七年级数学上册一元一次方程的复习课件

合集下载

3.1.1一元一次方程-人教版七年级数学上册课件(共20张PPT)

3.1.1一元一次方程-人教版七年级数学上册课件(共20张PPT)

解法二;设快车所用的时间为t小时,则慢车所用的
时间为(t+1)小时,则可列列方程为:
60(t+1)=70t, 求出时间t后再代入求路程。
能列算式吗?
2020/9/9
学习赢得智慧人生
8
数学是思维的体操
归纳:列方程时,要先设未知数, 然后根据问题中的数量关系,列出含 有未知数的方程
例2 根据下列问题,设未知数并列出方程: (1) 用一根长24 cm的铁丝围成一个正方形,正方 形的边长是多少? (2)一台计算机已使用1700 h,预计每月 再使用150 h,经过多少月这台计算机的使 用时间达到规定的检修时间2450 h? (3) 某校女生占全体学生数的52%,比男生 多80人,这个学校有多少学生?
数学是思维的体操
3.1 从算式到方程
3.1.1 一元一次方程
2020/9/9
学习赢得智慧人生
1
数学是思维的体操
学习目标
1.通过处理实际问题,让学生体验从算术方法到代数 方法是一种进步.
2.掌握方程、一元一次方程的定义以及解的概念, 学会判断某个数值是不是一元一次方程的解.(重 点) 3.初步学会如何寻找问题中的等量关系,并列出 方程. (难点)
70t
70 140 210 280 350 420 490 …
2020/9/9
学习赢得智慧人生
15
数学是思维的体操
随堂练习 检验-2,2,3,5哪个是方程 2x-3 = 5x-15的解?
怎样判断一个数是不是方程的解?
先将数值代入方程左右两边进行计算, 若左边=右边,则是方程的解,反之,则不是.
2020/9/9
2020/9/9
学习赢得智慧人生
10

3人教版七年级数学上册第三章 3.1.1 一元一次方程 优秀教学PPT课件

3人教版七年级数学上册第三章  3.1.1 一元一次方程 优秀教学PPT课件

【素养提升】 18.(12分)某通讯公司推出两种手机付费方式:甲种方式不交月租费, 每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费 0.10元.两种方式不足1分钟均按1分钟计算. (1)如果一个月通话x分钟,那么用甲种方式付费应付话费多少元?用乙 种方式应付话费多少元? (2)如果求一个月通话多少分钟时两种方式的费用相同,可以列出一个怎 样的方程?它是一元一次方程吗? 解:(1)甲种方式应付话费0.15x元,乙种方式应付话费(18+0.10x)元 (2)0.15x=18+0.10x,是一元一次方程
17.(10分)根据题意列出方程: (1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种 报纸共15份,他买的两种报纸各多少份? (2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张 10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张? (只列方程) 解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方 程,得0.5x+0.4(15-x)=7 (2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得 10x+60%×10×(128-x)=912
当x = 4,5,6时呢?
1.若k是方程 2x=3 的解,则 4k+2=______.
2.若 xn2 4 0 是关于x的一元一次方程,则
n=______.
3.已知方程 x a 1 1是关于x的一元一次方程,则
a=______.
1. 一元一次方程的概念: 只含有一个未知数,未知数的次数是1,等号两 边都是整式,这样的方程叫做一元一次方程.
回顾思考
1.你知道什么叫做方程吗?
方程: 含有未知数的等式叫方程.

