统计学假设检验习题答案教学提纲

合集下载

人大版统计学 习题加答案第四章 假设检验

人大版统计学 习题加答案第四章 假设检验

第四章 假设检验填空(5题/章),选择(5题/章),判断(5题/章),计算(3题/章) 一、填空1、在做假设检验时容易犯的两类错误是 和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为 ,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是 也叫第一类错误,它是指原假设H0是 的,却由于样本缘故做出了 H0的错误;和 叫第二类错误,它是指原假设H0是 的, 却由于样本缘故做出 H0的错误。

4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为 。

5、 假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为 。

6、从一批零件中抽取100个测其直径,测得平均直径为5.2cm ,标准差为1.6cm ,想知道这批零件的直径是否服从标准直径5cm ,在显著性水平α下,否定域为7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为 。

(用H 0,H 1表示)8、一般在样本的容量被确定后,犯第一类错误的概率为α,犯第二类错误的概率为β,若减少α,则β9、某厂家想要调查职工的工作效率,用方差衡量工作效率差异,工厂预计的工作效率为至少制作零件20个/小时,随机抽样30位职工进行调查,得到样本方差为5,试在显著水平为0.05的要求下,问该工厂的职工的工作效率 (有,没有)达到该标准。

KEY: 1、弃真错误,纳伪错误 2、双边检验,单边检验3、拒真错误,真实的,拒绝,取伪错误,不真实的,接受4、显著性水平5、小概率事件6、1.25>21α-z7、H 0:t≥1000 H 1:t <1000 8、增大 9、有二、 选择1、假设检验中,犯了原假设H 0实际是不真实的,却由于样本的缘故而做出的接受H 0的错误,此类错误是( )A 、α类错误B 、第一类错误C 、取伪错误D 、弃真错误 2、一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A 、0:5H μ=,1:5H μ≠B 、0:5H μ≠,1:5H μ>C 、0:5H μ≤,1:5H μ>D 、0:5H μ≥,1:5H μ< 3、一个95%的置信区间是指( ) A 、总体参数有95%的概率落在这一区间内 B 、总体参数有5%的概率未落在这一区间内C 、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率( ) A 、都增大 B 、都减小 C 、都不变 D 、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。

假设检验练习试题-答案解析

假设检验练习试题-答案解析

假设检验练习题1. 简单回答下列问题:1)假设检验的基本步骤?答:第一步建立假设 (通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论)有三类假设第二步选择检验统计量给出拒绝域的形式。

根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1: W为双边H1: W为单边H1: W为单边第三步:给出假设检验的显著水平第四步给出零界值C,确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。

例如:对于=0.05有的双边 W为的右单边 W为的右单边 W为第五步根据样本观测值,计算和判断计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受(计算P值 227页 p值由统计软件直接得出时拒绝,否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)2)假设检验的两类错误及其发生的概率?答:第一类错误:当为真时拒绝,发生的概率为第二类错误:当为假时,接受发生的概率为3)假设检验结果判定的3种方式?答:1.计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受2.计算P值 227页 p值由统计软件直接得出时拒绝,否则接受3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受4)在六西格玛A阶段常用的假设检验有那几种?应用的对象是什么?答:连续型(测量的数据):单样本t检验 -----比较目标均值双样本t检验 -----比较两个均值方差分析 -----比较两个以上均值等方差检验 -----比较多个方差离散型(区分或数的数据):卡方检验 -----比较离散数2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。

统计学第五版第八章课后习题答案

统计学第五版第八章课后习题答案
0.025
决策: ∵Z值落入接受域, ∴在α=0.05的显著水平上接受 H 0 。
结论:有证据表明现在生产的铁水平均含碳量与以前没有显著差 异,可以认为现在生产的铁水平均含碳量为4.55。
8.2 一种元件,要求其使用寿命不得低于700小时。现从一批这种 元件中随机抽取36件,测得其平均寿命为680小时。已知该元件寿 命服从正态分布,σ=60小时,试在显著性水平0.05下确定这批元 件是否合格。
甲法:31 34 29 32 35 38 34 30 29 32 31 26 乙法:26 24 28 29 30 29 32 26 31 29 32 28 两总体为正态总体,且方差相同。问两种方法的装配时 间有无显著差别(α =0.05)? 解: 正态总体,小样本,σ²未知但相同,独立样本t检验 H 0 : 甲 -乙 = 0 H1 : 甲 - 乙 ≠ 0
由Excel制表得:
由图可知:
已知:α = 0.05,n1 = n2=12 2 2 x甲 =31.75 x乙 =28.67 S甲=10.20 S乙 =6.06 t=1.72 t∈(-1.72,1.72)接受,否则拒绝。 t=(31.75-28.67)/(8.08* 0.41)=0.93 0.93∈(-1.72,1.72) 决策:在α = 0.05的水平上接受H 0 。 结论: 两种方法的装配时间无显著不同。
σ²≤100 H 1 : σ²>100 α= 0.05,n=9,自由度= 9 - 1 = 8, S² =215.75, x =63 采用χ²检验 临界值(s): χ² =15.5 )S 2 (9 - 1) * 215.75 2 (n - 1 17.26 15.5 检验统计量: 2 100 决策:在 a = 0.05的水平上拒绝 H 0 结论: σ²>100

统计学:假设检验习题与答案

统计学:假设检验习题与答案

一、单选题1、在假设检验中,我们认为()。

A.原假设是不容置疑的B.拒绝域总是位于检验统计量分布的两边C.小概率事件在一次抽样中实际上不会发生D.检验统计量落入拒绝域是不可能的正确答案:C2、在假设检验中,显著性水平确定后()。

A.双边检验的拒绝域小于单边检验的拒绝域B.双边检验的拒绝域大于单边检验的拒绝域C.双边检验的拒绝域与单边检验的拒绝域不可简单直接对比D.双边检验的拒绝域等于单边检验的拒绝域正确答案:C3、单个正态总体均值的检验时若总体方差已知,()。

