数值分析chap 2-6

合集下载

数值分析原理课件第二章

数值分析原理课件第二章

第二章 非线性方程数值解法在科学计算中常需要求解非线性方程()0f x = (2.1)即求函数()f x 的零点.非线性方程求解没有通用的解析方法,常采用数值求解算法.数值解法的基本思想是从给定的一个或几个初始近似值出发,按某种规律产生一个收敛的迭代序列0{}k k x +∞=,使它逐步逼近于方程(2.1)的某个解.本章介绍非线性方程实根的数值求解算法:二分法、简单迭代法、Newton 迭代法及其变形,并讨论它们的收敛性、收敛速度等.§2.1 二分法一、实根的隔离定义 2.1 设非线性方程(2.1)中的()f x 是连续函数.如果有*x 使*()0f x =,则称*x 为方程(2.1)的根,或称为函数()f x 的零点;如果有*()()()m f x x x g x =-,且()g x 在*x 邻域内连续,*()0g x ≠,m 为正整数,则称*x 为方程(2.1)的m 重根.当1m =时,称*x 为方程的单根.非线性方程根的数值求解过程包含以下两步(1) 用某种方法确定有根区间.称仅存在一个实根的有根区间为非线性方程的隔根区间,在有根区间或隔根区间上任意值为根的初始近似值;(2) 选用某种数值方法逐步提高根的精度,使之满足给定的精度要求.对于第(1)步有时可以从问题的物理背景或其它信息判断出根的所在位置,特别是对于连续函数()f x ,也可以从两个端点函数值符号确定出有根区间.当函数()f x 连续时,区间搜索法是一种有效的确定较小有根区间的实用方法,其具体做法如下设[,]a b 是方程(2.1)的一个较大有根区间,选择合适的步长()/h b a n =-,k x a kh =+,(0,1,,)k n = .由左向右逐个计算()k f x ,如果有1()()0k k f x f x +<,则区间1[,]k k x x +就是方程的一个较小的有根区间.一般情况下,只要步长h 足够小,就能把方程的更小的有根区间分离出来;如果有根区间足够小,例如区间长度小于给定的精度要求,则区间内任意一点可视为方程(2.1)的根的一个近似.例2.1 确定出方程32()3430f x x x x =-+-=的一个有根区间. 解 由22()3643(1)10f x x x x '=-+=-+>知()f x 为(,)-∞∞上的单调递增函数,进而()f x 在(,)-∞∞内最多只有一个实根.经计算知(0)0f <,(2)0f >,所以()0f x =在区间[0,2]内有惟一实根.如果希望将有根区间再缩小,可以取步长0.5h =,在点0.5x =,1x =, 1.5x =计算出函数值的符号,最后可知区间[1.5,2]内有一个实根.二、二分法二分法是求非线性方程实根近似值的最简单的方法.其基本思想是将有根区间分半,通过判别函数值的符号,逐步缩小有根区间,直到充分逼近方程的根,从而得到满足一定精度要求的根的近似值.设()f x 在区间[,]a b 上连续,()()0f a f b <,且方程(2.1)在区间(,)a b 内有惟一实根*x .记1a a =,1b b =,中点111()/2x a b =+将区间11[,]a b 分为两个小区间11[,]a x 和11[,]x b ,计算函数值1()f x ,根据如下3种情况确定新的有根区间:(1) 如果1()0f x =,则1x 是所要求的根;(2) 如果11()()0f a f x <,取新的有根区间2211[,][,]a b a x =; (3) 如果11()()0f x f b <,取新的有根区间2211[,][,]a b x b =.新有根区间22[,]a b 的长度为原有根区间11[,]a b 长度的一半.对有根区间22[,]a b 施以同样的过程,即用中点222()/2x a b =+将区间22[,]a b 再分为两半,选取新的有根区间,并记为 33[,]a b ,其长度为22[,]a b 的一半(如图2.1所示).图2.1 二分法示意图重复上述过程,建立如下嵌套的区间序列1122[,][,][,][,]k k a b a b a b a b =⊃⊃⊃⊃其中每个区间的长度都是前一个区间长度的一半,因此[,]k k a b 的长度为11()2k k k b a b a --=-由*[,]k k x a b ∈和()/2k k k x a b =+,得*11()()22k k k k x x b a b a -≤-=-当k →∞时,显然,有*k x x →.总结得到如下收敛定理:定理 2.1 设()f x 在隔根区间[,]a b 上连续,且()()0f a f b <,则由二分法产生的序列0{}k k x +∞=收敛于方程(2.1)在[,]a b 上的根*x ,并且有误差估计*1()(1,2,)2k kx x b a k -≤-= (2.2) 设预先给定根*x 的绝对误差限为ε,要求*k x x ε-≤,只要1()2k b a ε-≤成立,这样求得对分次数ln()ln ln 2b a k ε--≥. (2.3)取k 为大于(ln()ln )/ln 2b a ε--的最小整数.此时k x 是方程(2.1)的满足精度要求的根近似值.注:由于舍入误差和截断误差存在,利用浮点运算不可能精确计算函数值,二分法中的判断()0k f x =几乎不可能满足,取而代之为判断条件0()k f x ε<,其中0ε为根近似值的函数值允许误差限.总结以上内容,给出如下算法 算法2.1 (二分法)输入 端点,a b 、根的绝对误差限ε、根近似值的函数值允许误差限0ε; 输出 近似解c 或失败信息;Step 1 用公式(2.3)计算最大迭代次数k ; Step 2 对1,,n k = 循环执行Step 3~5; Step 3 ()/2c a b =+,计算()f c ;Step 4 若0()f c ε<,则输出c ,end ; Step 5 若()()0f c f b <,则a c =,否则b c =.例 2.2 用二分法求32()4100f x x x =+-=在[1,2]上的根*x 的近似值,要求*31102k x x --<⨯.解 由于在区间[1,2]上,(1)5f =-,(2)14f =,2()38(38)0f x x x x x '=+=+>,故()0f x =在[1,2]上有惟一实根*x .确定循环次数为11k =,利用二分法计算结果见表2.1.二分法具有如下特点(1) 优点:计算简单,对函数()f x 的光滑性要求不高,只要它连续,且在两端的函数值异号,算法收敛就可以保证;(2) 缺点:只能求单实根和奇数重实根,收敛较慢,与1/2为公比的等比级数相同. 当函数()f x '连续时,方程(2.1)的实重根可转换为()0()f x f x ='的实单根. 一般在求方程根近似值时不单独使用二分法,而常用它为其它数值方法提供初值.§2.2 简单迭代法简单迭代法是求解非线性方程根的近似值的一类重要数值方法.本节将介绍简单迭代法的基本思想、收敛条件、收敛速度以及相应的加速算法.一、简单迭代法的基本思想简单迭代法采用逐步逼近的过程建立非线性方程根的近似值.首先给出方程根的初始近似值,然后用所构造出的迭代公式反复校正上一步的近似值,直到满足预先给出的精度要求为止.在给定的有根区间[,]a b 上,将方程(2.1)等价变形为()x x ϕ= (2.4)在[,]a b 上选取0x 作为初始近似值,用如下迭代公式1()k k x x ϕ+= (0,1,2,k = ) (2.5)建立序列0{}k k x +∞=.如果有*lim k k x x →∞=,并且迭代函数()x ϕ在*x 的邻域内连续,对式(2.5)两边取极限,得**()x x ϕ=因而*x 是(2.4)的根,从而也是(2.1)的根.称()x ϕ为迭代函数,所得序列0{}k k x +∞=为迭代序列.将这种求方程根近似值的方法称为简单迭代法,简称迭代法.例2.3 试用方程3()10f x x x =--=的不同形式的变形建立迭代公式,并试求其在1.5附近根的近似值.解 利用方程的变形建立如下4种迭代公式(1) 1k x + (2) 311k kx x +=-(3) 1k x += (4) 3112k k k x x x ++-=取初值0 1.5x =,迭代计算,结果见表2.2.