快车回到甲地时,慢车距离甲地还有225km,则(1)甲乙两地相距多少千米?(2)从出发开始,经过多长时间两车相遇?(3)几小时后两车相距100千米?2.已知数轴上有A,B,C三点,分别表示﹣12,﹣5,5,两只电子蚂蚁甲、乙分别从A,C 两点同时出发,甲的速度是每秒2个单位,乙的速度是每秒3个单位.(1)AB=,BC=,AC=.(2)若甲、乙相向而行,则甲、乙在多少秒后数轴上相遇?该相遇点在数轴上表示的数是什么?(3)若甲、乙相向而行,则多少秒后甲到A,B,C三点的距离之和为22个单位?3.列方程解应用题:周末,小明从城里去渡假村接父母回家,为了欣赏路边的风景,小明从城里步行出发,同时父母也从渡假村步行出发,相向而行,城里距渡假村14km,小明每小时走4km,父母每小时走3km,如果小明带一只狗和他同时出发,狗以每小时8km的速度向父母方向跑去,遇到父母后又立即回头跑向小明,遇到小明后又立即回头跑向父母,这样往返直到二人相遇.(1)小明与父母经过多少小时相遇?(2)这只狗共跑了多少km呢?2.追击问题4.已知甲、乙两地相距160km,A、B两车分别从甲、乙两地同时出发,A车速度为85km/h,B车速度为65km/h.(1)A、B两车同时同向而行,A车在后,经过几小时A车追上B车?(2)A、B两车同时相向而行,经过几小时两车相距20km?5.小明每天早上7:30从家出发,到距家1000m的学校上学,一天,小明以80m/min的速度上学,5min后小明爸爸发现他发现忘带语文书,爸爸立即带上语文书去追赶小明.(1)如果爸爸以160m/min的速度追小明,爸爸追上小明时距离学校多远?(2)如果爸爸刚好能在学校门口追上小明,爸爸的速度是多少?(3)爸爸以180m/min的速度追赶小明,他把书给小明后及时原路原速返回(交书耽误的时间忽略不计),返回家的时间是多少?6.一天早晨,乐乐以80米/分的速度上学,5分钟后乐乐的爸爸发现他忘了带数学书,爸爸立即骑自行车以280米/分的速度去追乐乐,并且在途中追上了他,请解决以下问题:(1)爸爸追上乐乐用了多长时间?(2)爸爸追上乐乐后,乐乐搭爸爸的自行车回到学校,结果提前了10分钟到校,若爸爸搭上乐乐后的骑行速度为240米/分,求乐乐家离学校有多远.二.水流问题7.列方程求解:轮船沿江从A港顺流航行到B港,比从B港返回A港少用2小时,若轮船在静水中的速度为18km/h,水流的速度为2km/h,则A港和B港相距多少km?8.某船顺水航行了4h,逆水航行了3h.在静水中的速度是mkm/h,水流的速度是akm/h,则轮船共航行了多少千米?9.某人乘船从A地顺流去B地,用时3小时;从B地返回A地用时5小时.已知船在静水中速度为40km/h,求水的速度与AB间距离.三.数轴动点问题10.在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的2倍,我们就把点C叫做【A,B】的和谐点.例如:图中,点A表示的数为﹣1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1.那么点C是【A,B】的和谐点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的和谐点,但点D是【B,A】的和谐点.(1)当点A表示的数为﹣4,点B表示的数为8时,①若点C表示的数为4,则点C(填“是”或“不是”)【A,B】的和谐点;②若点D是【B,A】的和谐点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为﹣2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止,问点C运动多少秒时,C,A,B中恰有一个点为其余两点的和谐点?11.如图1,已知数轴上A,B两点表示的数分别为﹣9和7.(1)AB=(2)点P、点Q分别从点A、点B出发同时向右运动,点P的速度为每秒4个单位,点Q的速度为每秒2个单位,经过多少秒,点P与点Q相遇?(3)如图2,线段AC的长度为3个单位线段BD的长度为6个单位,线段AC以每秒4个单位的速度向右运动,同时线段BD以每秒2个单位的速度向左运动,设运动时间为t秒.①t为何值时,点B恰好在线段AC的中点M处.②t为何值时,AC的中点M与BD的中点N距离2个单位.12.如图,点O为原点,A、B为数轴上两点,点A表示的数a,点B表示的数是b,且|ab+32|+(b﹣4)2=0(1)a=,b=;(2)在数轴上是否存在一点P,使PA﹣PB=2OP,若有,请求出点P表示的数,若没有,请说明理由?(3)点M从点A出发,沿A→O→A的路径运动,在路径A→O的速度是每秒2个单位,在路径O→A上的速度是每秒4个单位,同时点N从点B出发以每秒3个单位长向终点A 运动,当点M第一次回到点A时整个运动停止.几秒后MN=1?四.数字表格问题13.已知一个由正奇数排成的数阵.用如图所示的四边形框去框住四个数.(1)若设框住四个数中左上角的数为n,则这四个数的和为(用n的代数式表示);(2)平行移动四边形框,若框住四个数的和为228,求出这4个数;(3)平行移动四边形框,能否使框住四个数的和为508?若能,求出这4个数;若不能,请说明理由.14.把2018个正整数1,2,3,4,…,2018按如图方式排列成一个表;(1)用如图方式框住表中任意4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是、、(请直接填写答案)(2)用(1)中方式被框住的4个数之和可能等于2019吗?如果可能,请求出x的值;如果不可能,请说明理由.15.小明是个爱动脑筋的同学,在发现教材中的用方框在日历中移动的规律后,突发奇想,将连续的得数2,4,6,8,…,排成如图形式:并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)请你选择十字框中你喜欢的任意位置的一个数,将其设为x,并用含x的代数式表示十字框中五个数的和.(2)若将十字框上下左右移动,可框住另外的五个数,试间:十字框能否框住和等于2015的五个数,如能,请求出这五个数;如不能,说明理由.五.分段收费问题16.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格.