高三物理上册《分子的热运动》知识点总结人教版
分子热运动物理笔记
分子热运动物理笔记一、分子动理论的基本内容1. 物质是由大量分子组成的:物质是由无数微小的粒子,即分子所组成的。
这些分子以极小的距离相互间隔开,形成物质的连续体。
2. 分子在永不停息地做无规则运动:无论物质处于固态、液态还是气态,其内部的分子都在不断地、无规则地运动着。
这种运动是随机的,不受外界条件的直接影响。
3. 分子间存在着相互作用的引力和斥力:分子间的引力和斥力同时存在,但它们的大小随分子间距离的变化而变化。
当分子间距离较小时,斥力大于引力,表现为斥力;当分子间距离稍大时,引力大于斥力,表现为引力。
二、分子热运动的特点1. 无规则性:分子热运动的方向和速度大小都是随机的,没有固定的规律。
2. 统计规律性:虽然单个分子的运动是随机的,但大量分子的集体行为却表现出一定的统计规律性。
例如,温度是分子平均动能的宏观表现,温度越高,分子的平均动能越大。
3. 扩散现象:扩散是分子热运动的一个重要表现。
当两种物质相互接触时,由于分子的无规则运动,它们会相互渗入对方,使彼此的边界变得模糊。
扩散现象在日常生活和工业生产中都有广泛的应用。
三、分子热运动的定量描述1. 分子速度:描述分子运动的快慢,用速度v表示。
2. 分子速率:描述分子运动的快慢,用速率v表示,v = |v|。
3. 温度与分子平均动能:温度是分子平均动能的宏观表现,用T表示。
温度越高,分子的平均动能越大。
4. 分子力:描述分子间相互作用的力,用F表示。
分子力的大小与分子间的距离有关,随距离的增大而减小。
四、分子热运动与热力学定律1. 热力学第一定律:热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。
2. 热力学第二定律:热量不可能自发地从低温物体传递到高温物体而不产生其他影响;或者不可能从单一热源取热使之完全转换为有用的功而不产生其他影响;或者不可逆热力过程中熵的微增量总是大于零。
分子热运动、内能知识点总结
一、基础知识:分子热运动篇1、物质的组成(1)物质是由分子、原子组成的。
(2)分子非常小,不借助仪器,肉眼是看不见的,如果把分子看成一个个的小圆球(物理模型法),那么一般一个分子的直径大约是10-10m,因此一个物体是由数量巨大的分子组成的。
(3)分子很小,它的直径的数量级是10-10m,1cm3的空气中大约有2.7×1019个分子。
2、扩散现象(1)定义:不同的物质相互接触时,彼此进入对方的现象叫做扩散.(2)扩散现象表明:一切物质的分子都在不停的做无规则运动,间接证明分子之间有间隙。
注意:不同的物质一定要相互接触才能发生扩散,必须是两种物质相互进入彼此。
扩散现象是不同物质的分子运动造成的,要注意和微小颗粒状物体运动的区别。
3、分子热运动(1)定义:一切物质的分子都在不停的做无规则运动,这种无规则的分子运动叫做分子的热运动(2)影响分子热运动的影响因素:分子的热运动与温度有关,温度越高,分子热运动越剧烈,分子扩散的就越快。
4、分子间的作用力(1)固体和液体中的分子之所以不会分散开,而总是聚合在一起,是因为分子间存在引力的作用,从而使固体和液体能保持一定的体积。
由于分子间也存在斥力作用,因此固体与液体很难被压缩。
(2)分子间的引力和斥力总是同时存在的。
它们都随分子间距离的增大而减小,随分子间距离的减小而增大,只是斥力变化的比引力要快。
当分子间距离很小时,作用力表现为斥力;当分子间作用力稍大时,作用力表现为引力。
如果分子间距很远,作用力就变得十分微弱,可以忽略。
内能篇1、内能(1)宏观物体的能表现为机械能,是物体外在的能量;微观物体的能表现为内能,是物体内在的能量。
(2)分子动能:物体是由大量分子组成的,分子在永不停息的做无规则运动,所以分子都具有动能,叫做分子动能。
(3)分子势能:分子之间存在相互作用的引力和斥力,所以分子又具有势能,叫做分子势能。
(4)构成物体的所有分子,其热运动的动能和分子势能的总和叫做物体的内能。
高考物理分子热运动知识点
高考物理分子热运动知识点热运动是物质微观粒子在温度作用下的无规则运动。
了解分子热运动的知识对于理解热力学、热学以及物质的性质具有重要意义。
高考物理中常涉及分子热运动的知识点,本文将探讨其中的一些重要概念和原理。
一、分子热运动与温度的关系分子热运动的强弱与温度有着密切联系。
温度是反映物体内能状态的物理量,它与分子热运动的平均动能成正比。
具体来说,物质的温度越高,分子的平均动能就越大,热运动也就越剧烈。
分子热运动与温度的关系可以用分子动能均分定理来描述。
根据这一定理,单位摩尔物质中分子的平均动能与温度成正比。
这一定理的提出,深刻揭示了物体的温度与分子热运动的本质联系。
二、分子热运动与物体热性质的关系物体的热性质与其中分子的热运动有着密切关系。
具体而言,热膨胀、热传导和热容等热性质均与分子的热运动有关。
1. 热膨胀物质的热膨胀是指在温度升高时,物体的体积会发生变化。
这一现象可通过分子热运动来解释。
分子热运动剧烈时,分子之间的距离会增大,物体的体积也会相应增大。
因此,物体在升温时会发生热膨胀现象。
2. 热传导热传导是指物质中热量的传递方式。
分子的热运动对热传导起到重要作用。
具体来说,当物体的一部分受到加热时,分子的热运动导致热量向周围空间传递。
这种传递方式与分子之间的相互碰撞密切相关。
3. 热容热容所指的是物体在单位温度变化下吸热的大小。
分子热运动影响物体的热容。
当物体温度升高时,分子的热运动加剧,分子内能增加,因此物体吸热增加,所以热容也会相应增大。
三、布朗运动和分子扩散布朗运动是指在液体或气体中的微小颗粒因分子热运动而无规则地运动。
该运动与悬浮在液体或气体中的微粒颗粒大小、温度以及粘滞阻力有关。
分子扩散是指气体或溶质分子自高浓度区域向低浓度区域做无规则运动的现象。
分子扩散与分子热运动密切相关,分子通过碰撞而发生位移,从而使气体或溶质分子在空间中拥有更大的分布范围。
布朗运动和分子扩散的理论基础是分子热运动理论,这一理论是解释液体和气体分子性质的重要基础。
高中物理之分子的热运动知识点
高中物理之分子的热运动知识点分子的热运动扩散现象1.定义:不同物质相互接触时彼此进入对方的现象叫做扩散2.原因:物质分子的无规则运动扩散现象在气体、液体、固体都能发生。
