专题十:立体几何2013-2016高考数学全国卷(理)

合集下载

2013-2017高考数学全国卷--立体几何汇编(完整资料).doc

2013-2017高考数学全国卷--立体几何汇编(完整资料).doc

【最新整理,下载后即可编辑】2013-2017高考数学全国卷理科--立体几何汇编学校:姓名:班级:考号:评卷得分一、选择题I(理)]某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成, 正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A. 10B. 12C. 14D. 162. [2017·全国新课标卷II(理)]如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A. 90πB. 63πC. 42πD. 36π【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】 3. [2017·全国新课标卷II(理)]已知直三棱柱ABC-A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为 ( )A. √32B. √155C. √105D. √33 4. [2017·全国新课标卷III(理)]已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A. πB. 3π4C. π2D. .π4 5. [2016·高考全国新课标卷Ⅰ,6]如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是 ( )A. 17πB. 18πC. 20πD. 28π6. [2016·高考全国新课标卷Ⅰ,11]平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为 ( )A. √32B. √22C. √33D. 13【最新整理,下载后即可编辑】7. [2016·高考全国新课标卷Ⅱ,6]如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 ( )A. 20πB. 24πC. 28πD. 32π8. [2016·高考全国新课标卷Ⅲ,9]如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18+36√5B. 54+18√5C. 90D. 819. [2016·高考全国新课标卷Ⅲ,10]在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 ( )A. 4πB. 9π2C. 6πD. 32π310. [2015·高考全国新课标卷Ⅰ,6]《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米【最新整理,下载后即可编辑】 (如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A. 14斛B. 22斛C. 36斛D. 66斛11. [2015·高考全国新课标卷Ⅰ,11]圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=( )正视图 俯视图A. 1B. 2C. 4D. 812. [2015·高考全国新课标卷Ⅱ,6]一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A. 18B. 17C. 16D. 15【最新整理,下载后即可编辑】 13. [2015·高考全国新课标卷Ⅱ,9]已知A ,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( )A. 36πB. 64πC. 144πD. 256π14. [2014·高考全国新课标卷Ⅰ,12]如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A. 6√2B. 6C. 4√2D. 4 15. [2014·全国新课标卷Ⅱ,6]如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727 B. 59 C. 1027 D. 13【最新整理,下载后即可编辑】 16. [2014·全国新课标卷Ⅱ,11]直三棱柱ABC ­A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A. 110 B. 25 C. √3010 D. √22 17. [2013·高考全国新课标卷Ⅰ,6]如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A. 500π3 cm 3B. 866π3 cm 3C. 1372π3 cm 3D.2048π3 cm 318. [2013·高考全国新课标卷Ⅰ,8]某几何体的三视图如图所示,则该几何体的体积为( )A. 16+8πB. 8+8πC. 16+16π D. 8+16π19. [2013·高考全国新课标卷Ⅱ,4]已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A. α∥β且l ∥αB. α⊥β且l ⊥βC. α与β相交,且交线垂直于lD. α与β相交,且交线平行l20. [2013·高考全国新课标卷Ⅱ,7]一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( )A. B. C. D.评卷得分二、填空题I(理)]如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.22. [2017·全国新课标卷III(理)]a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】 ②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°.其中正确的是 .(填写所有正确结论的编号)23. [2016·高考全国新课标卷Ⅱ,14]α,β是两个平面,m ,n 是两条直线,有下列四个命题:①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.②如果m ⊥α,n ∥α,那么m ⊥n .③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)三、解答题 I(理)] (本小题满分12分)如图,在四棱锥P-ABCD 中,AB ∥CD ,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD ; (2)若PA=PD=AB=DC ,∠APD=90°,求二面角A-PB-C 的余弦值.25. [2017·全国新课标卷II(理)] (本小题满分12分)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.26. [2017·全国新课标卷III(理)] (本小题满分12分)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】27. [2016·高考全国新课标卷Ⅰ,18] (本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ;(2)求二面角E -BC -A 的余弦值.28. [2016·高考全国新课标卷Ⅱ,19] (本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D'EF 的位置,OD'=√10.(1)证明:D'H⊥平面ABCD;(2)求二面角B-D'A-C的正弦值.29. [2016·高考全国新课标卷Ⅲ,19] (本小题满分12分) 如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】30. [2015·高考全国新课标卷Ⅰ,18](本小题满分12分)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(1)证明:平面AEC ⊥平面AFC ; (2)求直线AE 与直线CF 所成角的余弦值.31. [2015·高考全国新课标卷Ⅱ,19](本小题满分12分)如图,长方体ABCD-A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F= 4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.【最新整理,下载后即可编辑】32. [2014·高考全国新课标卷Ⅰ,19] (本小题满分12分) 如图,三棱柱ABC ­A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A ­A 1B 1­C 1的余弦值.33. [2014·全国新课标卷Ⅱ,18] (本小题满分12分) 如图,四棱锥P ­ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D ­AE ­C 为60°,AP =1,AD =√3,求三棱锥E ­ACD 的体积.【最新整理,下载后即可编辑】34. [2013·高考全国新课标卷Ⅰ,18](本小题满分12分) 如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.35. [2013·高考全国新课标卷Ⅱ,18](本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =√22AB .(1)证明:BC 1∥平面A 1CD ;C-E的正弦值.(2)求二面角D-A1【最新整理,下载后即可编辑】。

2013高考数学真题——立体几何分大题汇编

2013高考数学真题——立体几何分大题汇编
0
AC BD , BC 1 , AD AA1 3
(1)证明: AC B1 D ; (2)求直线 B1C1 与平面 ACD1 所成角的正弦值。
9、 (2013 北京卷理 17)如图,在三棱柱 ABC A1 B1C1 中, AA1C1C 是边长为 4 的正方形, 平面 ABC 平面 AA1C1C , AB 3, BC 5 . (1)求证: AA1 平面 ABC ; (2)求二面角 A1 BC1 B1 的余弦值;
21、 (2013 辽宁卷文 18)如图, AB 是圆 O 的直径, PA 圆所在的平面, C 是圆 O 上的 点。 (1)求证: BC 平面 PAC ; (2)若 Q 为 PA 的中点, G 为 AOC 的重心,求证: QG ∥平面 PBC
P
Q A G C O B
22 、 ( 2013
P M A
(2)若二面角 C BM D 的大小为 60 ,求 BDC 的大小.
0
B
Q
D
C
17、 (2013 福建卷理 19) 如图, 在四棱柱 ABCD A1B1C1D1 中, 侧棱 AA1 底面 ABCD ,AB ∥ DC , AA1 1 , AB 3k , AD 4k , BC 5k , DC 6k , (k 0) 。 (1)求证: CD 平面 ADD1 A1 ; (2)若直线 AA1 与平面 AB1C 所成角的正弦值为
1 (Ⅱ)设(Ⅰ)中的直线 l 与圆 O 的另一个交点为 D ,且点 Q 满足 DQ CP . 记直线 PQ 2 与平面 ABC 所成的角为 ,异面直线 PQ 与 EF 所成的角为 ,二面角 E l C 的大小为
,求证: sin sin sin .

2016年全国各地高考数学试题及解答分类汇编大全(13 立体几何 )

2016年全国各地高考数学试题及解答分类汇编大全(13 立体几何 )

2016 年全国各地高考数学试题及解答分类汇编大全(13立体几何)一、选择题1.(2016北京理)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1【答案】A【解析】试题分析:分析三视图可知,该几何体为一三棱锥P ABC-,其体积111111326V=⋅⋅⋅⋅=,故选A.考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅰ文、理)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A)17π(B)18π(C)20π(D)28π【答案】A【解析】试题分析:该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R,则37428V R833ππ=⨯=,解得R2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以 三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.3.(2016全国Ⅰ文、理)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1, ABCD m α=平面,11ABB A n α=平面,则m 、n 所成角的正弦值为 ( )(A)3 (B )2 (C)3 (D)13【答案】A【解析】试题分析:如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角. 延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm , 同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成 的角即为1,A B BD 所成的角,即为60︒,故,m n 所成角的 正弦值为32,选A. 考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.4.(2016全国Ⅱ文)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )(A )12π (B )323π(C )8π (D )4π 【答案】A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球面的表面积为24(3)12ππ⋅=,故选A. 考点: 正方体的性质,球的表面积.【名师点睛】棱长为a 的正方体中有三个球: 外接球、内切球和与各条棱都相切的球.其半径分别为3a 、2a 和22a .5.(2016全国Ⅱ文、理)如图是由圆柱与圆锥组合而成的几何体的三视图, 则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C考点: 三视图,空间几何体的体积.【名师点睛】以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解. 【名师点睛】由三视图还原几何体的方法:6. (2016全国Ⅲ文、理)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81 【答案】B考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.7.(2016全国Ⅲ文、理)在封闭的直三棱柱111ABCA B C-内有一个体积为V的球,若AB BC⊥,6AB=,8BC=,13AA=,则V的最大值是()(A)4π (B)92π(C)6π (D)323π【答案】B【解析】试题分析:要使球的体积V最大,必须球的半径R最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322Rπππ==,故选B.考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.8.(2016山东文、理)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B)123+π(C)123+π(D)21+π【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.9.(2016上海文)如图,在正方体ABCD−A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()(A)直线AA1 (B)直线A1B1 (C)直线A1D1(D)直线B1C1【答案】D【解析】只有11B C与EF在同一平面内,是相交的,其他A,B,C中直线与EF都是异面直线,故选D.考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.10.(2016天津文)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】B【解析】试题分析:由题意得截去的是长方体前右上方顶点,故选B考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.11.(2016浙江文、理)已知互相垂直的平面αβ,交于直线l.若直线m,n满足,m nαβ∥⊥,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【答案】C【解析】试题分析:由题意知,l lαββ=∴⊂,,n n lβ⊥∴⊥.故选C.考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.二、填空1.(2016北京文)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.2考点:三视图【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅱ理),αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④考点: 空间中的线面关系.【名师点睛】求解本题应注意在空间中考虑线、面关系.3、(2016上海理)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________. 【答案】22【解析】试题分析:由题意得111122tan 223332DD DBD DD BD ∠==⇒=⇒=.考点:1.正四棱柱的几何特征;2.直线与平面所成的角.【名师点睛】涉及立体几何中的角的问题,往往要将空间问题转化成平面问题,做出角,构建三角形,在三角形中解决问题;也可以通过建立空间直角坐标系,利用空间向量方法求解,应根据具体情况选择不同方法,本题难度不大,能较好地考查考生的空间想象能力、基本计算能力等.4. (2016四川文)已知某三菱锥的三视图如图所示,则该三菱锥的体积.侧视图俯视图【答案】3【解析】试题分析:由三视图可知该几何体是一个三棱锥,且底面积为112S =⨯=1,所以该几何体的体积为11133V Sh ===考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.5.(2016四川理)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【答案】3【解析】试题分析:由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,则底面等腰三角形的顶角为120︒,所以三棱锥的体积为1122sin120132V =⨯⨯⨯⨯︒⨯=.考点:三视图,几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.6.(2016浙江文、理)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40. 【解析】试题分析:由三视图知该组合体是一个长方体上面放置了 一个小正方体, 22262244242280S =⨯+⨯+⨯⨯-⨯=表,3244240V =+⨯⨯=.考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积. 7.(2016浙江文)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______. 【答案】69【解析】试题分析:设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得6AC =,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,由6(0,,0)A ,30(,0,0)B ,6(0,,0)C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直, 2666CD CH CA ===,则63OH =,153066DH ⨯==,因此可设30630'(cos ,,sin )636D αα-, 则3030630'(cos ,,sin )BD αα=--, 与CA 平行的单位向量为(0,1,0)n =,所以cos cos ',BD n θ=<>''BD n BD n⋅==6395cos α-,HD'DCBA zyO所以cos1α=时,cos θ取最大值69. 考点:异面直线所成角.【思路点睛】先建立空间直角坐标系,再计算与C A 平行的单位向量n 和D 'B ,进而可得直线C A 与D 'B 所成角的余弦值,最后利用三角函数的性质可得直线C A 与D 'B 所成角的余弦值的最大值.8.(2016天津理)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3. 【答案】2【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形 的底为2,高为1,因此体积为1(21)323V =⨯⨯⨯=.故答案为2. 考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.三、解答题1.(2016北京文)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(III )存在.理由见解析.(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下: 取PB 中点F ,连结F E ,C E ,CF . 又因为E 为AB 的中点, 所以F//E PA . 又因为PA ⊄平面C F E , 所以//PA 平面C F E .考点:空间垂直判定与性质;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.2. (2016北京理)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由. 【答案】(1)见解析;(2)33;(3)存在,14AM AP =(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得AP AM λ=.因此点),,1(),,1,0(λλλλ--=-BM M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅n BM , 即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM . 考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.3.(2016江苏)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB , BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析考点:直线与直线、平面与平面位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.4. (2016江苏)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1PO 的四倍. (1)若16,PO 2,AB m m ==则仓库的容积是多少?(2)若正四棱柱的侧棱长为6m,则当1PO 为多少时,仓库的容积最大?【答案】(1)312(2)123PO =考点:函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点方面进行强化,注重培养将文字语言转化为数学语言能力,强化构建数学模型的几种方法.而江苏应用题,往往需结合导数知识解决相应数学最值问题,因此掌握利用导数求最值方法是一项基本要求,需熟练掌握.5.(2016全国Ⅰ文)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面P AC 内的 正投影F (说明作法及理由),并求四面体PDEF 的体积. 【答案】(I )见解析(II )作图见解析,体积为43试题解析:(I )因为P 在平面ABC 内的正投影为D , 所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点.(II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC 由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,2 2.==DE PE 在等腰直角三角形EFP 中,可得 2.==EF PF 所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V 考点:线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.PABD CGE6.(2016全国Ⅰ理)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,90AFD∠=,且二面角D-AF-E与二面角C-BE-F都是60.(I)证明:平面ABEF⊥平面EFDC;(II)求二面角E-BC-A的余弦值.【答案】(I)见解析(II )219-试题解析:(I)由已知可得F DFA⊥,F FA⊥E,所以FA⊥平面FDCE.又FA⊂平面FABE,故平面FABE⊥平面FDCE.(II)过D作DG F⊥E,垂足为G,由(I)知DG⊥平面FABE.以G为坐标原点,GF的方向为x轴正方向,GF为单位长度,建立如图所示的空间直角坐标系G xyz-.由(I)知DF∠E为二面角D F-A-E的平面角,故DF60∠E=,则DF2=,DG3=,可得()1,4,0A,()3,4,0B-,()3,0,0E-,(D3.由已知,//FAB E,所以//AB平面FDCE.又平面CDAB平面FDC DCE=,故//CDAB,CD//FE .由//FBE A,可得BE⊥平面FDCE,所以C F∠E为二面角C F-BE-的平面角,C F60∠E=.从而可得(C3-.所以(C3E=,()0,4,0EB=,(C 3,3A=--,()4,0,0AB=-.设(),,n x y z=是平面CB E的法向量,则C0nn⎧⋅E=⎪⎨⋅EB=⎪⎩,即3040x zy⎧+=⎪⎨=⎪⎩,所以可取(3,0,3n=-.设m是平面CDAB的法向量,则C0mm⎧⋅A=⎪⎨⋅AB=⎪⎩,同理可取()0,3,4m=.则219cos,n mn mn m⋅==-.CBDEF故二面角C E-B -A 的余弦值为21919-.考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.7.(2016全国Ⅱ文) 如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE CF =,EF交BD 于点H ,将DEF ∆沿EF 折到'D EF ∆的位置. (Ⅰ)证明:'AC HD ⊥; (Ⅱ)若55,6,,'224AB AC AE OD ====,求五棱锥D ABCEF '-体积.【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)根据勾股定理证明OD H '∆是直角三角形,从而得到.'⊥OD OH 进而有⊥AC 平面BHD ',证明'⊥OD 平面.ABC 根据菱形的面积减去三角形DEF 的面积求得五边形ABCFE 的面积,最后由椎体的体积公式求五棱锥D ABCEF '-体积. 试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD .五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S 所以五棱锥'ABCEF D -体积16923222.34=⨯⨯=V 考点: 空间中的线面关系判断,几何体的体积.【名师点睛】立体几何中的折叠问题,应注意折叠前后线段的长度、角哪些变了,哪些没变.8.(2016全国Ⅱ理)如图,菱形ABCD 的对角线AC 与BD 交于点O , 5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H'⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)9525.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.ABDD'E H Oz xF(II )如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -, 则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,则0m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩,即11111340330x y x y z -=⎧⎨++=⎩, 所以可以取()4,3,5m =-.设()222,,n x y z =是平面'ACD 的法向量,则0n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,即222260330x x y z =⎧⎨++=⎩,所以可以取()0,3,1n =-.于是75cos ,||||5010m n m n m n ⋅<>===⋅⨯, 295sin ,25m n <>=.因此二面角B D A C'--的正弦值是29525.考点:线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a∥b,a⊥α⇒b⊥α;③α∥β,a⊥α⇒a⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.9.(2016全国Ⅲ文)如图,四棱锥P ABC-中,PA⊥平面ABCD,AD BC,3AB AD AC===,4PA BC==,M为线段AD上一点,2AM MD=,N为PC的中点.(I)证明MN平面PAB;(II)求四面体N BCM-的体积.【答案】(Ⅰ)见解析;(Ⅱ)453.试题解析:(Ⅰ)由已知得232==ADAM,取BP的中点T,连接TNAT,,由N为PC中点知BCTN//,221==BCTN. ......3分又BCAD//,故TN AM,四边形AMNT为平行四边形,于是ATMN//.因为⊂AT平面PAB,⊄MN平面PAB,所以//MN平面PAB. ........6分(Ⅱ)因为⊥PA平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA21. ....9分取BC的中点E,连结AE.由3==ACAB得BCAE⊥,522=-=BEABAE.由BCAM∥得M到BC的距离为5,故525421=⨯⨯=∆BCMS,所以四面体BCMN-的体积354231=⨯⨯=∆-PASVBCMBCMN. .....12分考点:1、直线与平面间的平行与垂直关系;2、三棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又推出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.10.(2016全国Ⅲ理)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(I )证明MN平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ)8525.【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP 所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角.试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,故TN AM,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =,于是||85|cos,|25||||n ANn ANn AN⋅<>==.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.11.(2016山东文)在如图所示的几何体中,D是AC的中点,EF∥DB.(I)已知AB=BC,AE=EC.求证:AC⊥FB;(II)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.【答案】(Ⅰ))证明:见解析;(Ⅱ)见解析.【解析】试题分析:(Ⅰ))根据BDEF//,知EF与BD确定一个平面,连接DE,得到ACDE⊥,ACBD⊥,从而⊥AC平面BDEF,证得FBAC⊥.(Ⅱ)设FC的中点为I,连HIGI,,在CEF∆,CFB∆中,由三角形中位线定理可得线线平行,证得平面//GHI平面ABC,进一步得到//GH平面ABC.试题解析:(Ⅰ))证明:因BDEF//,所以EF与BD确定一个平面,连接DE,因为EECAE,=为AC的中点,所以ACDE⊥;同理可得ACBD⊥,又因为DDEBD=,所以⊥AC平面BDEF,因为⊂FB平面BDEF,FBAC⊥。