A.设计的检验统计量服从卡方分布B.设计的检验统计量服从F分布C.设计的检验统计量服从标准正态分布D.设计的检验统计量服从t分布正确答案:C4、总体成数的假设检验()。

A.设计的检验统计量服从标准正态分布B.设计的检验统计量服从卡方分布C.设计的检验统计量近似服从卡方分布D.设计的检验统计量近似服从标准正态分布正确答案:D5、两个正态总体均值之差的检验中,如果两个总体方差未知但相等,检验统计量t的自由度是()。

A.两样本容量之和B.两样本容量之和减2C.两样本容量之积D.两样本容量之和减1正确答案:B6、假设检验是检验()的假设值是否成立。

A.总体均值B.总体指标C.样本方差D.样本指标正确答案:B7、在大样本条件下,样本成数的抽样分布近似为()。

A.均匀分布B.卡方分布C.二项分布D.正态分布正确答案:D8、下列关于假设检验的说法,不正确的是()。

A.作出“拒绝原假设”决策时可能会犯第一类错误B.作出“不能拒绝原假设”决策时意味着原假设正确C.作出“不能拒绝原假设”决策时可能会犯第二类错误D.作出“接受原假设”决策时意味着没有充分的理由认为原假设是错误的正确答案:B9、将由显著性水平所规定的拒绝域平分为两部分,置于概率分布的两,每边占显著性水平的二分之一,这是()。

A.右侧检验B.单侧检验C.左侧检验D.双侧检验正确答案:D10、如果使用者偏重于担心出现纳伪错误而造成的损失,则应把显著性水平定得()。

假设检验例题和习题

假设检验例题和习题

超过1cm3。如果达到设计要求 -0.6 0.7 -1.5 -0.2 -1.9
,表明机器的稳定性非常好。 -0.5 1 -0.2 -0.6 1.1
现从该机器装完的产品中随机
抽取25瓶,分别进行测定(用样
本减1000cm3),得到如下结果
。检验该机器的性能是否达到
设计要求 (=0.05)
8 - 30
双侧检验
备择假设的方向为“<”(废品率降低) 建立的原假设与备择假设应为
H0: 2% H1: < 2%
8 -7
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
某灯泡制造商声称,该企业所生产的灯泡 的平均使用寿命在1000小时以上。如果 你准备进一批货,怎样进行检验
▪ 检验权在销售商一方
▪ 作为销售商,你总是想收集证据证明生产商 的说法(寿命在1000小时以上)是不是正确的
决策:
在 = 0.05的水平上拒绝H0
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
统计学
(第二版)
2 已知均值的检验
(P 值的计算与应用)
第1步:进入Excel表格界面,选择“插入”下拉菜 单
第2步:选择“函数”点击
第3步:在函数分类中点击“统计”,在函数名的 菜
单下选择字符“NORMSDIST”然后确定
?( = 0.05)
统计学
(第二版)
均值的单尾 t 检验
(计算结果)
H0: 40000 H1: < 40000 = 0.05 df = 20 - 1 = 19 临界值(s):
拒绝域
.05
-1.7291 0
t
8 - 23

统计学假设检验习题答案

统计学假设检验习题答案

1。

假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。

解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。

采用t 分布的检验统计量n x t /0σμ-=。

查出α=0。

05和0。

01两个水平下的临界值(d f=n-1=15)为2.131和2。

947。

667.116/60800820=-=t .因为t 〈2。

131<2.947,所以在两个水平下都接受原假设。

2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。

n=100可近似采用正态分布的检验统计量nx z /0σμ-=.查出α=0.01水平下的反查正态概率表得到临界值2。

32到2。

34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。

计算统计量值3100/5001000010150=-=z 。

因为z =3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。

3。

设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600。

医学统计学第5章 假设检验思考与练习参考答案

医学统计学第5章 假设检验思考与练习参考答案

第5章 假设检验思考与练习参考答案一、最佳选择题1. 样本均数比较作t 检验时,分别取以下检验水准,以( E )所取Ⅱ类错误最小。

A.0.01α=B. 0.05α=C. 0.10α=D. 0.20α=E. 0.30α=2. 在单组样本均数与一个已知的总体均数比较的假设检验中,结果t =3.24,t 0.05,v =2.086, t 0.01,v =2.845。

正确的结论是( E )。

A. 此样本均数与该已知总体均数不同B. 此样本均数与该已知总体均数差异很大C. 此样本均数所对应的总体均数与该已知总体均数差异很大D. 此样本均数所对应的总体均数与该已知总体均数相同E. 此样本均数所对应的总体均数与该已知总体均数不同3. 假设检验的步骤是( A )。

A. 建立假设,选择和计算统计量,确定P 值和判断结果B. 建立无效假设,建立备择假设,确定检验水准C. 确定单侧检验或双侧检验,选择t 检验或Z 检验,估计Ⅰ类错误和Ⅱ类错误D. 计算统计量,确定P 值,作出推断结论E. 以上都不对4. 作单组样本均数与一个已知的总体均数比较的t 检验时,正确的理解是( C )。

A. 统计量t 越大,说明两总体均数差别越大B. 统计量t 越大,说明两总体均数差别越小C. 统计量t 越大,越有理由认为两总体均数不相等D. P 值就是αE. P 值不是α,且总是比α小5. 下列( E )不是检验功效的影响因素的是:A. 总体标准差σB. 容许误差δC. 样本含量nD. Ⅰ类错误αE. Ⅱ类错误β二、思考题1.试述假设检验中α与P 的联系与区别。