3. 温度越高,扩散现象越明显4.扩散现象说明(1)直接说明了组成物体的分子总是不停地做无规则运动(2)分子间有间隙布朗:英国的一位植物学家。
1827年,布朗用显微镜观察植物的花粉微粒悬浮在静止水面上的形态时,却惊奇地发现这些花粉微粒在不停地作无规则运动。
布朗经过反复观察后,写下了这样的一段文字:“我确信这种运动不是由于液体的流动所引起,也不是由于液体的逐渐蒸发所引起,而是属于粒子本身的运动。
”布朗运动悬浮在液体(气体)中的固体微粒永不停息的无规则运动叫做布朗运动。
追踪一个微粒的运动将每隔30s观察到的微粒的位置,用直线把他们依次连接起来。
花粉微粒的运动是无规则的。
不同的花粉微粒的运动路线是不同的。
图中的连线是不是花粉微粒运动的实际路线?不是布朗运动是怎样产生的大量液体分子永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。
即:液体分子永不停息的无规则运动是产生布朗运动的原因。
布朗运动是观察到的悬浮小颗粒(足够小)的无规则运动,不是分子的运动。
但它间接反映了气体、液体分子在不停地做无规则的热运动。
布朗运动跟什么因素有关布朗运动是分子的运动吗?布朗运动是悬浮于液体中微粒的无规则运动,这种微粒是由成千上万个分子组成的集合体,因此它的无规则运动不是分子的热运动。
液体分子永不停息的无规则运动是产生布朗运动的原因,微粒运动的无规则性反映了液体内部分子运动的无规则性。
为什么颗粒越小,布朗运动越明显?为什么随着温度的升高微粒的布朗运动越加激烈?温度升高,反映了液体分子运动的平均动能增大。
液体分子对微粒的碰撞次数将增加,而且每次撞击作用将增强。
这就使微粒受到来自各方向的液体分子的撞击作用的不平衡现象加剧,引起微粒的布朗运动越加激烈布朗运动的特点无规则;永不停息;温度越高,颗粒越小,运动越激烈;布朗运动能够在液体和气体中发生。
最新人教版高中物理选修3-3:7.2分子的热运动 知识点总结及课时练习
2分子的热运动记一记分子的热运动知识体系一个比较——比较布朗运动和扩散现象三点认识——布朗运动的运动本质,影响因素、产生原因三个概念——扩散现象、布朗运动、热运动辨一辨1.将沙子倒入石块中,沙子要进入石块的空隙属于扩散现象.(×)2.在一杯热水中放几粒盐,整杯水很快会变咸属于扩散现象.(√)3.悬浮微粒的布朗运动说明了微粒内部分子做无规则热运动.(×)4.看到射进教室的一缕阳光中的灰尘在上下飞舞的运动是布朗运动.(×)5.温度升高,物体分子的热运动变剧烈.(√)6.热运动是物体受热后所做的运动.(×)想一想1.在显微镜下追踪一个小炭粒的运动,每隔30 s把炭粒的位置记录下来,把位置按时间连接起来,如图所示,这说明小炭粒轨迹是折线正确吗?提示:不正确,在每段时间内炭粒做的是无规则运动,不是直线运动.2.请问布朗运动、扩散现象也是热运动吗?提示:不是,分子永不停息的无规律运动叫热运动,布朗运动反映了分子热运动,分子的热运动是扩散现象形成的原因.3.单个分子永不停息地无规则运动叫热运动,正确吗?提示:不正确,热运动是对大量分子而言的,对个别分子无意义.思考感悟:练一练1.下列关于扩散现象的说法正确的是()A.扩散现象只能发生在气体与气体间B.扩散现象只能发生在液体与液体间C.扩散现象只能发生在固体与固体间D.任何物态的物体间都可发生相互扩散现象解析:不同物态的物体之间,由于分子的运动,总会存在着扩散现象,只是有着快慢差别(受温度、物质形态等因素影响).如墙角放一堆煤,墙及墙体内都会变黑,所以扩散现象不仅存在于液体与液体、气体与液体、气体与气体之间,同样也存在于固体与固体、气体与固体、液体与固体之间.答案:D2.扩散现象说明了()A.气体没有固定的形状和体积B.分子间相互排斥C.分子在运动D.不同分子间可相互转换解析:扩散现象是两种物体的分子彼此进入对方的现象是分子热运动的有力证明,所以只有C项正确.答案:C3.[2019·嘉峪关高二检测](多选)关于布朗运动,下列说法正确的是()A.布朗运动是液体分子的无规则运动B.液体温度越高,布朗运动越剧烈C.布朗运动是由液体各部分温度不同而引起的D.布朗运动反映了液体或气体分子运动的无规则性解析:布朗运动是指悬浮在液体或气体中的微粒的运动,A 项错误;布朗运动是液体分子或气体分子对悬浮在液体或气体中微粒碰撞作用的不平衡引起的,温度越高分子对微粒碰撞的作用越强,不平衡性也就越明显,微粒的布朗运动也就越剧烈,故布朗运动反映了液体或气体分子运动的无规则性,B、D两项正确,C项错误.答案:BD4.做布朗运动实验,得到某个观测记录如图.图中记录的是()A.分子无规则运动的情况B.某个微粒做布朗运动的轨迹C.某个微粒做布朗运动的速度—时间D.按等时间间隔依次记录的某个运动微粒位置的连线解析:布朗运动是悬浮在液体中的固体小颗粒的无规则运动,而非分子的运动,故A项错误;微粒没有固定的运动轨迹,故B 项错误;对于某个微粒而言在不同时刻的速度大小和方向均是不确定的,所以无法确定其在某一个时刻的速度,故也就无法描绘其速度—时间图线,故C项错误,D项正确.答案:D要点一对扩散现象的理解1.下列四种现象中属于扩散现象的是()①海绵状塑料可以吸水②揉面团时,加入小苏打,小苏打可以揉进面团内③放一匙食糖于一杯开水中,水会变甜④把盛开的腊梅放入室内,会满室生香A.①②B.③④C.①④D.②③解析:海绵状塑料吸水是水滴进入塑料间隙,不是扩散;小苏打揉进面团,是机械外力作用的结果;食糖溶于开水中、腊梅香气释放是扩散现象.故B项正确.答案:B2.(多选)如图所示,一个装有无色空气的广口瓶倒扣在装有红棕色二氧化氮气体的广口瓶上,中间用玻璃板隔开.对于抽去玻璃板后所发生的现象(已知二氧化氮的密度比空气的密度大),下列说法正确的是()A.当过一段时间可以发现上面瓶中的气体也变成了淡红棕色B.二氧化氮由于密度较大,不会跑到上面的瓶中,所以上面瓶中不会出现淡红棕色C.上面的空气由于重力作用会到下面的瓶中,于是将下面瓶中的二氧化氮排出了一小部分,所以会出现上面瓶中的瓶口处显淡红棕色,但在瓶底处不会出现淡红棕色D.由于气体分子在运动着,所以上面的空气会到下面的瓶中,下面的二氧化氮也会自发地运动到上面的瓶中,所以最后上、下两瓶气体的颜色变得均匀一致解析:抽去玻璃板后,空气与二氧化氮两种气体相互接触,发生扩散现象,过一段时间,空气、二氧化氮气体会均匀分布在上下两广口瓶当中,颜色均匀一致,都呈淡红棕色,A、D两项正确,B、C两项错误.答案:AD3.