2013年高考数学(理)真题分类解析汇编7.立体几何

2013年高考数学(理)真题分类解析汇编7.立体几何

2013年高考数学〔理〕真题分类解析汇编7:立体几何一、选择题1 .〔2013年高考新课标1〔理〕〕如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为〔〕 A .35003cm π B .38663cm π C .313723cm πD .320483cm π【答案】A【天利解析】设正方体上底面所在平面截球得小圆M , 则圆心M 为正方体上底面正方形的中心.如图.设球的半径为R ,根据题意得球心到上底面的距离等于〔R ﹣2〕cm ,而圆M 的半径为4,由球的截面圆性质,得R 2=〔R ﹣2〕2+42, 解出R=5,所以根据球的体积公式,该球的体积V===.故选A .2 .〔2013年普通高等学校招生统一考试广东省数学〔理〕卷〔纯WORD 版〕〕设,m n 是两条不同的直线,,αβ是两个不同的平面,以下命题中正确的选项是 〔 〕A .假设αβ⊥,m α⊂,n β⊂,则m n ⊥B .假设//αβ,m α⊂,n β⊂,则//m nC .假设m n ⊥,m α⊂,n β⊂,则αβ⊥D .假设m α⊥,//m n ,//n β,则αβ⊥ 【答案】D【天利解析】ABC 是典型错误命题,选D .3 .〔2013年普通高等学校招生统一考试大纲版数学〔理〕WORD 版含答案〔已校对〕〕已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于〔〕 A .23B .33C .23D .13【答案】A【天利解析】设AB=1,则AA 1=2,分别以的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系, 如以下图所示:则D 〔0,0,2〕,C 1〔0,1,0〕,B 〔1,1,2〕,C 〔0,1,2〕, =〔1,1,0〕,=〔0,1,﹣2〕,=〔0,1,0〕,设=〔x ,y ,z 〕为平面BDC 1的一个法向量,则,即,取=〔﹣2,2,1〕,设CD 与平面BDC 1所成角为θ,则sin θ=||=,故选A .4 .〔2013年高考新课标1〔理〕〕某几何体的三视图如下图,则该几何体的体积为〔〕A .168π+B .88π+C .1616π+D .816π+ 【答案】A【天利解析】三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4. 所以长方体的体积=4×2×2=16, 半个圆柱的体积=×22×π×4=8π 所以这个几何体的体积是16+8π; 故选A .5 .〔2013年高考湖北卷〔理〕〕一个几何体的三视图如下图,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有〔 〕 A .1243V V V V <<< B .1324V V V V <<<C .2134V V V V <<<D .2314V V V V <<<【答案】C【天利解析】此题考查三视图以及空间几何体的体积。

2016年全国高考数学(理科)试题及答案-全国1卷(解析版)

2016年全国高考数学(理科)试题及答案-全国1卷(解析版)

绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项: 1。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2。

答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3。

全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D)3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题。

解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算。

(2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A )1 (B 2 (3 (D )2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B 。

考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题。

高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性。

(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D)97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C 。

【解答题题专练】高考数学(理)二轮专题第二部分:专题十 立体几何作业15

【解答题题专练】高考数学(理)二轮专题第二部分:专题十  立体几何作业15

小题专练·作业(十五)一、选择题1.(2016·新课标全国Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π答案 C解析该几何体是圆锥与圆柱的组合体,由三视图可知圆柱底面圆的半径r=2,底面圆的周长c=2πr=4π,圆锥的母线长l=22+(23)2=4,圆柱的高h=4,所以该几何体的表面积S表=πr2+ch+12cl=4π+16π+8π=28π,故选C. 2.(2016·浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥nC.n⊥l D.m⊥n答案 C解析因为α∩β=l,所以l⊂β,又n⊥β所以n⊥l.故选C.3.(2016·合肥质检)在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=60°,AB =AC=23,PA=2,则三棱锥P-ABC外接球的表面积为()A.20πB.24πC.28πD.32π答案 A解析 由题意可得△ABC 是边长为23的正三角形,设其外接圆的半径为r ,则2r =23sin60°=4,r =2.又外接球的球心在PA 的中垂面上,则外接球的半径R =r 2+(12PA )2=5,所以该球的表面积为4πR 2=4π(5)2=20π,选项A 正确. 4. (2016·贵阳检测)如图,点E ,F 分别是正方体ABCD -A 1B 1C 1D 1的棱AB ,AA 1的中点,点M ,N 分别是线段D 1E 与C 1F 上的点,则与平面ABCD 垂直的直线MN 的条数有( )A .0个B .1个C .2个D .无穷多个答案 B解析 假设存在满足条件的直线MN ,如图,建立空间直角坐标系,不妨设正方体的棱长为2,则D 1(2,0,2),E(1,2,0),设M 的坐标为(x ,y ,z),∵D 1M →=mD 1E →(0<m<1),∴(x -2,y ,z -2)=m(-1,2,-2),x =2-m ,y =2m ,z =2-2m.∴M(2-m ,2m ,2-2m).同理,若设C 1N →=nC 1F →(0<n<1),可得N(2n ,2n ,2-n), MN →=(m +2n -2,2n -2m ,2m -n).又∵MN ⊥平面ABCD ,∴⎩⎪⎨⎪⎧CD →·MN →=0,CB →·MN →=0,即⎩⎪⎨⎪⎧m +2n -2=0,2n -2m =0,解得⎩⎪⎨⎪⎧m =23,n =23,即存在满足条件的直线MN ,且只有1条.5.(2016·山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π答案 C解析 由三视图可知,四棱锥的底面是边长为1的正方形,高为1,其体积V 1=13×12×1=13.设半球的半径为R ,则2R =2,即R =22,所以半球的体积V 2=12×4π3R 3=12×4π3×(22)3=26π.故该几何体的体积V =V 1+V 2=13+26π.故选C.6.(2016·河北七校)已知α,β是两个不同的平面,有下列三个条件: ①存在一个平面γ,γ⊥α,γ∥β; ②存在一条直线a ,a ⊥β;③存在两条垂直的直线a ,b ,a ⊥β,b ⊥α.其中,所有能成为“α⊥β”的充要条件的序号是( ) A .①B .②C .③D .①③答案 D解析 对于①,存在一个平面γ,γ⊥α,γ∥β,则α⊥β,反之也对,即“存在一个平面γ,γ⊥α,γ∥β”是“α⊥β”的充要条件,所以①对,可排除B ,C ;对于③,存在两条垂直的直线a ,b ,则直线a ,b 所成的角为90°,因为a ⊥β,b ⊥α,所以α,β所在的角为90°,即α⊥β,反之也对,即“存在两条垂直的直线,a ,b ,a ⊥β,b ⊥α”是“α⊥β”的充要条件,所以③对,可排除A ,选D. 7.(2016·江西九校联考)已知圆锥的底面半径为R ,高为2R ,在它的所有内接圆柱中,侧面积的最大值是( ) A.14πR 2 B.12πR 2 C .πR 2 D .2πR 2答案 C解析 设圆柱的底面半径为r ,高为h ,由已知条件可知2r +h =2R ,所以圆柱的侧面积为S =2πrh =2πr(2R -2r)≤π[2r +(2R -2r )2]2=πR 2,当2r =2R -2r ,即r =12R 时“=”成立 ,故圆柱的侧面积最大为πR 2.8.(2016·新课标全国Ⅱ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4πB.9π2 C .6π D.32π3 答案 B解析 由题意可得若V 最大,则球与直三棱柱的部分面相切,若与三个侧面都相切,可求得球的半径为2,球的直径为4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底面相切,此时球的半径R =32,此时的体积最大,V max =43πR 3=4π3×278=9π2.回顾 不是所有的直三棱柱都有内切球,只有底面三角形内切圆的直径与直三棱柱的高相等时,该直三棱柱才有内切球.9. (2016·江西联考)如图,在球的内接三棱锥A -BCD 中,AB =8,CD =4,平面ACD ⊥平面BCD ,且△ACD 与△BCD 是以CD 为底的全等的等腰三角形,则三棱锥A -BCD 的高与其外接球的直径的比值为( )A.3265B.413065C.813065D.6465答案 B解析 设该三棱锥的外接球的半径为R ,取AB ,CD 的中点分别为E ,F ,连接EF ,AF ,BF ,由题意易得AF ⊥BF ,AF =BF =42,EF =4,易知三棱锥A -BCD 的外接球的球心O 在线段EF 上,连接OA ,OC ,有R 2=AE 2+OE 2=16+OE 2 ①,R 2=CF 2+OF 2=4+(4-OE)2②,由①②可得R 2=654,所以R =652,所以2R =65.又三棱锥A-BCD 的高AF =42,所以三棱锥A -BCD 的高与其外接球的直径的比值为4265=413065,故选B.10.(2016·衡中调研)在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ的值有( ) A .0个 B .1个 C .2个 D .3个答案 C解析 由于线段D 1Q 与OP 互相平分,且MQ →=λMN →,则有Q ∈MN ,那么只有当四边形D 1PQO 是平行四边形时,才满足题意,此时有P 为A 1D 1的中点,点Q 与点M 重合,或P 为C 1D 1的中点,点Q 与点N 重合,对应的λ=0或1. 11.(2016·长沙调研)公元656年,唐代李淳风注《九章》时提到祖暅的开立圆术.祖暅在求球体积时,使用一个原理:“幂势既同,则积不容异”.“幂”是截面积,“势”是立体的高.意思是两个同高的立体,如在等高处的截面积恒相等,则体积相等.更详细点说就是,界于两个平行平面之间的两个立体,被任一平行于这两个平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.上述原理在中国被称为祖暅原理.取一摞书或一摞纸张堆放在水平桌面上,然后用手推一下以改变其形状,这时高度没有改变,每页纸张的面积也没有改变,因而这摞书或纸张的体积与变形前相等.设由⎩⎨⎧x 2≥4y ,0≤x ≤4,0≤y ≤4确定的封闭图形绕y 轴旋转一周,得到旋转体,则该旋转体的体积为( ) A .32π B .36π C .44π D .46π答案 A解析 依题,该旋转体轴截面如图①,则垂直y 轴,在高为y 处截面面积为S =π×42-π×x 2,依此,考虑在图②中垂直y轴,在高为y处截面面积也为S=π×42-π×x2,由祖暅原理可知V旋转体=V大半球-V小球=12×43π×43-43π×23=32π.12.(2016·太原模拟)在三棱锥A-BCD中,底面BCD为边长是2的正三角形,顶点A在底面BCD上的射影为△BCD的中心,若E为BC的中点,且直线AE 与底面BCD所成角的正切值为22,则三棱锥A-BCD外接球的表面积为() A.3πB.4πC.5πD.6π答案 D解析∵顶点A在底面BCD上的射影为△BCD的中心,而且△BCD是正三角形,∴三棱锥A-BCD是正三棱锥,∴AB=AC=AD.令底面△BCD的重心(即中心)为P,∵△BCD是边长为2的正三角形,DE是BC边上的高,∴DE=3,PE=33,DP=233.∵直线AE与底面BCD所成角的正切值为22,即tan∠AEP=22,∴AP=263,∵AE2=AP2+EP2,∴AD=2,于是AB=AC=AD=BC=CD=DB=2,∴三棱锥A-BCD 为正四面体.构造正方体,由面上的对角线构成正四面体,故正方体的棱长为2,∴正方体的体对角线长为6,∴外接球的半径为62,∴外接球的表面积为4π(62)2=6π.13.(2016·扬州五校)一个三棱柱的直观图、正(主)视图、侧(左)视图、俯视图如图所示,若M、N分别为A1B、B1C1的中点,则下列选项中错误的是()A .MN 与A 1C 异面B .MN ⊥BCC .MN ∥平面ACC 1A 1D .三棱锥N -A 1BC 的体积为13a 2答案 D解析 取A 1B 1的中点D ,连接DM ,DN.由于M 、N 分别是A 1B 、B 1C 1的中点,所以可得DN ∥A 1C 1,又DN ⊄平面A 1ACC 1,A 1C 1⊂平面A 1ACC 1,所以DN ∥平面A 1ACC 1.同理可证DM ∥平面A 1ACC 1.又DM ∩DN =D ,所以平面DMN ∥平面A 1ACC 1,所以MN ∥平面ACC 1A 1,直线MN 与A 1C 异面,A 、C 正确.由三视图可得A 1C 1⊥平面BCC 1B 1,所以DN ⊥平面BCC 1B 1,所以DN ⊥BC ,又易知DM ⊥BC ,所以BC ⊥平面DMN ,所以BC ⊥MN ,B 正确.因VN -A 1BC =V A 1-NBC =13(12a 2)a =16a 2,所以D 错误.14.(2016·衡阳二模)如图,等边三角形ABC 的中线AF 与中位线DE 相交于点G ,已知△A′ED 是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A ′在平面ABC 上的射影在线段AF 上B .异面直线A ′E 与BD 不可能垂直C .三棱锥A ′-EFD 的体积有最大值 D .恒有平面A′GF ⊥平面BCED 答案 B解析依题意可知四边形ADFE为菱形,对角线AF与DE互相垂直平分,故A 正确;在旋转过程中DE始终垂直GF和GA′,故DE⊥平面A′GF,所以恒有平面A′GF⊥平面BCED,故D正确;当A′G⊥平面ABC时,三棱锥A′-EFD的体积取得最大值,故C正确;因为EF∥BD,故异面直线A′E与BD所成的角为∠FEA′,旋转过程中有可能为直角,故B错误.二、填空题15.(2016·四川)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.答案3 3解析由正视图知,底面三角形是腰长为2,底边为23的等腰三角形,三棱锥的高为1,所以该三棱锥的体积V=13×(12×23×1)×1=33.16.(2016·河北五一名校)在棱长为1的正方体ABCD-A1B1C1D1中,M,N分别是AC1,A1B1的中点,点P在其表面上运动,则总能使MP与BN垂直的点P 所构成的轨迹的周长等于________.答案2+ 5解析分别取BB1,CC1的中点E,F,连接AE,EF,FD,则BN⊥平面AEFD,设M在平面ABB1A1中的射影为O,过MO与平面AEFD平行的平面为α,所以能使MP与BN垂直的点P所构成的轨迹为矩形,其周长与矩形AEFD的周长相等,又矩形AEFD 的周长为2+5,所以所求轨迹的周长为2+ 5.17.(2016·成都调研)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________. 答案 25解析 以点A 为坐标原点,AB ,AD ,AQ 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设AB =1,则AF →=(1,12,0),E(12,0,0). 设M(0,y ,1)(0≤y ≤1),则EM →=(-12,y ,1), 由于异面直线所成角的范围为(0,π2],所以cos θ=|AF →·EM →||AF →||EM →|=|-12+12y|1+14·14+y 2+1=2(1-y )5·4y 2+5,所以cos 2θ=4(1-y )25(4y 2+5)=15·(1-8y +14y 2+5),令8y +1=t(1≤t ≤9), 所cos 2θ=15·(1-16t +81t -2),因为函数y =t +81t 在[1,9]上的单调递减,故t =1时,y max =1+811=82,所以cos 2θ的最大值为15×(1-1682-2)=15×(1-15)=425,所以cos θ的最大值为25.18.(2016·合肥调研)在正三棱锥P -ABC 中,M 是PC 的中点,且AM ⊥PB ,AB =22,则正三棱锥P -ABC 的外接球的表面积为________. 答案 12π解析 因为三棱锥P -ABC 为正三棱锥,取AC 的中点N ,连接PN ,BN ,易证AC ⊥平面PBN ,所以PB ⊥AC ,又AM ⊥PB ,AM ∩AC =A ,所以PB ⊥平面PAC ,所以PB ⊥PA ,PB ⊥PC ,易证PA ,PB ,PC 两两垂直,又AB =22,所以PA =PB =PC =2,设三棱锥P -ABC 外接球的半径为R ,则(2R)2=3×22=12,所以球的表面积S =4πR 2=12π.19.(2016·贵阳调研)如图,从棱长为6 cm 的正方体铁皮箱ABCD -A 1B 1C 1D 1中分离出来由三个正方形面板组成的几何图形.如果用图示中这样一个装置来盛水,那么最多能盛的水的体积为________cm 3.答案 36解析 最多能盛多少水,实际上是求三棱锥C 1-CD 1B 1的体积.又V 三棱锥C 1-CD 1B 1=V 三棱锥C -B 1C 1D 1=13×(12×6×6)×6=36(cm 3),所以用图示中这样一个装置来盛水,最多能盛36 cm 3体积的水.20.(2016·合肥调研)如图,正方形ABCD 中,沿BD 将△ABD翻折成△A ′BD ,形成四面体A ′-BCD ,并记二面角A ′-BD -C 的大小为α,则下列结论正确的是________.①不论α为何值,都有A ′C ⊥BD ;②仅当α=90°时,A ′B 与CD 所成角为90°;③仅当α=120°时,四面体A ′-BCD 的体积最大;④不论α为何值,四面体A ′-BCD 的外接球的体积都为定值.答案 ①④解析序号 正误原因① √取BD 中点O ,连接OA ′、OC ,则OA ′⊥BD 、OC ⊥BD ,∴。