答:α值是决策者事先确定的一个小的概率值。

P 值是在0H 成立的条件下,出现当前检验统计量以及更极端状况的概率。

P ≤α时,拒绝0H 假设。

2. 试述假设检验与置信区间的联系与区别。

答:区间估计与假设检验是由样本数据对总体参数作出统计学推断的两种主要方法。

置信区间用于说明量的大小,即推断总体参数的置信范围;而假设检验用于推断质的不同,即判断两总体参数是否不等。

概率统计第八章假设检验参考答案

概率统计第八章假设检验参考答案

概率论与数理统计作业班级 姓名 学号 任课教师第八章 假设检验教学要求:一、理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误;二、了解一个正态总体均值与方差的假设检验,了解两个正态总体均值差与方差比的假设检验;三、了解总体分布假设的2χ检验法,会应用该方法进行分布拟合优度检验(选学).重点:假设检验的基本思想、假设检验的基本步骤、单个正态总体均值和方差的假设检验. 难点:正态总体均值和方差的假设检验.一、基本计算题1.某灯泡厂生产一种节能灯泡,其使用寿命(单位:小时)长期以来服从正态分布)(2150,1600N .现从一批灯泡中随意抽取25只,测得它们的平均寿命为1636小时.假定灯泡寿命的标准差稳定不变,问这批灯泡的平均寿命是否等于1600小时(取显著性水平05.0=α)?解:(1) 依题意,检验假设1600:00==μμH ,(1600:01=≠μμH ); (2) 由于标准差σ已知,在0H 成立时,采用U 检验法.选择统计量:nX U σμ0-=~()1,0N(3) 对于给定的显著性水平05.0=α,当25=n 时,查正态分布表得临界点96.1025.02==z z α(4)由25=n ,,1636=x ,150=σ,计算统计值:2.125150160016360=-=-=nx u σμ(5) 由于96.12.1025.02==<=z z u α落在拒绝域⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥-==20ασμz n x u W之外,所以在显著性水平05.0=α下,接受1600:0=μH .即认为这批灯泡的平均寿命等于1600.2.正常人的脉搏平均为72(次/min ),检查10例四乙基铅中毒患者,测的他们的脉搏(次/min )为: 54 67 68 78 70 66 67 70 65 69已知脉搏服从正态分布,在显著性水平05.0=α下,问四乙基铅中毒患者与正常人的脉搏有无显著差异?解:(1) 依题意,检验假设72:00==μμH ,(72:01=≠μμH ); (2) 由于标准差σ未知,在0H 成立时,采用T 检验法.选择统计量:nS X T 0μ-=~()1-n t (3) 对于给定的显著性水平05.0=α,当10=n 时,查t 分布表得临界点 :()2622.2)9(1025.02==-t n t α,(4) 由10=n ,,4.67=x ,9292.5=s 计算统计值:4534.2109292.5724.670=-=-=n s x t μ (5) 由于>=4534.2t ()2622.2)9(1025.02==-t n t α,t 落在拒绝域 :)}1(/{2-≥-==n t ns x t W αμ之内,故拒绝72:00==μμH ,即四乙基铅中毒患者与正常人的脉搏有显著差异.3.某食品厂生产一种食品罐头,每罐食品的标准重量为500克.今从刚生产的一批罐头中随机抽取10罐,称得其重量为(单位:克)495 510 505 498 503 492 502 512 497 506假定罐头重量服从正态分布,问这批罐头的平均重量是否合乎标准(取05.0=α)?解:(1) 依题意,检验假设500:00==μμH ,(500:01=≠μμH ); (2) 由于标准差σ未知,在0H 成立时,T 检验法.选择统计量:nS X T 0μ-=~()1-n t (3) 对于给定的显著性水平05.0=α,当10=n 时,查t 分布表得临界点 :()2622.2)9(1025.02==-t n t α,(4) 由10=n ,,502101101==∑=i ix x ,∑==--=1012225.6)(1101i i x x s ,计算统计值: 9730.0105.65005020=-=-=n s x t μ (5) 由于<=9730.0t ()2622.2)9(1025.02==-t n t α,t 落在拒绝域 :)}1(/{2-≥-==n t ns x t W αμ之外,故接受500:00==μμH ,即认为这批罐头的平均重量合乎标准.4.在10块田地上同时试种,A B 两种谷物,根据亩产量(单位:kg )算得30.97A x =,79.21=B y ,26.7As =,21.1B s =.问这两种谷物的平均亩产量有无显著差异(05.0=α)? 假定两种谷物的亩产量都服从正态分布,且方差相等.解:(1)设A X ~()211,σμN ,BY~()222,σμN,依题意,检验假设210:μμ=H,(211:μμ≠H );(2)由于2221,σσ未知但2221σσ=,在0H 成立时,选择统计量:2111n n S Y X T w+-=~()221-+n n t其中 ()()2112122212-+-+-=n n S n S n S BA w;(3) 对于给定的显著性水平05.0=α,当1021==n n 时,查t 分布表得临界点()1009.2)18(2025.0212==-+t n n t α,(4)由1021==n n , 97.30=x ,7.26=A s ,79.21=B y ,1.21=B s 计算统计值:8465.01011010635.2479.2197.301121=+-=+-=n n s y x t wB A其中 ()()05.5792112122212=-+-+-=n n s n s n s BA w,0635.24=w s ;(5)由于<=8465.0t ()1009.2)18(2025.0212==-+t n n t α,t 没有落在接受域中,故应接受210:μμ=H ,即这两种谷物的平均亩产没有明显差异.5.按两种不同配方生产橡胶,测的伸长率(%)如下:配方Ⅰ: 540 533 525 520 544 531 536 529 534配方Ⅱ: 565 577 580 575 556 542 560 532 570 561 设橡胶伸长率服从正态分布,检验按两种配方生产的橡胶伸长率的方差是否相同(取05.0=α)?解:(1) 设Y X ,分别表示配方Ⅰ、配方Ⅱ的总体,则X ~()211,σμN,Y ~()222,σμN . 依题意,检验假设22210:σσ=H ,22211:σσ≠H ;(2)在0H 成立时,选择统计量:222122212221S S S S F ==σσ~()1,121--n n F (3)对于给定的显著性水平05.0=α,当10,921==n n 时,查F 分布的双侧临界值: ()()10.49,82,1025.0212==--F n n F α,()()()2294.036.418,919,81,1025.0975.02121≈===---F F n n Fα (4) 由于4444.5329191==∑=i i x x ,()778.5319129121=--=∑=i i x x s ,8.561101101∑-==i i y y ,()8444.2381101101222∑==--=i i y y s ;得统计值:2271.08444.2367778.532221≈==s s F(5) 由于()2294.09,82271.0975.0=<≈F F .则F 落在拒绝域中,故应拒绝22210:σσ=H (或接受22211:σσ≠H )。