阶梯用户年用气量(单位:立方米)2018年单价(单位:元/立方米)2019年单价(单位:元/立方米)第一阶梯0﹣300(含)a 3第二阶梯300﹣600(含)a+0.5 3.5第三阶梯600以上a+1.5 5(1)甲用户家2018年用气总量为280立方米,则总费用为元(用含a的代数式表示);(2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a的值;(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?17.阅读材料:为落实水资源管理制度,大力促进水资源节约,本市居民用水实行阶梯水价,按年度用水量计算,将居民家庭全年用水量划分为三档,水价分档递增,实施细则如表:本市居民用水阶梯水价表:(单位:元/立方米)水价供水类型阶梯户年用水量x(立方米)自来水第一阶梯0≤x≤180 5第二阶梯180<x≤260 7第三阶梯x>260 9如某户居民去年用水量为190立方米,则其应缴纳水费为180×5+(190﹣180)×7=970元.(1)若小明家去年用水量为100立方米,则小明家应缴纳的水费为元;(2)若截止10月底,小明家今年共纳水费1145元,则小明家共用水立方米;(3)若小明家全年用水量x不超过270立方米,则应缴纳的水费为多少元?(用含x的代数式表示)六.工程问题18.一项工程,甲队单独施工需要15天完成,乙队单独施工需要9天完成.现在由甲队先工作3天,剩下的由甲、乙两队合作,还需要几天才能完成任务?19.甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?20.某市要对水利工程进行改造,甲队单独做这项工程需要10天完成,乙队单独需要做这项工程需要15天完成,丙队单独做这项工程需要20天完成,开始时三队共同做,中途甲队被调走另有任务,由乙、丙两队完成,从开始到工程完成共用了6天,问:甲队实际做了几天?七.比赛积分问题21.某小组6名同学参加一次知识竞赛,共答20道题,每题分值相同,答对得分,答错或不答扣分,下面是前5名同学的得分情况(如表):序号答对题数答错或不答题数得分1 182 842 17 m763 20 0 1004 19 1 925 10 10 n(1)表中的m=,n=;(2)该小组第6名同学说:“这次知识竞赛我得了0分”,请问他的说法是否正确?如果正确,请求出这位同学答对了多少题;如果不正确,请说明理由.22.2019年11月,我区组织了一次职工篮球联赛,比赛分初赛阶段和决赛阶段,在初赛阶段中,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,输一场得1分,积分超过15分才能获得决赛资格.(1)若乙队初赛获得4场胜利,问乙队是否有资格参加决赛?请说明理由.(2)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;23.某电视台组织知识竞赛,共设30道选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况.参赛者答对题数答错题数得分A28 2 108B26 4 96C24 6 84 (1)每答对1题得多少分?(2)参赛者D得54分,他答对了几道题?八.销售打折问题24.成都华联商场经销甲、乙两种商品,甲种商品每件进价150元,售价200元;乙种商品每件进价350元,售价450元.(1)该商场在“十一”黄金周期间销售甲、乙两种商品共100件,销售额为35000元,求甲、乙两种商品各销售了多少件?(2)假若该商场在“十一”黄金周期间销售甲、乙两种商品进行如表优惠活动:打折前一次性购物总金额优惠措施不超过3000元不优惠超过3000元且不超过4000元总售价打九折超过4000元总售价打八折按上述优惠条件,若小王第一天只购买甲种商品一次性付款2000元,第二天只购买乙种商品打折后一次性付款3240元,那么这两天他在该商场购买甲、乙两种商品一共多少件?25.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是:买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是:购买10本以上,每本按标价的8折卖.(1)小明要买20本时,到哪个商店交省钱?(2)小明要买10本以上时,买多少本时到两个商店付的钱一样多?(3)小明现有32元钱,最多可买多少本?26.李阿姨逛街时发现.大润发超市和永辉超市有如下促销活动(两超市相同商品标价相同):大润发:所有商品打8.8折;永辉:消费总金额不超过100元时,不打折;消费总金额超过100元,不超过300元时,打9折;消费总金额超过300元时,300元部分打9折,超出300元部分打8折.(1)李阿姨购买多少元的商品时,两个超市实际付款一样多?(2)活动期间李阿姨在永辉超市购买了两次商品,第一次实付款99元,第二次实付款286元,请问李阿姨两次购买商品的总价共为多少元?参考答案1.解:(1)设甲、乙两地相距x千米,依题意,得:=,解得:x=900.答:甲、乙两地相距900千米.(2)设经过y小时两车相遇.第一次相遇,(200+75)y=900,解得:y=;第二次相遇,200y﹣75y=900,解得:y=.答:从出发开始,经过或小时两车相遇.(3)设t小时后两车相距100千米.第一次相距100千米时,200t+75t=900﹣100,解得:t=;第二次相距100千米时,200t+75t=900+100,解得:t=;第三次相距100千米时,200t﹣75t=900﹣100,解得:t=;第四次相距100千米时,200t﹣75t=900+100,解得:t=8.答:经过,,或8小时后两车相距100千米.2.解:(1)AB=﹣5﹣(﹣12)=﹣5+12=7,BC=5﹣(﹣5)=5+5=10,AC=5﹣(﹣12)=5+12=17.故答案为:7,10,17;(2)设甲、乙行驶x秒时相遇,根据题意得:2x+3x=17,解得:x=3.4,﹣12+2×3.4=﹣5.2.答:甲、乙在3.4秒后在数轴上相遇,该相遇点在数轴上表示数是﹣5.2.