现代信号处理_公开题
现代信号处理考题
一、每题6分,共10题。
1、试叙述信号分析的不确定原理,并以高斯信号为例解释相关概念。
不确定原理:对给定的信号,其时宽与带宽的乘积为一常数,当信号的时宽减小时,其带宽装将相应增大,当时宽减到无穷小时,带宽半变成无穷大,这就是说,信号的时宽与带宽不可能同时趋于无限小。
(P24)2、相对于傅里叶变换,短时傅里叶变换有何特点?窗口应满足什么条件?相对于傅里叶变换,除了同样可以了解信号包含的频谱信息,还可以对信号的频率进行时间上的定位。
STFT在时域用窗函数g(τ)去截x(τ),结截下来的局部信号作傅里叶变换,即可得到在t时刻的该段信号的傅里叶变换。
不断地移动t,也即不断地移动窗函数g(τ)的中心位置,即可得到不同时刻的傅里叶变换。
由于g(τ)是窗函数,因此它在时域应是有限支撑的,又由于e jΩt在频域是线谱,所以STFT的基函数g(τ-t) e jΩt在时域和频域都应是有限支撑的,这样,他的结果就有了对x(t)实现时频定位的功能。
3、相对于信号的谱图,wvd有何缺点?(P80)4、什么是小波变换的恒Q性质?试由此简要说明小波变换的时频分析特点。
(P241)5、试给出能保持信号能量边缘特性的和不能保持信号能量边缘特性的时频变换的例子。
6、什么是连续信号的Gabor展开?实际利用Gabor展开分析信号时,是采用临界采样还是过采样?说明理由。
什么是连续信号的Gabor展开:P61理由:实际利用Gabor展开分析信号时,是采用临界采样的。
因为在Gabor变换中,常数a和b的取值有3种情况:(1)ab=1,称为临界抽样,(2)ab>1,称为欠抽样,(3)ab<1,称为过抽样,由证明得,在ab>1的欠抽样的情况下,由于栅格过稀,因此将缺乏足够的信息来恢复原信号x(t)。
由于欠抽样时的这一固有的缺点,人们很少研究它,因此研究最多的是临界抽样和过抽样。
可以想象,在ab<1的过抽样的情况下,表示x(t)的离散系数C mn必然包含冗余的信息,这类似于对一维信号抽样时抽样间隔过小的情况。
现代信号处理考试题
现代信号处理考试题一、基本概念填空1、统计检测理论是利用信号与噪声的统计特性等信息来建立最佳判决的数学理论。
2、主要解决在受噪声干扰的观测中信号有无的判决问题3、信号估计主要解决的是在受噪声干扰的观测中,信号参量和波形的确定问题。
4、在二元假设检验中,如果发送端发送为H1,而检测为H0,则成为漏警,发送端发送H0,而检测为H1,则称为虚警。
5、若滤波器的冲激响应时无限长,称为IIR滤波器,反之,称为FIR滤波器6、若滤波器的输出到达最大信噪比成为匹配滤波器;若使输出滤波器的均方估计误差为最小,称为维纳滤波器。
7、在参量估计中,所包含的转换空间有参量空间和观测空间8、在小波分析中,小波函数应满足和两个数学条件。
9、在小波的基本概念中,主要存在和两个基本方程。
(这个不确定答案,个人感觉是)10、在谱估计中,有经典谱估计和现代谱估计组成了完整的谱估计。
11、如果系统为一个稳定系统,则在Z变换中,零极点的分布应在单位圆内,如果系统为因果系统,在拉普拉斯变换中,零极点的分布应在左边平面。
二、问题1、在信号检测中,在什么条件下,使用贝叶斯准则,什么条件下使用极大极小准则?什么条件下使用Neyman-Pearson准则?答:先验概率和代价函数均已知的情况下,使用贝叶斯准则,先验概率未知,但可选代价函数时,使用极大极小准则,先验概率和代价函数均未知的情况下,使用Neyman-Pearson准则。
2、在参量估计中,无偏估计和渐进无偏估计的定义是什么?答:无偏估计:若估计量的均值等于被估计量的均值(随机变量),即或等于被估计量的真值(非随机参量),则称为的无偏估计。
渐进无偏估计:若,称为的渐进无偏估计。
3、卡尔曼滤波器的主要特征是什么?答:随机过程的状态空间模型,用矩阵表示,可同时估计多参量,根据观测数据,提出递推算法,便于实时处理。
4、在现代信号处理中,对信号的处理通常是给出一个算法,对一个算法性能的评价,应从那些方面进行评价。
现代信号处理试题
1、已知0()2cos(2)a x t f t π=式中0f =100HZ,以采样频率s f =400Hz 对()a x t 进行采样,得到采样信号ˆ()a xt 和时域离散信号()x n ,试完成下面各题: (1)写出()a x t 的傅里叶变换表示式()a X j Ω; (2)写出()a x t 和()x n 的表达式;(3)分别求出()a x t 的傅里叶变换和()x n 的傅里叶变换。
解:(1)000()()2cos()()j tj ta a j t j t j t X j x t edt t edte e e dt∞∞-Ω-Ω-∞-∞∞Ω-Ω-Ω-∞Ω==Ω=+⎰⎰⎰上式中指数函数和傅里叶变换不存在,引入奇异函数δ函数,它的傅里叶变换可以表示成:00()2[()()]a X j πδδΩ=Ω-Ω+Ω+Ω(2)0ˆ()()()2cos()()()2cos(),a an n xt x t t nT nT t nT x n nT n δδ∞∞=-∞=-∞=-=Ω-=Ω-∞<<∞∑∑2、用微处理器对实数序列作谱分析,要求谱分辨率50F Hz ≤,信号最高频率1KHz,是确定以下各参数: (1)最小记录时间min p T (2)最大取样时间max T (3)最少采样点数min N(4)在频带宽度不变的情况下将频率分辨率提高一倍的N 值。