例 2.3表明非线性方程的不同等价形式对应不同的迭代过程,从某一初值出发,有的迭代收敛快,有的收敛慢,甚至不收敛.那么迭代函数()x ϕ满足什么条件时才能保证迭代序列收敛? 迭代序列0{}k k x +∞=的误差如何估计? 怎样才能建立收敛速度快的迭代公式?定理2.2 若函数()x ϕ在区间[,]a b 上具有一阶连续导数,且满足条件 ① 对任意[,]x a b ∈,有()[,]x a b ϕ∈;② 存在常数L :01L <<,使得对任意[,]x a b ∈有()x L ϕ'≤成立. 则(1) 方程()x x ϕ=在[,]a b 上有惟一实根*x(2) 对任意0[,]x a b ∈,迭代公式(2.5)收敛,且*lim k k x x →∞=(3) 迭代公式(2.5)有误差估计式*11k k k Lx x x x L --≤-- (2.6) *101k k L x x x x L-≤-- (2.7)(4) **1*lim()k k kx x x x x ϕ+→∞-'=- (2.8) 证明 (1)构造函数()()g x x x ϕ=-,由条件①知()()0g a a a ϕ=-≤,()()0g b b b ϕ=-≥,因此()0g x =在[,]a b 上至少存在一个实根,又由条件②知当[,]x a b ∈时,()1()10g x x L ϕ''=-≥->,所以()0g x =在[,]a b 内存在惟一实根,即()x x ϕ=在[,]a b 内存在惟一实根,记为*x .(2) 由0[,]x a b ∈及条件①知,[,]k x a b ∈(1,2,)k = ,并且有1()k k x x ϕ+=,**()x x ϕ=,二者作差,并由微分中值定理得***1()()()()k k k k x x x x x x ϕϕϕξ+'-=-=- (1,2,k =(2.9) 其中,k ξ介于k x 与*x 之间.结合条件②,得**1k k x x L x x +-≤- (1,2,k =(2.10) 反复递推,有**2*1*1100k k k k x x L x x L x x L x x ++-≤-≤-≤-≤≤- , (1,2,)k =因01L <<,故*lim k k x x →∞=.(3) 由式(2.10)得***1111*1k k k k k k k k k k x x x x x x x x x x x x L x x +++++-=-+-≤-+-≤-+-从而*111k k k x x x x L+-≤-- (2.11) 又由于111()()()()k k k k k k k x x x x x x ϕϕϕη+--'-=-=-1k k L x x -≤- (1,2,)k = (2.12)其中k η介于k x 和1k x -之间.综合式(2.11)及式(2.12)得误差估计*11k k k Lx x x x L--≤--由式(2.12)反复递推,得111210k k k k k x x L x x L x x -----≤-≤≤-并代入式(2.6)得误差估计*11011kk k k L L x x x x x x L L--≤-≤--- (1,2,)k =(4) 由式(2.9)得*1*()k k k x x x x ϕξ+-'=-两端取极限,并注意到()x ϕ'的连续性和*lim k k x ξ→∞=(因为k ξ介于*x 与k x 之间),得**1*lim ()k k kx x x x x ϕ+→∞-'=-. 误差估计(2.6)称为后验误差估计,也称为误差渐进估计,误差估计(2.7)称为先验误差估计.定理2.2条件成立时,对任意0[,]x a b ∈,迭代序列均收敛,故称定理2.2为全局收敛性定理.下面讨论*x 邻近的收敛性,即局部收敛性.定理 2.3 设存在方程()x x ϕ=根*x 的闭邻域***(,)[,](0)U x x x δδδδ=-+>以及小于1的正数L ,使得()x ϕ'连续且()1x L ϕ'≤<.则对任意*0(,)x U x δ∈,迭代1()k k x x ϕ+=收敛.证明 由()x ϕ'在*(,)U x δ内连续,且有()1x L ϕ'≤<,则对任意*(,)x U x δ∈,有****()()()()x x x x x x L ϕϕϕϕηδδ'-=-=-≤<由定理2.2知迭代过程1()k k x x ϕ+=对任意初值*0(,)x U x δ∈均收敛.二、迭代法的收敛阶为刻画迭代法收敛速度的快慢,引进收敛序列的收敛阶概念.定义2.2 设迭代序列0{}k k x +∞=收敛到*x ,记*k k e x x =-,如果存在常数0c >和实数1p ≥,使得1limk pk ke c e +→∞= (2.13)则称序列0{}k k x +∞=是p 阶收敛的.当1p =时,称0{}k k x +∞=为线性收敛的,此时要求01c <<;1p >为超线性收敛.p 越大,序列0{}k k x +∞=收敛到*x 越快.c 称为渐进常数,c 越小,收敛越快.所以迭代法的收敛阶是对迭代法收敛速度的一种度量.显然,由定理2.2(4)知,当*()0x ϕ'≠时简单迭代法线性收敛,渐进常数*()c x ϕ'=.算法2.2 (简单迭代法)输入 初始值0x 、容许误差ε;输出 近似解1x 或失败信息;Step 1 对1,,n m = 循环执行Step 2~3; Step 2 10()x x ϕ=;Step 3 若10x x ε-<,则输出1x ,end ;否则01x x =,转向Step2.例 2.4 求方程()2lg 70f x x x =--=的最大实根的近似值,要求绝对误差不超过31102-⨯.解 (1)确定有根区间.方程等价形式为27lg x x -=作函数27y x =-和lg y x =的图形,如图2.2所示,知方程的最大实根在区间[3,4]内.(2)建立迭代公式,判别收敛性.将方程等价变形为1(lg 7)2x x =+迭代函数1()(lg 7)2x x ϕ=+,迭代公式11(lg 7)2k k x x +=+.由11()02ln10x xϕ'=⋅>,[3,4]x ∈,知()x ϕ在区间[3,4]内仅有一根.又(3) 3.74ϕ≈,(4) 3.80ϕ≈,所以,当[3,4]x ∈时,()[3,4]x ϕ∈.图2.2 函数27y x =-和lg y x =的图形因为 3.54max ()(3)0.07x L x ϕϕ≤≤''==≈,所以对于一切[3,4]x ∈有()(3)0.071x ϕϕ''≤≈<由定理2.2知,迭代法收敛.(3) 迭代计算.取0 4.0x =,有1=3.801030x ,2=3.789951x ,3=3.789317x ,4=3.789280x 因为343110 2x x --≤⨯,所以方程的最大根*4 3.789280x x ≈=.三、迭代法的加速对于收敛的迭代序列,理论上迭代次数足够多时,就可以使计算结果满足任意给定的精度要求.但在应用中,有的迭代过程收敛极为缓慢,计算量很大,因此研究迭代格式的加速方法是非常必要的.1. 线性收敛序列的Aitken 加速法设0{}k k x +∞=是一个线性收敛的序列,极限为*x .即有小于1的正数c 使得*1*limk k k x x c x x +→∞-=-由于它线性收敛,误差减少的速度较慢,值得采用加速技术.下面介绍Aitken 加速法.对充分大的k ,有*1*,k k x x c x x +-≈- *2*1k k x x c x x ++-≈-由上面两式得**12**1k k k k x x x x x x x x +++--≈--解得22*2112121()22k k k k k k k k k k k k x x x x x x x x x x x x x +++++++--≈=--+-+利用上式右端的值可定义另一序列0{}k k y +∞=,即得Aitken 加速公式2121()2k k k k k k kx x y x x x x +++-=--+ (2.14)它仍然收敛到*x ,但收敛速度更快.证明请参考文献[19]. 2. Steffensen 迭代法Aitken 加速方案是对任意线性收敛序列0{}k k x +∞=构建的,并不限定0{}k k x +∞=如何获得.