(3)设y秒后甲到A,B,C三点的距离之和为22个单位,B点距A,C两点的距离为7+10=17<20,A点距B、C两点的距离为7+17=24>20,C点距A、B的距离为17+10=27>20,故甲应位于AB或BC之间.①AB之间时:2y+(7﹣2y)+(7﹣2y+10)=22,解得:y=1;②BC之间时:2y+(2y﹣7)+(17﹣2y)=22,解得:y=6.答:1秒或6秒后甲到A,B,C三点的距离之和为22个单位.3.解:(1)设小明与父母经过x小时相遇,由题意得4x+3x=14,解得:x=2.答:两个人经过2小时相遇.(2)8×2=16(km).答:这只狗共跑了16千米.4.解:(1)设经过x小时A车追上B车,依题意,得:85x﹣65x=160,解得:x=8.答:经过8小时A车追上B车.(2)设经过y小时两车相距20km.两车相遇前,85y+65y=160﹣20,解得:y=;两车相遇后,85y+65y=160+20,解得:y=.答:经过或小时两车相距20km.5.解:(1)设爸爸追上小明时距离学校xm,依题意,得:﹣=5,解得:x=200.答:爸爸追上小明时距离学校200m.(2)小明到校所需时间为1000÷80=(min),爸爸的速度为1000÷(﹣5)=(m/min).答:爸爸的速度为m/min.(3)设爸爸需要ymin可追上小明,依题意,得:180y=80(y+5),解得:y=4,∴30+5+4+4=43.答:爸爸返回家的时间是7:43.6.解:(1)设爸爸追上乐乐用了x分钟,则此时乐乐出门(x+5)分钟,依题意,得:280x=80(x+5),解得:x=2.答:爸爸追上乐乐用了2分钟.(2)设爸爸搭上乐乐到学校共骑行了s米,依题意,得:﹣=10,解得:s=1200,1200+280×2=1760(米).答:乐乐家离学校共1760米.7.解:设轮船从A港顺流航行到B港用时x小时,依题意得:(18+2)x=(18﹣2)(x+2),解得x=8,则(18+2)x=160(km),答:A港和B港相距160km.8.解:4(m+a)+3(m﹣a)=(7m+a)千米.故轮船共航行了(7m+a)千米.9.解:设水速为xkm/h,则3(40+x)=5(40﹣x),∴x=10,∴AB间距离=3×(40+10)=150(km),答:水的速度为10km/h,AB间距离为150km.10.解:(1)①点C到点A的距离为4﹣(﹣4)=8,点C到点B的距离为8﹣4=4,∵8=2×4,∴点C是【A,B】的和谐点.故答案为:是.②设点D表示的数为x,则点D到点B的距离为|x﹣8|,点D到点A的距离为|x+4|,依题意,得:|x﹣8|=2|x+4|,即x﹣8=2x+8或x﹣8=﹣2x﹣8,解得:x=﹣16或x=0.故答案为:﹣16或0.(2)设运动时间为t秒,则BC=t,AC=6﹣t.当C是【A,B】的和谐点时,6﹣t=2t,解得:t=2;当C是【B,A】的和谐点时,t=2(6﹣t),解得:t=4;当A是【B,C】的和谐点时,6=2(6﹣t),解得:t=3;当B是【A,C】的和谐点时,6=2t,解得:t=3.答:点C运动2秒、3秒、4秒时,C,A,B中恰有一个点为其余两点的和谐点.11.解:(1)∵数轴上A,B两点表示的数分别为﹣9和7,∴AB=|﹣9﹣7|=16.故答案为:16.(2)设经过x秒,点P与点Q相遇,依题意,得:4x﹣2x=16,解得:x=8,答:经过8秒,点P与点Q相遇.(3)当运动时间为t秒时,点A表示的数为4t﹣9,点C表示的数为4t﹣9+3=4t﹣6,点B表示的数为﹣2t+7,点D表示的数为﹣2t+7+6=﹣2t+13,∵点M为线段AC的中点,点N为线段BD的中点,∴点M表示的数为=4t﹣,点N表示的数为=﹣2t+10.①∵点B恰好在线段AC的中点M处,∴﹣2t+7=4t﹣,∴t=.答:当t为时,点B恰好在线段AC的中点M处.②∵AC的中点M与BD的中点N距离2个单位,∴|4t﹣﹣(﹣2t+10)|=2,即6t﹣=2或6t﹣=﹣2,∴t=或t=.答:当t为或时,AC的中点M与BD的中点N距离2个单位.12.解:(1)∵|ab+32|+(b﹣4)2=0,∴,∴.故答案为:﹣8;4.(2)设点P表示的数为x.当﹣8<x≤0时,x﹣(﹣8)﹣(4﹣x)=﹣2x,解得:x=﹣1;当0<x≤4时,x﹣(﹣8)﹣(4﹣x)=2x,该方程无解;当x>4时,x﹣(﹣8)﹣(x﹣4)=2x,解得:x=6.答:在数轴上存在一点P,使PA﹣PB=2OP,点P表示的数为﹣1或6.(3)设运动时间为t秒.当0≤t≤4时,点M表示的数为2t﹣8,点N表示的数为﹣3t+4,∵MN=1,∴|2t﹣8﹣(﹣3t+4)|=1,即5t﹣12=1或5t﹣12=﹣1,解得:t=或t=;当4<t≤6时,点M表示的数为﹣4(t﹣4)=﹣4t+16,点N表示的数为﹣8,∵MN=1,∴|﹣4t+16﹣(﹣8)|=1,即24﹣4t=1,解得:t=.答:秒、秒或后MN=1.13.解:(1)设框住四个数中左上角的数为n,则其他三个为n+2,n+2+12,n+2+12+2,四个数的和为:n+2+n+2+12+n+2+12+2=4n+32,故答案为:4n+32;(2)由题意得:4n+32=228,n=49,所以这四个数分别是49、51、63、65;(3)不能框住这样的四个数,使四个数的和为508,理由:假设能,则4n+32=508,解得n=119,而119=9×12+11=(10﹣1)×12+11,这样左上角的数119在第10行第6列,所以不能框住这样的四个数,使四个数的和为508.14.解:(1)设左上角的一个数为x,由图表得:其他三个数分分别为:x+8,x+16,x+24.(2)由题意,得x+x+8+x+16+x+24=2019,解得:x=492.75,因为所给的数都是正整数,所以被框住的4个数之和不可能等于2019.故答案为:x+8,x+16,x+24.15.解:(1)设十字框中中间的数为x,则另外四个数分别为x﹣10,x﹣2,x+2,x+10,∴十字框中五个数的和=(x﹣10)+(x﹣2)+x+(x+2)+(x+10)=5x.(2)不能,理由如下:依题意,得:5x=2015,解得:x=403.∵图中各数均为偶数,∴x=403不符合题意,∴十字框不能框住和等于2015的五个数.16.解:(1)甲用户家2018年用气总量为280立方米,则总费用为280a元.(2)根据题意,可得:300a+(450﹣300)(a+0.5)=1200∴300a+150a+75=1200,∴450a=1125,解得a=2.5.