解:(1)已知50F Hz ≤min 110.0250p T s F === (2) max 3min max 1110.52210s T ms f f ====⨯ (3) min 30.02400.510p T s N T s-===⨯ (4)频带宽度不变就意味着采样间隔T 不变,应该使记录时间扩大一倍为0.04s 实频率分辩率提高1倍(F 变成原来的12)min 30.04800.510p T s N T s-===⨯3、在时域对一有限长的模拟信号以4KHZ 采样,然后对采到的N 个抽样做N 点DFT ,所得离散谱线的间距相当于模拟频率100HZ 。
【南邮】现代信号处理试卷2015
【南邮】现代信号处理试卷2015南京邮电大学2015年硕士研究生《现代信号处理》试卷(张玲华老师)一、填空题(16*1)1.Yule-Walker方程的快速解法是利用了实数据的自相关矩阵的以下性质:、、和。
2.信号处理领域常用的三种人工神经网络是:、、。
3.小波变换中,尺度因子较大时,时间分辨率较(高/低),可再作(低频/高频)分析。
4.人工神经网络中,多层前向网络的BP算法是(有师/无师)学习。
5.高阶谱是的傅里叶变换。
6.随机序列的功率谱越宽,自相关函数下降越(快/慢)。
7.如果平稳随机过程是各态遍历的,可以用代替。
8.方差σ2的白噪声过程,其自相关函数为、功率谱为。
9.常用的4种数据加窗方法是自相关法、协方差法、前窗法和后窗法,Burg算法采用的是。
二、是非题(8*1)1.白噪声一定服从高斯分布。
2.LMS自适应算法中,在满足收敛条件的情况下,选择步长要兼顾收敛速度和方向。
3.卡尔曼滤波器适用于平稳随机过程或非平稳随机过程。
4.Bartlett法是对周期图法谱估计的改进,通过分段、平均减小谱估计的方差,同时提高谱估计的谱分辨率。
5.递归最小二乘(RLS)算法比LMS算法的收敛速度快,所以RLS算法的运算量小。
6.对短数据进行功率谱估计,Burg算法的谱分辨率比Levinson算法高。
7.传统IIR滤波器是Laguerre横向滤波器α=0的特例。
8.小波母函数在时域和频域都应该是紧支撑的。
三、简答题(3*6)1.在多速率信号处理中,通常在抽取器之前加滤波器,在内插器之后加滤波器,为什么?2.试说明小波变换和短时傅氏变换的异同。
3. 在LMS 算法中,造成失调的原因是什么?四、画图说明题(2*4)1. 请画出自适应滤波器应用与系统辨识的的系统结构图。
2. 请画出4个神经元组成的简单Hopfield 神经网络拓扑结构。
五、综合题(5*10)1. 设白噪声信号w(n)的方差为1,均值为0,让w(n)激励一个AR(2)系统,该系统的各阶反射系数a i 1 =0.5,a i 2 =?0.4。
现代信号处理试题(习题教学)
1、已知0()2cos(2)a x t f t π=式中0f =100HZ,以采样频率s f =400Hz 对()a x t 进行采样,得到采样信号ˆ()a xt 和时域离散信号()x n ,试完成下面各题: (1)写出()a x t 的傅里叶变换表示式()a X j Ω;(2)写出()a x t 和()x n 的表达式;(3)分别求出()a x t 的傅里叶变换和()x n 的傅里叶变换。
解:(1)000()()2cos()()j t j t a a j t j t j t X j x t e dt t e dt e e e dt ∞∞-Ω-Ω-∞-∞∞Ω-Ω-Ω-∞Ω==Ω=+⎰⎰⎰上式中指数函数和傅里叶变换不存在,引入奇异函数δ函数,它的傅里叶变换可以表示成:00()2[()()]a X j πδδΩ=Ω-Ω+Ω+Ω(2)00ˆ()()()2cos()()()2cos(),a a n n xt x t t nT nT t nT x n nT n δδ∞∞=-∞=-∞=-=Ω-=Ω-∞<<∞∑∑2、用微处理器对实数序列作谱分析,要求谱分辨率50F Hz ≤,信号最高频率1KHz,是确定以下各参数:(1)最小记录时间min p T(2)最大取样时间max T(3)最少采样点数min N(4)在频带宽度不变的情况下将频率分辨率提高一倍的N 值。
解:(1)已知50F Hz ≤min 110.0250p T s F === (2) max 3min max 1110.52210s T ms f f ====⨯ (3) min 30.02400.510p T s N T s-===⨯ (4)频带宽度不变就意味着采样间隔T 不变,应该使记录时间扩大一倍为0.04s 实频率分辩率提高1倍(F 变成原来的12)min 30.04800.510p T s N T s -===⨯ 3、在时域对一有限长的模拟信号以4KHZ 采样,然后对采到的N 个抽样做N 点DFT ,所得离散谱线的间距相当于模拟频率100HZ 。