2013年高考数学分类试题汇编:立体几何(理科(高考必看典藏版))

2013年高考数学分类试题汇编:立体几何(理科(高考必看典藏版))

12012年高考真题理科数学解析汇编:立体几何一、选择题 1 .(2012年高考(新课标理))已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为 ( )A.BCD2 .(2012年高考(新课标理))如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .18 3 .(2012年高考(浙江理))已知矩形ABCD ,AB =1,BC将∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直4 .(2012年高考(重庆理))设四面体的六条棱的长分别为a ,且长为a 的棱与长,则a 的取值范围是 ( )A .B .C .D .5 .(2012年高考(四川理))如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠= ,则A 、P 两点间的球面距离为 ( ) A .arccos4R B .4R πC .arccos3R D .3R π6 .(2012年高考(四川理))下列命题正确的是 ( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行 7 .(2012年高考(上海春))已知空间三条直线.l m n 、、若l 与m 异面,且l 与n 异面,则2( ) A .m 与n 异面. B .m 与n 相交. C .m 与n 平行. D .m 与n 异面、相交、平行均有可能. 8 .(2012年高考(陕西理))如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为 ( )A.BCD .359 .(2012年高考(江西理))如图,已知正四棱锥S-ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图像大致为10.(2012年高考(湖南理))某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是11.(2012年高考(湖北理))我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V ,求其直径d的一个近似公式d ≈. 人们还用过一些类似的近似公式. 根据π =3.14159 判断,下列近似公式中最精确的一个是( )A.d ≈ B.d C.d ≈D(一)必考题(11—14题) 12.(2012年高考(湖北理)何体的体积为 A 图1 B C D侧视图正视图 俯视图3A .8π3B .3πC .10π3D .6π13.(2012年高考(广东理))(立体几何)某几何体的三视图如图1所示,它的体积为 ( )A .12πB .45πC .57πD .81π14.(2012年高考(福建理))一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是 ( ) A .球 B .三棱柱 C .正方形 D .圆柱 15.(2012年高考(大纲理))已知正四棱柱1111ABCD A BC D -中,12,AB CC E ==为1CC 的中点,则直线1AC 与平面BED 的距离为 ( )A .2 BC.D .116.(2012年高考(北京理))某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+ B.30+C.56+D.60+17.(2012年高考(安徽理))设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分不必要条件 二、填空题 18.(2012年高考(天津理))―个几何体的三视图如图所示(单位:m ),则该几何体的体积为______3m .419.(2012年高考(浙江理))已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm 3.20.(2012年高考(四川理))如图,在正方体1111ABCD A BC D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________.21.(2012年高考(上海理))如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2。

2013年全国高考理科数学试题立体几何

2013年全国高考理科数学试题立体几何

2013年全国高考理科数学试题分类汇编7:立体几何一、选择题1错误!未指定书签。

.(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .35003cm π B .38663cm π C .313723cm π D .320483cm π2错误!未指定书签。

.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B.若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥3错误!未指定书签。

.(2013年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为 ( )A .1:2B .1:4C .1:8D .1:164错误!未指定书签。

.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B .33C .23D .13错误!未指定书签。

.5.(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+错误!未指定书签。

6.(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有 ( ) A .1243V V V V <<<B .1324V V V V <<<C .213V V V <<7错误!未指定书签。

2013年理科全国各省市高考真题——立体几何(带答案)

2013年理科全国各省市高考真题——立体几何(带答案)

2013年全国各省市理科数学—立体几何1、2013新课标I 理T8.某几何体的三视图如图所示,则该几何体的体积为 (A )8π16+ (B )8π8+ (C )π6116+ (D )16π8+2、2013新课标Ⅱ理T7.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )(A)(B)(C)(D)3、2013四川理T3.一个几何体的三视图如图所示,则该几何体的直观图可以是( )4、2013重庆理T5.某几何体的三视图如题()5图所示,则该几何体的体积为()A、5603B、5803C、200D、2405、2013广东理T5.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A . 4 B.14 3C.163D.66、2013湖南理T7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于A.1 B C D7、2013湖北理T8.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V,2V,3V,4V,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A.1243V V V V<<< B.1324V V V V<<<C.2134V V V V<<< D.2314V V V V<<<俯视图侧视图第5题图8、2013辽宁理T13.某几何体的三视图如图所示,则该几何体的体积是 .9、2013浙江理T12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于________2cm 。

10、2013福建理T12. 已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、俯视图、均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是11、2013陕西理T12. 某几何体的三视图如图所示, 则其体积为 .12、2013新课标Ⅱ理T4.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,l ⊄α, l ⊄β,则( )(A ) α∥β且l ∥α (B )α⊥β且l ⊥β (C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l13、2013广东理T6.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A . 若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥ 14、2013全国理T10.已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 与平面1BDC 所成角的正弦值等于(A )23 (B(C)3 (D )1315、2013新课标I 理T6.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6 cm ,如不计容器的厚度,则球的体积为(A )3cm 3500π (B )3cm 3866π (C )3cm 31372π (D )3cm 32048π16、2013辽宁理T10.已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为A B . C .132D .18、2013北京理T14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .19、2013江西理T8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为,m n ,那么m n +=A.8B.9C.10D.11 20、2013江苏T8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .参考答案:1—7、A A D C B C C 8、1616π- 9、24 10、12π 11、3π12、D 13、D 14、A 15、A 16、C 17、B 18、519、A 20、1:24。