将Aitken 加速方法用于简单迭代法产生迭代序列时,得到著名的Steffensen 迭代法,具体迭代公式如下21()()(0,1,2,)()2k k k k k s x t s k s x x x t s x ϕϕ+=⎧⎪==⎪⎨-⎪=-⎪-+⎩(2.15) 或者直接写成21(())(())2()k k k k k k k x x x x x x x ϕϕϕϕ+-=--+ (0,1,2k =可以证明Steffensen 迭代法在一定的条件下与原简单迭代法的迭代序列具有相同的极限,但Steffensen 迭代法收敛速度更快,可以达到二阶收敛.证明请参考文献[19].例2.5 对例 2.3用Steffensen 迭代法求方程根的近似值,要求811102k k x x -+-<⨯.解 (1) 简单迭代法 将原方程化成1(10/(4))x x =+,建立迭代公式121104k k x x +⎛⎫= ⎪+⎝⎭易验证该迭代公式在区间[1,2]上满足定理2.2的条件,产生的迭代序列收敛.(2) Steffensen 迭代法 加速公式为12122110410(0,1,2,)4()2k k k k k s x t k s s x x x t s x +⎧⎛⎫⎪= ⎪+⎪⎝⎭⎪⎪⎛⎫⎨==⎪⎪+⎝⎭⎪-⎪=-⎪-+⎩(1) 取初值0 1.5x =,简单迭代法和Steffensen 迭代法计算结果见表2.3.注意:Steffensen 迭代法每一迭代步的计算量大约是原简单迭代法计算量的两倍.§2.3 Newton 迭代法Newton 迭代法是求解非线性方程根的近似值的一种重要数值方法.其基本思想是将非线性函数()f x 逐步线性化,从而将非线性方程(2.1)近似地转化为一系列线性方程来求解.下面讨论其格式的构造、收敛性、收敛速度以及有关变形.一、Newton 迭代法的构造设k x 是方程(2.1)的某根的一个近似值,将函数()f x 在点k x 处作Taylor 展开2()()()()()()2!k k k k f f x f x f x x x x x ξ'''=+-+-取前两项近似代替()f x ,即用线性方程()()()0k k k f x f x x x '+-=近似非线性方程(2.1).设()0k f x '≠,则用线性方程的根作为非线性方程根的新近似值,即定义1()()k k k k f x x x f x +=-' (2.16) 上式即是著名的Newton 迭代公式.它也是一种简单迭代法,其中迭代函数()()()f x x x f x ϕ=-' Newton 迭代法具有明显的几何意义(如图 2.3所示).方程()0f x =的根*x 即为曲线()y f x =与x 轴的交点的横坐标.设k x 是*x 的某个近似值,过曲线()y f x =上相应的点(,())k k x f x 作切线,其方程为()()()k k k x f x y f x x '+-=它与x 轴的交点横坐标就是1k x +.只要初值0x 取得充分靠近根*x ,序列0{}k k x ∞=就会很快收敛到*x .所以Newton 迭代法也称为切线法.二、收敛性定理 2.4 设*x 是方程(2.1)的单根,在*x 的邻域上()f x ''连续且*()0f x '≠.则存在0δ>,当***0(,)[,]x U x x x δδδ∈=-+时,Newton 法产生的序列0{}k k x ∞=至少二阶收敛. 证明 (1) Newton 法迭代函数的导数为2()()()[()]f x f x x f x ϕ'''='显然,()x ϕ'在*x 邻域上连续.又*()0x ϕ'=,一定存在*x 的某个δ闭邻域*(,)U x δ,当*(,)x U x δ∈时,有()1x L ϕ'≤<从而Newton 法产生的序列0{}k k x ∞=收敛.(2)将()f x 在k x 处作一阶Taylor 展开***210()()()()()()2!k k k k k f x f x f x x x f x x ξ'''==+-+- (2.17) 其中k ξ介于*x 与k x 之间.又由Newton 迭代公式有10()()()k k k k f x f x x x +'=+- (2.18)式(2.17)与式(2.18)相减**21()()2()k k k k f x x x x f x ξ+''-=--'从而**1*2*()lim 0()2()k k kx x f x x x f x +→∞''-=≠'- (2.19) 由迭代法收敛阶的定义知,Newton 迭代法至少具有二阶收敛速度.上述定理给出了Newton 法局部收敛性,它对初值要求较高,初值必须充分靠近方程根时才可能收敛,因此在实际应用Newton 法时,常常需要试着寻找合适的初值.下面的定理则给出Newton 法在有根区间上全局收敛的一个充分条件.定理2.5 设*x 是方程(2.1)在区间[,]a b 上的根且()f x ''在[,]a b 上存在,如果(1) 对于任意[,]x a b ∈有,()0f x '≠()0f x ''≠; (2) 选取初值0[,]x a b ∈,使00()()0f x f x ''>.21则Newton 法产生的迭代序列0{}k k x ∞=单调收敛于*x ,并具有二阶收敛速度.(a)(b)(c) (d)图2.4 定理2.5的几何解释证明 满足定理条件(1)共有4种情形,如图2.4所示.下面仅以图2.4(a )情况进行证明,此时满足对任意[,]x a b ∈有,()0f x '>,()0f x ''>,初值*0x x >.首先用数学归纳法证明0{}k k x ∞=有下界*x .当0k =时,*0x x >成立.假设k n =时,不等式*n x x >成立.将*()f x 在n x 处作一阶Taylor 展开,得***2*()()()()()()0,(,)2!n n n n n n n f f x f x f x x x x x x x ξξ'''=+-+-=∈于是**2()()()()2()n n n n n n f x f x x x x f x f x ξ''=---'' 又由Newton 迭代公式,有22**21()()2()n n n n f x x x x f x ξ+''=--' (2.20)式(2.20)右端的第二项大于零,因此*1n x x +>.由数学归纳法知*k x x >,(0,1,2,)k = . 其次证明0{}k k x ∞=单调递减. 由()0f x '>,*k x x >,*()0f x =知,()0k f x >,()0k f x '>,于是Newton 迭代公式(2.16)的第二项大于零,从而1k k x x +>故迭代序列0{}k k x ∞=单调减少.序列0{}k k x ∞=单调减少有下界*x ,它必有极限,记为ˆx ,它满足*0ˆx x x ≤<,进而有ˆ[,]xa b ∈.对1()()k k k k f x x x f x +=-'两端取极限,并利用()f x ,()f x '的连续性,得ˆ()f x=0.结合函数()f x 在[,]a b 上的单调性知*ˆxx =. 因此,Newton 法产生的迭代序列0{}k k x ∞=单调收敛于*x ,利用式(2.20)及式(2.19)知该Newton 迭代序列二阶收敛.算法2.3 (Newton 迭代法)输入 初始近似值0x 、 容许误差ε;输出 近似解1x 或失败信息;Step 1 对1,,n m = 循环执行Step 2~3; Step 2 1000()/()x x f x f x '=-;Step 3 若10x x ε-<,则输出1x ,end ;否则01x x =,转向step2.例 2.6 利用非线性方程230x -=的Newton 迭代公式计算的近似值,使得811102n n x x ---≤⨯,并证明对任意0(0,)x ∈+∞,该迭代法均收敛.解 (1) 建立计算公式213213(0,1,2,)(2)k k k kk kk x x x x x x +-=-=+=其中00x >.(2) 判断收敛性在区间(0,)+∞内,()20f x x '=>,()20f x ''=>,当选取初值0)x ∈+∞时,存在足够大的M,使得0]x M ∈.由定理 2.5知,该迭代公式产生的迭代序列0{}k k x ∞=都收敛于当选取初值0x ∈时,100013()2x x x x =+> 这样,从1x 起,以后的(2)k x k ≥.