第九章 曲线积分与曲面积分

合集下载

微积分(二)_9 曲线积分和曲面积分:第一类曲线积分与第二类曲线积分_

微积分(二)_9 曲线积分和曲面积分:第一类曲线积分与第二类曲线积分_

第一类曲线积分的计算法22(,)[(),()]()()d Lf x y d l f x t y t x t y t tβα''=+⎰⎰二、第一类曲线积分的计算法基本思路:计算定积分转化若L 为平面曲线,其参数方程为则曲线的弧微分求曲线积分且有一阶连续偏导数,(),()x t y t dl =22()()x t y t dt''+由第一类曲线积分的定义,导出如下的计算公式说明:上述定积分的积分下限必须为保证的非负性,dl 如果方程为极坐标形式:()(),L ρρθαθβ=≤≤则(,)d Lf x y l⎰(()cos ,()sin )f βαρθθρθθ=⎰22()()d ρθρθθ'+22(,)[(),()]()()d Lf x y d l f x t y t x t y t tβα''=+⎰⎰不小于积分上限.如果曲线L 的方程为则有(,)d Lf x y l ⎰21()d y x x'+(,())b af x y x =⎰若L 为空间曲线,其参数方程为:(),(),()L x x t y y t z z t ===此时,第一类曲线积分(,,)d Lf x y z l⎰222()()()d x t y t z t t '''++((),(),())f x t y t z t βα=⎰()t αβ≤≤且有一阶连续偏导数,(),(),()x t y t z t dl =222()()()x t y t z t dt'''++则曲线的弧微分若L 由一般方程给出12(,,)0(,,)0x y z x y z ϕϕ=⎧⎨=⎩(,)(,)z g x y z h x y =⎧⎨=⎩或计算曲线积分时,一般先把方程化为参数方程.参数可选为变量中的任意一个.,,x y z例1.计算其中L 是抛物线与点B (1,1) 之间的一段弧.解:)10(:2≤≤=x x y L ⎰=1xxx xd 41102⎰+=1232)41(121⎥⎦⎤⎢⎣⎡+=x )155(121-=上点O (0,0)1Lxy2xy =o )1,1(B例2. 计算曲线积分其中Γ为螺旋的一段弧.解:222()d x y z lΓ++⎰tt k a ka d ][2022222⎰++=π)43(3222222k a k a ππ++=线例3. 计算其中L 为双纽线)0()()(222222>-=+a y x a y x 解:在极坐标系下它在第一象限部分为1:cos 2(0)4L a πρθθ=≤≤利用对称性, 得42204cos ()()d πρθρθρθθ'=+⎰⎰=402d cos 4πθθa yoxθd d =s 例4. 计算其中Γ为球面22y x +解: , 11)(:24122121⎩⎨⎧=+=+-Γz x y x :Γ()πθ20≤≤2)sin 2(θ-2)sin 2(θ+2092d 2I πθ∴=⋅⎰θd 2=θcos 221-=z .1的交线与平面=+z x 292=+z 化为参数方程21cos 2+=θx sin 2θ=y 则18π=。

曲线积分和曲面积分的物理意义

曲线积分和曲面积分的物理意义

曲线积分和曲面积分的物理意义摘要:1.曲线积分概述2.曲面积分的物理意义3.曲线积分与曲面积分的联系与区别4.实际应用案例分析正文:一、曲线积分概述曲线积分是一种数学工具,用于计算曲线上的物理量,如力、速度、能量等。