2016立体几何高考题及答案【最新资料】

2016立体几何高考题及答案【最新资料】

2012年高考立体几何选作1、[2012·课标全国卷] 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36C.23D.222、[2012·辽宁卷] 已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上.若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.3、[2012·北京卷] 如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.4、[2012·湖北卷] 如图1所示,∠ACB =45°,BC =3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连结AB ,沿AD 将△ABD 折起,使∠BDC =90°(如图2).(1)当BD 的长为多少时,三棱锥A -BCD 的体积最大?(2)当三棱锥A -BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.5、[2012·全国卷] 如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =22,PA =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ; (2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小.A BCDA DBCME图1 图2 ACB DEACBE DM 图1 图26、[2012·辽宁卷] 如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.7、[2012·天津卷] 如图所示,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 与棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.8、[2012·福建卷] 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.AB CC/A /B /MN PABED P AB C9、[2012·湖南卷] 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面PAE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.A A 1B 1C 1D 1 D C EB BCEDPA2012立体几何高考题答案1、A2、333、解:(1)证明:因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC ,所以DE ⊥A 1D ,DE ⊥CD , 所以DE ⊥平面A 1DC , 所以DE ⊥A 1C . 又因为A 1C ⊥CD , 所以A 1C ⊥平面BCDE .(2)如右图,以C 为坐标原点,建立空间直角坐标系C -xyz , 则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0). 设平面A 1BE 的法向量为n =(x ,y ,z ),则 n ·A 1B →=0,n ·BE →=0. 又A 1B →=(3,0,-23),BE →=(-1,2,0), 所以⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z =3, 所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ,因为CM →=(0,1,3),所以sin θ=|cos(n ,CM →)|=⎪⎪⎪⎪⎪⎪n ·CM →|n ||CM |=48×4=22. 所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下: 假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ,y ,z ),则 m ·A 1D →=0,m ·DP →=0. 又A 1D →=(0,2,-23),DP →=(p ,-2,0),所以⎩⎨⎧2y -23z =0,px -2y =0.令x =2,则y =p ,z =p3.所以m =⎝⎛⎭⎫2,p ,p 3.平面A 1DP ⊥平面A 1BE ,当且仅当m·n =0, 即4+p +p =0.解得p=-2,与p∈[0,3]矛盾.所以线段BC上不存在点P,使平面A1DP与平面A1BE垂直.4、解:(1)方法1:在题图所示的△ABC中,设BD=x(0<x<3),则CD=3-x.由AD⊥BC,∠ACB=45°知,△ADC为等腰直角三角形,所以AD=CD=3-x.由折起前AD⊥BC知,折起后,AD⊥DC,AD⊥BD,且BD∩DC=D,所以AD⊥平面BCD.又∠BDC=90°,所以S△BCD =12BD·CD=12x(3-x).于是V A-BCD =13AD·S△BCD=13(3-x)·12x(3-x)=112·2x(3-x)(3-x)≤112⎣⎡2x+(3-x)+(3-x)33=23.当且仅当2x=3-x,即x=1时,等号成立,故当x=1,即BD=1时,三棱锥A-BCD的体积最大.方法2:同方法1,得V A-BCD=13AD·S△BCD=13(3-x)·12x(3-x)=16x3-6x2+9x).令f(x)=16(x3-6x2+9x),由f′(x)=12(x-1)(x-3)=0,且0<x<3,解得x=1.当x∈(0,1)时,f′(x)>0,当x∈(1,3)时,f′(x)<0,所以当x=1时,f(x)取得最大值.故当BD=1时,三棱锥A-BCD的体积最大.(2)方法1:以点D为原点,建立如图(a)所示的空间直角坐标系D-xyz.由(1)知,当三棱锥A-BCD的体积最大时,BD=1,AD=DC=2.于是可得D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E⎝⎛⎭⎫12,1,0,且BM→=(-1,1,1).设N(0,λ,0),则EN→=⎝⎛⎭⎫-12,λ-1,0.因为EN⊥BM等价于EN→·BM→=0,即⎝⎛⎭⎫-12,λ-1,0·(-1,1,1)=12+λ-1=0,故λ=12N⎝⎛⎭⎫0,12,0.所以当DN=12(即N是CD的靠近点D的一个四等分点)时,EN⊥BM.设平面BMN的一个法向量为n=(x,y,z),由⎩⎪⎨⎪⎧n⊥BN→,n⊥BM→,及BN→=⎝⎛⎭⎫-1,12,0,得⎩⎪⎨⎪⎧y=2x,z=-x.可取n=(1,2,-1).设EN与平面BMN所成角的大小为θ,则由EN→=⎝⎛⎭⎫-12,-12,0,n=(1,2,-1),可得sinθ=cos(90°-θ)=⎪⎪⎪⎪⎪⎪n·EN→|n|·|EN→|=⎪⎪⎪⎪-12-16×22=32,即θ=60°.故EN与平面BMN所成角的大小为60°.方法2:由(1)知,当三棱锥A-BCD的体积最大时,BD=1,AD=CD=2.如图(b),取CD的中点F,连结MF,BF,EF,则MF∥AD.由(1)知AD⊥平面BCD,所以MF⊥平面BCD.如图(c),延长FE至P点使得FP=DB,连BP,DP,则四边形DBPF为正方形,所以DP⊥BF.取DF的中点N,连结EN,又E为FP的中点,则EN∥DP,所以EN⊥BF,因为MF⊥平面BCD,又EN⊂平面BCD,所以MF⊥EN.又MF∩BF=F,所以EN⊥面BMF,又BM⊂面BMF,所以EN⊥BM.因为EN⊥BM当且仅当EN⊥BF,而点F是唯一的,所以点N是唯一的.即当DN=12(即N是CD的靠近点D的一个四等分点),EN⊥BM.连结MN,ME,由计算得NB=NM=EB=EM=5 2,所以△NMB与△EMB是两个共底边的全等的等腰三角形.如图(d)所示,取BM的中点G.连结EG,NG,则BM⊥平面EGN,在平面EGN中,过点E作EH⊥GN于H,则EH⊥平面BMN.故∠ENH是EN与平面BMN所成的角.在△EGN中,易得EG=GN=NE=22,所以△EGN是正三角形,故∠ENH=60°,即EN与平面BMN所成角的大小为60°.5、解:方法一:(1)因为底面ABCD为菱形,所以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.设AC∩BD=F,连结EF.因为AC=22,PA=2,PE=2EC,故PC=23,EC=233,FC=2,从而PCFC=6,ACEC= 6.因为PCFC=ACEC,∠FCE=∠PCA,所以△FCE∽△PCA,∠FEC=∠PAC=90°,由此知PC⊥EF.PC与平面BED内两条相交直线BD,EF都垂直,所以PC⊥平面BED.(2)在平面P AB内过点A作AG⊥PB,G为垂足.因为二面角A-PB-C为90°,所以平面PAB⊥平面PBC.又平面PAB∩平面PBC=PB,故AG⊥平面PBC,AG⊥BC.BC与平面PAB内两条相交直线P A,AG都垂直,故BC⊥平面P AB,于是BC⊥AB,所以底面ABCD为正方形,AD=2,PD=PA2+AD2=2 2.设D到平面PBC的距离为d.因为AD∥BC,且AD⊄平面PBC,BC⊂平面PBC,故AD∥平面PBC,A、D两点到平面PBC的距离相等,即d=AG= 2.设PD与平面PBC所成的角为α,则sinα=dPD=12.所以PD与平面PBC所成的角为30°.方法二:(1)以A为坐标原点,射线AC为x轴的正半轴,建立如图所示的空间直角坐标系A-xyz.设C (22,0,0),D (2,b,0),其中b >0,则P (0,0,2),E ⎝⎛⎭⎫423,0,23,B (2,-b,0). 于是PC →=(22,0,-2), BE →=⎝⎛⎭⎫23,b ,23,DE →=⎝⎛⎭⎫23,-b ,23,从而PC →·BE →=0,PC →·DE →=0, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE . (2)AP →=(0,0,2),AB →=(2,-b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP →=0,m ·AB →=0, 即2z =0,且2x -by =0,令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则 n ·PC →=0,n ·BE →=0,即22p -2r =0且2p 3+bq +23r =0,令p =1,则r =2,q =-2b ,n =⎝⎛⎭⎫1,-2b,2.因为面PAB ⊥面PBC ,故m·n =0,即b -2b=0,故b =2,于是n =(1,-1,2),DP →=(-2,-2,2),cos 〈n ,DP →〉=n ·DP →|n ||DP →|=12,〈n ,DP →〉=60°.因为PD 与平面PBC 所成角和〈n ,DP →〉互余,故PD 与平面PBC 所成的角为30°. 6、解:(1)(证法一)连结AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱. 所以M 为AB ′中点.又因为N 为B ′C ′的中点. 所以MN ∥AC ′.又MN ⊄平面A ′ACC ′, AC ′⊂平面A ′ACC ′, 因此MN ∥平面A ′ACC ′. (证法二)取A ′B ′中点P ,连结MP ,NP ,M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′,又MP ∩NP =P , 因此平面MPN ∥平面A ′ACC ′,而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立直角坐标系O -xyz ,如图1-5所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1),B ′(λ,0,1),C ′(0,λ,1).所以M ⎝⎛⎭⎫λ2,0,12,N ⎝⎛⎭⎫λ2,λ2,1. 设m =(x 1,y 1,z 1)是平面A ′MN 的法向量,由⎩⎪⎨⎪⎧m ·A ′M →=0,m ·MN →=0得⎩⎨⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量,由⎩⎪⎨⎪⎧n ·NC →=0,n ·MN →=0得⎩⎨⎧-λ22+λ2y 2-z 2=0,λ2y 2+12z 2=0.可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m ·n =0.即-3+(-1)×(-1)+λ2=0,解得λ= 2. 7、解:方法一:如图所示,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝⎛⎭⎫-12,12,0,P (0,0,2).(1)易得PC →=(0,1,-2),AD →=(2,0,0),于是PC →·AD →=0,所以PC ⊥AD . (2)PC →=(0,1,-2),CD →=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1, 可得n =(1,2,1).可取平面PAC 的法向量m =(1,0,0).于是cos 〈m ,n 〉=m·n |m|·|n |=16=66,从而sin 〈m ,n 〉=306.所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE →=⎝⎛⎭⎫12,-12,h ,由CD →=(2,-1,0),故cos 〈BE →,CD →〉=BE →·CD →|BE →||CD →|=3212+h 2×5=310+20 h2,所以,310+20 h 2=cos30°=32,解得h =1010, 即AE =1010.方法二:(1)由P A ⊥平面ABCD ,可得P A ⊥AD . 又由AD ⊥AC ,P A ∩AC =A ,故AD ⊥平面PAC , 又PC ⊂平面P AC ,所以PC ⊥AD .(2)如图所示,作AH ⊥PC 于点H ,连接DH .由PC ⊥AD ,PC ⊥AH ,可得PC ⊥平面ADH ,因此DH ⊥PC ,从而∠AHD 为二面角A -PC -D 的平面角.在Rt △PAC 中,P A =2,AC =1,由此得AH =25.由(1)知AD ⊥AH .故在Rt △DAH 中,DH =AD 2+AH 2=2305.因此sin ∠AHD =AD DH =306.所以二面角A -PC -D 的正弦值为306.(3)如图所示,因为∠ADC <45°,故过点B 作CD 的平行线必与线段AD 相交,设交点为F ,连接BE ,EF .故∠EBF 或其补角为异面直线BE 与CD 所成的角.由BF ∥CD ,故∠AFB =∠ADC .在Rt △DAC 中,CD =5,sin ∠ADC =15,故sin ∠AFB =15.在△AFB 中,由BF sin ∠FAB =AB sin ∠AFB ,AB =12,sin ∠FAB =sin135°=22,可得BF =52. 由余弦定理,BF 2=AB 2+AF 2-2AB ·AF ·cos ∠FAB ,可得AF =12.设AE =h .在Rt △EAF 中,EF =AE 2+AF 2=h 2+14.在Rt △BAE 中,BE =AE 2+AB 2=h 2+12.在△EBF 中,因为EF <BE ,从而∠EBF =30°,由余弦定理得cos30°=BE 2+BF 2-EF22BE ·BF,可解得h =1010.所以AE =10108、解:(1)以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1),故AD 1=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0.∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE .此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax 2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.(3)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴AD 1→是平面A 1B 1E 的一个法向量,此时AD 1→=(0,1,1). 设AD 1→与n 所成的角为θ,则cos θ=n ·AD 1→|n ||AD 1→|=-a2-a 21+a 24+a 2. ∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos30°,即3a 221+5a24=32, 解得a =2,即AB 的长为2.9、解:解法1:(1)如下图(1),连结AC .由AB =4,BC =3,∠ABC =90°得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD .而PA ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .(2)过点B 作BG ∥CD ,分别与AE 、AD 相交于点F ,G ,连结PF .由(1)CD ⊥平面PAE 知,BG ⊥平面PAE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由PA ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.由题意∠PBA =∠BPF ,因为sin ∠PBA =PA PB ,sin ∠BPF =BFPBPA =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD , 所以四边形BCDG 是平行四边形.故GD =BC =3.11于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855. 于是PA =BF =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13S ×PA =13×16×855=128515.解法2:如上图(2),以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设PA =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).(1)易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面PAE内的两条相交直线,所以CD ⊥平面PAE .(2)由题设和(1)知,CD →,PA →分别是平面PAE ,平面ABCD 的法向量.而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,所以|cos 〈CD →,PB →〉|=|cos 〈PA →,PB →〉|,即⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪PA →·PB →|PA →|·|PB →|. 由(1)知,CD →=(-4,2,0),PA →=(0,0,-h ),又PB →=(4,0,-h ), 故⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2. 解得h =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×PA =13×16×855=128515.以下是附加文档,不需要的朋友下载后删除,谢谢顶岗实习总结专题13篇第一篇:顶岗实习总结为了进一步巩固理论知识,将理论与实践有机地结合起来,按照学校的计划要求,本人进行了为期个月的顶岗实习。