故该迭代公式对任何初值00x >都收敛. (3) 取初值02x =,迭代计算,结果见表2.4.23从表2.4可见,迭代4 1.73205080756888= .三、Newton 迭代法的变形Newton 迭代格式构造容易,迭代收敛速度快,但对初值的选取比较敏感,要求初值充分接近真解,另外对重根收敛速度较慢(仅有线性收敛速度),而且当函数复杂时,导数计算工作量大.下面从不同的角度对Newton 法进行改进. 1 Newton 下山算法Newton 迭代法的收敛性依赖于初值0x 的选取,如果0x 偏离*x 较远,则Newton 迭代法有可能发散,从而在实际应用中选出较好的初值有一定难度,而Newton 下山法则是一种降低对初值要求的修正Newton 迭代法.方程(2.1)的根*x 也是()f x 的最小值点,若把()f x 看成()f x 在x 处的高度,则*x 是山谷的最低点.若序列0{}k k x ∞=满足单调性条件1()()k k f x f x +< (2.21)则称0{}k k x ∞=为称为()f x 的下山序列.在Newton 迭代法中引入下山因子(0,1]λ∈,将Newton 迭代公式(2.16)修正为1()(0,1,2,)()k k k k f x x x k f x λ+=-=' (2.22)适当选取下山因子λ,使得单调性条件(2.21)成立,即称为Newton 下山法.对下山因子的选取是逐步探索进行的.一般地,从1λ=开始反复将因子λ的值减半进行试算,一旦单调性条件(2.21)成立,则称“下山成功”;反之,如果在上述过程中找不到使条件(2.21)成立的下山因子λ,则称“下山失败”,这时可对k x 进行扰动或另选初值0x ,重新计算.2 针对重根情形的加速算法假设*x 是方程的(2)m ≥重根,并且存在函数()g x ,使得有**()()(),()0m f x x x g x g x =-≠ (2.23)式中()g x 在*x 的某邻域内可导,则Newton 迭代函数***1**()()()()()()()()()()()()()()m m m f x x x g x x x g x x x x x f x m x x g x x x g x mg x x x g x ϕ---=-=-=-'''-+-+-,其导数在*x 处的值***********()()()()()()()()lim lim()1lim11()()()x x x x x x x x g x x x x x mg x x x g x x x x x x g x m mg x x x g x ϕϕϕ→→→---'-+-'==--=-=-'+- 所以*0()1x ϕ'<<,由定理2.2知Newton 迭代法此时只有线性收敛速度.为了加速收24敛,可以采用如下两种方法方法一 令()()()f x x f x μ=',则*x 是方程()0x μ=的单根,将Newton 迭代函数修改为 2()()()()()[()]()()x f x f x x x x x f x f x f x μψμ'=-=-''''- 因此有重根加速迭代公式12()()(0,1,2,)[()]()()k k k k k k k f x f x x x k f x f x f x +'=-='''- (2.24)它至少二阶收敛.方法二 将Newton 迭代函数改为()()()f x x x mf x ϕ=-' 这时*()0x ϕ'=,由此得到加速迭代公式1()(0,1,2,)()k k k k f x x x mk f x +=-=' (2.25)3 割线法Newton 法每步需要计算导数值()k f x '.如果函数()f x 比较复杂时,导数的计算量比较大,此时使用Newton 法不方便.为了避免计算导数,可以改用平均变化率11()()k k k k f x f x x x ----替换Newton 迭代公式中的导数()k f x ',即使用如下公式111()()()()k k k k k k k f x x x x x f x f x +--=--- (2.26)上式即是割线法的迭代公式.割线法也具有明显的几何意义,如图2.5所示,依次用割线方程11()()()()k k k k k k f x f x y f x x x x x ---=+--的零点逐步近似曲线方程()0f x =的零点.割线法的收敛速度比Newton 法稍慢一点,可以证明其收敛阶约为1.618,证明请参考文献[4].此外在每一步计算时需要前两步的信息1,k k x x -,即这种迭代法也是两步法.两步法在计算前需要提供两个初始值0x 与1x .25图2.5 割线法的几何意义例2.7 已知方程42()440f x x x =-+=有一个二重根*x =Newton 法(2.16)和重根Newton 法(2.24)和(2.25)求其近似值,要求611102n n x x ---≤⨯解 32()48,()128f x x x f x x '''=-=-,2()2()()4f x x x f x xμ-==',2m =. 由Newton 法(2.16)得221232(0,1,2,)44k k k k k kx x x x k x x +-+=-==由Newton 法(2.24) 得2122(2)4(0,1,2,)22k k kk k k k x x x x x k x x +-=-==++由Newton 法(2.25) 得22122(0,1,2,)22k k k k k kx x x x k x x +-+=-==利用上述三种迭代格式,取初值0 1.4x =,分别计算,结果见表2.5.26知识结构图习 题1 用二分法求方程2sin 0x e x --=在区间[0,1]内根的近似值,精确到3位有效数字.2 方程340x x +-=在区间[1,2]内有一根,试用二分法求根的近似值,使其具有5位有效数字,至少应二分多少次.3已知方程3210x x --=在0 1.5x =附近有根,试判断下列迭代格式的收敛性,并用收敛的迭代公式求方程根的近似值,比较迭代次数,要求311102n n x x ---≤⨯(1) 1211n nx x +=+;(2) 1n x +=;(3) 1n x +.4设有方程(1) cos 0x x -=; (2) 230x x e -=确定区间[,]a b 及迭代函数()x ϕ,使1()k k x x ϕ+=对任意初值0[,]x a b ∈均收敛,并求各方程根的近似值,要求411102n n x x ---≤⨯.5 用迭代法求50.20x x --=的正根,要求准确到小数点后5位.6 用Steffensen 迭代法求方程31x x =-在区间[1,1.5]内的根,要求准确到小数点后4位.7 用Newton 法和割线法分别求方程3310x x --=在02x =附近根的近似值,并比较迭代次数(根的准确值为* 1.87938524x = ,要求准确到小数点后4位).8Halley 法是加速Newton 法收敛的一个途径,Halley 法在()f x 的单根情况下可达到三阶收敛.Halley 迭代函数是12()()()()1()2(())f x f x f x g x x f x f x -''⎛⎫=-- ⎪''⎝⎭其中括号中的项是对Newton 迭代公式的改进.(1) 设函数2()f x x a =-,试给出Halley 迭代公式,取初值02x =求5的近似值,要求准确到小数点后10位.(2) 设函数3()32f x x x =-+,试给出Halley 迭代公式,取初值0 2.4x =计算其根的近基本概念 (单根、重根、收敛阶)27似值.要求准确到小数点后10位.9试建立计算x =Newton 迭代公式,并取初值01x =,要求611102n n x x ---≤⨯.10 (数值试验)用二分法和Newton 法求下列方程的惟一正根的近似值)0.50x x x =11 (数值试验)设投射体的运动方程为/15/15()9600(1)480()2400(1)t t y g t et x h t e --⎧==--⎪⎨==-⎪⎩1)求当撞击地面时的时间,精确到小数点后10位. 2)求水平飞行行程,精确到小数点后10位.12 (数值试验)试用Newton 法分别求解方程(1)0m x -=,(3,6,12m =),观察迭代序列的收敛情形,分析所发生的现象.能否改造Newton 法使得它收敛更快.。