人教版七年级数学上册《一元一次方程复习课(一)》课件

人教版七年级数学上册《一元一次方程复习课(一)》课件
3 62 解:去分母,得: 去括号,得: 移项,得: 合并同类项,得: 系数化为
7、甲、乙两名同学解方程: 3
6 时,
x 3 1 4 3x
3
6
甲的解法:
去分母,得: (2 x 3) 6 4 3 x
去括号,得: 2 x 6 6 4 3 x
移项,得: 2 x 3 x 6 4 6
谢谢观赏
You made my day!
我们,还在路上……
x 3 1 4 3x
3
6
乙的解法:
去分母,得: (2 x 3) 1 ( 4 3 x )
去括号,得: 2 x 6 1 4 3 x
移项,得: 2 x 3 x 1 4 6
合并同类项,得: 5 x 8
合并同类项,得: x 3
系数化为 1,得: x 8 5
系数化为 1,得: x 3
解 : 3 x 1 1 5 x 2
3x 3 1 5x 2
3x 5x 3 1 2
2x 1 2
x1 4
是先 去分母好, 还是先 去括号好呢?
想一想,做一做
9、解方程:
x 0.1x0.0220 0.3 0.02
解 : 10x 10 x 2 2 0
3
2
20 x 3 10 x 2 12 0
BC、由 -2(1-
C 、3由 (26x)3,得 39x3 2
D 、5 由 6(3x)得 ,51 86x 2
5 、 解下列方程,去分母正确的是(D )
A、2由 x1,得 2x3 3
B、2由 x1,得 63x3 3
C、2由 x0,得 2x3 3
D 、1 由 3x1,得 13x1 2
(《学习指导》第62页 ) 6、解方程:x1x21(4x)

兴和县师院附中七年级数学上册 第三章 一元一次方程单元复习课件 新版新人教版

兴和县师院附中七年级数学上册 第三章 一元一次方程单元复习课件 新版新人教版
第3章 一元一次方程
单元复习(三) 一元一次方程
考点一 一元一次方程及其解的概念
1.下列方程中是一元一次方程的是( C )
A.1-x2 =3y-2 B.1y -2=y
C.3x+1=2x
D.3x2+1=0
2.以下方程中 , 以x=-2为解的方程是〔 C〕
A.5x-3=6x-2 B.3x-2=2x C.2x-1=3x+1 D.2x+3=4x-2
=6(天),即需要 6 天完成
16.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生 产3种差别型号的电视机 , 出厂价分别为A种每台1500元 , B种每台2100元 , C种每台2500元. (1)假设家电商场计划用9万元同时购进两种差别型号的电视机共50台 , 请 你研究一下商场的进货方案 ; (2)假设商场销售一台A种电视机可获利150元 , 销售一台B种电视机可获利 200元 , 销售一台C种电视机可获利250元 , 那么为了使销售时获利最多 , 在 (1)中所求得的方案中 , 你选择哪种方案 ?
思考 : (4)中能把〞1.80”后面的〞0”去掉吗 ?
当堂练习
1.用四舍五入法按要求取近似值 : 〔1〕75 436〔精确到百位〕 75 436≈7.54×104 〔2〕0.785〔精确到百分位〕 0.785≈0.79 2、以下由四舍五入ห้องสมุดไป่ตู้到的近似数 , 各精确到哪一位 ?
〔1〕 600万 ; 〔2〕 7.03万 ;
解:x=11013
x-1 (4) 2
=1-x+4 3

解 : x=1
4-6x (5) 0.01
-6.5=0.002.-024x
-7.5.
解 : x=1
10.已知 y=3 是方程 6+14 (m-y)=2y 的解,求关于 x 的方程 2m(x -1)=(m+1)(3x-4)的解.

北师大版七年级数学上册第五章一元一次方程认识方程课件

北师大版七年级数学上册第五章一元一次方程认识方程课件
C项,把x=1代入方程,得左边=1-4=-3,右边=5-2=3,左边≠右 边,即x=1不是此方程的解.
D项,把x=1代入方程,得左边=1 1 =1,右边=1-2=-1,左边≠右
2
边,即x=1不是此方程的解. 故选B.
知识点4 根据实际问题列方程
4.(教材变式·P137T1(1))(2021吉林中考)古埃及人的“纸草
x+ 1 =1,③ 1 x= 1 ,④x2-3=0,其中是一元一次方程的个数为( A )
x
22
A.1
B.2
C.3
D.4
解析 ①x-y=0中含有两个未知数,不是一元一次方程;
②x+ 1 =1不是整式方程,不是一元一次方程;
x
③ 1 x= 1 是一元一次方程;
22
④x2-3=0中未知数的次数是2,不是一元一次方程.
3 72
解析 由题意可得 2 x+ 1 x+ 1 x+x=33.故选C.
327
5.根据所给问题,设未知数,列出方程. 从60 cm的木条上截去2段同样长的木条,还剩下10 cm长的 短木条,截去的每段长为多少?
解析 设截去的每段长为x cm, 根据题意可列方程为60-2x=10.
能力提升全练
6.(2024辽宁沈阳辽中期末,7,★★☆)下列各方程:①x-y=0,②
书”中记载了一个数学问题:一个数,它的三分之二,它的一
半,它的七分之一,它的全部,加起来总共是33.若设这个数
是x,则所列方程为 ( C )
A. 2 x+ 1 x+x=33
37
B. 2 x+ 1 x+ 1 x=33
327
C. 2 x+ 1 x+ 1 x+x=33