(3)设丙用户2019年用气x立方米,则2018年用气(1200﹣x)立方米,①2019年的用气量不超过300立方米时,则2018年用气量1200﹣x>900,3x+2.5×300+(2.5+0.5)×(600﹣300)+(2.5+1.5)×(1200﹣x﹣600)=3625,解得x=425,∵425>300,∴不符合题意.②2019年的用气量超过300立方米,但不超过600立方米时,3×300+3.5×(x﹣300)+750+900+4(600﹣x)=3625,解得x=550,符合题意,1200﹣550=650(立方米)答:该用户2018年和2019年分别用气650立方米、550立方米.故答案为:280a.17.解:(1)∵0<100<180,∴小明家应缴纳的水费为=100×5=500(元),故答案为500;(2)设小明家共用水x立方米,∵180×5<1145<180×5+80×7,∴180<x<260,根据题意得:180×5+(x﹣180)×7=1145解得:x=215,故答案为:215;(3)当0≤x≤180时,水费为5x元,当180<x≤260时,水费为180×5+7×(x﹣180)=(7x﹣360)元,当260<x≤270时,水费为180×5+7×80+9×(x﹣260)=(9x﹣880)元.18.解:设还需x天才能完成任务,根据题意得,解得x=4.5.答:甲、乙两队合作还需4.5天才能完成任务.19.解:设还需x天能完成任务,根据题意可得方程:×2+=1.解得x=10.答:还需10天能完成任务.20.解:设甲队实际做了x天,由题意得++=1,解得:x=3.答:甲队实际做了3天.21.(1)由于共有20道题,m=20﹣17=3,∴由同学3可知:答对一题可得5分,由第3位同学可知答对一题得5,设答错或不答扣x分,则从第1位同学可列方程:18×5﹣2x=84,解得:x=3,n=10×5﹣3×10=20,故答案为:(1)3,20(2)设这位同学答对y道题,则他答错或不答(20﹣y)题,则5y﹣3(20﹣y)=0,解得:y=,因为m不是整数,所以这位同学的说法不正确.22.解:(1)没有资格参加决赛.因为积分为4×2+(10﹣4)×1=14<15.(2)设甲队初赛阶段胜x场,则负了(10﹣x)场,由题意,得:2x+1×(10﹣x)=18,解得:x=8,所以,10﹣x=10﹣8=2,答:甲队初赛阶段胜8场,负2场.23.解:(1)设答对一道题得x分,答错一道题得y分,依题意,得:,解得:.答:每答对1题得4分.(2)设参赛者D答对了m道题,则答错(30﹣m)道题,依题意,得:4m﹣2(30﹣m)=54,解得:m=19.答:参赛者D答对了19道题.24.解:(1)设甲种商品销售了x件,则乙种商品销售了(100﹣x)件,依题意,得:200x+450(100﹣x)=35000,解得:x=40,∴100﹣x=60.答:甲种商品销售了40件,乙种商品销售了60件.(2)设小王在该商场购买甲种商品m件,购买乙种商品n件,依题意,得:200m=2000,450×0.9n=3240或450×0.8n=3240,解得:m=10,n=8或n=9,∴m+n=18或19.答:这两天他在该商场购买甲、乙两种商品一共18件或19件.25.解:(1)甲店:10×1+10×1×70%=17(元),乙店:20×1×80%=16(元).∵17>16,∴买20本时,到乙店较省钱.(2)设购买x本时,两个商店付的钱一样多,依题意,得:10×1+70%(x﹣10)=80%x,解得:x=30.答:当购买30本时,到两个商店付的钱一样多.(3)设最多可买y本.在甲商店购买:10+70%(y﹣10)=32,解得:y==41,∵y为整数,∴在甲商店最多可购买41本;在乙商店购买:80%y=32,解得:y=40.∵41>40,∴最多可买41本.26.解:(1)设李阿姨购买x元的商品时,两个超市实际付款一样多,依题意,得:0.88x=300×0.9+0.8(x﹣300),解得:x=375.答:李阿姨购买375元的商品时,两个超市实际付款一样多.(2)设李阿姨第一次购买商品的价格为m元,第二次购买商品的价格为n元,依题意,得:m=99或0.9m=99,300×0.9+0.8(n﹣300)=286,解得:m=99或m=110,n=320,∴m+n=419或430.。
人教版七年级上册第三章《一元一次方程》应用题分类:相遇与追击类问题综合练习(三)
《一元一次方程》应用题分类:相遇与追击类问题综合练习1.某同学打算骑自行车到野生动物园去参观,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才能到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?2.小明早上赶到距家1000米的学校上学,一天,小明以60米/分的速度出发,5分钟后,小明的爸爸发现了他忘了带课文书,于是爸爸立即以110米/分的速度去追小明,并且在途中追上他.求:(1)爸爸追上小明用了多长时间?(2)爸爸追上小明时距离学校还有多远?3.列方程解应用题:武广高铁客运专线于12月26日正式通车运行,这标志着我国步入高速铁路新时代.武广铁路客运专线,是世界上一次建成最长、时速最快的高速铁路,其高速动车组“和谐号”是我国自主研发、目前世界上最先进的高速动车组.它的运行,使得旅客从广州到武汉的乘车时间缩短了7小时,平均速度达到每小时350千米,是普通客车平均时速的3倍.你知道从广州到武汉的高铁客运专线约多少千米吗?4.A,B两站间的路程为448千米,一列慢车从A站出发,每小时行驶60千米,一列快车从B站出发,每小时行驶80千米,问:(1)两车同时开出,相向而行,出发后多少小时相遇?(2)两车同时开出,同向而行,如果慢车在前,出发后多少小时快车追上慢车?5.如图,A、B两地相距176 km,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分别从A、B两地同时出发赶往滑坡点疏通公路.10时,甲队赶到立即开始作业,半小时后乙队赶到,并迅速投入“战斗”,与甲队共同作业.若滑坡受损公路长1 km,甲队行进的速度是乙队的倍多5 km,求甲、乙两队赶路的速度.6.