数值分析课件

数值分析课件

辛普森方法
一种基于矩形法思想的数值积分方法 ,适用于计算定积分。
自适应辛普森方法
一种基于辛普森方法和梯形法的自适 应数值积分方法,能够根据函数性质 自动选择合适的积分策略。
常微分方程的数值求解
01
欧拉方法
一种基于常微分方程初值 问题的数值求解方法,通 过逐步逼近的方式求解近 似解。
02
龙格-库塔方法
定积分是函数在区间上积分和的极限;不定积分是函数在 某个区间上的原函数。
02
应用领域
积分广泛应用于物理、工程、经济等领域,如求曲线下面 积、求解变速直线运动位移等。
03
数值计算方法
使用数值积分方法(如梯形法、辛普森法等)来近似计算 定积分和不定积分的值。这些方法将积分区间划分为若干 个小段,并使用已知的函数值和导数值来近似计算每个小 段的积分值,最后求和得到积分的近似值。
一种基于常微分方程初值 问题的数值求解方法,通 过构造龙格-库塔曲线来 逼近解。
03
阿达姆斯-图灵 方法
一种基于常微分方程初值 问题的数值求解方法,通 过构造阿达姆斯-图灵曲 线来逼近解。
04
自适应步长控制 方法
一种基于欧拉方法和龙格 -库塔方法的自适应步长 控制方法,能够根据误差 自动调整步长。
偏微分方程的数值求解
高斯消元法的步骤
1. 将方程组按照行进行排列,并将每个方程中的未知数 按照列排列。
2. 对于每个方程,选取一个未知数作为主元,并将其余 的未知数用主元表示。
3. 将主元所在的行与其他行进行交换,使得主元位于对 角线上。
4. 将主元所在的列中位于主元下方的元素消为0,从而得 到一个阶梯形矩阵。
线性方程组的解法
数值分析是一种工具,它可以帮助我 们更好地理解和解决实际问题,同时 也可以帮助我们更好地理解和应用数 学理论。

数值分析ppt

数值分析ppt

例如:建立积分
1 xn
In
dx 0 x5
n 0,1, , 20
的递推关系式,研究它的误差传递。
解:由
In 5In1
1
xn
5xn1 dx
0 x5
1 xn1dx 1
0
n

I0
1 1 dx ln 6 ln 5 0 x5
可建立递推公式
1 In 5In1 n
n 1, 2, , 20
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
在四中误差中,模型误差和观测误差是客 观存在的,截断误差和舍入误差是由计算方法和 计算工具引起的,我们在研究数学问题的数值解 法时,主要是分析讨论计算方法的截断误差和舍 入误差。
例如 在计算机上计算级数
sin x x 1 x3 1 x5 1 x7 3! 5! 7!
取前三项计算 sin x 的近似值
e*( y) y*
( f )* x1
x1* y*
er*
(
x1)
(
f x2
)*
x2* y*
er*(x2 )
(2)
利用(1)、(2)两式,可以得到两数 和、差、积、商的绝对误差与相对误差传播 的估计式.
e* (x1 x2 ) e* (x1) e*(x2 )

《数值分析》完整版讲义

《数值分析》完整版讲义

2.1.3 多项式插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.4 基函数插值法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.1 为什么要插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 什么是插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.1.2 数值分析的研究内容 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 学习建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
i
· ii ·
目录
2.2 Lagrange 插值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Lagrange 基函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.2 Lagrange 插值多项式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.3 插值余项 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.4 Lagrange 基函数性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

数值分析第六章课件

数值分析第六章课件

a(1) 1n
x1
b(1) 1
a(1) 21
a(1) 22
a(1) 2n
x2
b(1) 2
.
a(1) m1
a(1) m2
a(1) mn
xn
b(1) m
将(2.1)记为A(1)x=b(1),其中
a(1) 11
a(1) 12
a(1) 1n
a11
a12
a1n
A(1)
a(1) 21
5.2 高斯消去法
本节介绍高斯消去法(逐次消去法)及消去法和 矩阵三角分解之间的关系. 虽然高斯消去法是一种 古老的求解线性方程组的方法(早在公元前250年 我国就掌握了解方程组的消去法),但由它改进、 变形得到的选主元素消去法、三角分解法仍然是目 前计算机上常用的有效方法.我们在中学学过消去 法,高斯消去法就是它的标准化的、适合在计算机 上自动计算的一种方法.
有的问题的数学模型中虽不直接表现为含线性方 程组,但它的数值解法中将问题“离散化”或“线性 化”为线性方程组.因此线性方程组的求解是数值分 析课程中最基本的内容之一.
关于线性方程组的解法一般有两大类:
1. 直接法 经过有限次的算术运算,可以求得方程组的精确解( 假定计算过程没有舍入误差).如线性代数课程中提到 的克莱姆算法就是一种直接法.但该法对高阶方程组 计算量太大,不是一种实用的算法.
下面讨论求解一般线性方程组的高斯消去法.由
a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2n xn b2
am1 x1 am2 x2 amn xn bm
a(1) 11
a(1) 21
x1 x1
a(1) 12
x2

《数值分析第二章》PPT课件

《数值分析第二章》PPT课件

定理2.1
顺序高斯消去法的前 n1 个主元
a (k ) kk
均不
为零的充要条件是 Ax b 的系数矩阵 A 的前 n 1个
顺序主子式
a a (1) (1) 11 12
Dk
a(1) 21
a(1) 22
a(1) 1k
a(1) 2k
0
(k1,2,...,n1).
a a (1) (1) k1 k2
a(1) kk
(1)
4 x2 x3 5
(2)
2
x1
2
x2
x3
1
(3)
解 <1> 化上三角方程组
x1 x2 x3 6

4 x2 x3 5

③+(-2)×①
2
x1
2 x2
x3
1

x1 x2 x3 6

4 x2 x3 5

④+ ②
4 x2 x3 11

x1 x2 x3 6
检验
原方程组:
0.012x1 0.010x20.167x3 0.6781
x10.8334x25.910x3 12.1
3200x1 1200x2 4.2x3 981
近似解: x 3 5 .5 4 6 ,x 2 1 0 0 .0 ,x 1 1 0 4 .0
把上近似解代入第 3 个方程后,得
3200×(-104)+1200×100 +4.2×5.546 = -2.1278e+005
列主元素消去法求解方程组时,各个列主元素
a (k ) ik k
均不为零。

设有一个列主元素
a
(r ) ir r

数值分析PPT教案

数值分析PPT教案
和收敛性。
遗传算法
模拟生物进化过程的优 化算法,适用于多变量、 非线性、离散的最优化
问题。
数值积分和微分的方法
01
02
03
04
矩形法
将积分区间划分为若干个小的 矩形区域,每个矩形区域上的 函数值乘以宽度然后相加。
梯形法
将积分区间划分为若干个小的 梯形区域,每个梯形区域上的 函数值乘以宽度然后相加。
理解和应用能力。
培养创新思维和解决问题的能力
03
学生应该培养创新思维和解决问题的能力,以便在未来的学习
和工作中更好地应对挑战。
THANK YOU
感谢聆听
误差累积效应
误差的来源和传播
初始误差放大 误差传递规律
误差的度量和控制
绝对误差和 相对误差
误差的估计 和容忍度
提高数据精 度
选择合适的 算法和数值 方法
控制误差的 方法
迭代收敛性 和稳定性分 析
方法的稳定性和收敛性
方法的稳定性 不受初始条件和舍入误差的影响
对输入数据的变化具有稳健性
方法的稳定性和收敛性
课程目标
02
01
03
掌握数值分析的基本概念、原理和方法。
能够运用数值分析方法解决实际问题,提高计算能力 和数学素养。
培养创新思维和实践能力,为后续学习和工作奠定基 础。
02
数值分析基础
数值分析的定义和重要性
数值分析的定义
数值分析是一门研究数值计算方法及其应用的学科,旨在解决各 种数学问题,如微积分、线性代数、微分方程等。
电子工程
在电子工程中,数值分析用于 模拟电路的行为和性能。通过 电磁场理论和数值方法,可以 优化电路设计和性能,提高电 子设备的效率和稳定性。