人教版七年级数学上册第三章《一元一次方程》单元复习课件

人教版七年级数学上册第三章《一元一次方程》单元复习课件

方向环行.若甲的速度是乙的速度的3倍,则它
们第2015次相遇在边AB 上.
三、解答题
1.(2015春•广饶县校级期中)已知a、b互为相反数,c、d互为倒
a b 数,m的绝对值是2,求 2m 2 1 4m 3cd 的值.
解:根据题意,知 a+b=0 ① cd=1 ② |m|=2,即m=±2 ③ 把①②代入原式,得 原式=0+4m﹣3×1=4m﹣3 ④ (1)当m=2时,原式=2×4﹣3=5; (2)当m=﹣2时,原式=﹣2×4﹣3=﹣11. 所以,原式的值是5或﹣11.
【例1】已知方程(3m-4)x2-(5-3m)x-4m=-2m是关于x的一元一次方程, 求m和x的值.
【思路点拨】若一个整式方程经过化简变形后,只含有一个未 知数,并且未知数的次数都是1,系数不为0,则这个方程是一 元一次方程. 【分析】解答这类问题,一定要严格按照一元一次方程的定义.方 程(3m-4)x2-(5-3m)x-4m=-2m是关于x的一元一次方程,就是说x的二 次项系数3m-4=0,而x的一次项系数5-3m≠0,m的值必须同时符合 这两个条件.
3
4
【解析】解:原方程可化为:(4m 3)x 4mn 6m 2m (2n 3)
当 m 3 时,原方程有唯一解:x 4mn 6m ;
4
4m 3
当 m 3 , n 3 时,原方程无数个解;
4
2
当 m 3 , n 3 时,原方程无解;
4
2
【思路点拨】这个方程化为标准形式后,未知数x的系数和常数都是以字
2.目标解析 (3)使学生理解列一元一次方程解决实际问题的一般步骤:设未知数、列 方程、解方程、检验、答题;通过对行程类应用题中的“环形相遇问题” 和“环形追及问题”的研究,使学生经历从实际问题中建立方程模型, 以方程为工具,分析、解决实际问题的过程,进一步体会方程是解决实 际问题的有力工具;体会列方程中蕴涵的“数学建模思想”和解方程中 蕴涵的“化归思想”.

2024年沪科版七年级数学上册 3.2 一元一次方程及其解法 课时1(课件)

2024年沪科版七年级数学上册 3.2 一元一次方程及其解法  课时1(课件)

随堂练习
【教材P100 练习 第3题】
3.解下列方程: (1)5x+21=7-2x;
11 (2)2x- 2=- 2 x+2;
(3)0.5(m+8)-0.6(2m-7)=1.9;(4)3(2y+1)=2(1+y)+3(y+3).
(1)解:移项,得5x+2x = 7-21. 合并同类项,得7x = -14. 两边同除以7,得x = -2.
定义:只含有一个未知数(元),未知数的次数是1,且等式两 边都是整式的方程叫作一元一次方程.
新知探究 知识点1 一元一次方程
练一练
下列式子中,是一元一次方程的是__③__⑥___(填序号).
① 1+4=2+3;② 1 x + y=1;③ x =3;④ x2-2x-1=0;

2
2 =3;⑥ 6+5y=2y-3.
解下列方程:
(1)8x=4x+1; 解:移项,得8x-4x = 1.
合并同类项,得 4x = 1.
两边同除以4,得
x
=
1 .
4
(2)2-3x = 5x+10. 解:移项,得-3x-5x = 10-2. 合并同类项,得-8x = 8. 两边同除以-8,得x = -1.
注意:①方程的各项包括它前面的符号; ②移项时,不管是把某一项从左边移到右边还是从右 边移到左边,都要变号.
随堂练习
3.解下列方程: (1)5x+21=7-2x;
(2)2x- 1 =- 1 x+2; 22
(3)0.5(m+8)-0.6(2m-7)=1.9;(4)3(2y+1)=2(1+y)+3(y+3).