小明和小亮的家以及他们所在的学校都在一条东西走向的马路旁,其中,小明家在学校西边3千米处,小亮家在学校的东边(见图).一天放学后,小亮邀小明到自己家观看自己新配置的电脑.他们约定,小亮直接从学校步行回自己家,小明先回自己家取自行车(取车时间忽略不计),然后骑车去小亮家.设小明和小亮的步行速度相同,小明骑自行车的速度是步行速度的4倍.如果小明在距离小亮家西边0.2千米处追上小亮,求小亮家到学校的距离.7.一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离.8.甲、乙两人分别从A、B两地同时相向匀速前进,第一次相遇在距A点700m处,然后继续前进,甲到B地,乙到A地后都立即返回,第二次相遇在距B点400m处,求A、B两地间的距离是多少米?9.已知正五边形ABCDE的周长为2000米,甲、乙两人分别从A、C同时出发,沿A→B→C →D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,那么出发后经过多少分钟,甲、乙两人第一次开始行走在同一条边上.10.有160名学生到离校60千米处旅游,用一辆能载40人的客车运送,设计了步行与乘车相结合的办法,使他们用最短时间到达旅游点,车速每小时50千米,步行每小时5千米,那么这个最短时间是多少小时?(列方程解)参考答案1.解:设该同学是从x点出发的,依题意得8(12﹣x)=12(10﹣x),解方程得x=6,所以,该同学家到野生动物园的距离为8(12﹣x)=48(千米),所以,该同学的行驶速度最好是48÷(11﹣6)=9.6(千米/时).答:该同学行驶的速度最好是9.6千米/时.2.解:(1)设爸爸用了x分钟追上小明,则110x=60(x+5),x=6爸爸追上小明用了6分钟.(2)1000﹣110×6=340答:爸爸追上小明用了6分钟,追上时离学校340米.3.解:设广州至武汉高铁客运专线约长x千米,由题意得:,解之得:x=1225.答:广州至武汉高铁客运专线约长1225千米.4.(1)解:设两车同时开出,相向而行,出发后x小时相遇.根据题意得,(60+80)x=448解得:x=3.2答:两车同时开出,相向而行,出发后3.2小时相遇.(2)解:设两车同时开出,同向而行,如果慢车在前,出发后x小时快车追上慢车.根据题意得,80x﹣60x=448解得:x=22.4答:两车同时开出,同向而行,如果慢车在前,出发后22.4小时快车追上慢车.5.解:设乙队的速度为xkm/h,则甲队为(x+5)km/h,由题意得:(2+0.5)x+(x+5)×2+1=176解得:x=30,∴1.5x+5=1.5×30+5=50.答:甲队赶路的速度为50km∕h,乙队赶路的速度为30km∕h.6.解:设步行速度为a,小亮家到学校的距离为x,则,解得:x=5.2答:小亮家到学校的距离是5.2千米.7.解:设甲、乙两地的距离为x千米,4小时30分钟=小时,45分钟=小时,依题可列方程:,解得:x=360.答:甲、乙两地的距离为360千米.8.解:设A、B两地间的距离是xm,x+400=3×700.解得x=1700.答:A、B两地间的路程是1700m.9.解:∵正五边形ABCDE的周长为2000米,∴边长为400米,设x分钟后,甲、乙两人2人均在五边形的顶点,第一次开始行走在同一条边上.50x﹣46x=400,解得x=100.此时甲走了5000米,5000÷400=12…200米,还有200米才到五边形的一个顶点,200÷50=4分,∵4分钟后乙还在这一边上,∴104分后,甲、乙两人第一次开始行走在同一条边上.答:104分后,甲、乙两人第一次开始行走在同一条边上.10.解:160人分成4组,每组40人,第一组先坐车至A再步行,第二组先步行至B再坐车至C再步行,第三组先步行至D再坐车至F再步行,第四组一直步行至E最后坐车,四组同时到达目的地;设每组步行t小时,则坐车=1.2﹣0.1t小时,依题意得:50(t+1.2﹣0.1t)+5t×4×2=60×(4×2﹣1),解得:t=.则最短时间=t+1.2﹣0.1t=1.2+×=5(小时).答:这个最短时间是5小时.。
最新人教版七年级上册数学一元一次方程经典应用题及答案
知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润/商品成本价×100% (3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
人教版初中数学七年级上册一元一次方程与实际问题《行程问题追及相遇问题》
答:B车行了3小时后与A车相遇。
变式练习
1. 甲、乙两地路程为 180 千米,一人
骑自行车从甲地出发每时走 15 千米,另 一人骑摩托车从乙地出发,已知摩托车 速度是自行车速度的 3倍,若两人同时出 发,相向而行,问经过多少时间两人相
遇?
例 2:小明每天早晨要在 7: 20 之前赶到距离家
归纳
一.画线段分析图
二.分析数量关系,找等量关系式(路程)
三.设出合适的未知数 四.列出方程
作业
练习册:P68例2、P76第10题、 P81放飞思维、P83第4题,
精讲例题
例1:A、B两车分别靠在相距240千米
的甲、乙两地,A车每小时行50千米,B 车每小时行30千米。 若两车同时相向而行,请问B车行了多 长时间后与A车相遇?
线段图分析:
甲 A 50x 240千米 30x B 乙
解:设B车行了x小时后与A车相遇 A车路程+B车路程=相距路程 50x+30x=240 解得x=3
家 小明80×5
1000米 80x ?
学校
爸爸
180x
解:设爸爸追上小明用了x小时 小明先行路程+小明后行路程=爸爸路程
80×5+80x =180x
解得x=4 答:爸爸追上小明需要4分钟
变式练习
1.若明明以每小时4千米的速度行驶上学,哥哥半小时后 发现明明忘了作业,就骑车以每小时8千米追赶,问哥哥需要 多长时间才可以送到作业?
爸发现他忘了带语文书,于是,爸爸立 即以 180 米 /分的速度去追小明,并且在 途中追上他。爸爸追上小明用了多少时 间?
例 2:小明每天早晨要在 7: 20 之前赶到距离家
1000米的学校上学,小明以80米/分的速度出发, 5分钟后,小明的爸爸发现他忘了带语文书,于是, 爸爸立即以 180 米 / 分的速度去追小明,并且在途 中追上他。爸爸追上小明用了多少时间?