数值分析全册完整课件

数值分析全册完整课件
似算法的收敛性和数值稳定性; 要有好的计算复杂性,节省时间及存储量; 有数值实验,证明算法有效。
算法基本结构:顺序,分支,循环
算法描述:程序或流程图
常采用的处理方法:
构造性方法 离散化方法 递推化方法 迭代法 近似替代方法 以直代曲法 化整为零的处理方法 外推法
数学基础:
微积分的若干定理: 罗尔定理和微分中值定理; 介值定理及推论; 泰勒公式(一元、二元); 积分中值定理;
设y=f(x)为一元函数,自变量准确值x*,对应函数准确 值y*=f(x*),x误差为e(x),误差限为ε(x),函数近似值 误差e(y),误差限为ε(y)。则(可由Taylor公式推得)
( y) | f '(x) | (x)
r
(
y)
|
xf |f
'(x) (x) |
|
r
(
x)
对于多元函数 z f (x1, x2 ,, xn )
定义1.1 设x*为某一数据的准确值,x为x*的一个近 似值,称e(x)=x-x*(近似值-准确值)为近似值x的绝对 误差,简称误差。
e(x) 可正可负,当e(x) >0时近似值偏大,叫强近似值;当e(x) <0时近似值偏小,叫弱近似值。
由于x*通常无法确定,只能估计其绝对误差值 不超过某整数ε(x),即
设准确值
z* f (x1*, x2*,, xn* )
由多元函数Taylor公式,可得误差估计:
n
(z)
k 1
f xk
(xk )
相对误差限为:
r (z)
n k 1
xk
f xk
r (xk )
z
2. 算术运算的误差估计:

数值分析课件第6章

数值分析课件第6章

机动 上页 下页 首页 结束
一、雅可比迭代法
x1
1 a 11
(b 1 a 12 x 2
a1nx n )
x
i
1 a ii
(b i
i1
j
1
a
ijx
j
j
n
i
1 a ijx j )
xn
1 a nn
(b n
a n1x 1
a n ,n 1x n 1 )
可以得到计算公式(雅 可比迭代法),对 k 0 ,1,
Ax b x Bx f.

x* Bx*f.
并有一阶定常迭代法
x(k1) B x(k) f
工科研究生公共课程数学系列
机动 上页 下页 首页 结束
向量序列与矩阵序列的极限
定 义 2 设 向 量 序 列 x(k ) R n , x(k ) x1(k ) , x2(k ) ,
,
x(k) n
)
/
4
取 1.3, 第11次 迭 代 结 果 为
x (11) ( 0 .9 9 9 9 9 6 4 6, 1 .0 0 0 0 0 3 1 0, 0 .9 9 9 9 9 9 5 3,
0.99999912)T
此 时 , (1 1) 0 .4 6 1 0 5 2
注 : 迭 代 法 求 解 线 性 方 程 组 在 计 算 机 实 现 时 可 用
(bi
i1
j1
a
i
j
x
(k j
1
)
n
j
i
a
i
j
x
( j
k
)
)
a ii .
x (k 1) i
x (k ) i

数值分析(课后习题答案详解).ppt

数值分析(课后习题答案详解).ppt

x x 41 2 0 . 25 0 . 5451 1 1 再解 3 x 0 . 875 ,得 x 1 . 2916 2 2 2 0 3 1 . 7083 . 5694 x x 3 3
4 41 2 T 故得 GG 分解: A 1 2 3 2 2 3 3 3 1 1 16 11 4 2 T 3 1 LDL 分解为: A 1 4 4 1 2 3 1 1 9 1 2 2
一.习题1(第10页)
1-1.下列各数都是经过四舍五入得到的近似值 ,试分 别指出它们的绝对误差限,相对误差限和有效数字的位数.
x1=5.420,x2=0.5420,x3=0.00542,x4=6000,x5=0.6105.
解 绝对误差限分别为: 1=0.510-3,2=0.510-4, 3=0.510-5,4=0.5,5=0.5104 . 相对误差限分别为: r1=0.510-3/5.420=0.00923%, r2=0.00923%,r3=0.0923%,4=0.0083%,5=8.3%. 有效数位分别为: 4位,4位,3位,4位,1位. 1-2.下列近似值的绝对误差限都是0.005,试问它们有
2 11 2 1 2 故得 Crout 分解: A 4 3 13 6 12 1 1
1 2 11 2 1 2 LDM 分解为: A 21 13 3 3 4 1 1 1
几位有效数字. a=-1.00031,b=0.042,c=-0.00032

数值分析PPT

数值分析PPT

A为待定系数,利用导数条件 P3'(x1) m1 ,求出A, 但求出的 P3(x)通常为3次多项式,
一般情况下 P3(x) 也有可能为二次多项式,
原来方法更加准确。
(2)求余项: R(x)=f(x)-P3(x)
易知: x0, x2是R(x)的一重零点,x1 为R(x)的二重零点,
∴ R(x)可写为
多项式,则对任何 x a,b 有:
Rn (x)
f (n1) ( ) (n 1)!
Wn
1
(
x)
n
其中 Wn1(x) (x xi ), (a,b) ,且与x有关。 i0
证明:考虑插值节点上有 Rn (xi ) 0 (i 0,1,,n)
∴ 这些节点是 Rn (x) 的零点,
可设 Rn (x) k(x) Wn1(x)
∴ K(x) 1 f 4 ( )
4!
∴插值余项为R(x) =
1 4!
f
4 (
)(x
x0
)(x
x1 )2
(x
x2
)
在插值区间内与x有关.
4.5 埃尔米特插值(Hermite 法国数学家)
有时插值函数不仅要求在节点上与原函数相同,还要求 其导数的值与原函数的值相同,即要求
H2n+1(xi)=f (xi), H’2n+1(xi)=f ’(xi) i=0、1、…、n
1 i k lk (xi ) 0 i k
n
则插值多项式为: Ln (x) yi li (x) i0
lk (x) 构造过程:
上式表明:n 个点 x0 , x1, xk1, xk1, xn 都是 lk (x) 的零点。
lk (x) Ak (x x0 )(x x1) (x xk1)(x xk1) (x xn )

数值分析参考答案(第二章)doc资料

数值分析参考答案(第二章)doc资料
(2)若 ,则
证明:
(1)
得证。
+
得证。
14. 求 及 。
解:


15.证明两点三次埃尔米特插值余项是
解:
若 ,且插值多项式满足条件
插值余项为
由插值条件可知

可写成
其中 是关于 的待定函数,
现把 看成 上的一个固定点,作函数
根据余项性质,有
由罗尔定理可知,存在 和 ,使
即 在 上有四个互异零点。
根据罗尔定理, 在 的两个零点间至少有一个零点,
数值分析参考答案(第二章)
第二章插值法
1.当 时, ,求 的二次插值多项式。
解:
则二次拉格朗日插值多项式为
2.给出 的数值表
X
0.4
0.5
0.6
0.7
0.8
lnx
-0.916291
-0.693147
-0.510826
-0.356675
-0.223144
用线性插值及二次插值计算 的近似值。
解:由表格知,
若采用线性插值法计算 即 ,