人教版七年级上册实际问题与一元一次方程PPT精品课件

人教版七年级上册实际问题与一元一次方程PPT精品课件
3.4实际问题与一元一次方程
第二课时
工程问题
学习目标: 1.会通过列方程解决“工程问题”; 2.掌握列方程解决实际问题的一般步骤; 3.通过列方程解决实际问题的过程,体会建模思想.
学习重点: 建立模型解决实际问题的一般方法.
学习难点: 寻找题中隐含的等量关系。
自研共探:
请同学们带着下列问题阅读教科书100页到101页例 2内容(6分钟)同时思考: (1)工作量、工作时间、工作效率之间有何关系? (2)本题隐含的等量关系是什么?

5.以景物衬托情思,以幻境刻画心理 ,尤其 动人。 凄清、 冷落的 景色, 衬托出 人物的 惆怅、 幽怨之 情,并 为全诗 定下了 哀怨不 已的感 情基调 。

6.石壕吏和老妇人是诗中的主要人物 ,要立 于善于 运用想 像来刻 画他们 各自的 动作、 语言和 神态; 还要补 充一些 事实上 已经发 生却被 诗人隐 去的故 事情节 。

3.本题运 用说明 文限制 性词语 能否删 除四步 法。不 能。极 大的一 词表程 度,说 明绘画 的题材 范围较 过去有 了很大 的变化 ,删去 之后其 程度就 会减轻 ,不符 合实际 情况, 这体现 了说明 文语言 的准确 性和严 密性。

4.开篇写湘君眺望洞庭,盼望湘夫人 飘然而 降,却 始终不 见,因 而心中 充满愁 思。续 写沅湘 秋景, 秋风扬 波拂叶 ,画面 壮阔而 凄清。
解:设乙还需x小时完成此工作, 依题意,得:
9 x 1 15 10
去分母,得 18+3x=30
移项,得
3x = 30 - 18
合并同类项,得 3x=12
系数化为1,得
x=4
答:乙还要4小时完成.
3.整理一批图书,由一个人做要40小时完成.

数学北师大七年级上册5.1《认识一元一次方程》【 课件】 (共28张PPT)

数学北师大七年级上册5.1《认识一元一次方程》【 课件】 (共28张PPT)

观察这三个方程,有什么共同点? ⑴ ⑵ ⑶
在一个方程中,只含有一个未知数(元),并且未知数的 指数是1(次),这样的方程叫做一元一次方程。
特别注意:一元一次方程是整式方程。
概念深化
判断下列各式是不是一元一次方程,是的打“√”,不是的打“x”。
(1) -2+5=3
( x ) (2) 3x-1=0
( Байду номын сангаас)
作业
习题5.1 第2,3题
谢谢欣赏
学生活动: 1.在规定时间内完成下列题目中至少2题 2.四人组顺时针交换批改 3.针对错误和不会的地方讨论交流 4.展示结果
根据题意列方程
1.小颖种了一株树苗,开始时树苗高为40厘米,栽种后每 周升高约15厘米,大约几周后树苗长高到1米?
2.甲、乙两地相距 22 km,张叔叔从甲地出发到乙地,每 时比原计划多行走1 km,因此提前 12 min 到达乙地,张 叔叔原计划每时行走多少千米?
4.甲、乙两队开展足球对抗赛,规定每队胜一场得3分, 平一场得1分,负一场得0分。甲队与乙队一共比赛了10 场,甲队保持了不败记录,一共得了22 分,甲队胜了多 少场?平了多少场?(根据题意列方程)
解:设甲队胜了x场,则乙胜了(10 -x)场 由题意得 3 x+(10-x)=22
课堂小结
1.数学就在我们身边,并在对其它实际问题研究中感受方 程作为刻画现实世界有效模型的作用 2.方程和一元一次方程的概念 3.列方程的关键
(3) y=3
(√)
(5) 2x2-5x+1=0 ( x )
(7) 2m -n
(x)
(4) x+y=2 (6)x -1 = 5
x (8) S=πr 2