(多选)同学们一定都吃过味道鲜美的烤鸭,烤鸭的烤制过程没有添加任何调料,只是在烤制之前,把烤鸭放在腌制汤中腌制一定时间,盐就会进入肉里.则下列说法正确的是() A.如果让腌制汤温度升高,盐分子进入鸭肉的速度就会加快B.烤鸭的腌制过程说明分子之间有引力,把盐分子吸进鸭肉里C.在腌制汤中,有的盐分子进入鸭肉,有的盐分子从鸭肉里面出来D.把鸭肉放入腌制汤后立刻冷冻,将不会有盐分子进入鸭肉解析:盐分子进入鸭肉是因为盐分子的扩散,温度越高扩散得越快,A项正确;盐分子进入鸭肉是因为盐分子的无规则运动,并不是因为分子引力,B项错误;盐分子永不停息地做无规则运动,有的进入鸭肉,有的离开鸭肉,C项正确;冷冻后,仍然会有盐分子进入鸭肉,只不过速度慢一些,D项错误.答案:AC要点二对布朗运动的理解4.(多选)关于布朗运动,下列说法中正确的是()A.悬浮在液体或气体中的小颗粒的无规则运动就是分子的无规则运动B.布朗运动反映了液体分子的无规则运动C.温度越低时,布朗运动就越明显D.悬浮在液体或气体中的颗粒越小,布朗运动越明显解析:布朗运动是悬浮在液体或气体中的微粒,受到液体分子或气体分子的撞击作用形成的,温度越高,颗粒越小,布朗运动越明显,综上所述B、D两项正确.答案:BD5.在较暗的房间里,从射进来的阳光中,可以看到悬浮在空气中的微粒在不停地运动,这些微粒的运动是()A.布朗运动B.曲线运动C.自由落体运动D.无法确定解析:能用肉眼直接看得到的微粒是很大的颗粒,在同一时刻它们受到来自各个方向的空气分子撞击的合力几乎为零,微小的作用不能使这么大的颗粒做布朗运动,A项错误;微粒的运动是空气对流和重力作用下的结果,微粒做曲线运动,B项正确,C、D两项错误.答案:B6.(多选)把墨汁用水稀释后取出一滴放在显微镜下观察,如图所示,下列说法中正确的是()A.在显微镜下既能看到水分子也能看到悬浮的小炭粒,且水分子不停地撞击炭粒B.小炭粒在不停地做无规则运动,这就是所说的布朗运动C.越小的炭粒,运动越明显D.在显微镜下看起来连成一片的液体,实际上是由许许多多的静止不动的水分子组成的解析:在光学显微镜下,只能看到悬浮的小炭粒,看不到水分子,故A项错误;在显微镜下看到小炭粒不停地做无规则运动,这就是布朗运动,且看到的炭粒越小,运动越明显,故B、C两项正确,D项是错误的.答案:BC要点三热运动7.物体内分子运动的快慢与温度有关,在0°C时冰块内的水分子的运动状态是()A.仍然是运动的B.处于静止状态C.处于相对静止状态D.大部分分子处于静止状态解析:分子的运动虽然受温度影响,但永不停息,A对,B、C、D错.答案:A8.下列关于热运动的说法,正确的是()A.热运动是物体受热后所做的运动B.温度高的分子的无规则运动C.单个分子永不停息地做无规则运动D.大量分子永不停息地做无规则运动解析:物体内部分子做无规则运动的剧烈程度与温度的高低直接相关,温度越高,分子的无规则运动越剧烈,因此,物理学中把分子永不停息的无规则运动叫做热运动,其中的分子指大量分子,而不是单个分子,故D项正确.答案:D9.(多选)下列事例中,属于分子不停地做无规则运动的是()A.秋风吹拂,树叶纷纷落下B.在箱子里放几块樟脑丸,过些日子一开箱就能闻到樟脑的气味C.烟囱里冒出的黑烟在空中飘荡D.把胡椒粉末放入菜汤中,最后胡椒粉末会沉在汤碗底,而我们喝汤时却尝到了胡椒的味道解析:树叶、黑烟(颗粒)都是由若干分子组成的固体微粒,它们的运动都不是分子运动,A、C两项错误,B、D两项正确.答案:BD基础达标1.布朗运动是说明分子热运动的重要实验事实,布朗运动是指()A.液体分子的运动B.悬浮在液体中的固体分子的运动C.液体分子与固体分子的共同运动D.悬浮在液体中的固体微粒的运动解析:布朗运动是固体微粒的无规则运动,不是液体分子的运动,但能反映液体分子的无规则运动,A、B、C三项错误,D 项正确.答案:D2.放在房间一端的香水,打开瓶塞后,位于房间另一端的人将()A.立即嗅到香昧,因为分子热运动速率很大,穿过房间所需要的时间极短B.过一会儿才能嗅到香味,因为分子热运动速率不大,穿过房间需要一段时间C.过一会儿才能嗅到香味,因为分子热运动速率虽大,但由于是无规则运动,且与空气分子不断碰撞,要嗅到足够多的香水分子必须经过一段时间D.过一会儿才能嗅到香味,因为分子热运动速率虽大,但必须有足够多的香水分子,才能引起嗅觉解析:属扩散现象,是由于两种不同物质分子运动引起的,B 项对.答案:B3.在长期放着煤的墙角处,地面和墙角有相当厚的一层染上黑色,这说明()A.分子是在不停地运动B.煤是由大量分子组成的C.分子间没有空隙D.分子运动有时会停止解析:煤分子不停地运动,进入地面和墙角,正确选项为A.答案:A4.A、B两杯水中均有微粒在做布朗运动,经显微镜观察后,发现A杯中微粒的布朗运动比B杯中微粒的布朗运动激烈,则下列判断中正确的是()A.A杯中的水温高于B杯中的水温B.A杯中的水温等于B杯中的水温C.A杯中的水温低于B杯中的水温D.条件不足,无法判断两杯水温的高低解析:布朗运动的激烈程度跟液体的温度和微粒的大小两个因素都有关,因此根据布朗运动的激烈程度不能判断哪杯水的温度高,故D项对.答案:D5.(多选)关于布朗运动,下列说法不正确的是()A.布朗运动是微观粒子的运动,牛顿运动定律不再适用B.布朗运动是微粒内分子做无规则运动的反映C.强烈的阳光射入较暗的房间内,在光束中可以看到有浮在空气中的微尘不停地运动,这不是布朗运动D.因为布朗运动的剧烈程度跟温度有关,所以布朗运动也叫做热运动解析:布朗运动是固体小颗粒的运动,不是微观粒子的运动,牛顿运动定律仍然适用,A项错误;布朗运动反映了小颗粒周围液体(或气体)分子的无规则运动,并不反映小颗粒内分子的运动,B项错误;浮在空气中的微尘不停地运动是微尘周围的气体对流的结果,不是布朗运动,C项正确;热运动是大量分子的无规则运动,布朗运动不是热运动,D项错误.答案:ABD6.关于分子的热运动,以下叙述正确的是()A.布朗运动就是分子的热运动B.同种物质的分子的热运动激烈程度相同C.气体分子的热运动不一定比液体分子激烈D.物体运动的速度越大,其内部的分子热运动就越激烈解析:布朗运动是悬浮在液体中的固体小颗粒做的无规则运动,由于小颗粒是由大量分子构成的,所以布朗运动不是分子的运动,故A项错误.同种物质的分子若温度不同,其热运动的剧烈程度也不同,故B项错误.