现代信号处理(A卷)
学号
六、令信号 x(t ) 是均值为 0,方差为 2 的高斯随机变量,概率密度函数为。
三、设 Ax ( , ) 为信号 x(t ) 的模糊函数,试证明 Ax ( , ) Ax (0,0)
订 订
1 x2 f ( x) exp( 2 ) 2 2
① 计算 x(t ) 的第一特征函数 () 和第二特征函数 ( ) ;
说明:1、除填空题、图解及特殊要求外,一般不留答题空间 2、装订试卷、考生答卷纸不得拆开或在框外留有任何标记,否则按零分计
共
页
第
页
1 t T x(t ) 0 t T ,求其 WVD。 二、令信号
五、已知
H
0
( z)
2 1 (1 z ) 2
试求 DB 小波及其对应的尺度函数。
姓名
提示:
exp( Ax 2 2Bx C )dx
A
exp(
AC B 2 ) A
② 计算 x(t ) 的 k 阶矩 mk ; ③ 计算 x(t ) 的 k 阶累积量 ck 。 四、叙述 Mallat 分解算法,并给出其二通道滤波器组实现示意图 专业班级
ห้องสมุดไป่ตู้
装
装
七、证明多谱公式
共
页
第
页
年 月 日 考试用
考试试题(A 卷)
(2012—2013 年度第 2 学期)
4. 什么是小波变换的恒 Q 性质?试由此说明小波变换的时频分析特点。
线
线
课程名称:现代信号处理 试卷类型: (A、B) 考试专业、年级:信号处理、电路与系统
四 五 六 七 总分
学号
题号 得分 评卷人
现代信号处理试题及答案总结汇编
P29采样、频率混叠,画图说明将连续信号转换成离散的数字序列过程就是信号的采样。
它包含了离散和量化两个主要步骤。
若采样间隔Δt 太大,使得平移距离2π/Δt 过小。
移至各采样脉冲函数对应频域序列点上的频谱X(ω)就会有一部分相互重叠,由此造成离散信号的频谱与原信号频谱不一致,这种现象称为混叠。
P33列举时域参数(有量纲和无量纲),说明其意义与作用。
有量纲参数指标包括方根幅值、平均幅值、均方幅值和峰值四种。
无量纲参数指标包括了波形指标、峰值指标、脉冲指标和裕度指标。
偏斜度指标S 表示信号概率密度函数的中心偏离正态分布的程度,反映信号幅值分布相对其均值的不对称性。
峭度指标K 表示信号概率密度函数峰顶的陡峭程度,反映信号波形中的冲击分量的大小。
P37~自相关互相关及作用(举例说明)相关,就是指变量之间的线性联系或相互依赖关系。
信号x (t )的自相关函数:信号中的周期性分量在相应的自相关函数中不会衰减,且保持了原来的周期。
因此,自相关函数可从被噪声干扰的信号中找出周期成分。
在用噪声诊断机器运行状态时,正常机器噪声是由大量、无序、大小近似相等的随机成分叠加的结果,因此正常机器噪声具有较宽而均匀的频谱。
当机器状态异常时,随机噪声中将出现有规则、周期性的信号,其幅度要比正常噪声的幅度大得多。
依靠自相关函数就可在噪声中发现隐藏的周期分量,确定机器的缺陷所在。
(如:自相关分析识别车床变速箱运行状态,确定存在缺陷轴的位置;确定信号周期。
)互相关函数:互相关函数的周期与信号x(t)和y(t)的周期相同,同时保留了两个信号的相位差信息φ。
可在噪音背景下提取有用信息;速度测量;板墙对声音的反射和衰减测量等。
(如:利用互相关分析测定船舶的航速;探测地下水管的破损地点。
P42)P51~蝶形算法FFT 的基本思想是把长度为2的正整数次幂的数据序列{x k }分隔成若干较短的序列作DFT 计算,用以代替原始序列的DFT 计算。
西南交大现代信号处理部分答案
题1:(1) 错误!未找到引用源。
是随错误!未找到引用源。
变化的随机信号,因此错误!未找到引用源。
=错误!未找到引用源。
.所以谐波信号)(tx的均值为错误!未找到引用源。
=错误!未找到引用源。
由于谐波信号)(tx的均值等于零,故其方差等于二阶矩,既有错误!未找到引用源。
错误!未找到引用源。
所以x(t)的方差为错误!未找到引用源。
谐波信号)(tx的自相关函数错误!未找到引用源。
又错误!未找到引用源。
所以错误!未找到引用源。
由于x(t)的均值为0,故所以错误!未找到引用源。
(2) y(t)是随B变化的随机信号,因此错误!未找到引用源。
B是标准高斯随机变量,所以错误!未找到引用源。
,所以错误!未找到引用源。
. 由于错误!未找到引用源。
统计独立,故有错误!未找到引用源。
而x(t)和y(t)的均值均为0,所以错误!未找到引用源。
题2:令错误!未找到引用源。
,由于错误!未找到引用源。
是零均值、方差为错误!未找到引用源。
的高斯随机过程,错误!未找到引用源。
和错误!未找到引用源。
是确定的过程,所以x(n)也是一高斯随机过程,其均值错误!未找到引用源。