(完整版)统计学假设检验习题答案

(完整版)统计学假设检验习题答案

1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。

解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。

采用t 分布的检验统计量nx t /0σμ-=。

查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。

667.116/60800820=-=t 。

因为t <2.131<2.947,所以在两个水平下都接受原假设。

2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。

n=100可近似采用正态分布的检验统计量nx z /0σμ-=。

查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。

计算统计量值3100/5001000010150=-=z 。

因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。

3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。

统计学第六章 假设检验课后答案

统计学第六章  假设检验课后答案

第六章假设检验一、单项选择题二、多项选择题三、判断题四、填空题1、原假设(零假设)备择假设(对立假设)2、双侧检验Z Z =xn︱Z︱<︱︱(或1-α)23、左单侧检验Z <-(或α)4、右单侧检验Z Z =xnZ >(或α)5、t t =︱t︱>︱︱(或α)sx2n6、弃真错误(或第一类错误)存伪错误(或第二类错误)7、越大越小8、临界值五、简答题(略)六、计算题1、已知:σx = 12 n = 400 x= 21 建立假设H0:X≤20H1:X>20右单侧检验,当α= 0.05时,Z0.05 = 1.645 构造统计量ZxZ =1.667>Z0.05 = 1.645,所以拒绝原假设,说明总体平均数会超过20。

2、已知:P0 = 2% n = 500 p = 建立假设H0:P ≥ 2%H1:P <2%左单侧检验,当α= 0.05时,Z0.05 = -1.645 构造统计量Z-1.597∣Z∣=1.597<∣Z0.05∣= 1.645,所以接受原假设,说明该产品不合格率没有明显降低。

3、已知:σx = 2.5 cm n = 100 X0 =12 cm x= 11.3 cm 建立假设H0:X≥12H1:X<12左单侧检验,当α= 0.01时,Z0.01 = -2.33 构造统计量Zx-2.8 2.5 ∣Z∣= 2.8>∣Z0.01∣= 2.33,所以拒绝原假设,说明所伐木头违反规定。

4、已知:P0 = 40% n = 60 p = 建立假设H0:P ≥ 40%H1:P <40% 21= 35% 60左单侧检验,当α= 0.05时,Z0.05 = -1.645 构造统计量Z-0.791∣Z∣= 0.791<∣Z0.05∣= 1.645,所以接受原假设,说明学生的近视率没有明显降低。

5、已知:X0 =5600 kg/cm2 σx = 280 kg/cm2 n = 100 x= 5570 kg/cm2 建立假设H0:X= 5600 H1:X≠5600双侧检验,当α= 0.05时,∣Z0.025∣= 1.96 构造统计量Z∣Z∣∣Z∣=1.07<∣Z0.025∣= 1.96,所以接受原假设,说明这批车轴符合要求。

医学统计学课后案例分析答案:第5章 假设检验

医学统计学课后案例分析答案:第5章 假设检验

第5章 假设检验案例辨析及参考答案案例5-1 为了比较一种新药与常规药治疗高血压的疗效,以血压下降值为疗效指标,有人作了单组设计定量资料均数比较的t 检验,随机抽取25名患者服用了新药,以常规药的疗效均值为0μ,进行t 检验,无效假设是0μμ=,对立假设是0μμ≠,检验水平α=1%。

结果t 值很大,拒绝了无效假设。

“拒绝了无效假设”意味着什么?下面的说法你认为对吗?(1)你绝对否定了总体均数相等的无效假设。

(2)你得到了无效假设为真的概率是1%。

(3)你绝对证明了总体均数不等的备择假设。

(4)你能够推论备择假设为真的概率是99%。

(5)如果你决定拒绝无效假设,你知道你将犯错误的概率是1%。

(6)你得到了一个可靠的发现,假定重复这个实验许多次,你将有99%的机会得到具有统计学意义的结果。

提示:就类似的问题,Haller 和Kruss (2002)在德国的6个心理系问了30位统计学老师、44位统计学学生和39位心理学家。

结果所有的统计学学生、35位心理学家和24位统计学老师认为其中至少有一条是正确的;10位统计学老师、13位心理学家和26位统计学学生认为第4题是正确的。

(见Statistical Science, 2005, 20(3):223-230.) 案例辨析 6个选择均不正确。

(1)可能犯Ⅰ类错误。

(2)α=1%是表示在无效假设成立的条件下,犯Ⅰ类错误的概率。

(3)可能犯Ⅰ类错误。

(4)α=1%是表示在无效假设成立的条件下,犯Ⅰ类错误的概率,而不是推论备择假设为真的概率是99%。

(5)在无效假设成立的条件下,就该例拒绝无效假设犯错误的概率是P 。

(6)在无效假设成立的条件下,还可能犯错误,并不是完全“可靠”的发现;1-α=99%是指无效假设成立的条件下不犯错误的概率是99%。

正确做法“拒绝了无效假设”意味着在无效假设成立的条件下,推断犯错误的概率为P。

案例5-2 某工厂生产的某医疗器械的合格率多年来一直是80.0%。

统计学第五版第八章课后习题答案王永

统计学第五版第八章课后习题答案王永

n1 n2 11000
合并比例 x1 x 2 293 p 0.0133 n1 n2 22000
p1=0.95%, p2=1.72% 临界值(s):
Z =) ( 1 2 ) 1 1) P (1 P ) n n 2 1