温度是分子热运动激烈程度的反映,温度越高,分子热运动越激烈,与物体运动的速度无关,由于气体和液体的温度高低不确定,所以气体分子的热运动不一定比液体分子激烈,故C项正确,D项错误.答案:C7.(多选)观察不到悬浮在液体中的微粒做布朗运动,是由于()A.液体分子不一定与微粒相撞B.各个方向的液体分子对微粒的撞击力相互平衡C.微粒的质量大,运动状态不易改变D.微粒分子本身的热运动缓慢解析:悬浮在液体中的微粒越大,在某一瞬间跟它相撞击的分子越多,撞击作用的不平衡性就表现得越不明显,可以认为撞击作用力互相平衡,因此布朗运动不明显,甚至观察不到.悬浮微粒质量越大,在相同力的作用下,速度越不容易改变,布朗运动越不明显,B、C两项正确.答案:BC8.关于布朗运动,下列说法正确的是()A.布朗运动就是分子运动,布朗运动停止了,分子运动也会暂时停止B.微粒做布朗运动,充分说明了微粒内部的分子不停地做无规则运动C.布朗运动的无规则性,说明了液体分子的运动也是无规则的D.布朗运动的无规则性,是由于外界条件不断变化引起的解析:布朗运动是指悬浮在液体(或气体)中的微粒的运动,它不是指分子的运动,布朗运动的无规则性是液体或气体分子对微粒的撞击引起的,不是微粒内部的分子无规则运动引起的.布朗运动间接反映了液体(或气体)分子运动的无规则性.布朗运动的无规则性,是由液体(或气体)分子的无规则运动决定的,并不是由外界条件变化引起的,因此只有C项正确.答案:C9.在显微镜下观察稀释了的碳素墨水,将会看到()A.水分子的运动情况B.碳分子的运动情况C.水分子对炭粒的作用D.炭粒的无规则运动解析:布朗运动不是做布朗运动的固体分子的热运动,也不是悬浮固体颗粒的液体分子的热运动,但布朗运动间接地反映了液体分子的热运动.在显微镜下观察到的布朗运动是大量分子的集合体——炭粒的无规则运动,而不是水分子和碳分子的运动.答案:D10.(多选)墨滴入水,扩散开来,慢慢混匀.关于该现象的分析正确的是()A.混合均匀主要是由于炭粒受重力作用B.混合均匀的过程中,水分子和炭粒都做无规则运动C.使用炭粒更小的墨汁,混合均匀的过程进行得更迅速D.墨汁的扩散运动是由于炭粒和水分子发生化学反应引起的解析:混合均匀根本原因是分子的无规则热运动,而不是受重力的影响,A项错误;水分子永不停息的热运动,水中的小炭粒是布朗运动,它们都是无规则的运动,B项正确;由于布朗运动的剧烈程度与颗粒的大小和温度有关,使用炭粒更小的墨汁,布朗运动会更明显,C项正确;扩散现象中没有新的物质生成,不是化学反应,D项错误.答案:BC11.(多选)关于扩散现象,下列说法正确的是()A.温度越高,扩散进行得越快B.扩散现象是不同物质间的一种化学反应C.扩散现象是由物质分子无规则运动产生的D.扩散现象在气体、液体和固体中都能发生E.液体中的扩散现象是由于液体的对流形成的解析:温度越高,分子运动越剧烈,扩散进行得越快,A项正确;扩散现象是不同物质相互进入到间隙中,不是化学反应,B 项错;扩散现象说明分子是无规则运动的,C项正确;扩散现象在气体、液体和固体中都能发生,D项正确;液体中的扩散现象与对流没有关系,E项错.答案:ACD12.(多选)下列关于布朗运动、扩散现象和对流的说法正确的是()A.三种现象在月球表面都能进行B.三种现象在宇宙飞船里都能进行C.布朗运动、扩散现象在月球表面能够进行,而对流则不能进行D.布朗运动、扩散现象在宇宙飞船里能够进行,而对流则不能进行解析:布朗运动和扩散现象都是分子无规则热运动的结果,而对流需要在重力作用的条件下才能进行.由于布朗运动、扩散现象是由分子热运动而形成的,所以二者在月球表面、宇宙飞船里均能进行,由于月球表面仍有重力存在,宇宙飞船里的微粒处于完全失重状态,故对流可在月球表面进行而不能在宇宙飞船内进行,故选A、D两项.答案:AD能力达标13.[2019·山西模拟](多选)小张在显微镜下观察水中悬浮的细微粉笔末的运动.从A点开始,他把小颗粒每隔20 s的位置记录在坐标纸上,依次得到B、C、D等这些点,把这些点连线形成如图所示折线图,则关于该粉笔末的运动,下列说法正确的是() A.该折线图是粉笔末的运动轨迹B.粉笔末的无规则运动反映了水分子的无规则运动C.经过B点后10 s,粉笔末应该在BC的中点处D.粉笔末由B到C的平均速度小于由C到D的平均速度E.若改变水的温度,再记录一张图,则仅从图上不能确定记录哪一张图时的温度高解析:该折线图不是粉笔末的实际运动轨迹,任意两点之间的运动也是无规则的,A项错误;粉笔末受到水分子的碰撞,做无规则运动,所以粉笔末的无规则运动反映了水分子的无规则运动,B项正确;由于热运动的无规则性,所以经过B点后10 s,不能确定粉笔末在哪个位置,C项错误;任意两点之间的时间间隔是相等的,所以位移间隔越大,平均速度就越大,故粉笔末由B 到C的平均速度小于由C到D的平均速度,D项正确;由于运动的无规则性,所以我们无法仅从图上就确定哪一张图的温度高,E 项正确.答案:BDE14.[2019·西安中学模拟]雾霾天气是对大气中各种悬浮颗粒物含量超标的笼统表述,是特定气候条件与人类活动相互作用的结果.雾霾中,各种悬浮颗粒物形状不规则,但可视为密度相同、直径不同的球体,并用PM10、PM2.5分别表示球体直径小于或等于10 μm、2.5 μm的颗粒物(PM是颗粒物的英文缩写).某科研机构对北京地区的检测结果表明,在静稳的雾霾天气中,近地面高度百米的范围内,PM10的浓度随高度的增加略有减小,大于PM10的大悬浮颗粒物的浓度随高度的增加明显减小,且两种浓度分布基本不随时间变化.据此材料,以下叙述正确的是() A.PM10表示直径小于或等于1.0×10-6 m的悬浮颗粒物B.PM10受到的空气分子作用力的合力始终大于其受到的重力C.PM10和大悬浮颗粒物都在做布朗运动D.PM2.5浓度随高度的增加逐渐增大解析:PM10表示直径小于或等于1.0×10-5 m的悬浮颗粒物,选项A错误;PM10的运动是由于气体分子频繁撞击的不平衡造成的,由于气体分子撞击的无规律性,导致颗粒运动无规律,撞击的合力与重力的大小无关系,可能大于重力也可能小于重力,选项B错误;PM10和大悬浮颗粒物都在做布朗运动,选项C正确;题中没有说明PM2.5的浓度变化情况,选项D错误.答案:C。
高中物理:分子的热运动
高中物理:分子的热运动【知识点的认识】一、分子热运动定义:物体内部大量分子的无规则运动叫做热运动。
(1)扩散现象相互接触的不同物质彼此进入对方的现象。
温度越高,扩散越快,可在固体、液体、气体中进行。