它在物理学、工程学等领域具有广泛的应用。

曲线积分的基本思想是将曲线划分为无数小段,计算每小段上的物理量与长度的乘积之和。

根据积分路径的不同,曲线积分可分为线积分和面积分。

二、曲面积分的物理意义曲面积分是对曲面上物理量的积分,其基本思想是将曲面划分为无数小面,计算每个小面上的物理量与面积的乘积之和。

曲面积分可分为两类:法向量积分和切向量积分。

法向量积分用于计算曲面上某一点的垂直方向物理量,如压力、温度等;切向量积分用于计算曲面上某一点的切线方向物理量,如速度、力等。

曲面积分在物理学、工程学等领域具有重要的物理意义。

三、曲线积分与曲面积分的联系与区别曲线积分与曲面积分都是对物理量沿路径或曲面的积分。

它们的联系在于都是通过对路径或曲面进行划分,计算各小段或小面上物理量与长度或面积的乘积之和。

然而,它们也有明显的区别。

曲线积分主要针对曲线路径,关注沿路径的变化;而曲面积分针对曲面,关注的是曲面上各点的物理量。

此外,曲线积分可分为线积分和面积分,而曲面积分可分为法向量积分和切向量积分。

四、实际应用案例分析1.电磁学:在电磁学中,曲线积分广泛应用于计算电场线、磁感线等。

通过计算曲线上某一点的电场强度或磁场强度与弧长的乘积之和,可以得到电场线或磁感线的分布情况。

2.流体力学:在流体力学中,曲面积分可用于计算流体沿曲面的速度分布。

通过计算曲面上各点的速度与面积的乘积之和,可以得到流体的速度分布情况,进而分析流体的运动规律。

3.热传导:在热传导问题中,曲线积分可以用于计算温度沿曲线的分布。

通过计算曲线上某一点的温度与弧长的乘积之和,可以得到温度的分布情况,进而分析热传导过程。

总之,曲线积分和曲面积分在物理学、工程学等领域具有重要的应用价值。

大学高数下册试题及答案第9章

大学高数下册试题及答案第9章

大学高数下册试题及答案第9章第九章曲线积分与曲面积分作业13对弧长的曲线积分1.计算,其中为直线及抛物线所围成的区域的整个边界.解:可以分解为及2.,其中为星形线在第一象限内的弧.解:为原式3.计算,其中折线ABC,这里A,B,C依次为点.解:4.,其中为螺线上相应于从变到的一段弧.解:为5.计算,其中L:.解:将L参数化,6.计算,其中L为圆周,直线及轴在第一象限内所围成的扇形的整个边界.解:边界曲线需要分段表达,从而需要分段积分从而作业14对坐标的曲线积分1.计算下列第二型曲线积分:(1),其中为按逆时针方向绕椭圆一周;解:为原式(2),其中是从点到点的一段直线;解:是原式(3),其中是圆柱螺线从到的一段弧;解:是原式(4)计算曲线积分,其中为由点A(-1,1)沿抛物线到点O(0,0),再沿某轴到点B(2,0)的弧段.解:由于积分曲线是分段表达的,需要分段积分;原式2.设力的大小等于作用点的横坐标的平方,而方向依轴的负方向,求质量为的质点沿抛物线从点移动到点时,力所作的功.解:3.把对坐标的曲线积分化成对弧长的曲线积分,其中为:(1)在平面内沿直线从点到点;(2)沿抛物线从点到点.解:(1)(2)作业15格林公式及其应用1.填空题(1)设是三顶点(0,0),(3,0),(3,2)的三角形正向边界,12.(2)设曲线是以为顶点的正方形边界,不能直接用格林公式的理由是_所围区域内部有不可道的点_.(3)相应于曲线积分的第一型的曲线积分是.其中为从点(1,1,1)到点(1,2,3)的直线段.2.计算,其中L是沿半圆周从点到点的弧.解:L加上构成区域边界的负向3.计算,其中为椭圆正向一周.解:原式4.计算曲线积分其中为连续函数,是沿圆周按逆时针方向由点到点的一段弧.解:令则,原式5.计算,其中为(1)圆周(按反时针方向);解:,而且原点不在该圆域内部,从而由格林公式,原式(2)闭曲线(按反时针方向).解:,但所围区域内部的原点且仅有该点不满足格林公式条件,从而可作一很小的圆周(也按反时针方向),在圆环域上用格林公式得,原式6.证明下列曲线积分在平面内与路径无关,并计算积分值:(1);解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿折线积分即可,原式(2);解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿直线积分也可,原式(3).解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿折线积分即可,原式7.设在上具有连续导数,计算,其中L为从点到点的直线段.解:由于在右半平面连续,从而该曲线积分右半平面内与路径无关,沿曲线积分即可,原式8.验证下列在整个平面内是某一函数的全微分,并求出它的一个原函数:(1);解:由于在全平面连续,从而该曲线积分在平面内是某一函数的全微分,设这个函数为,则从而,(2);解:由于在全平面连续,从而该曲线积分在平面内是某一函数的全微分,设这个函数为,则原式可取(3)解:可取折线作曲线积分9.设有一变力在坐标轴上的投影为,这变力确定了一个力场,证明质点在此场内移动时,场力所作的功与路径无关.证:,质点在此场内任意曲线移动时,场力所作的功为由于在全平面连续,从而质点在此场内移动时,场力所作的功与路径无关.作业16对面积的曲面积分1.计算下列对面积的曲面积分:(1),其中为锥面被柱面所截得的有限部分;解:为,原式(2),其中为球面.解:为两块,原式2.计算,是平面被圆柱面截出的有限部分.解:为两块,,原式(或由,而积分微元反号推出)3.求球面含在圆柱面内部的那部分面积.解:为两块,原式4.设圆锥面,其质量均匀分布,求它的重心位置.解:设密度为单位1,由对称性可设重点坐标为,故重点坐标为5.求抛物面壳的质量,此壳的密度按规律而变更.解:作业17对坐标的曲面积分1.,其中是柱面被平面及所截得的在第一卦限内的部分前侧.解:原式=2.计算曲面积分,其中为旋转抛物面下侧介于平面及之间的部分.解:原式=3.计算其中是平面所围成的空间区域的整个边界曲面的外侧.解:分片积分。