是时间的函数.所以x(n)的概率密度函数是∏=---=NnBnAnxxf1222}])([21ex p{21);(σπσθ=}])([21ex p{)2(12122/2BnAnxNnN---∑=σπσ在多个未知参数的情况下,Cramer-Rao不等式变为矩阵不等式:∑-≥)(1θJ其中错误!未找到引用源。
无偏估计子错误!未找到引用源。
的协方差矩阵,而错误!未找到引用源。
是Fisher信息矩阵J的逆矩阵,而信息矩阵错误!未找到引用源。
的构成元素为错误!未找到引用源。
本题中,计算得错误!未找到引用源。
错误!未找到引用源。
=错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
现代信号处理复习题
现代信号处理复习题1. 试说明维纳滤波器和卡尔曼滤波器的主要异同?2. LMS 算法与最陡下降法有何异同?什么叫LMS 算法的学习曲线?平均学习曲线和个别学习曲线的不同点是什么?为什么平均学习曲线的稳态值高于维纳滤波时的最小均方误差?3.为什么不用信号的傅里叶变换而用功率谱描述随机信号的频率特性?周期图作谱估计时,211ˆ()()N j nXXn P x n eNωω--==∑ 说明为什么可用FFT 进行计算?周期图的谱分辨率较低,且估计的方差也较大,说明造成这两种缺点的原因以及无论选什么样的窗函数,都难以从根本上解决问题的原因。
4.简述人工自适应系统的特点和建立自适应系统一般应该满足的要求。
5. 简述Wold 分解定理。
6. 简述自适应滤波的最陡下降法基本思想。
7. 说明LMS 算法与RLS 算法的代价函数。
8.一个线性时不变因果系统由差分方程)1(21)()1(41)(-+=-+n x n x n y n y 描述,求该系统的频率响应。
9.若{}{}1,1)1(),0()(==h h n h ,{}{}4,3,2,1)3(,),0()(=⋅⋅⋅=x x n x ,则)(n x 和)(n h 的线性卷积=)3(y 。
10.已知一IIR 数字滤波器的系统函数18.011)(-+=z z H ,则该滤波器的类型为(低通、高通、带通、带阻)11.若[]x n 是白噪声[]w n 通过一个一阶LTI 系统11()10.25H z z -=-产生的随机过程,已知白噪声的方差21wσ=,求信号[]x n 功率谱。
12. 描述AR 模型的正则方程,即Yuler-Walker 方程的矩阵。
13.设()x n 是一个宽平稳随机过程,均值为x m ,自相关为()x r k ,若()x n 通过一个单位采样响应为()h n 的稳定线性时不变系统,写出输出随机过程()y n 的均值,自相关函数。
14.设()x n 为AR (1)过程,自相关序列为()k x r k α=,试设计其最优线性预测器。
现代信号处理考试题word版
一、 基本概念填空1、 统计检测理论是利用信号与噪声的统计特性等信息来建立最佳判决的数学理论。
2、 主要解决在受噪声干扰的观测中信号有无的判决问题3、 信号估计主要解决的是在受噪声干扰的观测中,信号参量和波形的确定问题。
4、 在二元假设检验中,如果发送端发送为H 1,而检测为H 0,则成为漏警,发送端发送H 0,而检测为H 1,则称为虚警。
5、 若滤波器的冲激响应时无限长,称为 IIR 滤波器,反之,称为 FIR 滤波器6、 若滤波器的输出到达最大信噪比成为匹配滤波器;若使输出滤波器的均方估计误差为最小,称为维纳滤波器。
7、 在参量估计中,所包含的转换空间有参量空间和观测空间8、 在小波分析中,小波函数应满足∫φ(t )dt =0+∞−∞和∫|φ(t )|dt =1+∞−∞两个数学条件。
9、 在小波的基本概念中,主要存在F (w )=∫f(t)e −iωt dt +∞−∞和f(t)=12π∫F(w)e iωt dw +∞−∞两个基本方程。
(这个不确定答案,个人感觉是) 10、 在谱估计中,有经典谱估计和现代谱估计组成了完整的谱估计。
11、 如果系统为一个稳定系统,则在Z 变换中,零极点的分布应在单位圆内,如果系统为因果系统,在拉普拉斯变换中,零极点的分布应在左边平面。
二、 问题1、 在信号检测中,在什么条件下,使用贝叶斯准则,什么条件下使用极大极小准则?什么条件下使用Neyman-Pearson 准则?答:先验概率和代价函数均已知的情况下,使用贝叶斯准则,先验概率未知,但可选代价函数时,使用极大极小准则,先验概率和代价函数均未知的情况下,使用Neyman-Pearson 准则。
2、 在参量估计中,无偏估计和渐进无偏估计的定义是什么?答:无偏估计:若估计量的均值等于被估计量的均值(随机变量),即E(θ̃)=E(θ)或等于被估计量的真值(非随机参量)E(θ̃)=θ,则称θ̃为θ的无偏估计。
渐进无偏估计:若lim N→∞E{θ̃}=E(θ ),称θ̃为θ的渐进无偏估计。
现代信号处理试题
一、简答题
1. 简述最小相位信号、最大相位信号以及混合相位信号的定义。
2. 维纳滤波理论对信号和系统做了哪些假设和限制?