人教版七年级上册数学第三章《一元一次方程》:相遇与追击类问题应用题综合练习题4(含答案)
人教版七年级上册数学第三章《一元一次方程》:相遇与追击类问题应用题综合练习题41.小王每天去体育场晨练,都见到一位田径队的叔叔也在锻炼.两人沿四百米跑道跑步,每次总是小王跑2圈的时间,叔叔跑3圈.一天,两人在同地反向而跑,小王看了一下记时表,发现隔了32秒钟两人第一次相遇.求两人的速度.第二天小王打算和叔叔在同地同向而跑,看叔叔隔多少时间再次与他相遇.你能先给小王预测一下吗?2.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.3.“五•一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?4.已知甲乙两人在一个200米的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲乙两人分别从A、C两处同时相向出发(如图),则:(1)几秒后两人首次相遇?请说出此时他们在跑道上的具体位置;(2)首次相遇后,又经过多少时间他们再次相遇?(3)他们第100次相遇时,在哪一条段跑道上?5.电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车速度的5倍还快20千米/时,半小时后两车相遇.两车的速度各是多少?6.一队学生去校外郊游,他们以每小时5千米的速度行进,经过一段时间后,学校要将一紧急的通知传给队长.通讯员骑自行车从学校出发,以每小时14千米的速度按原路追上去,用去10分钟追上学生队伍,求通讯员出发前,学生队伍走了多长的时间.。
七年级上册数学一元一次方程应用题及答案
1.小明买了一些苹果,一共花了100元。
如果每个苹果2元,他一共买了多少个苹果?解:设苹果的个数为x,则2x=100,解得x=50。
小明买了50个苹果。
2.甲乙两个人一起跑步,甲每分钟跑500米,乙每分钟跑400米。
他们同时出发,如果甲跑了12分钟后才追上乙,请问甲跑了多少米?解:设甲跑了x米,则12分钟后甲共跑了12*500=6000米。
乙已经跑了400*12=4800米。
所以甲比乙多跑了6000-4800=1200米。
3.一辆汽车以每小时60公里的速度行驶,从A地到B地全程300公里。
如果汽车从A地出发一段时间后遇到雨,速度减少为每小时50公里,这时到达B地需要多少时间?解:设汽车在遇到雨前行驶了t小时。
则在遇到雨前汽车已经行驶了60t公里。
从遇到雨到到达B地,汽车的速度变为50公里/小时,所以这段路程需要的时间为(300-60t)/50小时。
所以汽车从A地到B地一共需要的时间为t+(300-60t)/50小时。
4.小明爸爸的年龄是小明年龄的3倍,两人的总年龄是60岁。
请问小明的年龄是多少?解:设小明的年龄为x岁,则小明爸爸的年龄为3x岁。
根据题意,有x+3x=60,解得x=15、所以小明的年龄是15岁。
5.一只小猫每天要吃掉它体重的1/10的食物,如果小猫每天吃1斤食物,请问它需要多少天才能吃完自己的体重?解:设小猫需要吃x天才能吃完自己的体重。
根据题意,有x*(1/10)=1,解得x=10。
所以小猫需要10天才能吃完自己的体重。
6.高铁的速度是普通列车的2倍,假设普通列车从A地到B地需要5小时,高铁从A地到B地需要多少小时?解:设高铁从A地到B地需要x小时。
根据题意,有5/x=2,解得x=2.5、所以高铁从A地到B地需要2.5小时。
7.一个矩形的长度是宽度的2倍,如果周长为30米,请问这个矩形的长和宽各是多少米?解:设矩形的宽度为x米,则矩形的长度为2x米。
根据题意,有2*(x+2x)=30,解得x=4、所以矩形的长度为8米,宽度为4米。
(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:相遇与追击类问题综合练习(附解析)
《一元一次方程》应用题分类:相遇与追击类问题综合练习1.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)2.一架飞机往返于两城之间,顺风需要5小时30分,逆风时需6小时,已知风速是每小时24千米,求两城之间的距离.3.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?4.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开出时间迟到15分钟.若李伟打算在火车开出前10分钟到达火车站,求李伟此时骑摩托车的速度该是多少?5.一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们首次相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们首次相遇?6.运动场跑道周长400m,爷爷跑步的速度是小红的.(1)他们从同一起点沿跑道的相反方向同时出发,min后两人第一次相遇,求他们的跑步速度;(2)如果他们第一次相遇后小红立即转身也沿爷爷的方向跑,那么几分钟后他们再次相遇?7.某学校的一名学生从家到校去上课,他先以每小时4千米的速度步行了全程的一半后,再搭上速度为20千米/时的顺路班车,所以比原来需要的时间早到了一小时,问他家到学校的距离是多少千米?8.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?9.列方程解应用题:成都到雅安的高速公路全长147千米,上午八时一辆货车由雅安到成都,车速是每小时60千米,半小时后,一辆小轿车从雅安出发去追赶货车,车速是每小时80千米.问:小轿车从雅安出发到追到货车用了多少小时?10.某中学租用两辆小汽车(速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛.每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是5千米/时.(人上下车的时间不记)(1)若小汽车送4人到达考场后再返回到出故障处接其他4人.请你通过计算说明能否在截止进考场的时刻前到达考场?(2)带队老师提出一种方案:先将4人用车送到考场,另外4人同时步行前往考场,小汽车到达考场后返回再接步行的4人到达考场.请你通过计算说明方案的可行性.(3)所有学生、老师都到达考场,最少需要多少时间?参考答案1.解:设连云港至徐州客运专线的铁路全长为xkm,列方程得:﹣=260,1.7x=358.8,解得x=,≈352km/h.答:提速后的火车速度约是352km/h.2.解:设两城之间的距离为x千米,由题意得:﹣=24×2解得:x=3168答:两城之间的距离为3168千米.3.解:由题目分析,根据时间差可列一元一次方程:x﹣x=,即:x=,解得:x=30千米.答:小张家到火车站有30km.4.解:设火车开出时间为x小时,由题意得:30(x﹣)=18(x+),解得x=1.设李伟骑车速度为每小时y千米,y==27.故李伟骑车速度为每小时27千米.5.解:(1)设甲、乙两人同时同地反向出发,x分钟后他们首次相遇.则(550+250)x=400,解得x=.