曲线积分与曲面积分

曲线积分与曲面积分

曲线积分与曲面积分曲线积分与曲面积分是微积分中重要的概念和计算方法,它们在物理、工程和其他科学领域中的应用广泛。

本文将重点介绍曲线积分和曲面积分的概念、计算方法和应用。

一、曲线积分曲线积分是对曲线上的函数进行积分运算的方法。

它可以用来计算曲线上的物理量或者曲线周围的环量。

曲线积分可以分为第一类曲线积分和第二类曲线积分。

1. 第一类曲线积分第一类曲线积分也叫标量场的曲线积分,是对曲线上函数的积分。

设曲线C为参数方程r(t) = {x(t), y(t), z(t)},函数f(x, y, z)在曲线C上有定义,则第一类曲线积分的计算公式为:∫[C]f(x, y, z)ds = ∫[a,b]f(x(t), y(t), z(t))|r'(t)|dt其中ds表示曲线上的长度元素,|r'(t)|表示参数方程的导数的模。

2. 第二类曲线积分第二类曲线积分也叫矢量场的曲线积分,是对曲线上的矢量场进行积分。

设曲线C为参数方程r(t) = {x(t), y(t), z(t)},矢量场F(x, y, z)在曲线C上有定义,则第二类曲线积分的计算公式为:∫[C]F(x, y, z)•dr = ∫[a,b]F(x(t), y(t), z(t))•r'(t)dt其中•表示矢量的点积运算。

二、曲面积分曲面积分是对曲面上的函数进行积分运算的方法。

曲面积分可以分为第一类曲面积分和第二类曲面积分。

1. 第一类曲面积分第一类曲面积分也叫标量场的曲面积分,是对曲面上函数的积分。

设曲面S为参数方程r(u, v) = {x(u, v), y(u, v), z(u, v)},函数f(x, y, z)在曲面S上有定义,则第一类曲面积分的计算公式为:∬[S]f(x, y, z)dS = ∬[D]f(x(u, v), y(u, v), z(u, v))|ru × rv|dudv其中dS表示曲面上的面积元素,D为参数化区域,ru和rv分别为参数方程r(u, v)对u和v的偏导数,ru × rv表示它们的叉积。

华南理工大学高数下答案(第九章曲线积分与曲面积分)

华南理工大学高数下答案(第九章曲线积分与曲面积分)

华南理工大学高数下答案(第九章曲线积分与曲面积分)、计算对弧长的曲线积分C,其中曲线C是y0某2a的一段弧a0某2aco2解:C的参数方程为y2acoin2原式202aco24a2cod4a244332、计算某yd,其中L星形线某aco3t,yain3t在第一象限的弧L0t272intcot解:原式2acotint3acotintdt3aa3060664443733、计算某yzd,其中为折线ABC,这里A,B,C依次为点0,0,0,1,2,3,1,4,3某t某1解:AB段参数方程y2t0t1,BC段参数方程y22t0t1 z3z3t原式AB某yzdBC某yzd3dt1212tdt1121412t6t18004、计算某2y2d,其中为螺旋线某tcot,ytint,zt上相应于t从0到1的弧。

解:方法一原式tt111112222tdtt2t2t2dt0202221t02111原式lnt4204220方法二、原式tt1112tdt22211u11201u1202211220原式方法三、原式lnu121202ln224tt34222因为tt422lnt11所以lntt421111lntln1ln原式422205、计算L,其中L:某2y2a某a02某aco2解:某ya某raco,曲线L的参数方程为yainco22原式22aco2a220cod2a26、计算L,其中L为圆周某2y2a2,直线y某,y0在第一象限内所围成的扇形的边界。

解:如右图,线段OA的参数方程为某t0t2yt某acot弧AB的参数方程为0t4yaint线段OB的参数方程为某t0tay0aat原式4eadtedt000a4etaet00ae1aaaaaee1ea24427、求曲线某at,ya2at,zt30t1的质量,其密度。

23解:m1aut2020a20a1u23aa388h3a1lnh823ln3a168、求半径为a,中心角为的均匀圆弧(线密度1)的质心。

曲线积分与曲面积分

曲线积分与曲面积分

第十一章曲线积分与曲面积分定积分和重积分是讨论定义在直线段、平面图形或者空间区域上函数的积分问题.但在实际问题中,这些还不够用,例如当我们研究受力质点作曲线运动时所作的功以及通过某曲面流体的流量等问题时,还要用到积分区域是平面上或空间中的一条曲线,或者空间中的一张曲面的积分,这就是这一章要讲的曲线积分和曲面积分.教学目标1.理解对弧长曲线积分和对坐标曲线积分的概念和性质;2.掌握对弧长曲线积分和对坐标曲线积分的计算方法;3.理解两类曲线积分之间的关系;4.掌握格林公式;5.会应用平面曲线积分与路径无关的条件;6.理解对弧长曲线面积分和对坐标曲面积分的概念和性质;7.掌握对弧长曲面积分和对坐标曲面积分的计算方法;8.理解两类曲面积分之间的关系。

教学要求1.掌握对弧长曲线积分和对坐标曲线积分的计算方法。

2.掌握格林公式。

3.应用平面曲线积分与路径无关的条件解决相关类型的问题。

4.掌握对弧长曲面积分和对坐标曲面积分的计算方法。

知识点、重点归纳1.分析实际问题,将其转化为相关的数学问题;2.应用曲线或者曲面积分的计算方法求解问题;3.理解格林公式的实质;4.应用平面曲线积分与路径无关的条件解决相关类型的问题。