(2)布朗运动悬浮在液体(或气体)中的微粒的无规则运动,微粒越小,温度越高,布朗运动越显著。
二、布朗运动与分子热运动布朗运动分子热运动研究对象悬浮在液(气)体中的固体小颗粒分子是分子本身的特征形成原因由分子无规则运动撞击力的不平衡引起的,是分子运动的反映运动条件固体小颗粒在液体(或气体)中的运动一切状态(固、液、气)的物体中的分子都做热运动共同特点都是永不停息的无规则运动(绝对零度情况下除外),都随温度的升高而变得更加激烈【命题方向】常考题型是与其他知识点结合:下列说法中正确的是()A.布朗运动就是液体分子的无规则运动B.当气体分子热运动变剧烈时,气体的压强一定变大C.当分子力表现为引力时,分子势能随分子间距离的增大而增大D.第二类永动机不可能制成,是因为它违反了能量守恒定律分析:布朗运动是液体中固体微粒的无规则运动。
温度是分子平均动能的量度,即分子热运动的剧烈程度只与温度有关。
分子表现为引力时,距离增大,要克服引力做功,所以分子势能增加。
第二类永动机不可能制成,是因为它违反了热力学第二定律。
解答:A、布朗运动是液体中固体微粒的无规则运动,反映的是液体分子的无规则运动,故A错。
B、气体分子热运动的剧烈程度与温度有关,而与压强无关,故B错。
C、分子表现为引力时,距离增大,要克服引力做功,所以分子势能增加,故C对。
D、第二类永动机不可能制成,是因为它违反了热力学第二定律,故D错。
故选:C点评:本题主要考查基本知识点,只要记住即可。
《分子热运动》 知识清单
《分子热运动》知识清单一、分子热运动的概念我们生活的世界中,物质是由大量的分子、原子构成的。
而分子热运动,就是指一切物质的分子都在不停地做无规则的运动。
比如,当我们打开一瓶香水,很快就能在房间的各个角落闻到香味;将墨水滴入水中,墨水会逐渐扩散,使整杯水变色。
这些现象都是分子热运动的表现。
分子热运动的剧烈程度与温度有关。
温度越高,分子的热运动就越剧烈。
二、分子间的作用力分子之间并非毫无关系地自由运动,它们之间存在着相互作用力。
当分子间的距离较小时,分子间表现为斥力,这使得分子难以被压缩;而当分子间的距离较大时,分子间表现为引力,这使得物体不会轻易散开。
但需要注意的是,分子间的引力和斥力是同时存在的。
例如,固体很难被拉伸和压缩,就是因为固体分子间的距离较小,引力和斥力都比较大。
三、扩散现象扩散现象是分子热运动的一个重要证据。
不同的物质相互接触时,彼此进入对方的现象叫做扩散。
气体之间的扩散最为迅速,液体次之,固体的扩散最慢。
比如,将一瓶二氧化碳气体倒扣在装有空气的集气瓶上,一段时间后,上下两瓶气体的颜色会变得均匀,这表明气体发生了扩散。
在腌制咸菜时,需要较长时间盐才能进入菜内部,这反映了固体间的扩散较慢。
四、分子热运动与宏观物体运动的区别分子热运动是微观世界中分子的无规则运动,而宏观物体的运动是可以用肉眼直接观察到的有规律的运动。
宏观物体的运动遵循牛顿运动定律,而分子热运动的规律则需要用统计物理学的方法来研究。
宏观物体的运动可以停止,比如静止的汽车;但分子热运动永远不会停止,除非达到绝对零度(但绝对零度是无法达到的)。
五、布朗运动布朗运动是指悬浮在液体或气体中的微粒所做的永不停息的无规则运动。
布朗运动不是分子的运动,而是分子热运动的间接反映。
通过布朗运动,可以更直观地观察到分子热运动的存在。
例如,在显微镜下观察花粉颗粒在水中的运动,花粉颗粒会不停地做无规则的折线运动。
六、分子热运动的影响因素1、温度如前文所述,温度是影响分子热运动剧烈程度的最主要因素。
第十三章内能 知识点总结
第十三章内能第一节分子热运动物质的构成1、定义:常见的物质是由极其微小的粒子——分子、原子构成的。
2、分子的大小:分子的直径很小,通常用10-10m为单位来度量。
(如:草叶上的一滴露珠中含有约1021个水分子。
)3、分子间有间隙:实验探究:将50ml的酒精倒入装有50ml水的试管中,试管颠倒几次,发现两者总体积小于100ml。
实验结论:分子间存在间隙,混合后水分子和酒精分子彼此进入对方的分子间隙中,导致总体积变小。
扩散现象(二氧化氮棕红色)1、定义:不同的物质在互相接触时彼此进入对方的现象,叫做扩散。
实验:装空气的瓶子在上,装二氧化氮的气体的瓶子在下,中间一块玻璃板隔开。
整个装置不能倒放(防止重力对实验的影响ρ二氧化氮>ρ空气)现象:抽去玻璃板后两瓶气体颜色变得均匀。
结论:气体的分子在不停地做无规则运动。
(分子运动肉眼看不见,扫地时尘土飞扬不是分子运动)2、扩散现象说明:①:一切物质的分子都在不停地做无规则的运动;②:分子之间有间隔。
分子的热运动1、定义:一切物质的分子都在不停的做无规则的运动。
这种无规则的运动叫做分子的热运动。
2、影响因素:分子运动的剧烈程度与温度有关,温度越高,分子运动越剧烈。
分子间的作用力1、分子间存在相互作用的引力和斥力。
分子间的引力和斥力同时存在。
2、类比法理解分子间的作用力物质三种状态分子结构特点分子动理论:1、常见的物质是由大量的分子、原子构成的;2、物质内的分子在不停地做无规则运动;3、分子之间存在引力和斥力。
第二节内能内能1、定义:构成物体的所有分子,其热运动的动能与分子势能的总和叫做物体的内能。
2、单位:焦耳(J)各种形式的能量的单位都是焦耳。
3、影响内能大小的因素物体内能的改变1、热传递改变物体的内能(1)热量:在热传递过程中,传递能够量的多少叫做热量热量(Q),单位:焦耳(J)(2)热传递改变物体的内能:物体吸收热量,内能增加;物体放出热量,内能减少。
(3)在热传递过程中,若不计热量损失,高温物体放出的热量等于低温物体吸收热量,即Q放=Q吸。
新教材 人教版高中物理选择性必修第三册 第一章 分子动理论 知识点考点重点难点提炼汇总
第一章分子动理论1.分子动理论的基本内容 (1)2. 实验:用油膜法估测油酸分子的大小 (6)3. 分子运动速率分布规律 (9)章末复习提高 (21)1.分子动理论的基本内容一、物体是由大量分子组成的1.分子:把组成物体的微粒统称为分子。
2.1 mol水中含有水分子的数量就达6.02×1023个。
二、分子热运动1.扩散(1)扩散:不同的物质能够彼此进入对方的现象。
(2)产生原因:由物质分子的无规则运动产生的。
(3)发生环境:物质处于固态、液态和气态时,都能发生扩散现象。
(4)意义:证明了物质分子永不停息地做无规则运动。
(5)规律:温度越高,扩散现象越明显。