故甲、乙两人同时同地反向出发,分钟后他们首次相遇.(2)设甲、乙两人同时同地同向出发,y分钟后他们首次相遇.则(550﹣250)y=400,解得y=.故甲、乙两人同时同地同向出发,分钟后他们首次相遇.6.解:(1)设小红的跑步速度是xm/min,则爷爷跑步的速度是xm/min,由题意得:x+×x=400,解得:x=200.x=120.答:小红的跑步速度是200m/min,则爷爷跑步的速度是120m/min.(2)设y分钟后他们再次相遇.由题意得:200y﹣120y=400,解得:y=5.答:5分钟后两人首次相遇.7.解:设他家到学校的距离是x千米,﹣1=,5x﹣40=x,x=10,故他家到学校的距离是10千米.8.解:设平路所用时间为x小时,29分=小时,25分=小时,则依据题意得:10(﹣x)=18(),解得:x=,则甲地到乙地的路程是15×+10×()=6.5km,答:从甲地到乙地的路程是6.5km.9.解:设轿车从出发到追上货车用了x小时,由题意得:60×+60x=80x解得:x=1.5;答:轿车从出发到追上货车用了1.5小时.10.解:(1)所需要的时间是:15×3÷60×60=45分钟,∵45>42,∴不能在截至进考场的时刻前到达考场;(2)先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.先将4人用车送到考场所需时间为=0.25(h)=15(分钟).0.25小时另外4人步行了1.25km,此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后与先步行的4人相遇,5t+60t=13.75,解得t=.汽车由相遇点再去考场所需时间也是h.所以用这一方案送这8人到考场共需15+2××60≈40.4<42.所以这8个人能在截止进考场的时刻前赶到;(3)8人同时出发,4人步行,先将4人用车送到离出发点xkm的A处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场,由A处步行前考场需(h),汽车从出发点到A处需(h)先步行的4人走了5×(km),设汽车返回t(h)后与先步行的4人相遇,则有60t+5t=x﹣5×,解得t=,所以相遇点与考场的距离为:15﹣x+60×=15﹣(km).由相遇点坐车到考场需:(﹣)(h).所以先步行的4人到考场的总时间为:(++﹣)(h),先坐车的4人到考场的总时间为:(+)(h),他们同时到达则有:++﹣=+,解得x=13.将x=13代入上式,可得他们赶到考场所需时间为:(+)×60=37(分钟).∵37<42,∴他们能在截止进考场的时刻前到达考场.。
一元一次方程追及相遇问题
一元一次方程追及相遇问题追及问题两个运动着的物体从不同的地点出发,同向运动。
慢的在前,快的在后,经过若干时间,快的追上慢的。
有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题。
解答这类问题要找出两个运动物体之间的距离和速度之差,从而求出追及时间。
解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。
基本公式有:追及(或领先)的路程÷速度差=追及时间速度差×追及时间=追及(或领先)的路程追及(或领先)的路程÷追及时间=速度差要正确解答有关“行程问题”,必须弄清物体运动的具体情况。
如:运动的方向(相向、相背、同向),出发的时间(同时、不同时),出发的地点(同地、不同地)、运动的路线(封闭、不封闭),运动的结果(相遇、相距多少、追及)。
相遇问题两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。
这类问题即为相遇问题。
相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
则有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。
相遇问题的核心是“速度和”问题。
利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上册一元一次方程的应用-追及相遇问题(含答案)一、单选题1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米.若甲让乙先跑10米,设甲跑x秒后可以追上乙,则下列四个方程中不正确的是()A.7x=6.5x+10B.7x-10=6.5x C.(7-6.5)x=10D.7x=6.5x-102.甲、乙两列火车在平行轨道上相向而行,已知两车自车头相遇到车尾相离共需8 s.若甲、乙两车的速度之比为3∶2,甲车长200 m,乙车长280 m,则甲、乙两车的速度分别为( ) A.30 m/s,20 m/s B.36 m/s,24 m/sC.38 m/s,22 m/s D.60 m/s,40 m/s3.明月从家里骑车去游乐场,若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟,设她家到游乐场的路程为xkm,根据题意可列出方程为()A.851060860x x-=-B.851060860x x-=+C.851060860x x+=-D.85108x x+=+4.如图,甲船从北岸码头A向南行驶,航速为36千米/时;乙船从南岸码头B向北行驶,航速为27千米/时.两船均于7:15出发,两岸平行,水面宽为18.9千米,则两船距离最近时的时刻为()A.7:35B.7:34C.7:33D.7:325.甲乙两人练习跑步,甲先让乙跑10米,则甲5秒钟追上乙,若甲让乙先跑2秒,甲跑4秒就追上乙,甲乙两人每秒分别跑()A.4米、6米B.2米、4米C.6米、4米D.4米、2米6.甲、乙两人从学校到博物馆去,甲每小时走 4km ,乙每小时走 5km ,甲先出发 0.1h ,结果乙还比甲早到 0.1h .设学校到博物馆的距离为 xkm ,则以下方程正确的是( ) A.+0.1=0.145x x- B.-0.1=0.145x x+ C.=0.145x x- D.4x ﹣0.1=5x+0.17.甲、已两地相距50千米,小明、小刚分别以6?千米/时、4千米/时从甲乙两地同时出发,小明领一只小狗以10千米/时奔向小刚,碰到小刚后奔向小明,碰到小明后奔向小刚…一直到两人相遇,小狗共跑了多少路程?( ) A.25千米B.30千米C.35千米D.50千米8.A 、B 两地相距900千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是( ) A .4小时 B .4.5小时 C .5小时 D .4小时或5小时 二、填空题9.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是_____千米/时.10.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是________分.11.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,若A ,C 两地距离为2千米,则A ,B 两地之间的距离是_____.12.甲、乙两人练习赛跑,若甲让乙先跑10米,则甲跑5秒种就能追上乙.若甲让乙先跑2秒钟,则甲跑4秒种就能追上乙,则甲每秒跑____米,乙每秒跑____米.13.在一段双轨铁道上,两人辆火车迎头驶过,A 列车车速为20米/秒,B 列车车速为25米/秒,若A 列车全长200米,B 列车全长160米,两列车错车的时间为____秒。