第一节 对弧长的曲线积分一、对弧长曲线积分的概念与性质定义 L 为xoy 面内的一条光滑曲线弧,),(y x f 在L 上有界,用i M 将L 分成n 小段i S ∆,任取一点i i i S ∆∈),(ηξ()1,2,3...,i n =, 作和ini iiS f ∆∑=1),(ηξ,令},,,m ax {21n s s s ∆∆∆= λ,当λ0→时,01lim (,)ni i i i f S λξη→=∆∑存在,称此极限值为),(y x f 在L 上对弧长的曲线积分(第一类曲线积分)记为=⎰ds y x f L),(01lim (,)ni i ii f S λξη→=∆∑注意:(1)若曲线封闭,积分号⎰ds y x f ),((2)若),(y x f 连续,则ds y x f L⎰),(存在,其结果为一常数.(3)几何意义),(y x f =1,则ds y x f L⎰),(=L (L 为弧长)(4)物理意义 M =ds y x L⎰),(ρ(5)此定义可推广到空间曲线ds y z x f ⎰Γ),,(=01lim (,,)ni i i ii f S λξηζ→=∆∑(6)将平面薄片重心、转动惯量推广到曲线弧上重心:Mxdsx L⎰=ρ,Mydsy L⎰=ρ,Mzdsz L⎰=ρ。

曲线积分曲面积分公式

曲线积分曲面积分公式

曲线积分曲面积分公式曲线积分和曲面积分是数学中重要的概念,在物理学和工程学等领域也有广泛的应用。

本文将以生动、全面和有指导意义的方式介绍曲线积分和曲面积分的公式及其应用。

首先,我们来介绍曲线积分。

曲线积分是沿一个曲线对矢量场进行积分运算的方法。

它可以用于求解电流的环流、质点的环量以及力场中的功等问题。

曲线积分的公式是:∮C F·dr = ∫ab F(r(t))⋅r'(t) dt其中,∮C表示沿曲线C的积分,F是一个矢量场,r(t)是曲线C上的参数化表示,ab是曲线C上的取点区间。

r'(t)是r关于t的导数,表示曲线C的切向量。

这个公式用于计算矢量场F沿曲线C的积分。

曲线积分的计算方法是首先确定曲线C的参数化表示r(t),然后计算矢量场F在曲线C上的取点区间ab的取值并代入公式中进行积分运算。

最后得到曲线C上的积分值。

举个例子来说明曲线积分的应用。

假设有一个力场F(x, y) = (y, x),现在我们需要计算力场F沿曲线C的积分。

曲线C是一个由点A(0, 0)到点B(1, 1)的直线段。

我们可以将这条曲线表示为r(t) = (t, t),其中t的取值范围是0到1。

根据曲线积分的公式,把r(t)代入公式中得到:∫0^1 (t, t)⋅(1, 1) dt = ∫0^1 2t dt = [t^2]0^1 = 1因此,力场F沿曲线C的积分结果为1。

接下来,我们来介绍曲面积分。

曲面积分是对标量场或矢量场在曲面上的积分运算。

它可以用于求解电场的通量、热传导的通量以及流体力学中的流量等问题。

曲面积分的公式有两种情况。

对于标量场的曲面积分,公式如下:∬S f dS = ∫∫S f(r(u, v)) |ru × rv| dudv其中,∬S表示对曲面S的积分,f是一个标量场,r(u, v)是曲面S上的参数化表示,ru和rv是r关于u和v的偏导数,ru × rv 表示曲面S的法向量,|ru × rv|是它的模。

曲线积分与曲面积分

曲线积分与曲面积分

曲线积分与曲面积分曲线积分和曲面积分是微积分中的重要概念,它们在物理、工程等领域中有着广泛的应用。

本文将详细介绍曲线积分和曲面积分的定义、计算方法以及应用。

一、曲线积分曲线积分是沿曲线上的各点对一个矢量场进行积分的操作。

它可以帮助我们计算曲线周围矢量场的某种性质,如流量、环量等。

曲线积分可以分为第一类曲线积分和第二类曲线积分。

1. 第一类曲线积分第一类曲线积分又称为曲线上的标量场积分,它的计算只涉及到被积函数。

设曲线C的参数方程为x=f(t),y=g(t),z=h(t),其中a≤t≤b。

对于曲线上每一点P(x,y,z),记r(t)=x i + y j + z k为P的位置矢量,则第一类曲线积分的定义为:∫[f(x,y,z)]•ds=∫[f(x(t),y(t),z(t))•r'(t)]dt其中[f(x,y,z)]为被积函数,ds为曲线C上各点的弧长元素,r'(t)为曲线C在P点处的切向量。