若采用二次插值法计算 时,
3.给全 的函数表,步长 若函数表具有5位有效数字,研究用线性插值求 近似值时的总误差界。
解:求解 近似值时,误差可以分为两个部分,一方面,x是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。
解:函数 的 展式为
其中
又 是次数为 的多项式
为 阶多项式
为 阶多项式
依此过程递推,得 是 次多项式

数值分析_第二章

数值分析_第二章



方程求根问题 简单迭代法 牛顿迭代法 非线性方程组的数值解法
课程安排
第八章 矩阵特征值问题的数值解法 (6 学时) 幂法 雅可比方法 QR方法
课程安排
第九章 常微分方程初值问题 (4学时)



欧拉方法 龙格-库塔方法 单步法和多步法
课程安排
上机实验
(16学时)
课程基本要求
E An n E An 1 1
8
n 1
n! E A 1
7
E A9 1 9! 4.41210 0.1601
由于误差在计算过程中放大很严重, 所以这是一种 数值不稳定的算法。
寻找一种数值稳定的相反的算法, 把乘法改为除法。用相向的递推关系
n 1 x exp( x 1) n x exp( x 1) dx 0 0
An 1 n An1 ,
n 2,3,
0 A 1 x 1 exp(x 1) dx 0
1
1 d exp x 1
1 0
1 1 e
数值计算问题的适定性

1. “良态”问题和“病态”问题

在适定的情况下,若对于原始数据很小的变化δ X, 对应的参数误差δ y也很小,则称该数学问题是良 态问题;若δ y很大,则称为病态问题 病态问题中解对于数据的变化率都很大,因此数 据微小变化必将导致参数模型精确解的很大变化 数学问题的性态完全取决于该数学问题本身的属 性,在采用数值方法求解之前就存在,与数值方 法无关
4.7
取n=5,设计算每项数值的舍入误差为Δ ,
令4Δ ≤Є=0.0005 Δ ≤0.0001,取 Δ =0.00005=0.5*10-4

数值分析PPT课件

数值分析PPT课件

03
数值分析的方法和技巧广泛应用于科学计算、工程、经 济、金融等领域。
主题的重要性
随着计算机技术的不断发展, 数值计算已经成为解决实际问 题的重要手段。
数值分析为各种数学问题提供 了有效的数值计算方法和技巧, 使得许多问题可以通过计算机 得以解决。
掌握数值分析的知识和方法对 于数学建模、科学计算、数据 分析等领域具有重要意义。
意义。
未来数值分析的发展方向
随着计算机技术的不断发展,数值分析 将更加依赖于计算机实现,因此数值算 法的优化和并行化将是未来的重要研究
方向。
随着大数据时代的到来,数值分析将更 加注重对大规模数据的处理和分析,因 此数据科学和数值分析的交叉研究将成
为一个新的研究热点。
随着人工智能和机器学习的发展,数值 分析将更加注重对非线性、非平稳问题 的处理,因此新的数值算法和模型将不
数值积分和微分
矩形法
将积分区间划分为若干个小的矩形区域,求 和得到近似积分值。
辛普森法
梯形法
利用梯形公式近似计算定积分,适用于简单 的被积函数。
利用三个矩形区域和一个梯形区域的面积近 似计算定积分。
02
01
高斯积分法
利用高斯点将积分区间划分为若干个子区间, 通过求和得到近似积分值。
04
03
矩阵的特征值和特征向量
数值分析ppt课件
目录
• 引言 • 数值分析的基本概念 • 数值分析的主要算法 • 数值分析的误差分析 • 数值分析的实例和应用 • 结论
01
引言
主题简介
01
数值分析是数学的一个重要分支,主要研究如何利用数 值计算方法解决各种数学问题。
02
它涉及到线性代数、微积分、微分方程、最优化理论等 多个数学领域。

数值分析全套课件

数值分析全套课件

Ln n si n

ˆ L2n (4L2n Ln ) / 3
n L error 192 3.1414524 1.4e-004 384 3.1415576 3.5e-005 3.1415926 4.6e-010
3/16
通信卫星覆盖地球面积
将地球考虑成一 个球体, 设R为地 球半径,h为卫星 高度,D为覆盖面 在切痕平面上的 投影(积分区域)
( x1 x2 ) | x1 | ( x2 ) | x2 | ( x1 )
15/16
例3.二次方程 x2 – 16 x + 1 = 0, 取
求 x1 8 63 使具有4位有效数
63 7.937
解:直接计算 x1≈8 – 7.937 = 0.063
( x1 ) (8) (7.937) 0.0005
5/16
误差的有关概念
假设某一数据的准确值为 x*,其近似值 为 x,则称
e(x)= x - x*
为 x 的绝对误差 而称
e( x) x x er ( x ) , x x
*
( x 0)

为 x 的相对误差
6/16
如果存在一个适当小的正数ε

,使得
e( x) x x
计算出的x1 具有两位有效数
1 0.062747 修改算法 x1 8 63 15.937 4位有效数 (15.937) 0.0005 ( x1 ) 0.000005 2 2 (15.937) (15.937)
16/16
1
参考文献
[1]李庆扬 关治 白峰杉, 数值计算原理(清华) [2]蔡大用 白峰杉, 现代科学计算 [3]蔡大用, 数值分析与实验学习指导 [4]孙志忠,计算方法典型例题分析 [5]车刚明等, 数值分析典型题解析(西北工大) [6]David Kincaid,数值分析(第三版) [7] John H. Mathews,数值方法(MATLAB版)

《数值分析》ppt课件

《数值分析》ppt课件

7.
er

a b


er
(a)

er
(b)
30
例4
ε(p)
设有三个近似数
p ≈ 6.6332
≈0.02585
a=2.31,b=1.93,c=2.24
它们都有三位有效数字,试计算p=a+bc,e ( p)和e r ( p) 并问:p的计算结果能有几位有效数字?
2位
例5
设f (x, y) cos y , x 1.30 0.005, y 0.871 0.0005. x
er

e x

x x x
.
由于精确值 x 未知, 实际上总把
e x
作为x*的
相对误差,并且仍记为er , 即
er

e x
.
❖定义 近似值 x* 的相对误差上限(界) (relative accuracy)
εr

|
ε x
|.
注:相对误差一般用百分比表示.
17
例1 用最小刻度为毫米的卡尺测量直杆甲和直杆
注:理论上讲,e 是唯一确定的, 可能取正, 也可能取负.
e > 0 不唯一,当然 e 越小越具有参考价值。
15
提问:绝对误差限的大小能否完全地 表示近似值的好坏? 例如:有两个量
x 10 1 , y 1000 5
思考
问:谁的近似程度要好一些?
16
❖定义 近似值 x* 的相对误差 (relative error)
a 2.18
e r(b) e (b) 0.00005 0.0024%
b 2.1200
19
➢有效数字 ( significant digits)