2013年全国高考理科数学试题分类汇编7立体几何 Word版含答案

2013年全国高考理科数学试题分类汇编7立体几何 Word版含答案

2013年全国高考理科数学试题分类汇编7:立体几何一、选择题1 .(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( )A .B .C .D .【答案】A2 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若αβ⊥,m α⊂,n β⊂,则m n ⊥B .若//αβ,m α⊂,n β⊂,则//m nC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【答案】D3 .(2013年上海市春季高考数学试卷(含答案))若两个球的表面积之比为1:4,则这两个球的体积之比为 ( )A .1:2B .1:4C .1:8D .1:16【答案】C4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱1111ABCD A B C D -中12AA AB =,则CD 及平面1BDC 所成角的正弦值等于( )A .23B .3C .3D .13【答案】A5 .(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+【答案】A6 .(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有 ( )A .1243V V V V <<<B .1324V V V V <<<C .213V V V <<<【答案】C7 .(2013年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B 2C .D .【答案】C8 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163D .6【答案】B 9 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知nm ,为异面直线,⊥m 平面α,⊥n 平面β.直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则 ( )A .βα//,且α//lB .βα⊥,且β⊥lC .α及β相交,且交线垂直于lD .α及β相交,且交线平行于l【答案】D10.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知三棱柱111ABC A B C -的侧棱及底面垂直,体积为94,的正三角形.若P 为底面111A B C 的中心,则PA 及平面ABC 所成角的大小为( )A .512πB .3πC .4πD .6π【答案】B11.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))某几何体的三视图如题()5图所示,则该几何体的体积为 ( )A .5603B .5803C .200D .240正视图俯视图侧视图第5题图【答案】C12.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知三棱柱111ABC A B C -的6个顶点都在球O的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A .B .210C .132D .310【答案】C13.(2013年高考江西卷(理))如图,正方体的底面及正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面及直线CE,EF 相交的平面个数分别记为,m n ,那么m n +=( )A .8B .9C .10D .11【答案】A14.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A .B .C .D .【答案】A15.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在下列命题中,不是公理..的是 ( )A .平行于同一个平面的两个平面相互平行B .过不在同一条直线上的三点,有且只有一个平面C .如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D .如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线 【答案】A 16.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在空间中,过点A作平面π的垂线,垂足为B ,记)(A f B π=.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则( )A .平面α及平面β垂直B .平面α及平面β所成的(锐)二面角为045C .平面α及平面β平行D .平面α及平面β所成的(锐)二面角为060【答案】A 17.(2013年高考四川卷(理))一个几何体的三视图如图所示,则该几何体的直观图可以是【答案】D 二、填空题18.(2013年高考上海卷(理))在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y = 和1y =-围成的封闭图形记为D,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为2418y ππ-+,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________【答案】2216ππ+.19.(2013年高考陕西卷(理))某几何体的三视图如图所示, 则其体积为___3π_____. 1121【答案】3π 20.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知圆O和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,,且圆O 及圆K 所在的平面所成的一个二面角为60,则球O 的表面积等于______.【答案】16π21.(2013年高考北京卷(理))如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为__________.【答案】251D1BPD1C CEBA1A22.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ____________.【答案】1:2423.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .【答案】2424.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S.则下列命题正确的是__①②③⑤___(写出所有正确命题的编号).①当时,S 为四边形;②当时,S 为等腰梯形;③当时,S 及11C D 的交点R 满足;④当时,S 为43 233正视图侧视图俯视图(第12题图)ABC1A DEF 1B 1C六边形;⑤当1CQ =时,S的面积为6. 【答案】①②③⑤25.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))某几何体的三视图如图所示,则该几何体的体积是____________.【答案】1616π- 26.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π27.(2013年上海市春季高考数学试卷(含答案))在如图所示的正方体1111ABCD A B C D -中,异面直线1A B 及1B C 所成角的大小为_______【答案】3π三、解答题28.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,AB 是圆的直径,PA垂直圆所在的平面,C 是圆上的点. (I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值D 1 C 1 B 1A 1D C AB【答案】29.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥P ABCD-中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.【答案】1.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))如图,圆锥顶点为p.底面圆心为o ,其母线及底面所成的角为22.5°.AB 和CD 是底面圆O 上的两条平行的弦,轴OP 及平面PCD 所成的角为60°.(Ⅰ)证明:平面PAB 及平面PCD 的交线平行于底面; (Ⅱ)求cos COD ∠.【答案】解: (Ⅰ)PAB P D ,////C m AB CD CD PCD AB PCD ⋂=⊂⇒设面面直线且面面//AB m ⇒直线 ABCD m ABCD AB 面直线面//⇒⊂ .所以,ABCD D P PAB 的公共交线平行底面与面面C . (Ⅱ) r PO OPF F CD r =︒︒=∠5.22tan .60,由题知,则的中点为线段设底面半径为. ︒-︒=︒∠==︒⋅︒⇒=︒5.22tan 15.22tan 245tan ,2cos 5.22tan 60tan 60tan ,2COD r OF PO OF .)223(3)],1-2(3[21cos ,1-25.22tan 12cos 2cos 22-==+∠=︒⇒-∠=∠COD COD COD 212-17cos .212-17cos =∠=∠COD COD 所以.法二:1.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以ABC DPQM(第20题图)//PQ 面BDC;方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以,所以////PO QH PQ OH ∴,且OHBCD⊂,所以//PQ 面BDC ;(Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以CHG ∠就是C BM D --的二面角;由已知得到813BM =+=,设BDC α∠=,所以cos ,sin 22cos ,22cos sin ,22sin ,CD CG CB CD CG BC BD CD BDαααααα===⇒===,在RT BCG ∆中,2sin 22sin BG BCG BG BCααα∠=∴=∴=,所以在RT BHG ∆中, 22122sin 322sin HG αα=∴=,所以在RT CHG ∆中 222tan tan 60322sin 3CG CHG HG α∠====tan (0,90)6060BDC ααα∴=∈∴=∴∠=;2.(2013年上海市春季高考数学试卷(含答案))如图,在正三棱锥111ABC A B C -中,16AA =,异面直线1BC 及1AA 所成角的大小为6π,求该三棱柱的体积.【答案】[解]因为1CC 1AA .所以1BC C ∠为异面直线1BC 及1AA .所成的角,即1BC C ∠=6π. 在Rt 1BC C ∆中,11tan 6BC CC BC C =⋅∠==, 从而,因此该三棱柱的体积为16ABC V S AA ∆=⋅== 3.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分14分.如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.【答案】证明:(1)∵AB AS =,SB AF ⊥∴F 分别是SB 的中点∵E.F 分别是SA.SB 的中点 ∴EF∥AB又∵EF ⊄平面ABC, AB ⊆平面ABC ∴EF∥平面ABC同理:FG∥平面ABC又∵EF FG=F, EF.FG ⊆平面ABC∴平面//EFG 平面ABC(2)∵平面⊥SAB 平面SBC平面SAB 平面SBC =BCAF ⊆平面SABABC SGF EB 1 A 1C 1 AC BAF⊥SB∴AF⊥平面SBC 又∵BC ⊆平面SBC ∴AF⊥BC又∵BC AB ⊥, AB AF=A, AB.AF ⊆平面SAB ∴BC⊥平面SAB 又∵SA ⊆平面SAB∴BC⊥SA4.(2013年高考上海卷(理))如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C,并求直线BC 1到平面D 1AC 的距离. D 1C 1B 1A 1D C BA【答案】因为ABCD-A 1B 1C 1D 1为长方体,故1111//,AB C D AB C D =,故ABC 1D 1为平行四边形,故11//BC AD ,显然B 不在平面D 1AC 上,于是直线BC 1平行于平面DA 1C;直线BC 1到平面D 1AC 的距离即为点B 到平面D 1AC 的距离设为h考虑三棱锥ABCD 1的体积,以ABC 为底面,可得111(12)1323V =⨯⨯⨯⨯= 而1AD C ∆中,115,2AC DC AD ===,故 所以,13123233V h h =⨯⨯=⇒=,即直线BC 1到平面D 1AC 的距离为23. 5.(2013年高考湖北卷(理))如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(I)记平面BEF 及平面ABC 的交线为l ,试判断直线l 及平面PAC 的位置关系,并加以证明;(II)设(I)中的直线l 及圆O 的另一个交点为D ,且点Q 满足12DQ CP =.记直线PQ 及平面ABC 所成的角为θ,异面直线PQ 及EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.第19题图【答案】解:(I)EF AC ,AC ABC ⊆平面,EF ABC ⊆平面EF ABC ∴平面又EF BEF ⊆平面EF l ∴l PAC ∴平面(II)连接DF,用几何方法很快就可以得到求证.(这一题用几何方法较快,向量的方法很麻烦,特别是用向量不能方便的表示角的正弦.个人认为此题及新课程中对立体几何的处理方向有很大的偏差.)6.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,2CD BE ==O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中3A O '=.(Ⅰ) 证明:A O '⊥平面BCDE ; (Ⅱ) 求二面角A CD B'--的平面角的余弦值.【答案】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD ==由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥, 理可证A O OE '⊥, 又ODOE O =,所以A O '⊥平面BCDE .(Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.结合图1可知,H 为AC 中点,故,从而AH '==所以cos OH A HO A H '∠==',所以二面角A CD '--.向量法:以O 点为原点,建立空间直角坐标系O xyz -则(A ',()0,3,0C -,()1,2,0D -所以(CA '=,(1,DA '=-C D OBE'AH.CO BDEA CDOBE'A图1图2设(),,n x y z =为平面A CD '的法向量,则 ,即,解得,令1x =,得()1,1,3n =-由(Ⅰ) 知,()0,0,3OA '=为平面CDB 的一个法向量, 所以15cos ,535n OA n OA n OA '⋅'===⋅',即二面角A CD B '--的平面角的余弦值为15. 7.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 及平面ADD 1A 1所成角的正弦值为2, 求线段AM 的长.【答案】8.(2013年高考新课标1(理))如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C 及平面BB1C1C所成角的正弦值.【答案】(Ⅰ)取AB 中点E,连结CE,1A B ,1A E ,∵AB=1AA ,1BAA ∠=060,∴1BAA ∆是正三角形,∴1A E ⊥AB, ∵CA=CB, ∴CE⊥AB, ∵1CE A E ⋂=E,∴AB⊥面1CEA ,∴AB⊥1AC ;(Ⅱ)由(Ⅰ)知EC⊥AB,1EA ⊥AB,又∵面ABC⊥面11ABB A ,面ABC∩面11ABB A =AB,∴EC⊥面11ABB A ,∴EC⊥1EA , ∴EA,EC,1EA 两两相互垂直,以E 为坐标原点,EA 的方向为x 轴正方向,|EA |为单位长度,建立如图所示空间直角坐标系O xyz -, 有题设知A(1,0,0),1A (0,3,0),C(0,0,3),B(-1,0,0),则BC 3),1BB =1AA 3),1AC 33设n =(,,)x y z 是平面11CBB C 的法向量, 则,即,可取n 3∴1cos ,AC n 10∴直线A 1C 及平面BB 1C 1C 109.(2013年高考陕西卷(理))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA ==(Ⅰ) 证明: A 1C ⊥平面BB 1D 1D ;(Ⅱ) 求平面OCB 1及平面BB 1D 1D 的夹角θ的大小.1A【答案】解:(Ⅰ) BD O A ABCD BD ABCD O A ⊥∴⊂⊥11,,面且面 ;又因为,在正方形ABCD 中,BDC A AC A C A AC A BD A AC O A BD AC ⊥⊂⊥=⋂⊥11111,,故面且面所以;且.在正方形AB CD 中,AO = 1 . .111=∆O A OA A RT 中,在O E C A OCE A E D B 1111111⊥为正方形,所以,则四边形的中点为设. ,所以由以上三点得且,面面又O O BD D D BB O D D BB BD =⋂⊂⊂111111E .E ,D D BB C A 111面⊥.(证毕)(Ⅱ) 建立直角坐标系统,使用向量解题.以O 为原点,以OC 为X 轴正方向,以OB 为Y 轴正方向.则)1,0,1()1,1,1(),100(),001(,0,1,0111-=⇒C A B A C B ,,,,)(.由(Ⅰ)知, 平面BB 1D 1D 的一个法向量.0,0,1),1,1,1(),1,0,1(111)(==-==OC OB C A n 设平面OCB 1的法向量为,则0,0,2122=⋅=⋅OC n OB n n ).1-,1,0(法向量2=n 为解得其中一个21221|||||,cos |cos 212111=⋅=⋅=><=n n n n θ. 所以,平面OCB 1及平面BB 1D 1D 的夹角θ为3π1A10.(2013年高考江西卷(理))如图,四棱锥P ABCD-中,PA ,ABCD E BD ⊥平面为的中点,G PD 为的中点,3,12DAB DCB EA EB AB PA ∆≅∆====,,连接CE 并延长交AD 于F . (1) 求证:AD CFG ⊥平面;(2) 求平面BCP 及平面DCP 的夹角的余弦值.【答案】解:(1)在ABD ∆中,因为E 是BD 的中点,所以1EA EB ED AB ====,故,23BAD ABE AEB ππ∠=∠=∠=,因为DAB DCB ∆≅∆,所以EAB ECB ∆≅∆,从而有FED FEA ∠=∠,故,EF AD AF FD ⊥=,又因为,PG GD =所以FG ∥PA . 又PA ⊥平面ABCD ,所以,GF AD ⊥故AD ⊥平面CFG . (3) 以点A 为坐标原点建立如图所示的坐标系,则33(0,0,0),(1,0,0),(,3,0)22A B C D ,(4),故1333333(0),(,),(,2222222BC CP CD ==--=-,,, 设平面BCP 的法向量111(1,,)n y z =,则 , 解得,即.设平面DCP 的法向量222(1,,)n y z =,则22233022333022y y z ⎧-+=⎪⎪⎨⎪--+=⎪⎩,解得,即2(1,3,2)n =.从而平面BCP 及平面DCP 的夹角的余弦值为1212423cos 1689n n n n θ⋅===⋅. 11.(2013年高考四川卷(理))如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(Ⅰ)在平面ABC 内,试作出过点P 及平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值.D1D CB A B 1C 1A P【答案】解:()I 如图,在平面ABC 内,过点P 做直线l //BC ,因为l 在平面1A BC 外,BC 在平面1A BC 内,由直线及平面平行的判定定理可知, l //平面1A BC .由已知,AB AC =,D 是BC 的中点,所以,BC AD ⊥,则直线l AD ⊥.因为1AA ⊥平面ABC ,所以1AA ⊥直线l .又因为1,AD AA 在平面11ADD A 内,且AD 及1AA 相交,所以直线平面11ADD A()II 解法一:连接1A P ,过A 作1AE A P ⊥于E ,过E 作1EF A M ⊥于F ,连接AF . 由()I 知,MN ⊥平面1AEA ,所以平面1AEA ⊥平面1A MN . 所以AE ⊥平面1A MN ,则1A M AE ⊥. 所以1A M ⊥平面AEF ,则1A M ⊥AF .故AFE ∠为二面角1A A M N --的平面角(设为θ). 设11AA =,则由12AB AC AA ==,120BAC ∠=,有60BAD ∠=,2,1AB AD ==.又P 为AD 的中点,所以M 为AB 的中点,且, 在1Rt AA P 中, ;在1Rt A AM 中, 12AM =从而,,, 所以.所以22215cos1sin155θθ⎛⎫=-=-=⎪⎪⎝⎭.故二面角1A A M N--的余弦值为155解法二:设11AA=.如图,过1A作1A E平行于11B C,以1A为坐标原点,分别以111,AE AD,1AA的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系Oxyz(点O及点1A重合).则()10,0,0A,()0,0,1A.因为P为AD的中点,所以,M N分别为,AB AC的中点,故3131,1,,122M N⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭,所以,()10,0,1A A=,()3,0,0NM=.设平面1AA M的一个法向量为()1111,,n x y z=,则即故有()()()11111131,,,10,22,,0,0,10,x y zx y z⎧⎛⎫•=⎪ ⎪⎪⎨⎝⎭⎪•=⎩从而取11x=,则13y=-所以()11,3,0n=-.设平面1A MN的一个法向量为()2222,,n x y z=,则即故有()()()22222231,,,,10,22,,3,0,00,x y z x y z ⎧⎛⎫•=⎪ ⎪ ⎪⎪⎝⎭⎨⎪•=⎪⎩ 从而取22y =,则21z =-,所以()20,2,1n =-.设二面角1A A M N --的平面角为θ,又θ为锐角,则()()12121,3,00,2,115cos 25n n n n θ-•-•===••. 故二面角1A A M N --的余弦值为15 12.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.如图,在直三棱柱111A B C ABC -中,AC AB ⊥,2==AC AB ,41=AA ,点D 是BC 的中点(1)求异面直线B A 1及D C 1所成角的余弦值(2)求平面1ADC 及1ABA 所成二面角的正弦值.【答案】本题主要考察异面直线.二面角.空间向量等基础知识以及基本运算,考察运用空间向量解决问题的能力.解:(1)以{}1,,AA 为为单位正交基底建立空间直角坐标系xyz A -,则)0,0,0(A )0,0,2(B ,)0,2,0(C ,)4,0,0(1A ,)0,1,1(D ,)4,2,0(1C ∴)4,0,2(1-=A ,)4,1,1(1--=A ∴10103182018,cos 111111==>=<D C B A C A ∴异面直线B A 1及D C 1所成角的余弦值为 (2))0,2,0(= 是平面1ABA 的的一个法向量设平面1ADC 的法向量为),,(z y x m =,∵)0,1,1(=AD ,)4,2,0(1=AC 由1,AC m AD m ⊥⊥∴ 取1=z ,得2,2=-=x y ,∴平面1ADC 的法向量为)1,2,2(-=设平面1ADC 及1ABA 所成二面角为θ ∴32324,cos cos =⨯-=•=><=m AC mAC m AC θ, 得 ∴平面1ADC 及1ABA 所成二面角的正弦值为35 13.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))如图,四棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==∆,及PAD ∆都是等边三角形.(I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小.【答案】14.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))如图所示,在三棱锥P ABQ-中,PB⊥平面ABQ,BA BP BQ==,,,,D CE F分别是,,,AQ BQ AP BP的中点, 2AQ BD=,PD及EQ交于点G,PC及FQ交于点H,连接GH.(Ⅰ)求证:AB GH; (Ⅱ)求二面角D GH E--的余弦值.【答案】解:(Ⅰ)证明:因为,,,D CE F分别是,,,AQ BQ AP BP的中点,所以EF∥AB,DC∥AB,所以EF∥DC, 又EF⊂平面PCD,DC⊂平面PCD,所以EF ∥平面PCD ,又EF ⊂平面EFQ ,平面EFQ平面PCD GH =, 所以EF ∥GH ,又EF ∥AB ,所以AB ∥GH .(Ⅱ)解法一:在△ABQ 中, 2AQ BD =,AD DQ =,所以=90ABQ ∠,即AB BQ ⊥,因为PB ⊥平面ABQ ,所以AB PB ⊥,又BP BQ B =,所以AB ⊥平面PBQ ,由(Ⅰ)知AB ∥GH ,所以GH ⊥平面PBQ ,又FH ⊂平面PBQ ,所以GH FH ⊥,同理可得GH HC ⊥, 所以FHC ∠为二面角D GH E --的平面角,设2BA BQ BP ===,连接PC ,在t R △FBC 中,由勾股定理得,FC =在t R △PBC 中,由勾股定理得,PC =,又H 为△PBQ 的重心,所以同理 , 在△FHC 中,由余弦定理得552499cos 5529FHC +-∠==-⨯,即二面角D GH E --的余弦值为45-. 解法二:在△ABQ 中,2AQ BD =,AD DQ =,所以90ABQ ∠=,又PB ⊥平面ABQ ,所以,,BA BQ BP 两两垂直,以B 为坐标原点,分别以,,BA BQ BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,设2BA BQ BP ===,则(1,0,1)E ,(0,0,1)F ,(0,2,0)Q ,(1,1,0)D ,(0,1,0)C (0,0,2)P ,,所以(1,2,1)EQ =--,(0,2,1)FQ =-,(1,1,2)DP =--,(0,1,2)CP =-,设平面EFQ 的一个法向量为111(,,)m x y z =,由0m EQ ⋅=,0m FQ ⋅=,得取11y =,得(0,1,2)m =.设平面PDC 的一个法向量为222(,,)n x y z = 由0n DP ⋅=,0n CP ⋅=,得取21z =,得(0,2,1)n =.所以因为二面角D GH E --为钝角,所以二面角D GH E --的余弦值为45-. 15.(2013年高考湖南卷(理))如图5,在直棱柱1111//ABCD A B C D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=,13AD AA ==.(I)证明:1AC B D ⊥; (II)求直线111B C ACD 与平面所成角的正弦值.【答案】解: (Ⅰ) AC BB ABCD BD ABCD BB D C B A ABCD ⊥⇒⊂⊥∴-111111,面且面是直棱柱 D B AC BDB D B BDB AC B BB BD BD AC 11111,,⊥∴⊂⊥∴=⋂⊥,面。