3. 最大似然估计、线性最小方差估计和最小二乘估计对被估计序列做了何
种假设,哪一种方法的估计精度最优?估计量评价标准是什么?
二、证明题:证明短时Fourier 变换是一种线性时频表示。
三、计算题
1. 两个有限长序列)(n x 和)(n y 的零值区间为
n
n n y n n n x ≤<=≤<=20,0,0)(10,0,0)( 对每个序列做20点DFT ,即
19,,1,0)],([)(;19,,1,0)],([)( ====k n y DFT k Y k n x DFT k X 如果19,,1,0)],([)(;19,,1,0),()()( ====k k F IDFT n f k k Y k X k F ,试问在哪些点上)(*)()(n y n x n f =,为什么?
2. 对于抽取系统,如果输入信号)(n x 的频谱如图所示,试分别画出抽取因
子分别为2、3、4时输出信号的频谱,问哪种情况属于最大抽取?
3. 令信号为
⎩⎨⎧<>=-0
00)(t t e t s t
并且加性噪声)(t n 是一高斯白噪声,其均值 0,方差为1。
求匹配滤波器的冲激响应)(0t h 。
现代信号处理考试题答案a
1
T
T
2、
解:
试证明,两个最小相位序列的卷积依然是最小相位序列
设x(n)、y(n) 为最小相位序列,则其 Z变换X(z)、Y(z)对应的所有的零点
i i Zx ,Z y 都在单位圆内,其中 i 1 , 2, N,k 1 , 2, M。
令z(n) x(n) * y(n),有Z(z) X(z)Y(z),其零点的集合
率。小波母函数在频域具有带通特性,其伸缩和平移系列就可 以看做是一组带通滤波器。带宽与中心频率的比值称为带通滤 波器的品质因数 Q。恒 Q,是因为平移和伸缩后的小波函数的 Δω/ω 恒为一个值。
三、 计算题(30 分)
1、
已知随机矢量 x 的均值为 mx ,协方差为
x
ˆ ,估计误差 ,估计值为 x
稳态使用小的学习步长。
3、什么是有色噪声?产生的原因是什么? 答:有色噪声是功率谱密度Pn(w)≠ 常数的噪声。
产生的原因主要有:实际的噪声源与接收机的检测器之间可能 存在一个或者几个具有某种形状通带的部件,如天线和射频滤 波器等,使白噪声通过以后,产生频谱的再分布,形成有色噪 声。在有用信号以外,接收信号中可能还还有一个具有高斯特 征的干扰信号,如在雷达和声纳系统中往往就是一个干扰目标。
现代数字处理试卷答案
一、 填空题(20 分) 1、 若滤波器的冲激响应时无限长,称为 IIR 滤波器,反之,称 为
FIR
滤波器.
2、 若滤波器的输出到达 最大信噪比 成为匹配滤波器;若使输出滤波器 的为 均方估计误差 最小,称为维纳滤波器。
+∞ +∞
3、 在小波分析中,小波函数应满足 −∞ ������ ������ ������������ = 0和 −∞ |������ ������ |������������ =
现代信号处理
现代信号处理作业班级:姓名:流水号:1、设采样周期T=250μs (采样频率fs =4kHz ),用脉冲响应不变法和双线性变换法设计一个三阶巴特沃兹滤波器,其3dB 边界频率为fc =1kHz 。
答:MATLAB 程序如下:[B,A]=butter(3,2*pi*1000,'s'); [num1,den1]=impinvar(B,A,4000); [h1,w]=freqz(num1,den1); [B,A]=butter(3,2/0.00025,'s'); [num2,den2]=bilinear(B,A,4000); [h2,w]=freqz(num2,den2); f=w/pi*2000;plot(f,abs(h1),'-.',f,abs(h2),'-'); grid;title(‘现代信号处理第一题三阶巴特沃兹滤波器’); xlabel('频率/Hz ’); ylabel('幅值/dB'); 程序运行结果如下:20040060080010001200140016001800200000.10.20.30.40.50.60.70.80.91现代信号处理第一题三阶巴特沃兹滤波器频率/Hz幅值/d B程序中第一个butter的边界频率2π×1000,为脉冲响应不变法原型低通滤波器的边界频率;第二个butter的边界频率2/T=2/0.00025,为双线性变换法原型低通滤波器的边界频率.图1给出了这两种设计方法所得到的频响,虚线为脉冲响应不变法的结果;实线为双线性变换法的结果。
脉冲响应不变法由于混叠效应,使得过渡带和阻带的衰减特性变差,并且不存在传输零点。
同时,也看到双线性变换法,在z=-1即Ω=π或f=2000Hz处有一个三阶传输零点,这个三阶零点正是模拟滤波器在ω=∞处的三阶传输零点通过映射形成的。
现代信号处理试题
分辩率提高1倍( F 变成原来的1 2 )
N min
Tp T
0.04s 0.5103 s
80
3、在时域对一有限长的模拟信号以4KHZ采样,然后对采到的N个抽样做N点DFT,所得离
散谱线的间距相当于模拟频率100HZ。某人想使频率能被看得清楚些,每50HZ能有一根谱
线,于是他用8KHZ采样,对采到的2N个样点做2N点DFT。问:他的目的能达到吗?