2.布朗运动(1)概念:把悬浮微粒的这种无规则运动叫作布朗运动。
(2)产生的原因:大量液体(气体)分子对悬浮微粒撞击的不平衡造成的。
(3)布朗运动的特点:永不停息、无规则。
(4)影响因素:微粒越小,布朗运动越明显,温度越高,布朗运动越激烈。
(5)意义:布朗运动间接地反映了液体(气体)分子运动的无规则性。
3.热运动(1)定义:分子永不停息的无规则运动。
(2)宏观表现:扩散现象和布朗运动。
(3)特点①永不停息;②运动无规则;③温度越高,分子的热运动越激烈。
三、分子间的作用力1.分子间有空隙(1)气体分子的空隙:气体很容易被压缩,说明气体分子之间存在着很大的空隙。
(2)液体分子间的空隙:水和酒精混合后总体积会减小,说明液体分子间有空隙。
(3)固体分子间的空隙:压在一起的金片和铅片,各自的分子能扩散到对方的内部,说明固体分子间也存在着空隙。
2.分子间作用力(1)当用力拉伸物体时,物体内各部分之间要产生反抗拉伸的作用力,此时分子间的作用力表现为引力。
(2)当用力压缩物体时,物体内各部分之间会产生反抗压缩的作用力,此时分子间的作用力表现为斥力。
说明:分子间的作用力指的是分子间相互作用引力和斥力的合力。
四、分子动理论1.内容:物体是由大量分子组成的,分子在做永不停息的无规则运动,分子之间存在着相互作用力。
分子热运动知识点
第一节、分子热运动一、物质结构1、物质是由极其微小的分子、原子构成的。
2、分子之间有间隔。
二、分子热运动1、扩散现象:不同物质在相互接触时,彼此进入对方的现象。
扩散可以发生在固液气三种状态之间,但看不到颗粒存在。
扩散的实质:(1)、分子永不停息的做无规则运动。
(2)、分子间有间隔。
2、分子热运动:分子无规则运动与温度有关,所以称为分子热运动。
三、分子间的作用力:分子间有相互作用的引力和斥力。
当分子间距离处于平衡位置r=r0时,分子所受引力和斥力相等;当分子间的距离r﹤r0时,引力小于斥力,作用力表现为斥力;当分子间的距离r﹥r0时,引力大于斥力,作用力表现为引力;如果分子相距很远r﹥10r0,作用力就变得十分微弱,可以忽略第二节、内能一、内能1、内能:物体内部所有分子热运动的动能和分子势能的总和,叫做物体的内能。
注意:内能与机械能是两种形式的能,物体的机械能可以为零,但内能永不为零,也即是说任何物体都具有内能。
2、内能的影响因素:质量、材料、温度、状态。
在物体的质量,材料、状态相同时,温度越高物体内能越大。
3、在所有的表述中,只有说物体温度升高内能一定增加和物体温度降低内能一定减少是对的,其他的只能是不一定。
二、改变内能的方式1、热传递(1)、热传递:使温度不同的物体互相接触时,高温物体将能量传给低温物体的现象。
(能量的转移)(2)、在热传递过程中,传递内能的多少称为热量,用Q表示,单位为J注意:热量是热传递过程中内能的特殊称呼,不能说具有、含有多少热量。
2、做功(1)、做功:通过压缩、摩擦、敲打等方式将机械能转化为内能使物体内能增加。
(能量的转化)(2)、对物体做功,物体内能增加;物体对外界做功,物体内能减小。
第三节、比热容一、比较不同物质的吸热能力1、选用相同的电加热器(使物体单位时间吸收的热量相同),为质量和初温相同的两种物质进行加热,记录加热时间和温度。
2、加热相同的时间,比较温度的变化量,温度变化量越小说明吸热能力越强;变化相同的温度比较加热时间,用时越长,说明吸热能力越强。
第1节 分子热运动知识点梳理
第1节 分子热运动知识点与考点解析 ★考点概览一、知识点与考点二、考点解析1.分子热运动是本章基础,也是了解物质分子运动规律的基础。
分子热运动可以从许多生活中的现象中提现出来,如扩散现象、物质三态的物理性质等。
本节主要知识点有物质的构成、分子热运动和分子间相互作用力。
考点主要集中在分子热运动和分子之间的作用力两个方面。
从历年中考来看,常见的是用现象解释分子无规则热运动、分子之间的作用力、物质三态和分子热运动的关系。
2.纵观各地中考考纲和近三年考卷来看,对本节知识点的考查主要集中在分子热运动上,对于分子之间的作用力的考查也不容忽视。
常见考查方式是用分子热运动和分子间作用力解释生活中的现象,对分子热运动现象进行判断等。
此内容考题不多,一般在一个题目或者和其他知识点结合组成一个题目。
本节考点在中考试卷中出现概率很高,也会延续以前的考查方式和规律,不会有很大变化。
考查思路主要分为三个方面:(1)对分子热运动的理解;(2)用分子热运动解释现象;(3)用分子间作用力解释现象等。
3.考点分类:考点分类见下表★知识点精析1.分子热运动(1)分子动理论:物质是由分子和原子组成的,分子在永不停息地做无规则运动,分子之间有间隙。
(2)热运动:分子运动快慢与温度有关,温度越高,分子热运动越剧烈。
分子热运动(3)扩散:不同物质相互接触时,彼此进入对方的现象叫做扩散现象,固体、液体和气体都能发生扩散现象,温度越高,扩散越快。
2.分子间作用力分子间相互作用的引力和斥力是同时存在的。
当固体被压缩时,分子间距离变小,分子作用力表现为斥力;当固体被拉伸时,分子间距离变大,作用力表现为引力。
如果分子间距离很大,作用力几乎为零,可以忽略不计;因此,气体具有流动性,也容易被压缩。
液体间分子之间距离比气体小,比固体大,液体分子之间的作用力比固体小,没有固定的形状,具有流动性。
★典例精析★考点一:分子热运动◆典例一:(2020·山东泰安)下列现象中,说明分子在不停地做无规则运动的是()。
物理第15章内能知识点
物理第15章内能知识点一、分子热运动。
1. 物质的构成。
- 常见的物质是由极其微小的粒子——分子、原子构成的。
- 分子很小,人们通常以10⁻¹⁰m为单位来量度分子。
2. 分子热运动。
- 扩散现象。
- 定义:不同物质在互相接触时彼此进入对方的现象。
- 例子:- 气体扩散:打开一瓶香水,不久后整个房间都能闻到香味;在量筒里装一半清水,用细管在水的下面注入硫酸铜的水溶液,开始时界面清晰,几天后界面模糊不清了。
- 液体扩散:红墨水滴入水中,整杯水变红。
- 固体扩散:长期堆放煤的墙角,墙壁内部会变黑。
- 表明:一切物质的分子都在不停地做无规则的运动。
- 分子热运动:- 定义:由于分子的运动跟温度有关,所以这种无规则运动叫做分子的热运动。
- 温度越高,分子热运动越剧烈。
3. 分子间的作用力。
- 分子间存在引力。
- 例子:- 固体很难被拉伸,说明分子间存在引力。