2. 第二类曲线积分第二类曲线积分又称为曲线上的矢量场积分,计算是将矢量场与切向量进行点积。

设曲线C的参数方程为x=f(t),y=g(t),z=h(t),其中a≤t≤b。

对于曲线上每一点P(x,y,z),记r(t)=x i + y j + z k为P的位置矢量,则第二类曲线积分的定义为:∫[F(x,y,z)]•dr=∫[F(x(t),y(t),z(t))•r'(t)]dt其中[F(x,y,z)]为矢量场,dr为曲线C上各点的位置矢量元素,即dr=r'(t)dt。

二、曲面积分曲面积分是在曲面上对一个矢量场或标量场进行积分的操作。

它可以帮助我们计算曲面上矢量场的通量、曲面的面积等。

曲面积分同样可以分为第一类曲面积分和第二类曲面积分。

1. 第一类曲面积分第一类曲面积分又称为曲面上的标量场积分,它的计算只涉及到被积函数。

设曲面S的参数方程为x=g(u,v),y=h(u,v),z=k(u,v),其中D 为曲面S在(u,v)平面上的投影区域。

多元向量函数的曲线积分与曲面积分

多元向量函数的曲线积分与曲面积分

多元向量函数的曲线积分与曲面积分曲线积分和曲面积分是向量微积分中的重要概念,用于描述多元向量函数在曲线上和曲面上的积分性质。

在本文中,我们将介绍多元向量函数的曲线积分和曲面积分的定义、计算方法和一些重要性质。

一、曲线积分曲线积分用于描述多元向量函数沿着曲线的积分性质。

设曲线C为参数方程r(t)=(x(t),y(t),z(t)),其中a≤t≤b是参数区间。

若函数F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))定义在曲线C上,那么多元向量函数F沿曲线C的曲线积分可以表示为:∫C F·dr = ∫C (Pdx+Qdy+Rdz)其中dr=(dx,dy,dz)是曲线C上的微元向量,P,Q,R是F的分量函数。

计算曲线积分的方法有两种,一种是直接计算,根据曲线参数方程将x,y,z替换成参数t,在参数区间上对分量函数P,Q,R进行积分。

另一种是利用格林公式或斯托克斯定理,将曲线积分转化为二重积分或三重积分进行计算。

二、曲面积分曲面积分用于描述多元向量函数通过曲面的积分性质。

设曲面S为参数方程r(u,v)=(x(u,v),y(u,v),z(u,v)),其中(u,v)∈D是参数区域。

若函数F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))定义在曲面S上,那么多元向量函数F通过曲面S的曲面积分可以表示为:∬S F·dS = ∬S (PdSx+QdSy+RdSz)其中dS=(dSx,dSy,dSz)是曲面S上的面积微元向量,P,Q,R是F的分量函数。

计算曲面积分的方法也有两种,一种是直接计算,根据曲面参数方程将x,y,z替换成参数u,v,在参数区域上对分量函数P,Q,R乘以面积微元dS进行积分。

另一种是利用高斯定理,将曲面积分转化为三重积分进行计算。

三、曲线积分与曲面积分的关系曲线积分和曲面积分之间存在密切的关系。

根据斯托克斯定理,对于光滑曲面S的边界曲线C,有以下等式成立:∫C F·dr = ∬S rotF·dS其中rotF=(∂R/∂y-∂Q/∂z, ∂P/∂z-∂R/∂x, ∂Q/∂x-∂P/∂y)是F的旋度。

高等数学曲线积分和曲面积分总结

高等数学曲线积分和曲面积分总结

高等数学曲线积分和曲面积分总结
高等数学曲线积分和曲面积分是微积分领域中的重要概念,它们在实际应用中具有广泛的应用,例如在物理、工程、计算机科学等领域中都有重要的应用。

本文将对高等数学曲线积分和曲面积分的概念、计算方法和应用进行总结。

一、曲线积分的概念
曲线积分是指对一维曲线上的点的函数值求导的积分,也称为路径积分。

曲线积分的基本思想是通过对曲线上的点进行积分,得到曲线的面积或体积。

曲线积分的计算公式为:
∫Cf(x,y)dS = ∫∫∫Cf(x^TC(y), y^TC(z))dxdydz
其中,C是曲线,f(x,y)是曲线上的点值函数,T是曲线上的任意一点,S是曲线上的面积,z是曲线上的任意一点。

二、曲面积分的概念
曲面积分是指对三维曲面上的点的函数值求导的积分,也称为向量场积分。

曲面积分的基本思想是通过对曲面上的点进行积分,得到曲面的面积或体积。

曲面积分的计算公式为:
∫∫∫Sf(x,y,z)dsdV = ∫∫∫Sf(x^TS(y^TS(z)))dsdV
其中,S是曲面,f(x,y,z)是曲面上的点值函数,T是曲面上的任意一点,V是曲面上的任意体积,s是曲面上的任意法向量,dV是曲面上的任意体积法向量。