2013年理科全国各省市高考真题——立体几何(解答题带答案)

2013年理科全国各省市高考真题——立体几何(解答题带答案)

2013年全国各省市理科数学—立体几何1、2013大纲理T19.(本小题满分12分)如图,四棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==∆ ,与PAD ∆都是等边三角形。

(I )证明:;PB CD ⊥ (II )求二面角A PD C --的大小。

2、2013新课标I 理T18.(本小题满分12分)如图,三棱柱111C B A ABC -中,CB CA =,1AA AB =,1BAA ∠=60°. (Ⅰ)证明AB ⊥C A 1;(Ⅱ)若平面ABC ⊥平面B B AA 11,CB AB =,求直线C A 1 与平面C C BB 11所成角的正弦值。

3、2013新课标Ⅱ理T18.如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点。

12AA AC CB ===22AB(Ⅰ)证明:1//BC 平面11ACD ; (Ⅱ)求二面角E C A D --1的正弦值。

4、2013辽宁理T18.(本小题满分12分)如图,.AB PA C 是圆的直径,垂直圆所在的平面,是圆上的点 (I )求证:PAC PBC ⊥平面平面;(II )2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值5、2013山东理T18.(本小题满分12分)如图所示,在三棱锥P-ABQ 中,PB ⊥平面ABQ ,BA=BP=BQ ,D ,C ,E ,F 分别是AQ ,BQ , AP ,BP 的中点,AQ=2BD ,PD与EQ 交于点G ,PC 与FQ 交于点H ,连接GH 。

(Ⅰ)求证:AB//GH ;(Ⅱ)求二面角D-GH-E 的余弦值 .1A6、2013北京理T17. (本小题共14分)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5.(Ⅰ)求证:AA 1⊥平面ABC ; (Ⅱ)求二面角A 1-BC 1-B 1的余弦值;(Ⅲ)证明:在线段BC 1存在点D ,使得AD ⊥A 1B ,并求1BDBC 的值.7、2013重庆理T19.如题(19)图,四棱锥P ABCD -中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥。

2016年全国各地高考数学试题及解答分类大全(立体几何 )

2016年全国各地高考数学试题及解答分类大全(立体几何 )

2016 年全国各地高考数学试题及解答分类大全(立体几何 )一、选择题1.(2016北京理)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16 B.13 C.12D.1 【答案】A【解析】试题分析:分析三视图可知,该几何体为一三棱 锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A. 考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅰ文、理)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A【解析】试题分析:该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以 三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.3.(2016全国Ⅰ文、理)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1, ABCD m α=平面,11ABB A n α=平面,则m 、n 所成角的正弦值为 ( )(A)3 (B )2 (C)3 (D)13【答案】A【解析】试题分析:如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角. 延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm , 同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成 的角即为1,A B BD 所成的角,即为60︒,故,m n 所成角的 正弦值为32,选A. 考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.4.(2016全国Ⅱ文)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )(A )12π (B )323π(C )8π (D )4π 【答案】A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球面的表面积为24(3)12ππ⋅=,故选A. 考点: 正方体的性质,球的表面积.【名师点睛】棱长为a 的正方体中有三个球: 外接球、内切球和与各条棱都相切的球.其半径分别为3a 、2a 和22a .5.(2016全国Ⅱ文、理)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A)20π(B)24π(C)28π(D)32π【答案】C考点:三视图,空间几何体的体积.【名师点睛】以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.【名师点睛】由三视图还原几何体的方法:6.(2016全国Ⅲ文、理)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)18365+(B )54185+(C)90 (D)81【答案】B考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.7. (2016全国Ⅲ文、理) 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π 【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.8.(2016山东文、理)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )123+π (C )123+π (D )21+π 【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.9.(2016上海文)如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是( )(A)直线AA 1 (B)直线A 1B 1 (C)直线A 1D 1 (D)直线B 1C 1【答案】D【解析】只有11B C 与EF 在同一平面内,是相交的,其他A ,B ,C 中直线与EF 都是异面直线,故选D . 考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.10.(2016天津文)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B【解析】试题分析:由题意得截去的是长方体前右上方顶点,故选B 考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.11.(2016浙江文、理) 已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 【答案】C【解析】试题分析:由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.二、填空1. (2016北京文)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.2考点:三视图【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅱ理),αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④考点: 空间中的线面关系.【名师点睛】求解本题应注意在空间中考虑线、面关系.3、(2016上海理)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________. 【答案】22【解析】试题分析:由题意得111122tan 223332DD DBD DD BD ∠==⇒=⇒=.考点:1.正四棱柱的几何特征;2.直线与平面所成的角.【名师点睛】涉及立体几何中的角的问题,往往要将空间问题转化成平面问题,做出角,构建三角形,在三角形中解决问题;也可以通过建立空间直角坐标系,利用空间向量方法求解,应根据具体情况选择不同方法,本题难度不大,能较好地考查考生的空间想象能力、基本计算能力等.4. (2016四川文)已知某三菱锥的三视图如图所示,则该三菱锥的体积.侧视图俯视图【答案】3【解析】试题分析:由三视图可知该几何体是一个三棱锥,且底面积为112S =⨯=1,所以该几何体的体积为11133V Sh ===考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.5.(2016四川理)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【答案】3【解析】试题分析:由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,则底面等腰三角形的顶角为120︒,所以三棱锥的体积为1122sin1201323V =⨯⨯⨯⨯︒⨯=.考点:三视图,几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.6.(2016浙江文、理)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40. 【解析】试题分析:由三视图知该组合体是一个长方体上面放置了 一个小正方体, 22262244242280S =⨯+⨯+⨯⨯-⨯=表,3244240V =+⨯⨯=.考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积. 7.(2016浙江文)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______. 【答案】69【解析】试题分析:设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得6AC =,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,由6(0,,0)A ,30(,0,0)B ,6(0,,0)C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直, 2666CD CH CA ===,则63OH =,153066DH ⨯==,因此可设30630'(cos ,,sin )636D αα-, 则3030630'(cos ,,sin )BD αα=--, 与CA 平行的单位向量为(0,1,0)n =,所以cos cos ',BD n θ=<>''BD n BD n⋅==6395cos α-,HD'DCBA zyO所以cos 1α=时,cos θ取最大值69. 考点:异面直线所成角.【思路点睛】先建立空间直角坐标系,再计算与C A 平行的单位向量n 和D 'B ,进而可得直线C A 与D 'B 所成角的余弦值,最后利用三角函数的性质可得直线C A 与D 'B 所成角的余弦值的最大值.8.(2016天津理)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3. 【答案】2【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形 的底为2,高为1,因此体积为1(21)323V =⨯⨯⨯=.故答案为2. 考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.三、解答题1.(2016北京文)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(III )存在.理由见解析.(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下: 取PB 中点F ,连结F E ,C E ,CF . 又因为E 为AB 的中点, 所以F//E PA . 又因为PA ⊄平面C F E , 所以//PA 平面C F E .考点:空间垂直判定与性质;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.2. (2016北京理)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由. 【答案】(1)见解析;(2)33;(3)存在,14AM AP =(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得AP AM λ=.因此点),,1(),,1,0(λλλλ--=-BM M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅n BM , 即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM . 考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.3.(2016江苏)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB , BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析考点:直线与直线、平面与平面位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.4. (2016江苏)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1PO 的四倍. (1)若16,PO 2,AB m m ==则仓库的容积是多少?(2)若正四棱柱的侧棱长为6m,则当1PO 为多少时,仓库的容积最大?【答案】(1)312(2)123PO =考点:函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点方面进行强化,注重培养将文字语言转化为数学语言能力,强化构建数学模型的几种方法.而江苏应用题,往往需结合导数知识解决相应数学最值问题,因此掌握利用导数求最值方法是一项基本要求,需熟练掌握.5.(2016全国Ⅰ文)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面P AC 内的 正投影F (说明作法及理由),并求四面体PDEF 的体积. 【答案】(I )见解析(II )作图见解析,体积为43试题解析:(I )因为P 在平面ABC 内的正投影为D , 所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点.(II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC 由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,2 2.==DE PE 在等腰直角三角形EFP 中,可得 2.==EF PF 所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V 考点:线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.PABD CGE6.(2016全国Ⅰ理)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II )219-试题解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D 3.由已知,//F AB E ,所以//AB 平面FDC E . 又平面CDAB 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE-的平面角,C F 60∠E =.从而可得(C 3-.所以(C 3E =,()0,4,0EB =,(C 3,3A =--,()4,0,0AB =-. 设(),,n x y z =是平面C B E 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即3040x z y ⎧+=⎪⎨=⎪⎩, 所以可取(3,0,3n =-.设m 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩,同理可取()0,3,4m =.则219cos ,n m n m n m ⋅==-.CBDEF故二面角C E-B -A 的余弦值为21919-.考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.7.(2016全国Ⅱ文) 如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE CF =,EF交BD 于点H ,将DEF ∆沿EF 折到'D EF ∆的位置. (Ⅰ)证明:'AC HD ⊥; (Ⅱ)若55,6,,'224AB AC AE OD ====,求五棱锥D ABCEF '-体积.【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)根据勾股定理证明OD H '∆是直角三角形,从而得到.'⊥OD OH 进而有⊥AC 平面BHD ',证明'⊥OD 平面.ABC 根据菱形的面积减去三角形DEF 的面积求得五边形ABCFE 的面积,最后由椎体的体积公式求五棱锥D ABCEF '-体积. 试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD .五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S 所以五棱锥'ABCEF D -体积16923222.34=⨯⨯=V 考点: 空间中的线面关系判断,几何体的体积.【名师点睛】立体几何中的折叠问题,应注意折叠前后线段的长度、角哪些变了,哪些没变.8.(2016全国Ⅱ理)如图,菱形ABCD 的对角线AC 与BD 交于点O , 5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H'⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)9525.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.ABDD'E H Oz xyF(II )如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -, 则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,则0m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩,即11111340330x y x y z -=⎧⎨++=⎩, 所以可以取()4,3,5m =-.设()222,,n x y z =是平面'ACD 的法向量,则0n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,即222260330x x y z =⎧⎨++=⎩,所以可以取()0,3,1n =-.于是75cos ,||||5010m n m n m n ⋅<>===⋅⨯, 295sin ,25m n <>=.因此二面角B D A C '--的正弦值是29525. 考点:线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b ⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.9.(2016全国Ⅲ文)如图,四棱锥P ABC -中,PA ⊥平面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN平面PAB ;(II )求四面体N BCM -的体积. 【答案】(Ⅰ)见解析;(Ⅱ)453. 试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN . ......3分 又BC AD //,故TN AM ,四边形AMNT 为平行四边形,于是AT MN //. 因为⊂AT 平面PAB ,⊄MN 平面PAB , 所以//MN 平面PAB . ........6分(Ⅱ)因为⊥PA 平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为PA 21. ....9分 取BC 的中点E ,连结AE .由3==AC AB 得BC AE ⊥,522=-=BE AB AE .由BC AM ∥得M 到BC 的距离为5,故525421=⨯⨯=∆BCM S , 所以四面体BCM N -的体积354231=⨯⨯=∆-PA S V BCM BCM N . .....12分考点:1、直线与平面间的平行与垂直关系;2、三棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又推出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.10.(2016全国Ⅲ理)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(I )证明MN平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ)8525.【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP 所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角.试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,故TN AM,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =,于是||85|cos ,|25||||n AN n AN n AN ⋅<>==.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.11.(2016山东文)在如图所示的几何体中,D 是AC 的中点,EF ∥DB . (I )已知AB =BC ,AE =EC .求证:AC ⊥FB ;(II )已知G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC . 【答案】(Ⅰ))证明:见解析;(Ⅱ)见解析. 【解析】试题分析:(Ⅰ))根据BD EF //,知EF 与BD 确定一个平面, 连接DE ,得到AC DE ⊥,AC BD ⊥,从而⊥AC 平面BDEF , 证得FB AC ⊥.(Ⅱ)设FC 的中点为I ,连HI GI ,,在CEF ∆,CFB ∆中,由三角形中位线定理可得线线平行,证得平面//GHI 平面ABC ,进一步得到//GH 平面ABC . 试题解析:(Ⅰ))证明:因BD EF //,所以EF 与BD 确定一个平面,连接DE ,因为E EC AE ,=为AC 的中点,所以AC DE ⊥;同理可得AC BD ⊥,又因为D DE BD = ,所以⊥AC 平面BDEF ,因为⊂FB 平面BDEF ,FB AC ⊥。