解:已知μ =250,σ =30,N=25, x =270,α =0.05 右侧检验 ∵小样本,σ 已知 ∴采用Z统计量 Z ∵α =0.05,∴ =1.645 H 0 :μ ≤250 H1 :μ >250 计算统计量:
x / n
Z
=(270-250)/(30/5)=3.33
结论: Z统计量落入拒绝域,在α=0.05的显著性水平上,拒绝 H 0 ,接 受 H1 。
决策:有证据表明,这种化肥可以使小麦明显增产。
8.4 糖厂用自动打包机打包,每包标准重量是100千克。每天开工后需要检验 一次打包机工作是否正常。某日开工后测得9包重量(单位:千克)如下: 99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.1,100.5 已知包重服从正态分布,试检验该日打包机工作是否正常 (α=0.05) 。
甲法: 31 34 29 32 35 38 34 30 29 32 31 26 乙法: 26 24 28 29 30 29 32 26 31 29 32 28 两总体为正态总体,且方差相同。问两种方法的装配时 间有无显著差别(α =0.05)? 解: 正态总体,小样本,σ²未知但相同,独立样本t检验 0 : 甲 - = 0 H 乙 甲 H1 : - 乙≠ 0
2 2
5 1.96
nB
决策:在α = 0.05的水平上拒绝 H 0 。 结论:可以认为A、B两厂生产的材料平均抗压强度不相同。

统计学假设检验习题

统计学假设检验习题
C、(,t0.1)和(t0.1,)为原假设的拒绝区域
E、若检验统计量的绝对值越大,则原假设越容易被拒绝
4•某一批原材料的质量实际上是不符合生产标准,检验部门抽取1%的原材料检验,得出 结论是该批原材料的质量符合生产标准,说明().
A、检验部门犯了第一类错误
B、检验部门犯了第二类错误
C犯这种错误的概率是
D、只能控制不能控制
E、增加样本容量可以同时减少和
3、设总体为正态总体, 总体方差未知,在小样本条件下, 对总体均值进行如下的假设检验:
H0:0(0为一已知数);H1:0,0.1,则下列说法正确的有 ( )。
A、(,Z°.i)和(Z°.i,)为原假设的拒绝区域
B、(,Zo.05)和(Z0.05,)为原假设的拒绝区域
D、假设检验并不是根据样本结果简单地或直接地判断原假设和备选假设
哪一个更有可能正确
E、当接受原假设时,只能认为否定它的根据尚不充分,而不是认为它绝
对正确
2、 在假设检验中,与 的关系是( )。
A、在其它条件不变的情况下,增大,必然会减少
B、和 不可能同时减少
C、、如果检验的假设为H0:0,H1:0,则拒绝域为( )
A、z zB、zzC、A或B D、z z/2
二、多选
1.下列关于假设检验的陈述正确的是()。
A、假设检验实质上是对原假设进行检验
B、假设检验实质上是对备选假设进行检验
C、当拒绝原假设时,只能认为肯定它的根据尚不充分,而不是认为它绝
对错误
假定该食品每袋蛋白质的含量X服从正态分布N(,2),包装袋上表明蛋白质的含量为26%。
(1)问该批食品是否存在质量问题(显着水平为)(6分)
2) 你的判断结果可能会发生哪一类错误说明该错误的实际含义。

第5章假设检验课后习题解答

第5章假设检验课后习题解答

第5章假设检验课后习题解答第五章假设检验⼀、选择题1.单项选择题(1)将由显著性⽔平所规定的拒绝域平分为两部分,置于概率分布的两边,每边占显著性⽔平的1/2,这是( B )。

A.单侧检验B.双侧检验C.右单侧检验D.左单侧检验(2)检验功效定义为( B )。

A.原假设为真时将其接受的概率B.原假设不真时将其舍弃的概率C.原假设为真时将其舍弃的概率D.原假设不真时将其接受的概率(3)符号检验中,(+)号的个数与(-)号的个数相差较远时,意味着( C )。

A.存在试验误差(随机误差)B.存在条件误差C.不存在什么误差D.既有抽样误差,也有条件误差(4)得出两总体的样本数据如下:甲:8,6,10,7,8;⼄:5,11,6,9,7,10秩和检验中,秩和最⼤可能值是( C )。

A.15B.48C.45D.662.多项选择题(1)显著性⽔平与检验拒绝域的关系是( ABD )。

A.显著性⽔平提⾼(α变⼩),意味着拒绝域缩⼩B.显著性⽔平降低,意味着拒绝域扩⼤C.显著性⽔平提⾼,意味着拒绝域扩⼤D.显著性⽔平降低,意味着拒绝域扩⼤化E.显著性⽔平提⾼或降低,不影响拒绝域的变化(2)β错误( ACDE )。

A.是在原假设不真实的条件下发⽣的B.是在原假设真实的条件下发⽣的C.决定于原假设与实际值之间的差距D.原假设与实际值之间的差距越⼤,犯β错误的可能性就越⼩E.原假设与实际值之间的差距越⼩,犯β错误的可能性就越⼤⼆、计算题1.某牌号彩电规定⽆故障时间为10000⼩时,⼚家采取改进措施,现在从新批量彩电中抽取100台,测得平均⽆故障时间为10150⼩时,标准差为500⼩时,能否据此判断该彩电⽆故障时间有显著增加(α=0.01)?解:假设检验为H 0:µ0=10000,H 1:µ0<10000(使⽤寿命应该使⽤单侧检验)。

n =100可近似采⽤正态分布的检验统计量z α=0.01⽔平下的反查正态概率表得到临界值2.34到2.36之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性⽔平应先乘以2,再查到对应的临界值)。

《假设检验习题答案》课件

《假设检验习题答案》课件

论语(节选)(一)颜渊问仁。

子曰:"克己复礼为仁。

一日克己复礼,天下归仁焉。

为仁由己,而由人乎哉?"颜渊曰:"请问其目?"子曰:"非礼勿视,非礼勿听,非礼勿言,非礼勿动。

"颜渊曰:"回虽不敏,请事斯语矣。

" ——《论语·颜渊》翻译:颜渊问什么是仁。

孔子告诉他:"严格要求自己按照礼的要求去做就是仁。

一旦做到克己复礼,天下就回到仁上了。

修养仁德靠自己,难道还能依靠别人吗?"颜渊接着问:"请问实践仁德的具体途径?"孔子告诉他说:"不符合礼制的东西不看,不符合礼制的信息不听,不符合礼制的话不说,不符合礼制的事情不做。