拓展:曲线积分和曲面积分在物理学中的应用
曲线积分和曲面积分在物理学中具有广泛的应用。

例如,在量子力学中,曲线积分被用来计算波函数的面积,而曲面积分被用来计算量子场论的场速可变的相对性原理。

在相对论中,曲线积分被用来计算相对论效应的积分,而曲面积分被用
来计算四维空间中的弯曲曲面。

第九章 曲线积分与曲面积分3

第九章 曲线积分与曲面积分3
第三节 Green公式及其应用
Green公式的实质
沟通了沿闭曲线的第二类曲线积分与 二重积分之间的联系,即在平面闭区域D 上的二重积分可以通过闭区域D的边界 曲线L上的第二类曲线积分来表达。
第九章 曲线积分与曲面积分
1
格林 Green.G. (1793—1841) 英国数学家、物理学家
第三节 Green公式及其应用
x 2 y 2 ax.
⌒ 分析 此积分路径 AO 不是闭曲线!
y
但由 P e sin y my, Q e cos y m
x
x
O

A(a,0)x
Q P x e cos y, e x cos y m x y Q P 可知 m 非常简单. x y
16
y L
2
Q P ( x y )dxdy D Pdx Qdy D
3 y
例 计算I e dx ( xy xe 2 y )dy , 其中L为圆周 x y 2 x 的正向.
2
解 P e y , Q xy3 xe y 2 y
y
P Q y 3 y e , y e x y O Q P y3 x y 对称性 3 由格林公式有 I y dxdy 0
Q P ( x y )dxdy D Pdx Qdy D

D

D1
D1 L1 AC D2 L2 BA
1
Pdx Qdy Pdx Qdy Pdx Qdy
D
2
D2
3
D3
D3 L3 CB
L D
D1

D
1 x
xe
y2

曲线积分与曲面积分

曲线积分与曲面积分

曲线积分与曲面积分曲线积分:曲线积分是一种对曲线上的向量值函数进行积分的方法。

以一维平面曲线为例,设该曲线为C,它求解的是一个向量场F沿着C的积分,因为曲线上每个点都有一个切向量,所以曲线积分可以看作是向量场F与曲线C的点乘积之和。

曲线积分在物理学和工程学领域中得到广泛应用,比如在力学中用于计算质点沿着路径所受的约束力,或者用于计算磁场强度在闭合电路上的流量。

它还可以用于计算平面或曲面上的各种力场沿着路径或曲线的做功。

曲线积分的表示方法有两种,一种是路径坐标表示,即将曲线看作是指定参数范围内的一条参数曲线,即可对F进行积分;另一种是向量积分,即将曲线分解为若干段直线,则曲线积分等于每一段弧长所得到的弧长积分之和。

曲面积分:曲面积分是一种针对曲面上的向量值函数进行积分的方法,它是高维向量积分的扩展。

类似于曲线积分,曲面积分也是一种多个向量态的点积之和。

常见的曲面有球体、圆柱体、圆锥体、平面等等。

对于任意曲面而言,曲面积分就是将向量场沿着曲面的法向量进行积分所得到的积分值。

曲面积分应用广泛,因为它可以用于计算各种物理场的流量,比如电场、磁场、重力场等等。

在计算物理场相互作用时,曲面积分也是不可或缺的数学工具之一。

曲面积分的表示方法有两种,一种是分片曲面表示,即将曲面分解为若干小块,再对每一个小块进行积分求和; 另一种是参数表示,即采用参数方程表示曲面,则曲面积分等于曲面上每一个参数块所得到的面积积分之和。

最后,曲线积分和曲面积分是数学里非常重要的概念,它们在物理领域中扮演着重要的角色,既可以用来理解物理现象,也可以用来解决实际问题。

学习曲线积分和曲面积分,对于深入了解物理学、数学等领域都非常重要。

曲线积分与曲面积分的计算方法

曲线积分与曲面积分的计算方法

曲线积分与曲面积分的计算方法计算曲线积分与曲面积分是数学中重要的内容,本文将介绍曲线积分和曲面积分的定义和计算方法。

一、曲线积分的定义和计算方法曲线积分是在三维空间中曲线上的函数进行积分运算的一种方法。

曲线积分的计算可以分为两种情况:第一种情况是曲线的方程已知,我们可以通过参数化曲线来计算积分;第二种情况是曲线的方程未知,我们可以通过对弧长进行积分来计算。

1. 参数化曲线的曲线积分计算对于参数化曲线C: r(t) = (x(t), y(t), z(t)),函数f(x, y, z)的曲线积分可以表示为:∮C f(x, y, z) ds = ∫f(x(t), y(t), z(t))||r'(t)|| dt其中,ds表示曲线C上的弧长元素,r'(t)表示曲线C的切向量,||r'(t)||表示切向量的模长。

通过将参数t从t0到t1进行积分,即可计算出曲线积分的结果。

2. 弧长的曲线积分计算如果曲线的方程未知,但是我们可以计算出曲线上任意两点之间的弧长,则可以通过对弧长进行积分来计算曲线积分。

∮C f(x, y, z) ds = ∫f(x, y, z) dl其中,dl表示曲线C上的弧长元素,通过将参数l从l0到l1进行积分,即可得到曲线积分的结果。

二、曲面积分的定义和计算方法曲面积分是在三维空间中曲面上的函数进行积分运算的一种方法。

曲面积分的计算可以分为两种情况:第一种情况是曲面的方程已知,我们可以通过参数化曲面来计算积分;第二种情况是曲面的方程未知,我们可以通过将曲面分成小面元然后进行求和来进行计算。