人教版七年级上册数学《解一元一次方程》合并同类项与移项说课教学课件复习提高

人教版七年级上册数学《解一元一次方程》合并同类项与移项说课教学课件复习提高

课堂导入 希腊数学家丢番图(公元3~4世纪)的 墓碑上记载着: “他的生命的六分之一是幸福童年; 再活了他生命的十二分之一,两颊长起 了细细的胡须 ; 他结了婚,又度过了一生的七分之一; 再过五年,他有了儿子,感到很幸福; 可是儿子只活了他父亲年龄的一半; 儿子死后,他在极度悲痛中度过了四年, 也与世长辞了.” 根据以上信息,你知道丢番图活了多少岁吗?
解:设买羊的人数为 x 人.根据题意,得5x+45=7x+3. 移项,得5x-7x=3-45. 合并同类项,得-2x= -42. 系数化为1,得x》中有“盈不足术” 的问题,原文如下:“今有共买羊,人出五,不足四 十五;人出七,不足三. 问人数、羊价各几何?”题意 是:若干人共同出资买羊,每人出5元,则差45 元; 每人出7元,则差3元,求人数和羊价各是多少.
系数化为1,得 x=6. 所以所分的银子共有7x+4=42+4 =46(两).
3.列方程解应用题:《九章算术》中有“盈不足术” 的问题,原文如下:“今有共买羊,人出五,不足四 十五;人出七,不足三. 问人数、羊价各几何?”题意 是:若干人共同出资买羊,每人出5元,则差45 元; 每人出7元,则差3元,求人数和羊价各是多少.
例 2 教材补充例题 请按下列步骤制作一个四棱柱. 步骤 1:如图 4-4-2(1),将一张正方形的纸用对折的方式, 折出 16 个大小一样的小正方形; 步骤 2:如图 4-4-2(2),剪下图中的阴影部分; 步骤 3:如图 4-4-2(3),沿折痕折这张纸片,并用胶带纸黏 合.
图 4-4-2
4.4 课题学习 设计制作长方体形状的包装纸盒
例2 在国庆节来临之际,七年级(1)班课外活动小组计 划做一批中国结.如果每人做6个,那么比计划多做7个; 如果每人做5个,那么比计划少做13个.该小组计划做多 少个中国结?

人教部编版七年级数学上册《第三章 一元一次方程【全章】》精品PPT优质课件

人教部编版七年级数学上册《第三章  一元一次方程【全章】》精品PPT优质课件
解:设正方形的边长为x cm. 列方程 4x = 24.
(2)一台计算机已使用1700 h,预计每月 再使用150 h,经过多少月这台计算机的使用时 间达到规定的检修时间2450 h?
解: 设x月后这台计算机的使用时间达到2450 h, 那么在x月里这台计算机使用了150x h.
列方程
1700 + 150x = 2450
5. 列方程:
(1)某校七年级(1)班共有学生48人,
其中女生人数比男生人数的
4 5
多3人,这个班
有男生多少人?
解:设这个班有男生x人 x+( 4 x+3)=48 5
(2)把1400元奖学金按照两种奖项奖给22名 学生,其中一等奖每人200元,二等奖每人50 元,获得一等奖的学生有多少人? 解:设获得一等奖的学生有x人
(4)x的三分之一减y的差等于6
x y6
____3______________
(5)比a的3倍大5的数等于a的4倍
___3_a_+__5_=__4_a_______
(6)比b的一半小7的数等于a与b的和
1
___2__b_-_7_=__a_+__b_____
4. x=3,x=0,x=-2,各是下列哪个方程的解? (1)5x+7=7-2x; (2)6x-8=8x-4; (3)3x-2=4+x.
解:设甲种铅笔买了x支,乙种铅笔买了(20x)支,
0.3x+0.6(20-x)= 9
3.一个梯形的下底比上底多2 cm,高是5 cm, 面积是40 cm2,求上底.
解:设上底为x cm,
1(x+x+2)×5 = 40 2
4.用买10个大水杯的钱,可以买15个小水杯, 大水杯比小水杯的单价多5元,两种水杯的 单价各是多少元?