"颜渊说:"我虽然不聪明,但我一定照着您的话去做。

(二)仲弓问仁。

子曰:"出门如见大宾,使民如承大祭。

己所不欲,勿施于人。

在邦无怨,在家无怨。

"仲弓曰:"雍虽不敏,请事斯语矣。

" ——《论语·颜渊》翻译:仲弓问什么是仁。

孔子告诉他:"出门在外要像接见贵宾那样敬慎,治理百姓要像承担重大祭祀那样严肃谨慎。

自己不喜欢做的事情,不要强加给别人。

这样在朝廷和家族中都不会招致怨恨。

"仲弓说:"我虽然不聪明,但我一定照着您的话做。

"(三)子贡问曰:“有一言而可以终身行之者乎?”子曰:“其恕乎!己所不欲,勿施于人。

”——《论语·卫灵公》翻译:子贡问孔子:“有没有一个字可以终身奉行的呢?”孔子回答说:“那就是‘恕’吧!自己不愿意的,不要强加给别人。

”(四)有子曰:“其为人也孝弟,而好犯上者,鲜矣;不好犯上,而好作乱者,未之有也。

君子务本,本立而道生。

孝弟也者,其为仁之本与?”——《论语·学而》翻译:有子说:”孝顺父母,顺从兄长,而喜好触犯上层统治者,这样的人是很少见的。

假设检验习题答案

假设检验习题答案
假设检验习题答案
单击此处添加副标题
汇报人姓名 汇报日期
目 录CATALOGUE
1 假设检验的基本概念 2 参数假设检验 3 非参数假设检验 4 习题答案与解析
ONE
1
假设检验的基本概念
定义与目的
判断该假设是否成 立,从而做出接受 或拒绝该假设的决 策。
假设检验是一种统计方法,用于根据样本数据对 某一假设进行评估。
假设检验的类型
单侧检验 只关注某一方向的假设是否成立。
参数检验 对总体参数进行假设检验。
双侧检验 同时关注两个方向的假设是否成立。
非参数检验 不涉及总体参数的假设检验。
ONE
2
参数假ቤተ መጻሕፍቲ ባይዱ检验
单参数假设检验
在单参数假设检验 中,我们通常会对 一个总体参数提出 假设,然后使用样 本数据来检验这个 假设。例如,我们 可能会假设一组数 据的平均值等于某 个值,然后使用样 本数据来检验这个 假设是否成立。
据是否符合正态分布、泊松分布等。
ONE
4
习题答案与解析
习题一答案与解析
答案:D
logo
解析:根据题目给出的数据,我们首先计 算出平均值和标准差。然后,利用假设检 验的方法,我们计算出Z统计量并确定其所 属的临界区间。根据临界区间的结果,我 们判断原假设是否被拒绝,并选择相应的 答案。
习题一答案与解析
秩次检验
详细描述
秩次检验将数据按照大小排序,并赋予每个数据 一个秩次值。然后比较两组数据的秩次分布是否 相同,以判断它们的相对大小关系。如果两组数 据的秩次分布相似,则可以认为它们的相对大小 关系相同;如果秩次分布不同,则可以认为它们 的相对大小关系不同。
秩次检验是一种非参数统计方法,用于比较两组 数据的相对大小关系。

统计学高教版第5章假设检验课后练习答案

统计学高教版第5章假设检验课后练习答案

第5章 假设检验课后练习答案5.1 研究者想要寻找证据予以支持的假设是“新型弦线的平均抗拉强度相对于以前提高了”,所以原假设与备择假设应为:5.2 65:0=μH ,65:1≠μH 。

5.3 (1)第一类错误是该供应商提供的这批炸土豆片的平均重量的确大于等于60克,但检验结果却提供证据支持店方倾向于认为其重量少于60克;(2)第二类错误是该供应商提供的这批炸土豆片的平均重量其实少于60克,但检验结果却没有提供足够的证据支持店方发现这一点,从而拒收这批产品;(3)连锁店的顾客们自然看重第二类错误,而供应商更看重第一类错误。

5.4 (1)检验统计量n s x z /μ-=,在大样本情形下近似服从标准正态分布; (2)如果05.0z z >,就拒绝0H ;(3)检验统计量z =2.94>1.645,所以应该拒绝0H 。

5.5 z =3.11,拒绝0H 。

5.6 2χ=206.22,拒绝0H 。

5.7 z =-5.145,拒绝0H 。

5.8 t =1.36,不拒绝0H 。

5.9 z =-4.05,拒绝0H 。

5.10 F =8.28,拒绝0H 。

5.11 (1)检验结果如下:t -检验: 双样本等方差假设变量 1 变量 2 平均 100.7 109.9方差 24.11578947 33.35789474观测值 20 20合并方差 28.73684211假设平均差 0df 38t Stat -5.427106029P (T ≤t ) 单尾 1.73712E-06t 单尾临界 1.685953066P (T ≤t ) 双尾 3.47424E-06t 双尾临界 2.024394234t -检验: 双样本异方差假设变量 1 变量 2平均100.7 109.9方差24.11578947 33.35789474 观测值20 20假设平均差0df 37t Stat -5.427106029P(T≤t) 单尾 1.87355E-06t单尾临界 1.687094482P(T≤t) 双尾 3.74709E-06t双尾临界 2.026190487(2)方差检验结果如下:F-检验双样本方差分析变量1 变量2 平均100.7 109.9方差24.11578947 33.35789474 观测值20 20df 19 19F 0.722940991P(F≤f) 单尾0.243109655F单尾临界0.395811384。