1. 参数化曲面的曲面积分计算对于参数化曲面S: r(u, v) = (x(u, v), y(u, v), z(u, v)),函数f(x, y, z)的曲面积分可以表示为:∬S f(x, y, z) dS = ∫∫f(x(u, v), y(u, v), z(u, v))||r_u × r_v|| du dv其中,dS表示曲面S上的面积元素,r_u和r_v分别表示参数u和v 方向上的切向量,r_u × r_v表示切向量的叉乘,||r_u × r_v||表示叉乘的模长。

曲线积分与曲面积分计算

曲线积分与曲面积分计算

曲线积分与曲面积分计算曲线积分和曲面积分是微积分中的重要概念,用于计算沿曲线的路径或曲面上的某个向量场的总体效应。

本文将介绍曲线积分和曲面积分的概念、计算方法以及应用领域。

一、曲线积分曲线积分是计算沿曲线的路径的某个向量场的总体效应的方法。

当我们想要计算曲线上的某个物理量时,曲线积分可以提供有效的工具。

下面以一个简单的例子来说明曲线积分的计算方法。

设有一条光滑曲线C,其参数方程为r(t)=(x(t), y(t), z(t)),其中a≤t≤b。

在曲线C上有一个向量场F=(P(x, y, z), Q(x, y, z), R(x, y, z)),我们想要计算该向量场沿曲线C的积分。

曲线积分的计算方法为∫CF·dr,其中CF=(P(x, y, z), Q(x, y, z), R(x, y, z))·(dx, dy, dz)。

由此可知,曲线积分等于向量场F与路径元素的内积,再对路径元素求累积。

在具体计算中,我们可以先求得路径元素dx, dy, dz,再分别与向量场F的各个分量进行乘法运算,最后求和即可得到曲线积分的结果。

二、曲面积分曲面积分是计算曲面上的某个向量场的总体效应的方法。

与曲线积分类似,曲面积分也可以用于计算物理量在曲面上的分布情况。

下面以一个简单的例子来说明曲面积分的计算方法。

设有一个光滑曲面S,其参数方程为r(u, v)=(x(u, v), y(u, v), z(u, v)),其中(a≤u≤b, c≤v≤d)。

在曲面S上有一个向量场F=(P(x, y, z), Q(x, y, z),R(x, y, z)),我们想要计算该向量场在曲面S上的积分。

曲面积分的计算方法为∬SF·dS,其中SF=(P(x, y, z), Q(x, y, z), R(x, y, z))·(dSx, dSy, dSz)。

由此可知,曲面积分等于向量场F与曲面元素的内积,再对曲面元素求累积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章曲线积分与曲面积分
一、内容分析及教学建议
线面积分也是由实际问题的需要而产生的,是多元函数积分学的一个重要组成部分,内容多,难度大。

(一)线积分
1、可从曲线构件质量和变力沿曲线作功引入第Ⅰ类和第Ⅱ线积分,教学上注意比较两者以及和定积分联系及区别;
2、对于线积分的计算公式的证明,可按教材的方法却通过连续函数的可积性及积分值与分法及取法无关之方法证明,这样可避开用一致连续性概念;
3、重点可放在恰当地选取参数及第Ⅰ、第Ⅱ类线积分上下限确定的原则及区别;
4、第Ⅰ类线积分对称性时常用到,第Ⅱ类线积分对称性相对复杂,用的不多。

结论1:设曲线关于轴对称,则
其中为关于那段曲线
结论1:设曲线关于轴对称,则
其中是在那段曲线。

(二)格林公式及其应用
1、要讲透格林公式的推导、意义和作用,从而建立平面线积分与路径无关的各种等价条件;
2、当计算曲线积分时,如果积分路径比较复杂,不宜采用直接公式计算时,则可转化为利用格林公式来进行计算,教学中一定要强调注意验证格林公式的条件;
利用格林公式,求解第Ⅱ类线积分常用方法:
ⅰ)直接用(–封闭曲线等)
ⅱ)补线(–非封闭曲线等)
ⅲ)当被积函数在曲线所围区域内有奇点时,用小曲线控掉奇点,再用Green公式ⅳ)利用积分与路径无关性计算曲线积分
可通过例题讲解各种方法的使用,教学中同时要注意讲清每一种用法的适用范围,注意事项;
3、为全微分时,求原函数中要求学生理解公式,不要死记,在具体解题时应画出折线段,再分别在各段上把曲线积分化为定积分来计算。

(三)曲面积分
1、由曲面构件质量和流量等实例引入两类面积分概念。

在性质上,可类比两类相对应的线积分;在概念上,注意相互比较以及和二重积分的比较;
2、直接计算(又称投影法)第Ⅰ类曲面积分时,首先要考虑到向哪个坐标面投影之问题。