- 两个铅块紧压在一起后,下面挂很重的物体也不能把它们拉开。
- 分子间存在斥力。
- 例子:固体和液体很难被压缩,说明分子间存在斥力。
- 分子间存在间隙。
- 例子:酒精和水混合后总体积变小。
- 分子间作用力与距离的关系:- 当分子间距离r = r₀(r₀的数量级为10⁻¹⁰m)时,引力和斥力平衡。
- 当r>r₀时,引力大于斥力,表现为引力。
- 当r<r₀时,斥力大于引力,表现为斥力。
二、内能。
1. 内能的概念。
- 构成物体的所有分子,其热运动的动能与分子势能的总和,叫做物体的内能。
- 单位:焦耳(J)。
- 一切物体,不论温度高低,都具有内能。
因为分子在永不停息地做无规则运动,分子间存在相互作用。
2. 影响内能大小的因素。
- 温度:同一物体,温度越高,内能越大。
因为温度越高,分子热运动越剧烈,分子动能越大。
- 质量:在温度相同的情况下,质量越大的物体内能越大。
- 状态:同种物质,状态不同,内能不同。
例如,0°C的水的内能比0°C的冰的内能大。
《分子及其热运动》 知识清单
《分子及其热运动》知识清单一、分子的概念分子是保持物质化学性质的最小微粒。
物质由大量分子组成,不同的物质由不同的分子构成。
例如,水由水分子组成,氧气由氧分子组成,酒精由酒精分子组成。
分子非常小,肉眼是无法直接看到的。
一个水分子的直径大约只有04 纳米。
二、分子的特性1、分子在不停地做无规则运动一切物质的分子都在永不停息地做无规则运动。
这就是分子的热运动。
温度越高,分子的热运动越剧烈。
例如,在房间里喷一点香水,过一会儿就能闻到香味,这就是香水分子在空气中做无规则运动的结果。
2、分子间存在间隙将一定量的酒精和水混合,总体积会小于两者体积之和,这是因为分子间存在间隙,酒精分子和水分子相互进入对方的空隙中。
3、分子间存在相互作用力分子间同时存在着引力和斥力。
当分子间距离较小时,表现为斥力;当分子间距离较大时,表现为引力。
例如,固体很难被压缩,是因为分子间的斥力较大;固体很难被拉伸,是因为分子间的引力较大。
三、扩散现象扩散现象是指不同物质相互接触时,彼此进入对方的现象。
扩散现象表明:分子在不停地做无规则运动,而且分子间存在间隙。
常见的扩散现象有:气体之间的扩散,如氧气和氮气可以相互扩散;液体之间的扩散,如墨水滴入水中会逐渐扩散;固体之间的扩散,如长期堆放在墙角的煤会使墙体变黑。
扩散现象的快慢与温度有关,温度越高,扩散越快。
四、布朗运动悬浮在液体或气体中的微粒所做的永不停息的无规则运动叫做布朗运动。
布朗运动不是分子的运动,而是液体或气体分子无规则运动的反映。
布朗运动的特点是:微粒越小,温度越高,布朗运动越明显。
五、热运动与温度的关系温度是物体内部分子热运动剧烈程度的标志。
温度越高,分子的热运动越剧烈,分子的平均动能越大。
绝对零度(约为-27315℃)是理论上的低温极限,在绝对零度时,分子的热运动停止,但目前无法达到绝对零度。
六、分子热运动的应用1、工业上的应用在工业生产中,利用分子热运动原理进行扩散渗析、气体分离等操作。
人教版高中物理选修—分子的热运动PPT课件
人教版高中物理选修3—3第7章第2节 分子的 热运动 (共15张PPT)
2、布朗运动的对象:
布朗运动的对象是布朗微粒, 不是分子,它必须是足够微小的颗 粒, 布朗运动研究的颗粒的直径数
生扩散且温度越高扩散越快;
4、实际应用:高温条件下,在纯净半导体材料中
渗入其它元素来生产半导体器件;
5、意义:反映分子在做永不停息的无规则运动。
19世纪,一些人观察到,悬浮在液体中的小颗粒总在 不停地运动。1827年,英国植物学家布朗(R.Brown, 1773--1858)首先在显微镜下研究了这种运动。
人教版高中物理选修3—3第7章第2节 分子的 热运动 (共15张PPT)
人教版高中物理选修3—3第7章第2节 分子的 热运动 (共15张PPT)
小结
一、扩散现象 二、布朗运动
1、定义;
2、产生的原因; 3、发生环境:固态、液态、气态; 4、实际应用:生产半导体器件; 5、意义。 1、定义; 2、产生的原因; 3、运动特点:(1)永不停息;(2)无规则 ; 4、影响因素:微粒的大小和温度的高低; 5、意义。
第 二节、分子的热运动
复习第一节的内容
1、物体是由大量分子组成的
2、分子的大小:
10 m 10
(1)分子大小的数量级:
(2)肉眼或光学显微镜无法观察,只能借助电子扫描 隧道显微镜才能观察到。
3、阿伏伽德罗常数
N A 6.02 1023 / mol
阿伏伽德罗常数是一个重要的常数。它把摩尔质量、摩尔 体积等宏观物理量与分子质量、分子大小等微观物理量联系起 来。
高三物理上册《分子的热运动》知识点总结人教版范例
高三物理上册《分子的热运动》知识点总结人教版范例高三物理上册《分子的热运动》知识点总结人教版知识点一扩散1、定义不同分子互相接触时,彼此进入对方的现象叫扩散。
其实质是分子(原子)的互相渗透。
2、扩散现象表明一切物质的分子都在做永不停息的无规则运动,也说明物质的分子间存在间隙。
3、影响因素温度越高,扩散越快4、理解扩散现象扩散现象只能发生在不同的物质之间。
不同物质只有相互接触时才能发生扩散现象。
扩散现象是两种物质的分子彼此进入对方。
不同状态的物体之间也可以发生扩散现象。
知识点二分子热运动一切物质的分子都在不停地做无规则运动。
由于分子的运动与温度有关,所以这种无规则的运动叫做分子的热运动。
温度越高,热运动越剧烈。
知识点三分子动理论1、分子动理论内容物质是由分子组成的,一切物质的分子都在不停地做无规则运动,分子间存在相互作用的引力和斥力。
2、分子间的作用力分子间同时存在相互作用的引力和斥力,当分子距离很小时,引力小于斥力,表现为斥力;当分子间距离稍大时,引力大于斥力,表现为引力;当分子间距离很大时,分子间作用力变得十分微小,可以忽略。
3、分子间作用力与物质状态的关系①固体中的分子距离非常小,相互作用力很大,分子只能在一定的位置附近振动,所以既有一定的体积,又有一定的形状。
②液体中分子距离较小,相互作用力较大,以分子群的形态存在,分子可以在某个位置附近振动,分子群可以互相滑过,所以液体有一定的体积,但有流动*,形状随容器而变。
③气体分子间的距离很大,相互作用力很小,每个分子几乎都可以自由运动,所以气体既没有固定的体积,也没有固定的形状,可以充满它能够达到的整个空间。