人教版七年级数学上册.1一元一次方程课件

人教版七年级数学上册.1一元一次方程课件

PPT素材:/sucai/
PPT图表:/tubiao/
PPT教程: /powerpoint/
个人简历:/jianli/
教案下载:/jiaoan/
PPT课件:/kejian/
数学课件:/kejian/shuxue/
美术课件:/kejian/meis hu/
物理课件:/kejian/wuli/
生物课件:/kejian/shengwu/
(5) + 2 = 5
(6)3 = 9
(7)2 − 2 = 3
(8) = 7
归纳: 1、像这种用等号“=”来表示相等关系的式子,叫等式。
2、像这样含有未知数的等式叫做方程。
练习
判断下列各式是不是方程,是的打“√”,不是的打“X”并说明原因。
PPT模板:/moban/
PPT背景:/beijing/
女生人数-男生人数=80
解:设这个学校的学生数为x,那么女生数为0.52x,
男生数为(1-0.52)x.
列方程
.
0.52 x 1 0.52 x 80
一元一次方程
4 x 24
PPT模板:/moban/
PPT背景:/beijing/
PPT下载:/xiazai/
资料下载:/ziliao/
试卷下载:/shiti/
手抄报:/shouchaobao/
语文课件:/kejian/yuwen/
英语课件:/kejian/yingyu/
科学课件:/kejian/kexue/
化学课件:/kejian/huaxue/
地理课件:/kejian/dili/
PPT素材:/sucai/
PPT图表:/tubiao/
解:∵V客=70 km/h,V卡=60 km/h
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它同解的最简的方程,从而达到求解的目的.
解:去分母,得3(y+2)-2(3-5y)=12 去括号,得3y+6-6+10y=12 合并同类项,得13y=12 12 y 未知数的系数化为1,得 13
例题4. (南京)甲车从A地出发以60 km/h的速度沿公路匀速 行驶,0.5 h后,乙车也从A地出发,以80 km/h的速度沿该公 路与甲车同向匀速行驶,求乙车出发后几小时追上甲车.
5、系数化为1
等式的性质2
两边同除以未 知数的系数, 记住未知数的 系数永远是分 母(除数), 切不可分子、 分母颠倒。
6、检验 (重点要检查, 不要功败垂成)
检验结果正 把方程的解带回 确性 原方程检验正确 性。
四、用一元一次方程解决实际问题的常见类型:




1.行程问题:路程=速度×时间 2.和差倍分问题:增长量=原有量×增长率 3.利润问题:商品利润=商品售价-商品进价 4.工程问题:工作量=工作效率×工作时间,各部分劳动量 之和=总量 5.银行存贷款问题:本息和=本金+利息,利息=本金×利 率×期数
解:设李老师用812元共买了X个,依题意可得:


38 10 36 ( x 10) 812 解得: x 22
答:李老师用812元共买了22个
8、有一件工程,由甲、乙两个工程队共同合
作完成,工期不得超过一个月,甲独做需要 50天才能完成,乙独做需要45天才能完成, 现甲乙合作20天后,甲队有任务调离,由乙 队单独工作,问此工程是否能如期完工。
【典型例题】

例题1.下列方程中,哪些是一元一次方程? 哪些不是? (1) X2+5+4X=11X; (2)2x+y=5; (3)x2-5x+6=0; (4) (2-X)/X=3; (5) .(y-1)/2+y/3=1 【思路点拨】若一个整式方程经过化简变形后,只含有一个 未知数,并且未知数的次数都是1,系数不为0,则这个方程 是一元一次方程.
三、解一元一次方程的步骤:
解一元一次方 程的步骤
主要依据
注意问题
1、去分母
等式的性 质2
注意拿这个最小公倍数乘遍 方程的每一项,切记不可漏 乘某一项,分母是小数的, 要先利用分数的性质,把分 母化为整数,若分子是代数 式,则必加括号。 严格执行去括号的法则,若 是数乘括号,切记不漏乘括 号内的项,减号后去括号, 括号内各项的符号一定要变 号。
解:设乙车出发后x小时追上甲车,依题意得 60×0.5+60x=80x,解得x=1.5. 答:乙车出发后1.5小时追上甲车.
【总结】此题的等量关系为:甲前0.5 h的 行程+甲后来的行程=乙的行程.
实战演练:
1、下列方程中,是一元一次方程的是(
(A) 2 x (C)
B

4 x 3;(B) x 0;
1 1 解: 3( x 1) 2 ( x 1) 2( x 1) 2 ( x 1)
7 5 ( x 1) ( x 1) 2 2
7( x 1) 5( x 1)
7 x 7 5x 5
2 x 12
x=-6
4 6x 2x 1 6.解方程: 3 1 2
1 (D) x 1 x .
x 2 y 1;
3a 2b 5 等式,则下列等式中不 一定成立的是( ) C 3a 1 2b 6; A 3a 5 2b; B 2 5 C 3ac 2bc 5; D a b .
2、已知
3
3
3、解方程 得( C)
解:去分母,得:2(4-6x)-6=3(2x+1).