★ IIR可用模拟滤波器成果,得到有效的封闭式公式,设计工作量小,要求低。 FIR仅窗函数有公式,但无显式表达通、阻带,需要计算机辅助设计。
★ IIR设计已规格化,频率特性为分段常数的滤波器。 FIR主要适应特殊应用,且高阶IIR不易达到指标的滤波器。
IIR数字滤波器设计 ★直接设计:
原型变换(由一低通经过频率变形设计低通、高通、带通、带阻等)
★频率取样:在H(z)的单位圆上等分取样(是否带初相)
★优化技术设计:(依据一定的优化准则进行设计)
7、有一连续信号 xa (t) 2 cos(2 f
),式中
f
20Hz ,
π ,
2
1) 求 xa (t) 的周期;
2) 用采样间隔T=0.02S对 xa (t) 进行采样,写出采样信号 xˆa (t) 的表达式;
(3)分别求出 xa (t) 的傅里叶变换和 x(n) 的傅里叶变换。
解:(1) Xa ( j)
xa
(t)e
jt dt
2
cos(0t
)e
jt
dt
(e j0t e j0t )e jt dt
上式中指数函数和傅里叶变换不存在,引入奇异函数 函数,它的傅里叶变换可以表示成:
X a ( j) 2[ ( 0 ) ( 0 )]
2014《现代信号处理》试题
2014《现代信号处理》试题1.(10分)某独立观测序列12,,,,N x x x 其均值为m ,方差为2σ。
现有两种估计算法:算法A :均值估计为111ˆNn n m x N ==∑,算法B :均值估计为211ˆ1N n n m x N ==-∑请对这两种估计算法的无偏性和有效性进行讨论。
解:算法A :均值估计为111ˆN n n m x N==∑,则111ˆ()N n E m m m N ===∑,212111ˆ()()N n n D m D XN N δ===∑,∴均值估计1ˆm 是无偏估计22222122^1)(δδδ=-+=-=∴∑=m m m EXN E N n n 算法B :均值估计为211ˆ1N n n m x N ==-∑,则211ˆ()11N n N E m m m N N ===--∑,()()^22222ˆ()1N D m E m m N δ⎡⎤=-=⎣⎦-∴均值估计^2m 是有偏估计()()12ˆˆD mD m < 所以,算法A 比算法B 更有效。
2.(30分)与传统的数字信号处理相比,现代信号处理另一个最大的区别在于更多的关注信号之间的关系,如相关函数、功率谱密度函数、信噪比等,请回答下述问题:(1)信噪比是衡量信号与噪声之间的能量差异的相对值,在通信系统、信号处理中被广泛使用,请给出至少两个实例,并加以分析讨论。
(2)Wiener 滤波器是现代信号滤波处理的经典,其核心在于考察滤波器输入输出信号之间的关系,请用恰当的数学模型对其加以描述。
(3)高阶谱是在传统功率谱的基础上发展起来的,请对其概念、特点与具体应用进行简要介绍。
解:(1)(2)滤波器的理想输出为s(t+a)估计误差为e(t)=s(t+a)-y(t)估计误差的平方为:222()()2()()()e t s t s t y t y t αα=+-++而()()()y t h u x t u du ∞-∞=-⎰代入上式,两边取数学期望,得到均方误差:2,()()()2()()(0)x s x s E e h u h v R v u dudv h u R u du R α∞∞∞-∞-∞-∞⎡⎤=--++⎣⎦⎰⎰⎰其中,R s s(t)的自相关函数R x x(t)=s(t)+n(t)的自相关函数R s,x s(t)和x(t)之间的互相关函数若信号s(t)和噪声n(t)不相关,且噪声均值为零,即E[n(t)]=0,则有:,x s n s x sR R R R R =+⎧⎨=⎩维纳滤波就是希望求出最优h(u),使得2E e (t)⎡⎤⎣⎦最小。
现代数字信号处理习题
(2)此方法的具体步骤是:
①给出观察序列 ,估计出自相关函数:
②对自相关函数在(-M,M)内作Fourier变换,得到功率谱:
式中,一般取 , 为一个窗函数,通常可取矩形窗。
Rs,xs(t)和x(t)之间的互相关函数
若信号s(t)和噪声n(t)不相关,且噪声均值为零,即E[n(t)]=0,则有:
维纳滤波就是希望求出最优h(u),使得 最小。
(3)自适应滤波器是利用误差信号调整滤波器的传输函数,从而达到系统最优。请从现代信号处理的角度出发阐述自适应滤波器系统最优的含义,并举例说明。
1.设 是离散时间平稳随机过程,证明其功率谱 。
证明:将 通过冲激响应为 的LTI离散时间系统,设其频率响应 为 输出随机过程 的功率谱为
输出随机过程 的平均功率为
当频率宽度 时,上式可表示为
由于频率 是任意的,所以有
3、已知:状态方程 观测方程
滤波初值
请简述在此已知条件下卡尔曼滤波算法的递推步骤。
解:根据信号模型和测量模型方程可看出下列参数值:a=1,c=1,Q=0.5,R=1。将它们代入Ricatti方程Q=P-a2RP/(R+c2P)
得0.5=P-P/(1+P)
解此方程得P=1或P=-0.5,取正解P=1。
再计算维纳增益G和参数f:G=cp/(R+c2P) =1/ (1+1) =0.5f=Ra/(R+c2P) =1/ (1+1) =0.5
可见,该窗函数的选择会影响到谱估计的分辨率。
7、对于连续时间信号和离散时间信号,试写出相应的维纳-辛欣定理的主要内容。
现代信号处理练习及答案(共6套试卷)
XX 大学信息工程专业 现代信号处理习题第一部分1.计算下面系统的冲激响应。
解:,)(1)0(,0)h(0(t),3h(t)(t)h 4)(321≥+=='==+'+''--++t eK e K t h h t h ttδ带入初值得 )h(0+,021=+=K K )0(+'h =1321=--K K 解之得 5.0,5.021-==K K所以 )(5.0-5.0)(32t e K e t h t t ε)(--=2已知描述系统的微分方程和初始状态如下,试求其全响应。
3.求下列函数的卷积积分。
解:4.求下列差分方程所描述的离散系统的单位序列响应。
解:5.求下列差分方程所描述的离散系统的全响应。
解:6.各序列的图形如下所示,求下列卷积和。
解:第二部分1.计算下面系统的冲激响应。
解:,)(1)0(,0)h(0(t),3h(t)(t)h 4)(321≥+=='==+'+''--++t eK e K t h h t h ttδ带入初值得 )h(0+,021=+=K K )0(+'h =1321=--K K 解之得 5.0,5.021-==K K所以 )(5.0-5.0)(32t e K e t h t t ε)(--=2已知描述系统的微分方程和初始状态如下,试求其全响应。
3.求下列函数的卷积积分。
解:4.求下列差分方程所描述的离散系统的单位序列响应。
解:5.求下列差分方程所描述的离散系统的全响应。
解:6.各序列的图形如下所示,求下列卷积和。
解:第三部分1.求下面系统的冲激响应。
解:2.已知系统的微分方程和初始状态如下,试求其完全响应。
解:3.求下列函数的卷积积分。
解:4.求下列差分方程所描述的离散系统的单位序列响应。
解:5.求下列差分方程所描述的离散系统的全响应。
解:6.各序列如下图所示,求其卷积。
解:。
兰州理工大学2012年硕士研究生现代信号处理考试试题
5 7 w ,根据特征曲面搜索的
2
最速下降法和牛顿法,试分别写出其参数 w 的调整算法。
14、 (18 分)已知输入信号向量 u(n)的相关矩阵及与期望信号 d(n)的互相关向量 分别为
2 R 1 1 2
,p
[5
4]
T
且已知期望响应 d(n)的平均功率 E [ d 2 ( n )]
u ( n ) u ( n 1) 0 . 5 u ( n 2 ) v ( n )
其中, v ( n ) 是零均值、方差为 0.5 的白噪声。 (1) 写出该随机过程的 Yuler-Walker 方程 (2) 求 u(n)的方差
13、(16 分)一个滤波器的特性函数为
1
1 26
9、简述 Wold 分解定理。
10、简述卡尔曼滤波,并说明它有何特点?
11、 LMS 算法与最陡下降法有何异同?什么叫 LMS 算法的学习曲线?平均学习 曲线和个别学习曲线的不同点是什么?为什么平均学习曲线的稳态值高于维纳滤 波时的最小均方误差?