《统计学》课后答案(第二版,贾俊平版)第5章-9章 假设检验

《统计学》课后答案(第二版,贾俊平版)第5章-9章  假设检验

第5章假设检验一、学习指导假设检验是推断统计的另一项重要内容,它是利用样本信息判断假设是否成立的一种统计方法。

本章首先介绍有关假设检验的一些基本问题,然后介绍一个总体参数的检验方法。

本章各节的主要内容和学习要点如下表所。

二、主要术语和公式(一)主要术语1. 假设:对总体参数的具体数值所做的陈述。

2. 假设检验:先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程。

3. 备择假设:也称研究假设,是研究者想收集证据予以支持的假设,用1H 或a H 表示。

4. 原假设:也称零假设,是研究者想收集证据予以反对的假设,用0H 表示。

5. 单侧检验:也称单尾检验,是指备择假设具有特定的方向性,并含有符号“>”或“<”的假设检验。

6. 双侧检验:也称双尾检验,是指备择假设没有特定的方向性,并含有符号“≠”的假设检验。

7. 第Ⅰ类错误:当原假设为正确时拒绝原假设,犯第Ⅰ类错误的概率记为α。

8. 第Ⅱ类错误:当原假设为错误时没有拒绝原假设,犯第Ⅱ类错误的概率通常记为β。

9. 显著性水平:假设检验中发生第Ⅰ类错误的概率,记为α。

10. 检验统计量:根据样本观测结果计算得到的,并据以对原假设和备择假设做出决策的某个样本统计量。

11. 拒绝域:能够拒绝原假设的检验统计量的所有可能取值的集合。

12. 临界值:根据给定的显著性水平确定的拒绝域的边界值。

13. P 值:也称观察到的显著性水平,如果原假设0H 是正确的,那么所得的样本结果出现实际观测结果那么极端的概率。

四、习题答案1. A2. D3. C4. A5. B6. C7. A8. B9. A10. B11. A12. C13. A14. C15. D16. C17. A18. B19. A20. B21. B22. A23. B24. B25. A26. D27. D28. D29. A30. B31. B32. C33. B 34. A35. C36. B37. A38. D39. D40. C41. C42. C43. C44. A45. B46. A47. B48. D49. A50. A51. B52. D53. C54. A55. B56. C57. A58. C59. D60. C61. C62. A63. D64. B65. A66. D67. D68. A69. C70. D71. A72. C73. B74. A75. A76. B77. C78. D79. A80. C81. D82. B83. A84. A85. C86. B87. A88. C89. A90. A91. A92. A93. A94. B95. C96. B97. A98. A99. A100.B101.D102.C103.B104.D105.B106.B107.A108.A109.B110.A111.B112.A113.A114.B115.B116.B117.B118.A119.B120.B121.B122.D123.A第6章方差分析一、学习指导本章主要介绍检验多个总体均值是否相等的一种统计方法,即方差分析。

统计学习题及答案

统计学习题及答案

统计学习题及答案第五章假设检验一、填空题:1. 就是事先对总体参数作出一个假设,然后利用样本信息判断该假设是否合理。

2.原假设和备择假设的关系是。

3.假设检验最常用的有三种情况:双侧检验、和。

4. 当总体方差已知,正态总体时,样本均值服从正态分布,选择的统计量为统计量。

5. 左侧检验的拒绝区域位于统计量分布的,右侧检验的拒绝区域位于统计量分布的。

6(假设检验中的两类错误是和。

二、单项选择题:1. 在假设检验中,原假设H,备择假设H,则称( )为犯第一类错误 01A、H为真,接受HB、H为真,拒绝H 0000C、H不真,接受HD、H不真,拒绝H 01002. 按设计标准,某自动食品包装及所包装食品的平均每袋中量应为500克。

若要检验该机实际运行状况是否符合设计标准,应该采用( )。

A、左侧检验B、右侧检验C、双侧检验D、左侧检验或右侧检验3. 当样本统计量的观察值未落入原假设的拒绝域时,表示( )。

A、可以放心地接受原假设B、没有充足的理由否定与原假设C、没有充足的理由否定备择假设D、备择假设是错误的4(进行假设检验时,在其它条件不变的情况下,增加样本量,检验结论犯两类错误的概率会( )。

A、都减少B、都增大C、都不变D、一个增大一个减小三、多项选择题:1. 关于原假设的建立,下列叙述中正确的有( )。

A、若不希望否定某一命题,就将此命题作为原假设B、尽量使后果严重的错误成为第二类错误C、质量检验中若对产品质量一直很放心,原假设为“产品合格(达标)”D、若想利用样本作为对某一命题强有力的支持,应将此命题的对立命题作为原假设E、可以随时根据检验结果改换原假设,以期达到决策者希望的结论2. 在假设检验中,α与β的关系是( )。

A、α和β绝对不可能同时减少B、只能控制α,不能控制βC、在其它条件不变的情况下,增大α,必然会减少βD、在其它条件不变的情况下,增大α,必然会增大βE、增大样本容量可以同时减少α和β四、计算题:,(某种感冒冲剂的生产线规定每包重量为,,克,超重或过轻都是严重的问题。

统计学假设检验作业答案

统计学假设检验作业答案

假设检验作业答案一、单项选择题1.在假设检验中,第一类错误是指(A )A.当原假设正确时拒绝原假设B.当原假设错误时拒绝原假设C.当备择假设正确时拒绝备择假设D.当备择假设不正确时拒绝备择假设2.对于给定的显著性水平α,根据P 值拒绝原假设的准则是(B )A.P=αB.P<αC.P>αD.P=α=03.在大样本情况下,当总体方差已知时,检验总体均值所使用的统计量是(B )A.0/x z n µσ−=B.x z =C.x t =D.x z =4.检验一个正态总体的方差时所使用的分布是(D )A.正态分布B.t 分布C.F 分布D.2χ分布二、简答题简述:假设检验依据的基本原理是什么?三、计算题1.已知某炼铁厂的产品含碳量服从正态分布N(4.55,0.108),现在测定了9炉铁水,其平均含碳量为4.484。