④固体物质很难被拉伸,是因为分子间存在引力的缘故;液体物质很难被压缩,是因为分子间存在斥力的原因;液体物质能保持一定的体积是因为分子间存在引力的原因。
人教版高三物理第十单元 分子热运动、能量守恒、气体知识精讲
高三物理第十单元分子热运动、能量守恒、气体知识精讲一. 本周教学内容第十单元 分子热运动、能量守恒、气体二. 知识结构热学⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧气体分子动理论理想气体、温度、压强气体的状态参量:体积气体热力学第二定律热力学第一定律能量守恒定律内能的改变概念物体内能分子动理论三. 知识要点1. 分子动理论的根本内容物质是由大量分子组成的;分子都在永不停息的做无规如此热运动;分子间存在着相互作用力。
2. 分子动能、分子势能、物体的内能〔1〕分子动能:做热运动的分子具有动能,在热现象的研究中,单个分子的动能是无研究意义的,重要的是分子热运动的平均动能。
温度是物体分子热运动的平均动能的标志,因而在一样温度下,分子的平均动能一样。
〔2〕分子势能:分子间具有由它们的相对位置决定的势能,叫做分子势能。
分子势能随着物体的体积的变化而变化。
〔3〕物体的内能:物体里所有的分子动能和势能的总和叫做物体的内能,任何物体都有内能,物体的内能跟物体的温度、体积与物质的量有关,即跟微观量中的分子的平均动能、分子间距与分子个数有关。
* 理想气体无分子势能,所以一定质量的理想气体,内能只跟温度有关,物体的内能和机械能有着本质的区别,物体的内能指物体内分子热运动的能量,而机械能是物体做机械运动所具有的能量。
3. 物体内能的变化〔1〕做功和热传递都能改变物体的内能。
* 物体内能的改变可以用做功的值来量度对外界做了多少功,物体的内能就减少多少,外界对物体做了多少功,物体的内能就增加多少。
* 热传递的条件是要有温度差,其规律是高温物体放出热,低温物体吸收热,最终达到温度相等,热传递过程完毕。
〔2〕热力学第一定律做功和热传递都可以改变物体的内能,物体内能的变化由做功和热传递共同决定,遵循热力学第一定律。
即Q W U +=∆0>∆U 即内能增加,0<∆U 内能减少0>W 外界对物体做功,0<W 物体对外界做功0>Q 物体吸热,0<Q 物体放热* 功不是能量的一种形式,而是能量转化多少的量度,功和能不能相互转化,热量也不是能量的一种形式,而是内能转化多少的量度。
分子热运动、内能知识点总结
一、基础知识:分子热运动篇1、物质的组成(1)物质是由分子、原子组成的。
(2)分子非常小,不借助仪器,肉眼是看不见的,如果把分子看成一个个的小圆球(物理模型法),那么一般一个分子的直径大约是10-10m,因此一个物体是由数量巨大的分子组成的。
(3)分子很小,它的直径的数量级是10-10m,1cm3的空气中大约有2.7×1019个分子。
2、扩散现象(1)定义:不同的物质相互接触时,彼此进入对方的现象叫做扩散.(2)扩散现象表明:一切物质的分子都在不停的做无规则运动,间接证明分子之间有间隙。
注意:不同的物质一定要相互接触才能发生扩散,必须是两种物质相互进入彼此。
扩散现象是不同物质的分子运动造成的,要注意和微小颗粒状物体运动的区别。
3、分子热运动(1)定义:一切物质的分子都在不停的做无规则运动,这种无规则的分子运动叫做分子的热运动(2)影响分子热运动的影响因素:分子的热运动与温度有关,温度越高,分子热运动越剧烈,分子扩散的就越快。
4、分子间的作用力(1)固体和液体中的分子之所以不会分散开,而总是聚合在一起,是因为分子间存在引力的作用,从而使固体和液体能保持一定的体积。
由于分子间也存在斥力作用,因此固体与液体很难被压缩。
(2)分子间的引力和斥力总是同时存在的。
它们都随分子间距离的增大而减小,随分子间距离的减小而增大,只是斥力变化的比引力要快。
当分子间距离很小时,作用力表现为斥力;当分子间作用力稍大时,作用力表现为引力。
如果分子间距很远,作用力就变得十分微弱,可以忽略。
内能篇1、内能(1)宏观物体的能表现为机械能,是物体外在的能量;微观物体的能表现为内能,是物体内在的能量。
(2)分子动能:物体是由大量分子组成的,分子在永不停息的做无规则运动,所以分子都具有动能,叫做分子动能。
(3)分子势能:分子之间存在相互作用的引力和斥力,所以分子又具有势能,叫做分子势能。
(4)构成物体的所有分子,其热运动的动能和分子势能的总和叫做物体的内能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三物理上册《分子的热运动》知识点
总结人教版
课
件www.5yk
知识点一
扩散
、定义
不同分子互相接触时,彼此进入对方的现象叫扩散。
其实质是分子的互相渗透。
2、扩散现象表明
一切物质的分子都在做永不停息的无规则运动,也说明物质的分子间存在间隙。
3、影响因素
温度越高,扩散越快
4、理解扩散现象
扩散现象只能发生在不同的物质之间。
不同物质只有相互接触时才能发生扩散现象。
扩散现象是两种物质的分子彼此进入对方。
不同状态的物体之间也可以发生扩散现象。
知识点二
分子热运动
一切物质的分子都在不停地做无规则运动。
由于分子的运动与温度有关,所以这种无规则的运动叫做分子的热运动。
温度越高,热运动越剧烈。
知识点三
分子动理论
、分子动理论内容
物质是由分子组成的,一切物质的分子都在不停地做无规则运动,分子间存在相互作用的引力和斥力。
2、分子间的作用力
分子间同时存在相互作用的引力和斥力,当分子距离很小时,引力小于斥力,表现为斥力;
当分子间距离稍大时,引力大于斥力,表现为引力;
当分子间距离很大时,分子间作用力变得十分微小,可以忽略。
3、分子间作用力与物质状态的关系
①固体中的分子距离非常小,相互作用力很大,分子只能在一定的位置附近振动,所以既有一定的体积,又有一定的形状。
②液体中分子距离较小,相互作用力较大,以分子群的形态存在,分子可以在某个位置附近振动,分子群可以互相滑过,所以液体有一定的体积,但有流动性,形状随容器而变。
③气体分子间的距离很大,相互作用力很小,每个分子几乎都可以自由运动,所以气体既没有固定的体积,也没有固定的形状,可以充满它能够达到的整个空间。
④固体物质很难被拉伸,是因为分子间存在引力的缘故;液体物质很难被压缩,是因为分子间存在斥力的原因;液体物质能保持一定的体积是因为分子间存在引力的原因。
课
件www.5yk。