14.甲、乙两站相距36千米,一列慢车从甲站出发,每小时行52千米,一列快车从乙站出发,每小时行70千米,两车同时开出,同向而行,快车在后,________小时追上慢车。
15.小明以每小时8千米的速度从甲地到达乙地,回来时走的路程比去时多3千米,已知回来的速度为9千米/时,这样回来时比去时多用18小时,求甲、乙两地的原路长.三、解答题16.A,B两地相距120 km,甲骑自行车,乙骑摩托车,都从A地出发,同向而行,甲比乙早出发2 h,甲的速度为15 km/h,乙的速度为60 km/h.求:(1)甲出发多少小时后,乙追上甲?(2)乙到达B地后立即返回,途中在何处遇上甲?17.一列火车匀速行驶经过一条隧道,从车头进入隧道到车尾离开隧道共需45 s,而整列火车在隧道内的时间为33 s,火车的长度为180 m,求隧道的长度和火车的速度.18.一架飞机在A,B两城市之间飞行,风速为20千米/时,顺风飞行需要8小时,逆风飞行需要8.5小时.求无风时飞机的飞行速度和A,B两城市之间的航程.19.甲、乙两人同时从A地出发去B地,甲骑自行车,骑行速度为10 km/h,乙步行,行走速度为6 km/h.当甲到达B地时,乙距B地还有8 km.求甲走了多少时间?A,B两地的路程是多少?20.甲、乙两地的路程为600km,一辆客车从甲地开往乙地.从甲地到乙地的最高速度是每小时120km,最低速度是每小时60km.(1)这辆客车从甲地开往乙地的最短时间是h,最长时间是h.(2)一辆货车从乙地出发前往甲地,与客车同时出发,客车比货车平均每小时多行驶20km,3h两车相遇,相遇后两车继续行驶,各自到达目的地停止.求两车各自的平均速度.(3)在(2)的条件下,甲、乙两地间有两个加油站A、B,加油站A、B相距200km,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与加油站B的路程.21.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?22.某人原计划在一定时间内由甲地步行到乙地,他先以4 km/h的速度步行了全程的一半,又搭上了每小时行驶20 km的顺路汽车,所以比原计划需要的时间早到了2 h.甲、乙两地之间的距离是多少千米?23.甲、乙两人从400米环形跑道的点A处背向同时出发,8分钟后两人第三次相遇.已知每分钟乙比甲多行6米,请问甲的速度是多少?乙总共走过的路程是多少?24.甲、乙两站相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,则经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),则经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),则经过多长时间两车相距300千米?25.A、B两站相距300千米,一列快车从A站开出,行驶速度是每小时60千米,一列慢车从B站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)26.小明与小彬骑自行车去郊外游玩,事先决定早8点出发,预计每小时骑7.5千米,上午10时可到达目的地,出发前他们决定上午9点到达目的地,那么每小时要骑多少千米?27.甲、乙两人骑自行车同时从相距80千米的两地出发,相向而行,2小时后相遇,已知甲每小时比乙多走2.4千米,求甲、乙每人每小时走多少千米?28.某行军纵队以7千米/时的速度行进,队尾的通讯员以11千米/时的速度赶到队伍前送一封信,送到后又立即返回队尾,共用13.2分钟,求这支队伍的长度.29.甲、乙两列火车从相距480 km的A、B两地同时出发,相向而行,甲车每小时行80 km,乙车每小时行70 km,问多少小时后两车相距30 km?30.某体育场的环形跑道长400米,甲、乙两人在跑道上练习,甲平均每分钟跑250米,乙平均每分钟跑290米,现在两人同时从同地同向出发,经过多长时间两人才能再次相遇?参考答案1.D 【解析】 【分析】先理解题意找出题中存在的等量关系:甲x 秒所跑的路程=乙x 秒所跑的路程+10米.根据此等式列出方程即可. 【详解】先找出等量关系:s 甲-s 乙=10. 可知A .7x =6.5x +10 B .7x -10=6.5x C .(7-6.5)x =10都正确, D .7x =6.5x -10错误, 故选D. 【点睛】本题考查了列方程解应用题,列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找. 2.B 【解析】 【分析】利用甲、乙两车速度之比是3:2,可设甲车的速度为3x m/s ,则乙车的速度为2x m/s ,利用两车的速度和跑完两车的长度可列方程()832200280x x +=+,然后解方程求出x ,则计算3x 和2x 的值即可. 【详解】解:设甲车的速度为3x m/s ,则乙车的速度为2x m/s , 根据题意得()832200280x x +=+,解得12x =m/s ,则336x =m/s ,224x =m/s .答:甲车的速度为36 m/s ,则乙车的速度为24 m/s . 故答案选:B . 【点睛】本题考查了一元一次方程的应用.(1)解题的关键是理解两车自车头相遇到车尾相离的意思;(2)易错点:把两车行驶的路程看作是其中一列火车的长度. 3.C 【解析】 【分析】她家到游乐场的路程为xkm ,根据时间=路程÷速度结合“若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟”,即可得出关于x 的一元一次方程,此题得解. 【详解】她家到游乐场的路程为xkm ,根据题意得:x 8x 51060860+=-, 故选C . 【点睛】本题考查了由实际问题抽象出一元一次方程,弄清题意,找准等量关系,正确列出一元一次方程是解题的关键. 4.C 【解析】 【分析】根据平行线的性质得出当两船距离最近,36x=18.9﹣27x,进而求出x即可得出答案即可.【详解】解:设x分钟后两船距离最近,当如图EF∶BD,AE=DF时,两船距离最近,根据题意得出:36x=18.9﹣27x,解得:x=0.3,0.3小时=0.3×60分钟=18(分钟),则两船距离最近时的时刻为:7:33.故选:C.【点睛】此题主要考查了平行线的之间的距离以及一元一次方程的应用,根据已知得出等式方程是解题关键.5.C【解析】【分析】设甲每秒跑x米,则乙每秒跑(x-2)米,根据题意列出方程,求出方程的解即可得到结果。
【详解】解:设甲每秒跑x米,则乙每秒跑1025x x-=-(米),依据题意得:46(2)x x =-, 去括号的:4612x x =-, 解得:6x =,则甲每秒跑6米,乙每秒跑4米。