(完整版)近三年高考全国卷理科立体几何真题(可编辑修改word版)

(完整版)近三年高考全国卷理科立体几何真题(可编辑修改word版)

新课标卷高考真题1、(2016 年全国I 高考)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD = 90 ,且二面角D -AF -E 与二面角C -BE - F 都是60 .(I)证明:平面ABEF ⊥平面EFDC;(II)求二面角E - BC - A 的余弦值.10 2、( 2016 年全国 II 高考) 如图, 菱形 ABCD 的对角线 AC 与 BD 交于点 O ,AB = 5, AC = 6 , 点 E , F 分别在 AD , CD 上, AE = CF = 5 , EF 交 BD 于点 H4.将∆DEF 沿 EF 折到∆D 'EF 位置, OD ' = .(Ⅰ)证明: D 'H ⊥ 平面 ABCD ;(Ⅱ)求二面角 B - D 'A - C 的正弦值.3【2015 高考新课标 1,理 18】如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.4、[2014·新课标全国卷Ⅱ] 如图1-3,四棱锥P-ABCD 中,底面ABCD 为矩形,PA⊥平面ABCD,E 为PD 的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C 为60°,AP=1,AD= 3,求三棱锥E-ACD 的体积.图1-35、[2014·新课标全国卷Ⅰ] 如图1-5,三棱柱ABC -A1B1C1中,侧面BB1C1C 为菱形,AB⊥B1C.图1-5(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A -A1B1­C1的余弦值.6、(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E 是PD 的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M﹣AB﹣D 的余弦值.7(、2017•新课标Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD= ∠CBD,AB=BD.(Ⅰ)证明:平面ACD⊥平面ABC;(Ⅱ)过AC 的平面交BD 于点E,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D﹣AE﹣C 的余弦值.8、(2017•新课标Ⅰ卷)如图,在四棱锥P﹣ABCD 中,AB∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C 的余弦值.m n ⋅ -4 3 + 1 ⋅ 3 + 16 m 1 1 1 m 1【解析】⑴ ∵ ABEF 为正方形∴ AF ⊥ EF ∵ ∠AFD = 90︒∴ AF ⊥ DF ∵ D F EF =F∴ AF ⊥ 面 EFDC AF ⊥ 面 ABEF∴平面 ABEF ⊥ 平面 EFDC⑵ 由⑴知∠DFE = ∠CEF = 60︒∵ AB ∥ EF AB ⊄ 平面 EFDCEF ⊂ 平面 EFDC ∴ AB ∥平面 ABCDAB ⊂ 平面 ABCD∵面 ABCD 面 EFDC = CD∴ AB ∥CD ,∴ CD ∥ EF∴四边形 EFDC 为等腰梯形以 E 为原点, 如图建立坐标系,FD = aE (0 ,0 ,0)B (0 ,2a ,0)C ⎛ a ,0 , 3 a ⎫ A (2a ,2a ,0)2 2 ⎪ ⎝ ⎭ ⎛ a3 ⎫EB = (0 ,2a ,0) , BC = 2 ,- 2a , 2 a ⎪ , AB = (-2a ,0 ,0)⎝ ⎭设面 BEC 法向量为= ( x ,y ,z ) . ⎧ ⎧2a ⋅ y 1 = 0 ⎪m ⋅ EB = 0 ,即⎪ ⎨ ⋅ = 0 ⎨ a ⋅ x - 2ay + 3 a ⋅ z = 0 ⎪⎩m BC ⎪⎩ 2 1 1 2 1x = 3 ,y = 0 ,z = -1 = ( 3 ,0 ,- 1)设面 ABC 法向量为 = ( x ,y ,z ) ⎧ n 2 2 2 ⎧ a ⎪n ⋅ BC =0 .即⎪ x 2 - 2ay 2 + az 2 = 0 x = 0 ,y = 3 ,z = 4 ⎨ ⎨ 2 22 2 2⎪⎩n ⋅ AB = 0⎪⎩2ax 2 = 0 n = (0 , 3 ,4)设二面角 E - BC - A 的大小为. cos =∴二面角 E - BC - A 的余弦值为-2 19 19 m ⋅ n = = - 2 19 19 3u r u u r n 1 ⋅ n 2 u r u u r n 1 n 2 7 5 2 95 ⋅ ' ⎩ ⎩ 2【解析】⑴证明:∵ AE = CF = 5 ,∴AE = CF , 4 AD CD∴ EF ∥ AC .∵四边形 ABCD 为菱形,∴ AC ⊥ BD , ∴ EF ⊥ BD ,∴ EF ⊥ DH ,∴ EF ⊥ D 'H .∵ AC = 6 ,∴ AO = 3 ;又 AB = 5 , AO ⊥ OB ,∴ OB = 4 , ∴ O H = AE⋅ OD = 1 ,∴ D H = D 'H = 3 ,∴ OD ' 2 = O H 2 + D ' H 2 ,∴ D ' H ⊥ O H AO .又∵ OH I EF = H ,∴ D ' H ⊥ 面 ABCD .⑵建立如图坐标系 H - xyz .B (5 , 0 , 0) ,C (1, 3,0) , D '(0 , 0 , 3) , A (1, - 3, 0) ,AB = (4 , 3, 0) , AD ' = (-1, 3,3) , AC = (0 , 6 , 0) ,设面 ABD ' 法向量n 1 = ( x ,y ,z ) ,⎧ ⎧x = 3 由⎪n 1 ⋅ AB = 0 得⎧4x + 3y = 0 ,取⎪ y = -4 ,∴ n = (3, - 4 , 5) . ⎨ ⎪⎩n 1 A D = 0 ⎨-x + 3y + 3z = 0 ⎨ 1 ⎪z = 5同理可得面 AD 'C 的法向量n 2 = (3, 0 , 1) ,∴ cos= = = ,∴ s in = . 25 253,【答案】(Ⅰ)见解析(Ⅱ) 339 + 5 5 2 ⋅ 103 2 2 32 GB , G C又∵AE ⊥EC ,∴EG = ,EG ⊥AC , 在 Rt △EBG 中,可得 BE = ,故 DF =2 .2在 Rt △FDG 中,可得 FG =6 .2在直角梯形 BDFE 中,由 BD =2,BE = ,DF = 2可得 EF = 3 2, 2 2 ∴ EG 2 + FG 2 = EF 2 ,∴EG ⊥FG , ∵AC ∩FG=G ,∴EG ⊥平面 AFC , ∵EG ⊂ 面 AEC ,∴平面 AFC ⊥平面 AEC .……6 分(Ⅱ)如图,以 G 为坐标原点,分别以 的方向为 x 轴,y 轴正方向,| GB |为单位长度,建立空间直角坐标系 G-xyz ,由(Ⅰ)可得 A (0,- ,0),E (1,0,),F (-1,0, ),C (0, ,0),∴ AE =(1, , ), C F =(-1,- 2 , 2 ).…10 分 23 2 3 2 33 3 3 33 AE ,C F >= •1AP |为单位长,建立空间直角坐标系 A -xyz ,则 D (0, 3,0),E 0, 2 , 2,AE = 0 2 , 2 = - { 即 故cos < AE CF 3 . | AE || C F | 3 所以直线 AE 与 CF 所成的角的余弦值为3 .……12 分3 4,解:(1)证明:连接 BD 交 AC 于点 O ,连接 EO .因为 ABCD 为矩形,所以 O 为 BD 的中点. 又 E 为 PD 的中点,所以 EO ∥PB .因为 EO ⊂平面 AEC ,PB ⊄平面 AEC ,所以 PB ∥平面 AEC . (2)因为 PA ⊥平面 ABCD ,ABCD 为矩形, 所以 AB ,AD ,AP 两两垂直.如图,以 A→ AD ,AP 的方向为 x 轴、y 轴、z 轴的正方向,| 为坐标原点,AB , →( 1)→ (, 1).设 B (m ,0,0)(m >0),则 C (m ,3,0) →(m ,3,0).,AC = 设 n 1=(x ,y ,z )为平面 ACE 的法向量,→ n 1·AC =0,则 → ) {m x + 3y =0,)n 1·AE =0, 2 y + z =0,可取 n 1=(2,-1, ).又 n 2=(1,0,0)为平面 DAE 的法向量,1由题设易知|cos 〈n 1,n 2〉|= ,即2 13 = ,解得 m = .22 1因为 E 为 PD 的中点,所以三棱锥 E -ACD 的高为 .三棱锥 E -ACD 的体积 V =21 1 3 1 × × 3× × = . 3 22 2 83m 3 3+4m 233 3 3 3 1(( )B 1C 1=BC = -1,- 3,0 . {{335 解:(1)证明:连接 BC 1,交 B 1C 于点 O ,连接 AO ,因为侧面 BB 1C 1C 为菱形,所以 B 1C ⊥BC 1,且 O 为 B 1C 及 BC 1 的中点.又 AB ⊥B 1C ,所以 B 1C ⊥平面 ABO . 由于 AO ⊂平面 ABO ,故 B 1C ⊥AO . 又 B 1O =CO ,故 AC =AB 1.(2)因为 AC ⊥AB 1,且 O 为 B 1C 的中点,所以 AO =CO .又因为 AB =BC ,所以△BOA ≌ △BOC .故 OA ⊥OB ,从而 OA ,OB ,OB 1 两两垂直.以 O 为坐标原点,OB 的方向为 x 轴正方向,|OB |为单位长,建立如图所示的空间直角坐标系 O ­ xyz .(3)因为∠CBB 1=60°,所以△CBB 1 为等边三角形,又 AB =BC ,则 A 0,0, 3 ,B (1,0,0),B (0, 3,0),C (0,- 3,0).→ AB 1= 0, 3 ,- 3)3 → 3 ,A 1B 1=AB =1,0,- , 3 3 3→ ( )设 n =(x ,y ,z )是平面 AA 1B 1 的法向量,则n ·AB 1=0,3 y - z =0,)→n ·A 1B 1=0,)即所以可取 n =(1,3, 3).x - z =0.{设m 是平面A1B1C1的法向量,→m·A1B1=0,则→m·B1C1=0,)同理可取m=(1,-3, 3).n·m 1则cos〈n,m〉==.|n||m| 71所以结合图形知二面角 A -A1B1­ C1的余弦值为.76、【答案】(Ⅰ)证明:取PA 的中点F,连接EF,BF,因为E 是PD 的中点,所以EF AD,AB=BC= AD,∠BAD=∠ABC=90°,∴BC∥ AD,∴BCEF 是平行四边形,可得CE∥BF,BF⊂平面PAB,CF✪平面PAB,∴直线CE∥平面PAB;(Ⅱ)解:四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E 是PD 的中点.取AD 的中点O,M 在底面ABCD 上的射影N 在OC 上,设AD=2,则AB=BC=1,OP= ,∴∠PCO=60°,直线BM 与底面ABCD 所成角为45°,可得:BN=MN,CN= MN,BC=1,可得:1+ BN2=BN2 ,BN= ,MN= ,作NQ⊥AB 于Q,连接MQ,所以∠MQN 就是二面角M﹣AB﹣D 的平面角,MQ== ,二面角M﹣AB﹣D 的余弦值为: = .7、【答案】(Ⅰ)证明:如图所示,取AC 的中点O,连接BO,OD.∵△ABC 是等边三角形,∴OB⊥AC.△ABD 与△CBD 中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD 是直角三角形,∴AC 是斜边,∴∠ADC=90°.∴DO= AC.∴DO2+BO2=AB2=BD2 .∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(Ⅱ)解:设点D,B 到平面ACE 的距离分别为h D,h E.则= .∵平面AEC 把四面体ABCD 分成体积相等的两部分,∴ = = =1.∴点E 是BD 的中点.建立如图所示的空间直角坐标系.不妨设AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E .=(﹣1,0,1),= ,=(﹣2,0,0).设平面ADE 的法向量为=(x,y,z),则,即,取= .同理可得:平面ACE 的法向量为=(0,1,).∴cos = = =﹣.∴二面角D﹣AE﹣C 的余弦值为.8、【答案】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD 为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD 为矩形,在△APD 中,由PA=PD,∠APD=90°,可得△PAD 为等腰直角三角形,设PA=AB=2a,则AD= .取AD 中点O,BC 中点E,连接PO、OE,以O 为坐标原点,分别以OA、OE、OP 所在直线为x、y、z 轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC 的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB 的一个法向量,.∴cos<>= =.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C 的余弦值为.。

2013高考数学真题——立体几何分大题汇编

2013高考数学真题——立体几何分大题汇编

A12013高考数学—立体几何汇编1、(2013山东卷理18)如图所示,在三棱锥ABQ P -中,⊥PB 平面ABQ ,BQ BP BA ==,F E C D ,,,分别是BP AP BQ AQ ,,,的中点,BD AQ 2=,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH 。

(1)证明:AB ∥GH ;(2)求二面角E GH D --的余弦值。

2、(2013陕西卷理18)如图,四棱柱1111D C B A ABCD -的底面ABCD 是正方形,O 为底面中心,⊥O A 1平面ABCD ,21==AA AB 。

(1) 证明:⊥C A 1平面D D BB 11;(2) 求平面1OCB 与平面D D BB 11的夹角θ的大小。

3、(2013新课标2卷理18)如图,直三棱柱111C B A ABC -中,E D ,分别1,BB AB 的中点,AB CB AC AA 221===. (1)证明:1BC ∥平面CD A 1; (2)求二面角E C A D --1的正弦值。

ABCC 1A 1B 1C4、(2013新课标1卷18)如图,三棱柱111C B A ABC -中,CB CA =,1AA AB =,0160=∠BAA(1)证明:C A AB 1⊥;(2)若平面ABC ⊥平面B B AA 11,CB AB =,求直线C A 1与平面C C BB 11所成角的正弦值5、(2013江西卷理19)如图,四棱锥ABCD P -中,⊥PA 平面ABCD ,E 为BD 中点,G 为PD 中点,DAB ∆≌DCB ∆,1===AB EB EA ,23=PA ,连结CE 并延长交AD 于点F 。

(1)求证:⊥AD 平面CFG ;(2)求平面BCP 与平面DCP 的夹角的余弦值。

6、(2013大纲卷理19)如图,四棱锥ABCD P -中,090=∠=∠BAD ABC ,AD BC 2=,PAB ∆和PAD ∆都是等边三角形。

2013年高考新课标全国卷数学考前(理、文)立体几何样题(14页,Word版,含解析)