如果估计方差没有变化,可否认为现在生产的铁水平均含碳量为4.55(α=0.05)。

解:正态分布总体,方差已知,因此用Z 检验。

α=0.05时,临界值为±1.9601: 4.55, : 4.55H H µµ=≠0.602x z ===−1.96 1.96z −<<所以不拒绝原假设。

结论:样本提供的信息不足以推翻“铁水平均含碳量为4.55”的说法。

2.某地区小麦的一般生产水平为亩产250公斤,其标准差为30公斤。

现用一种化肥进行试验,从35个小区抽样结果,平均产量为270公斤。

问这种化肥是否使小麦明显增产?(α=0.05)解:大样本,方差已知,用Z 检验。

0.05 1.645z =01:250, :250H H µµ≤>0.053.94x z z ===>所以拒绝原假设。

结论:这种化肥使小麦明显增产3.某种大量生产的袋装食品,按规定不得少于250克。

今从一批该食品中任意抽取50袋,发现有6袋低于250克。

若规定不符合标准的比例超过5%就不得出厂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如有侵权请联系网站删除
1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。

解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。

采用t 分布的检验统计量n
x t /0σμ-=。

查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。

667.116/60800820=-=
t 。

因为t <2.131<2.947,所以在两个水平下都接受原假设。

2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?
解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。

n=100可近似采用正态分布的检验统计量n
x z /0σμ-=。

查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。

计算统计量值3100
/5001000010150=-=z 。

因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。

3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。

问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?
如有侵权请联系网站删除
解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2
Z z α>,
取0.05,α=26,n =
0.0250.9752 1.96
z z z α===,由检验统计量
1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.
4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?
解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.0252
0.05, 1.96z z αα===,
100,n =由检验统计量
3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.
5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。

现抽得10罐,测得其重量为(单位:克):195,510,505,498,503,492,792,612,407,506.假定重量服从正态分布,试问以95%的显著性检验机器工作是否正常?
解: 01:500 :500H vs H μμ=≠,总体标准差σ未知,拒绝域为2
(1)t t n α>-,10,n =经计算得到x =502, s =6.4979,取
0.0250.05,(9) 2.2622t α==,由检验统计量
如有侵权请联系网站删除
0.9733t ===<2.2622, 接受0:500 H μ= 即, 以95%的把握认为机器工作是正常的.
6,一车床工人需要加工各种规格的工件,已知加工一工件所需的时间服从正态分布),(2
σμN ,均值为18分,标准差为4.62分。

现希望测定,是否由于对工作的厌烦影响了他的工作效率。

今测得以下数据:
21.01, 19.32, 18.76, 22.42, 20.49, 25.89, 20.11, 18.97, 20.90
试依据这些数据(取显著性水平05.0=α),检验假设: 18:,18:10>≤μμH H 。

解:这是一个方差已知的正态总体的均值检验,属于右边检验问题, 检验统计量为
n x Z /18
σ-=。

代入本题具体数据,得到8665.19/62.418
874.20=-=Z 。

检验的临界值为645.105.0=Z 。

因为645.18665.1>=Z ,所以样本值落入拒绝域中,故拒绝原假设0H ,即认为该工人加工一工件所需时间显著地大于18分钟。

11 设我国出口凤尾鱼罐头,标准规格是每罐净重250克,根据以往经验,标准差是3克。

现在某食品工厂生产一批供出口用的这种罐头,从中抽取100罐检验,其平均净重是251克。

假定罐头重量服从正态分布,按规定显著性水平α = 0.05,问这批罐头是否合乎标准,即净重确为250克? 解:(1)提出假设。

现在按规定净重为250克,考虑到买卖双方的合理经济利益,当净重远远超过250克时,工厂生产成本增加,卖方吃亏;当净重远远低于250克时,买方如果接受了这批罐头就会吃亏。

所以要求罐头不过于
如有侵权请联系网站删除
偏重或偏轻。

从而提出假设为:
H 0: µ = 250克
H 1: µ ≠ 250克
(2)建立统计量并确定其分布。

由于罐头重量服从正态分布,即X ~ N (250,
32
),因此: ),(~10032502N ξ )1,0(~/N n x z σμ
-=
(3)确定显著水平α = 0.05。

此题为双侧检验。

(4)根据显著水平找出统计量分布的临界值,961±=±2α
.ζ。

只要
ζζZ Z 2
α2α-≤≥或就否定原假设。

(5)计算机观察结果进行决策:
33.3100/3250
251/=-=-=n x z σμ
(6)判断。

由于196=333=2α
ζζ远远大于临界值,.,故否定原假设,
H 0,接受即认为罐头的净重偏高。

双侧检验与区间估计有一定联系,我们可以通过求μ的(1-α)的置信区间来检验该假设。

如果求出的区间包含μ,就不否定假设H 0。

例10-1中μ的95%的置信区间为:
()588251421250σ961±.,..即νξ
由于μ=250未包含在该区间内,所以否定H 0,结果与上述结论一致。

7.一家食品加工公司的质量管理部门规定,某种包装食品净重不得少于20千克。

经验表明,重量近似服从标准差为1.5千克的正态分布.假定从一个由50包食品构成的随机样本中得到平均重量为19.5千克,问有无充分证据说明这些包装食品的平均重量减少了?
如有侵权请联系网站删除
解:把平均重量保持不变或增加作为原假设的内容,只要能否定原甲设,就能说明样本数据提供了充分证据证明均重量减少了,于是有:
H 0: µ ≧20 千克,H 1: µ <20千克
由于食品净重近似服从正态分布,故统计量 )1,0(~/N n x z σμ
-=
令α=0.05,由于是左单侧检验,拒绝域的临界值是6451-=α.ζ,当
6451-=<α.ζζ时就拒绝H 0,计算z 值: 8261-=30
5120-519=σμ-=.../νξζ 由于6451-=<α.ζζ,所以拒绝H 0: µ ≧20,而接受H 1: µ <20千克,即检验结果能提供充分证据说明这些包装食品的平均重量减少了。

相关文档
最新文档