三、计算题(3 小题,共 50 分)
12、 (16 分) 考虑由如下差分方程描述的二阶 AR(2)过程 u ( n ) :
兰州理工大学 2012 年 硕士研究生现代信号处理考试试题
一、填空题(每空 3 分,共 30 分)
1、若离散时间信号 x ( n ) 和 y ( n ) 均为确定性功率信号,则它们的互相关函数定 义为 2、设平稳随即过程
S ( )
。
u (n)
的自相关函数为
r (m )
,它的功率谱
=
.
p 1 0 .8 e
30
(1)计算维纳滤波器的权向量 (2)计算误差性能面的表达式和最小均方误差。
2013现代信号处理试题
2013现代信号处理试题2013《现代信号处理》试题1. (10分)设观察样本{x i }(i =1,…,n )的分布密度为222exp{}0(,) 0 0x x i xe e x f x x λλλλ+??->?=?≤??其中未知参数0λ>.试求λ的极大似然估计。
2. (30分)现代信号处理与传统的数字信号处理相比,一个最大的区别在于处理的信号是统计性的随机信号而不再是确定性信号,请回答下述问题:(1)当研究宽平稳信号时,需要有各态历经性的理论基础来支撑,请对该性质加以论述。
(2)白噪声是现代信号处理中常用的一种随机信号,请从时域和频域两个角度对其加以阐述。
(3)为了便于分析和设计,白化滤波器被提了出来,请从其作用和应用两个方面对其加以阐述。
3. (30分)与传统的数字信号处理相比,现代信号处理另一个最大的区别在于更多的关注信号之间的关系,如相关函数、功率谱密度函数、信噪比等,请回答下述问题:(1)Wiener 滤波器是现代信号滤波处理的经典,其核心在于考察滤波器输入输出信号之间的关系,请用恰当的数学模型对其加以描述。
(2)功率谱密度是对时域自相关函数进行傅立叶变换得到的结果。
请阐述在工程中对功率谱密度进行测量有何应用?(3)高阶谱在传统功率谱的基础上发展起来的,请对其概念、特点与具体应用进行简要介绍。
4. (15分)梯度搜索法的基本原理是什么?Widrow 提出的LMS 算法与基本的梯度法有何不同?试写出Widrow 提出的LMS 算法的基本步骤。
5. (15分)用计算机仿真计算功率谱,用下式生成一个随机序列()2cos(2.02)0.5sin(52)()x t t t e t ππ=?+?+ e (t )为白噪声,均值为零,方差为0.1~1(可任选)或为信号的5%~30%(可任选)。
(1)用周期图法求功率谱估计。
(2)用参数模型法求功率谱估计。
(3)采用Burg 算法求功率谱估计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. (必选,10分)在统计信号处理中,人们常常假设信号或噪
声服从高斯分布, 充分说明这个假设的理论根据以及在实际应用中带来的优点。
2. (必选,10分) (高阶累积量) 设1()[(),,()]T
N N t x t x t C =∈x 为一复值
矢量随机过程,假设()t x 的每个分量的均值和奇次矩都为零,给出123456***6[(),(),(),(),(),()]m m m m m m Cum x t x t x t x t x t x t 的M-C 公式,其中
12345,6,,,,1,,m m m m m m N = ,上标T 和*依此表示取转置和复共轭。
3.1(三选一,10分)假设存在一个由11个阵元构成的立体阵
列,建立x-y-z 直角坐标系,11个阵元的坐标分别为(1,
1,1)
,(1,2,1),(2,1,1),(2,2,1),(1,1,2),(1,2,2),(2,1,2),(2,2,2),(1,2,3),(2,
1,3)
,(2,2,3),空间远场处一信号源发射电磁波,假设信号源方位角为ϕ,俯仰角为θ,波长为λ,试写出阵列相对于该信号源的导向矢量。
3.2(三选一,10分) 证明导向矢量矩阵与信号子空间之间可
以互相(张成)表示。
3.2(三选一,10分)推导Levinson 递推公式。
4.1(二选一,10分)在卡尔曼滤波中,用下标“i ”表示时刻“i t ”。
给定状态方程和观测方程的离散形式分别为
.11,111i i i i i i i i -----=++x Φx Γu w
i i i i =+z H x v
式中i x 是1n ⨯维状态向量;i u 是1r ⨯维控制向量,它是确定的非随机向量;已知的.1i i -Φ和,1i i -Γ分别为n n ⨯的状态转移矩阵和n r ⨯的控制矩阵;i w 为1n ⨯维随机噪声;i z 为1m ⨯维观测向量;已知的i H 为的m n ⨯维矩阵;i v 为-1m ⨯维量测噪声向量。
假定两个噪声向量i w 和i v 皆为空时白的。
1)给出预测值估计/1ˆi i -x 和滤波估计
/ˆi i x 及其相应的协方差矩阵的递推公式(6分);2)
从滤波估计/ˆi i x 的协方差矩阵估计出卡尔曼滤波的增益矩阵i K (4分)。
4.2 (二选一,10分)分析算式的计算复杂性(仅记乘除次数,精确到最高二次)
5.1(二选一,10分)推导多参数估计的Cramer-Rao 下界。
5.2 (二选一,10分)在白噪声干扰下,给出用方程误差方法
和矩阵结构分析方法无偏估计ARMA 系统参数的理论。
6.(备选题)查找文献看看如何证明:有限能量信号的等效时宽—带宽乘积不小于0.5.
7. (备选题)通过与采样定理类比,证明:不完备基表示等价为
欠采样;完备基表示为充分采样;稀疏(超完备基)表示等
价于超采样。
博士生:仿真两到三个实验,并撰写10页以上实验报告,占总分50%。
实验内容自选。