2013年高考新课标全国卷数学考前(理、文)立体几何样题(14页,Word版,含解析)

2013年高考新课标全国卷数学(理、文)立体几何样题适用地区:河南、山西、新疆、宁夏、吉林、黑龙江、内蒙古、河北、云南、青海、西藏、甘肃、贵州. 一、选择题:1. (2012年高考新课标全国卷文科7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()()A 6 ()B 9 ()C 12 ()D 182. (2012年高考新课标全国卷文科8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π 【答案】B【解析】球半径3)2(12=+=r ,所以球的体积为ππ34)3(343=⨯,选B.3.(2012年高考全国卷文科8)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B (C (D )1 【答案】D【解析】连结BD AC ,交于点O ,连结OE ,因为E O ,是中点,所以1//AC OE ,且121AC OE =,所以BDE AC //1,即直线1AC 与平面BED 的距离等于点C 到平面BED 的距离,过C 做OE CF ⊥于F ,则CF 即为所求距离.因为底面边长为2,高为22,所以22=AC ,2,2==CE OC ,2=OE ,所以利用等积法得1=CF ,选 D.评析:A 到面BED 的距离转化为A 关于O 点的对称点C 到面BED 的距离,注意这种技巧。

改编题:设AO 中点为K ,求K 到平面BED 的距离,思路求K 到平面BED 的距离是A 到面BED 的距离的一半,A 到面BED 的距离转为C 到面BED 的距离。

4.(2012年高考天津卷文科10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积3m.【答案】30【解析】由三视图可知这是一个下面是个长方体,上面是个平躺着的五棱柱构成的组合体。

2013年全国高考理科数学立体几何解析

2013年全国高考理科数学立体几何解析

2013年高考理科数学试立体几何解析1、陕西12、某几何体的三视图如图所示,则其体积为 . 解:半个圆锥,底面半径为1,高为2,体积V=2123121⨯⨯⨯⨯ππ31= 44422222、新课标1、6、如图,有一个水平放置的透明无盖的正方体容器,容器的高8cm ,将一个球放在容器口,在向容器内注水,当球面恰好接触水面时侧得水深为6cm ,如果不计容器的厚度,则球的体积为 (A)33500cm π (B) 33866cm π (C) 331372cm π (D) 332048cm π解:正方体容器上底面做球的截面,截面是球的小圆,直径是正方体的棱长8cm , 截面到球心的距离是R-(8-6)=R-2,则5)2(4222=⇒-+=R R R 球的体积为333500534cm ππ=⨯⨯,选A 3、新课标1、8、某几何体的三视图如图所示,则该几何体的体积为(A)16+8π(B)8+8π (C)16+16π (D)8+16π1112题俯视图左视图主视图12解:长方体的体积是16242=⨯⨯ 半个圆柱的体积ππ8)42(212=⨯⨯ 选A4.新课标2、(4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β。

直线l 满足l ⊥m ,l ⊥n ,l α⊄,l ⊄β,则(A )α∥β且l ∥α (B )α⊥β且l ⊥β(C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l 解:如图,在正方体中,m ,n 为异面直线,m ⊥平面α,n ⊥平面β。

直线l 满足l ⊥m , l ⊥n ,l α⊄,l ⊄β,α与β相交,且交线平行于l , 选D 5.新课标2(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是 (1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三 视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为DC BA解:在正方体中做出四面体ABCD, 可以看出选A. 6.安徽3、在下列命题中,不是公理..的是 (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 (D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线解析:B,C,D 说法均不需证明,也无法证明,是公理;A 选项可以推导证明,故是定理。

2013年高考真题——数学理(大纲卷)word版有答案

2013年高考真题——数学理(大纲卷)word版有答案

绝密★启用前2013年普通高等学校招生全国统一考试数学(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6(2)()3=(A )8- (B )8 (C )8i - (D )8i(3)已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则(A )4- (B )-3 (C )2- (D )-1(4)已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭(5)函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021x x ≠- (C )()21x x R -∈ (D )()210x x -> (6)已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 (A )()-10-61-3 (B )()-1011-39(C )()-1031-3 (D )()-1031+3 (7)()()342211+x y x y +的展开式中的系数是 (A )56 (B )84 (C )112 (D )168(8)椭圆22122:1,,46x y C A A P C PA +=的左、右顶点分别为点在上且直线斜率的取值范围是[]12,1,PA --那么直线斜率的取值范围是(A )1324⎡⎤⎢⎥⎣⎦, (B )3384⎡⎤⎢⎥⎣⎦, (C )112⎡⎤⎢⎥⎣⎦, (D )314⎡⎤⎢⎥⎣⎦, (9)若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是 (A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+(10)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于(A )23 (B)3 (C)3 (D )13(11)已知抛物线()2:82,2,C C y x M k C =-与点过的焦点,且斜率为的直线与交于(A )12(B)2 (C(D )2 (12)已知函数()=cos sin 2,f x x x 下列结论中正确的是(A )()(),0y f x π=的图像关于中心对称 (B )()2y f x x π==的图像关于对称 (C )()2f x (D )()f x 既是奇函数,又是周期函数 二、填空题:本大题共4小题,每小题5分.(13)已知1sin ,cot 3a a a =-=是第三象限角,则 .(14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)(15)记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为.D 若直线()1y a x D a =+与有公共点,则的取值范围是 .(16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于 . 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)等差数列{}n a 的前n 项和为232124.=,,,n S S a S S S 已知且成等比数列,求{}n a 的通项式.18.(本小题满分12分)设()(),,,,,.ABC A B C a b c a b c a b c ac ∆++-+=的内角的对边分别为 (I )求;B(II )若31sin sin , C.4A C -=求 19.(本小题满分12分)如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中,,与都是等边三角形.(I )证明:;PB CD ⊥(II )求二面角.A PD C --的大小20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )X 表示前4局中乙当裁判的次数,求X 的数学期望.21.(本小题满分12分)已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2 6.y C =与的两个交点间的距离为(I )求,;a b ;(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF -证明:22.AF AB BF 、、成等比数列22.(本小题满分12分)已知函数()()()1=ln 1.1x x f x x xλ++-+ (I )若()0,0,x f x λ≥≤时求的最小值;;(II )设数列{}211111,ln 2.234n n n n a a a a n n =+++⋅⋅⋅+-+>的通项证明:。

立体几何 2016年全国(Ⅰ)卷理科11题

立体几何 2016年全国(Ⅰ)卷理科11题
此题很好的考察了学生的转化思想和空间想 象能力,强调了基础知识和基本思想的运用, 具有很强的分辨性。要想更好的解决此类问 题,我想我们可以从以下几点出发: 1.准确把握重点内容:线面平行的判定与性 质,面面平行的判定与性质,以及强烈的转 化意识。
2.注重双基,降低难度。很多模拟题会把静态 的平移问题升级为动态的角度或者长度的最值 问题,难度会更大。但我们从此题中可以看到 更多的是对基础知识和基本能力的考察,因此 应该加强这方面的锤炼。 3.关注其他的立体图形里的线线角,如棱柱, 棱锥等。 4.注重培养学生的空间想象能力,如利用道具 模型,橡皮泥等,多动手实践,多作图观察。 5.激发学生兴趣,消除对立体几何的恐惧,进 而使之喜欢上立体几何。
四、拓展变式
变式 1:平面 过正方体
A B CD A1B1C1D1
的顶点
A1

m, n 所成角的正弦 // 面CB1D , 面ABCD m , 面ABB 1A 1 n ,则
值为()
A 3 2 B 2 2 C 3 3
D 1 3
变式 2: 【 2017 课标 II,理 10】已知直三棱柱 C 11C1 中,
面ABCD m m // m ' 面CB1 D1 面ABCD m ' m // BD1 面ABCD // 面A1 B1C1 D1 ' 面CB1 D1 面ABCD m ' BD1 // m 面CB1 D1 面A1 B1C1 D1 BD1
以下是全国高考立体几何考点分布: 谢谢大家!柳暗花明又一村
浅谈2016年全国(Ⅰ)卷理科11题
1原题呈现 2题目分析 3解题过程 4变式拓展 5教学启示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、(2016全国I卷11题)平面α过正方体ABCD-A1B1C1D1的顶点A,α//平面CB1D1,αI平面ABCD=m,αI平面ABB1 A1=n,则m,n所成角的正弦值为(A(B(C(D)1 3【答案】A考点:平面的截面问题,面面平行的性质定理,异面直线所成的角2、(2016全国I卷18题)(本小题满分12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,90AFD∠= ,且二面角D-AF-E与二面角C-BE-F都是60 .(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II ) 【解析】试题分析:(I )证明F A ⊥平面FDC E ,结合F A ⊂平面F ABE ,可得平面F ABE ⊥平面FDC E .(II )建立空间坐标系,利用向量求解. 试题解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF为单位长,建立如图所示的空间直角坐标系G xyz -.由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则D F 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D .学科&网考点:垂直问题的证明及空间向量的应用3、(2015全国I卷6题)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有()A.14斛B.22斛C.36斛D.66斛【答案】B考点:圆锥的体积公式4、(2015全国I卷18题)如图,,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC。

(1)证明:平面AEC⊥平面AFC(2)求直线AE与直线CF所成角的余弦值【答案】∴222EG FG EF +=,∴EG⊥FG, ∵AC ∩FG=G ,∴EG ⊥平面AFC ,∵EG ⊂面AEC ,∴平面AFC⊥平面AEC. ……6分(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB为单位长度,建立空间直角坐标系G-xyz ,由(Ⅰ)可得A (0,0),E(1,0,,F (-1,0),C (00),∴AE =(1,CF =(-1,2).…10分故cos ,||||AE CF AE CF AE CF ∙<>==.所以直线AE 与CF . ……12分 考点:空间垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力 5、(2014全国I 卷19题)(本小题满分12分)如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥.(Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o 160CBB ∠=,AB=BC 求二面角111A A B C --的余弦值.【解析】:(Ⅰ)连结1BC ,交1B C 于O ,连结AO .因为侧面11BB C C 为菱形,所以1B C 1BC ⊥ ,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1B C AO ⊥ 又 1B O CO =,故1AC AB = ………6分(Ⅱ)因为1AC AB ⊥且O 为1B C 的中点,所以AO=CO 又因为AB=BC ,所以BOA BOC ∆≅∆ 故O A ⊥OB ,从而OA ,OB ,1OB 两两互相垂直. 以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O-xyz . 因为0160CBB ∠=,所以1CBB ∆为等边三角形.又AB=BC ,则A ⎛ ⎝⎭,()1,0,0B,1B ⎛⎫ ⎪ ⎪⎝⎭,0,C ⎛⎫ ⎪ ⎪⎝⎭10,33AB ⎛=- ⎝⎭,111,0,,3A B AB ⎛⎫==- ⎪ ⎪⎝⎭111,3B C BC ⎛⎫==-- ⎪ ⎪⎝⎭设(),,n x y z =是平面的法向量,则11100n AB n A B ⎧=⎪⎨=⎪⎩,即003y z x z =⎨⎪-=⎪⎩所以可取(n = 设m 是平面的法向量,则111100m A B n B C ⎧=⎪⎨=⎪⎩,同理可取(1,m = 则1cos ,7n m n m n m ==,所以二面角111A ABC --的余弦值为17. 6、(2013全国I 卷18题)(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°. (Ⅰ)证明AB ⊥A 1C;(Ⅱ)若平面ABC ⊥平面AA 1B 1B ,AB=CB=2,求直线A 1C 与平面BB 1C 1C 所成角的正弦值。

【命题意图】本题主要考查空间线面、线线垂直的判定与性质及线面角的计算,考查空间想象能力、逻辑推论证能力,是容易题.【解析】(Ⅰ)取AB 中点E ,连结CE ,1A B ,1A E , ∵AB=1AA ,1BAA ∠=060,∴1BAA ∆是正三角形,∴1A E ⊥AB , ∵CA=CB , ∴CE ⊥AB , ∵1CE A E ⋂=E ,∴AB ⊥面1CEA , ∴AB ⊥1AC ; ……6分 (Ⅱ)由(Ⅰ)知EC ⊥AB ,1EA ⊥AB ,又∵面ABC ⊥面11ABB A ,面ABC ∩面11ABB A =AB ,∴EC ⊥面11ABB A ,∴EC ⊥1EA ,∴EA ,EC ,1EA 两两相互垂直,以E 为坐标原点,EA 的方向为x 轴正方向,|EA|为单位长度,建立如图所示空间直角坐标系O xyz -, 有题设知A(1,0,0),1A(0,,0),C(0,0,),B(-1,0,0),则BC=(1,0,,1BB =1AA =(-1AC =(0,……9分设n =(,,)x y z 是平面11CBBC 的法向量,则100BC BB ⎧∙=⎪⎨∙=⎪⎩n n,即0x x ⎧+=⎪⎨+=⎪⎩,可取n =1,-1), ∴1cos ,AC n =11|A C A C ∙n |n|| ∴直线A 1C 与平面BB 1C 1C. ……12分 7、(2016全国II 卷14题)α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 【解析】②③④8、(2016全国II 卷19题)(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF '的位置OD '=(I )证明:DH'⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.【解析】⑴证明:∵54AE CF ==, ∴AE CFAD CD=, ∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥, ∴EF BD ⊥, ∴EF D H ⊥,∴EF DH'⊥. ∵6AC =, ∴3AO =;又5AB =,AO OB ⊥, ∴4OB =, ∴1AEOH OD AO=⋅=, ∴3DH D H '==, ∴222'OD OH D H '=+, ∴'D H OH ⊥. 又∵OH EF H =I , ∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =u u u r ,,,()'133AD =-u u u r ,,,()060AC =u u u r ,,,设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩ 得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()1345n =-u r,,.同理可得面'AD C 的法向量()2301n =u u r,,,∴1212cos n n n n θ⋅==u r u u ru r u u r∴sin θ=9、(2015全国II 卷19题)(本小题满分12分)如图,长方体ABCD —A 1B 1C 1D 1中,AB = 16,BC = 10,AA 1 = 8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E = D 1F = 4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形。

(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值。

DD 1C 1A 1 EFA BCB 110、(2014全国II 卷11题)直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( ) A. 110 B. 25C.D.【答案】 C【KS5U 解析】..10305641-0θcos 2-1-,0(2-1,1-(∴).0,1,0(),0,1,1(),2,0,2(),2,2,0(,2,,111111C N M B A C C BC AC Z Y X C C A C B C 故选)。

,),,则轴,建立坐标系。

令为,,如图,分别以=+=====11、(2014全国II 卷18题)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,E-ACD 的体积.【答案】 (1) 无 (2) 无 【KS5U 解析】 (1)设AC 的中点为G, 连接EG 。

相关文档
最新文档