以下两点要让学生理解:
① 主要取决于积分曲面方程的表达式,若要把曲面投影到平面上,则应把方程写成形式(或者说,一定要能写成这种形式,否则不能向平面投影!)
② 假若能同时向几个坐标面投影,原则上选取一个较为简单(曲面方程、投影区域积分计算简单)的坐标面。

3、第Ⅱ类曲面积分是教学中一大难点,可从以下几方面来分解:
ⅰ)类比第Ⅱ类线积分
ⅱ)讲透有向曲面、侧的概念(必要时借助于简单教具)
ⅲ)讲清有向曲面与各个坐标面之间的投影关系
ⅳ)具体应用公式(投影法)计算第Ⅱ类曲面积分时,应讲清这样的思路。


为例:
a.根据积分变量,将曲面的方程化为形式;确定曲面的侧(前侧、后侧)以及在平面上的投影区域;
b.将方程代入被积函数
c.计算二重积分
(四)高斯公式、斯托克斯公式
1. 花较少时间讲清定理的证明,较多时间放在如何应用公式上,尤其是高斯公式;
2. 可类比格林公式,加深这几个公式的理解;
3. 结合例题,对于常见的两种曲面情况(封闭及非封闭),讲清高斯公式应用条件及具体方法;
4. 空间曲面路径无关性定理及应用,略讲或不讲;
5. 通量、环流量、散度及旋度只作介绍;
6. 对于斯托克斯公式,证明可略讲。

如何应用?一般是求,写出
的参数方程较困难,或者直接代入的参数式很繁时,可考虑用斯托克斯公式,这一点可结合教材之典型例题讲解;
7. 至此,可以把各类积分统一定义为,其中是所有
直径的最大者。

二、补充例题:
例1. 计算,其中是抛物线上从点到点的一段弧。

解:当,有,故积分与路径无关,取新路径,上半单位圆周
顺时针方向(注意不能选轴一段)
例2 计算,其中是抛物线上从点到一段弧
解法1:,的积分与路径有关,
记为弧段与直线,所围区域,
是直线与的交点,
则由格林公式
解法2:设法用积分与路径无关性求解
例3. 设在平面上具有一阶连续偏导数,曲线积分与路径无关,并且对任意恒有:
,求。

解:由积分与路径无关性有,于是,为待定函数,且,
由题设对任意的应有
两边对求导,得:,即,所以
例4. 计算,其中是平面
与柱面的交线,从轴正向看,为逆时针方向。

解:记为平面上所围成部分上侧,为在坐标面上投影,由斯托克斯公式得:
例5. 设质点沿着以为直径的圆围,从点运动到点的过程中,受力的作用,的大小等于点到原点之间的距离,其方向垂直于线段且与
轴正向的夹角小于,求变力对质点所作的功。

解:按题意,变力,有向弧的方程是:
(从)
变力所作的功为

例5.选择使是某一函数的全微分,并求。

解:,,由全微分条件
下面用三种方法求:
方法1 (凑全微分法)
方法2 用曲线积分与路径无关性,选折线为积分路径,则
方法3 不定积分法
设,则



例7. 设为椭球面的上半部分(即部分),点,为在点的切平面,为点到平面下的距离,求
解法1 为上任意一点,则的方程为从而得
由的方程,有

在面投影域为
解法2 如解法1,设为在第一象限的部分,则由对称性
由的方程得
在面投影域为,
所以
例8. 计算,其中为曲面在第一象部分()的上侧
解法1 投影法(直接计算)
设,,分别表示在平面、平面、平面的投影,相应把的方
程分别是,,,则
解法2 高斯公式
此时要补上三个平面块,,,与曲面块构成封闭曲面,所围成的空间区域记为,注意到取内侧,因此
解法3 (化为第一类曲面积分)
曲面块方程,得,,从而


例9 计算,其中:,上侧
解:,补有向曲面块:取下侧,则
所以
例10 计算,其中具
连续导数,为锥面与两球面,所围立体的表面取外侧。

解:由高斯公式
三、补充练习
1. 计算,为园周及两条坐标轴在第一象限内所围成的整个扇形
边界()
1. 计算,其中
①为从点,经过到的折线段()
②为从点到圆弧
3.利用格林公式计算曲线积分其中为在抛物线上由点到的一段弧
4. 计算,其中为过点,,
三点所决定的圆周上的一段弧
5. 验证:在右半平面内是全微分式,并求出一个原函数
6.计算曲面积分,其中是介于平面及()之间的圆柱面
7.计算,其中是上半球面()的下侧
8. 计算,其中是旋转抛物面,圆柱面
和坐标面在第一卦限内所围成的空间区域的边界曲面外侧
9. 计算,其中是由平面,抛物柱面及坐标面所围成立体表面外侧但除去在平面那部分边界曲面
10. 应用斯托克斯公式计算曲线积分,为椭圆
,(),若从轴正向看去,这椭圆取逆时针方向
()。

相关文档
最新文档