中国矿业大学《数值分析》课件-第6讲

中国矿业大学《数值分析》课件-第6讲
ENDIF
解求精技术(3)
3.缩放 在上讲提到,缩放能使行列式的大小得以标准化,不仅如此, 当方程组中某些方程的系数比其他方程大很多时,缩放能最小 化舍入误差。
这种情况在工程领域中经常出现,因为在建立方程组时, 可能使用了许多不同的单位,如在电路问题中,一个未知 电压可以是从毫伏到千伏之间的任何值。
步骤之后,得到只有一个未知数的方程。 (2) 再将结果后向代入原方程组中一个方程中,求解剩下的未知
数。
这个基本方法可以扩展到更大规模的方程组中,发展出一个系统 的求解策略,其包括消去未知数和已求解未知数的值代回原方程 两个步骤。高斯消去法就是该策略最基本的方法。
原始高斯消去法
以三元方程组为例
a11x1 a21x1 a31x1
数值方法
--- 线性代数方程组
背景
在历史上,除了小规模方程组以外,由于不可能求解更复杂的方程 组,使数据方法在很多工程领域中的应用受到限制。 计算机的出现使求解大规模联立线性代数方程组成为可能。因此, 可以求解更复杂和更实际的问题,研究人员可以更多的将重点放在 形式化和对结果的解释上。
数学背景
线性代数方程组和矩阵有非常重要的联系。要清楚以下的概念: 行向量、列向量、mXn矩阵、方阵以及一些特殊矩阵。
b2 a22 a23
x1 b3
a32 D
a33
行列式和克莱姆法则
克莱姆法则的优缺点: (1) 克莱姆法则是最适合求解小规模方程组的技术之一; (2) 对于大规模方程组,需要进行大量数值计算,此法手工实现
困难。
原始高斯消去法
回忆一般我们求解二元方程的方法。
求解过程分为两步: (1) 处理方程,从方程组中消去一个未知数。经过这个“消去”

数值分析课件第二章

数值分析课件第二章

可以用基函数的方法求 L 2 ( x ) 的表达式,此时基函数
l k 1 ( x ), l k ( x ), l k 1 ( x ) 是二次函数,且在节点上满足条件 l k 1 ( x k 1 ) 1,
l k ( x k ) 1,
l k 1 ( x j ) 0 ,
( j k , k 1);
16
yk
y k 1
2.2.2
拉格朗日插值多项式
将前面的方法推广到一般情形,讨论如何构造通过
n 1 个节点 x 0 x1 x n 的 n 次插值多项式 L n ( x ) .
根据插值的定义
Ln ( x )
应满足 (2.6)
Ln ( x j ) y j
( j 0 ,1, , n ).
L1 ( x ) y k l k ( x ) y k 1l k 1 ( x ) L 2 ( x ) y k 1l k 1 ( x ) y k l k ( x ) y k 1l k 1 ( x )
20
n 1 ( x ) ( x x0 )( x x1 ) ( x x n ),
Ln ( x j ) y j
( j 0 ,1, , n ).
(2.6)
19
形如(2.9)的插值多项式 L n ( 称为拉格朗日插值多项式, x) 而(2.3)与(2.5)是
L
n
n 1 的特殊情形 n2 和 .
(x)

n
k 0
y k lk ( x ).
(2.9) (2.3) (2.5)
为构造 L n ( x ) , 先定义 n 次插值基函数.
17
定义1
若 n次多项式 l j ( x ) ( j
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
x


x


x0



x x1 x0 x1
2
,
x0

x

x1,
0,
x1 x xn ,

n

x





x

xn


x xn1 xn xn1
2
,
xn1

x
xn ,
0,
x0 x xn1,



x

xi
2. 分段线性插值
所谓分段线性插值就是通过插值点用折线
段连接起来逼近 f x 。
给定节点
a x0 x1 L xn b
f x在节点x i 上的函数值为 yi ,过型值点
x i, yi ,i 0,1,L ,n 作折线相连,则
p
x

x xi
xi1 xi1
在每个子区间 x i, yi 上作两点三次
Hermite插值,因此是分段三次,总体是直 至一阶导数连续,插值函数为
n
H x yii x mi i x i0
其中基函数
0

x


x x1 x0 x1
2

1
2
§4 分段低次插值
❖多项式插值的问题 ❖分段线性插值 ❖分段三次埃尔米特插值 ❖小结
1. 多项式插值的问题
前面介绍了构造插值公式的方法,并 分析了它们的余项。在实际应用插值函数
作近似计算时,总希望插值公式余项Rn x
的绝对值小一些,即使得逼近的精度好。
从 Rn x 表达式看,似乎 提高插值多项式的
差非常敏感,也就是说高次插值具有数 值不稳定性。
例1 给定函数
f

x

1 1 x2
,
5 x 5,
取其等距节点 xi 110i ni 0,1,L ,n , 构
造的La(x)
j0
1 1 x2j li
x
当 n 时,pn (x) 只能在 x 3.63 内收敛,而
2

1
2
x xi xi1 xi
,
xi1

x

xi
i

x


x xi
xi1 xi1
2

1
2
x xi xi1 xi
,
xi

x

xi1
,

i 1, 2,L , n 1

0, else
在这个区间以外是发散的。这种畸形现象
通常叫做Runge现象。如下图所示。
Pn x
1
1 x2
为了既要增加插值结点,减小插值区间, 以便更好的逼近被插值函数,又要不增加 插值多项式的次数以减少误差,可以采用 分段插值的办法。 所谓分段低次插值,就是对于给定的 x , 只取与之邻近的节点及相应的函数值作低 次多项式插值。 优点:方便,简单,有较好的稳定性和收 敛性,通常在分点处保持一定的连续性。
h max 0in1
xi1 xi
,
M max f 4 (x) a xb
次数便可达到目的,但实际上并非如此。
在插值过程中有两种误差:1)由插值函数
Pn x 替代被插函数 f x所引起的截断误差;
2)节点数据的误差。这种误差在插值过程
中是否会被扩散或放大呢?这就是插值过
程的稳定性问题。对任意的插值节点,当
时, 不一定收敛到 ,事实上,
n当 n变大P时n ,x 插值过程对于节f 点 x的数据误
理:
定理1 如果f x 在 a,b 上二阶连续可微,
则分段线性插值函数 p(x)的余项有以下估

h2
R(x) f (x) p(x) M
8
其中
h

max (
0in1
xi1

xi
),
M max f "(x) a xb

3.分段三次Hermite插值
给定节点a x0 x1 L xn b,f x在节点 x i 上的函数值及导数值分别为 y i, m i 。
定理2:设 H (x是) 分段三次Hermite 插值多
项式,若 f xC3 a,b, f 4 x 在 a,b 内存在,
其中a,b 是包含 x0, xn 的任一区间,则对
任意给定的xa,b ,有
其中
R(x) f (x) H (x) h4 M , 384



x xi

xi1 xi1
2
,
xi 1

x

xi
,
i
x


x


xi



x xi
xi1 xi1
2
,
xi

x

xi 1 ,


i 1, 2,L , n 1
0, else.
分段三次Hermite插值的余项 可通过三
次Hermite插值余项得到。
i j i j.
则 j (x), j 0,1,L , n 即为分段线性插值的基
函数,基函数 j(x)只在 x j 附近不为零,在 其它地方均为零,这种性质称为局部非零
性质。相应的分段线性插值函数为:
n
p x yii x, a x b i0
关于分段线性插值的误差估计 ,有如下定
x j1 x x j ( j 0,1,L , n);

j
(
x)



x x j1 , x j x j1
x j x x j1( j 0,1,L , n);



0, else
则 j(x) 是分段一次的连续函数且满足条件
i (xj )
ij

1, 0,
x x0 x1 x0
,
x0

x

x1
0,
x1 x xn
n
x


x xn1 xn xn1
2
1
2
x xn xn1 xn
,
xn1

x

xn ,

0,
x0 x xn1,

x xi1 xi xi1
yi

x xi xi1 xi
yi1, xi x xi1,i 0,1,L ,n 1
是分段一次多项式,但总体在a,b 上连续。
Y f x px
O
L x0 x1 x2
xn1 xn X
若令 x1 x0 , xn1 xn ,

x x j1 , x j x j1
相关文档
最新文档