去括号,得:8-12x-6=6x+3. 移项,合并同类项,得:-18x=1. 1 系数化为1,得:
x
18
四、应用题:
7、某文具店为促销X型计算器,优惠条件是一次 购买不超过10个,每个38元,超过10个,超过 部分每个让利2元(即每个36元),问李老师用812 元共买了多少个?
(必须掌握)
(注意细节)
(熟练,准确)
(灵活运用)







知识点: 一、方程的有关概念 1、方程的概念: (1)含有未知数的等式叫方程。 (2)在一个方程中,只含有一个未知数,并且未知数的 指数是1,系数不为0,这样的方程叫一元一次方程。 二、等式的基本性质: (1)等式两边同时加上(或减去)同一个代数式,所得 结果仍是等式。若a=b,则a+c=b+c或a – c = b – c 。 (2)等式两边同时乘以(或除以)同一个数(除数不能 为0),所得结果仍是等式。
3 x 2 5x 1
,去括号,得 3 x 2 5x 1;
(C)方程 得 x 1;
(D)方程
2 3 t ,未知数系数化为1, 3 2
x 1 x 1 0 .2 0 .5
元.
化成 3 x 6.
三、解方程:
1 1 5.解方程: 3( x 1) ( x 1) 2( x 1) ( x 1) 2 2
【答案】 (1)、(5)是一元一次方程.因为它们或等价 变形后是只含有一个未知数、并且未知数的次数是1 的方程; (2)、(3)、(4)都不是一元一次方程,因为(2)中含有 两个未知数;(3)中未知数的最高次数是2;(4)中分母 含有未知数,它不是整式方程.



举一反三:


【变式】下列说法中正确的是( ). A.2a-a=a不是等式 B.x2-2x-3是方程 式 D.等式是方程
解:设乙还需要单独工作x天可以完成工程,列方程得:
1 x 1 1 20 45 50 45
因为 20+7=27<30
解方程x=7
答:甲调离后,乙单独工作仍可以如期完成.
总结易错点:
在解方程的步骤中哪些容易出错?
1、移项不要忘变号 2、去括号时(1)勿漏乘(2)括号前 面是减号,去掉括号和减号,括号里 面各项要变号 3、去分母时(1)勿漏乘不含分母的 项(2)分子是多项式时,去掉分母要 添上括号 4、勿跳步,勿忘判断符号,常检验
x3 x 1 6 2
,去分母
1 (A) x 3 3 x. (B) x 3 3x; 1
(C) 6 x 3 3x;
(D) 6 x 3 3x;
4、下列方程变形中,正确的是( D ) (A)方程 3x 2 2 x 1 ,移项,得 3x 2 x 1 2; (B)方程
。Hale Waihona Puke C.方程是等【答案】C
例题2.
若方程3(x-1)+8=2x+3与方程 xk 2 x 的解相同,求k的值
5 3
解:解方程3(x-1)+8=2x+3,得x=-2.
2 k 2 2 xk 2 x 将x=-2代入方程 中,得. 5 3 5 3
解这个关于k的方程,得. 所以,k的值是.
2、去括号
去括号法 则、乘法 分配律
3、移项
等式的性质1
越过“=”的叫移项,属 移项者必变号;未移项 的项不变号,注意不遗 漏,移项时把含未知数 的项移在左边,已知数 移在右边,书写时,先 写不移动的项,把移动 过来的项改变符号写在 后面。 数加到了一起,而字母 及其指数均不改变。
4、合并同类项
合并同类项法则 注意在合并时,仅将系
26 k 3
26 k 3
举一反三:
【变式】若关于x的方程2(x-1)-a=0的解是 x=3,则a的值是( ). A.4 B.-4 C.5 D.-5

【答案】A.
例题3.解方程

y 2 3 5y 1 4 6
【思路点拨】通过方程的同解原理(去分母,去括号,合并 同类项,系数化为1),一步一步将一个复杂的方程转化成与
相关文档
最新文档