1.2.2 函数的表示方法(2)
1.2.2-函数的表示法(要用)
0 x ≤5 5 x ≤10 10 x ≤15 15 x ≤20
票价 y(元)
2
3
4
5
此分段函数的定义域为 (0,20]
此分段函数的值域为 {2,3,4,5}
①自变量的范围是怎样得到的? ②自变量的范围为什么分成了四个区间?区间端点
是怎样确定的? ③每段上的函数解析式是怎样求出的?
作函数图象:
王伟 张城 赵磊 班级平均分
第一次 98 90 68 88.2
第二次 87 76 65
78.3
第三次 91 88 73 85.4
第三次 92 75 72 80.3
第五次 88 86 75 75.7
第六次 95 80 82 82.6
请你表对格这能三否直位观同地学分在析高出一三学位年同度学成的绩数高学低学? 如习何情才况能做更一好的个比分较析三。个人的成绩高低?
分段函数
2. 化简函数 y | x 5 | x2 2x 1
解:由题意知 y = | x + 5 | + | x -1 |
y
当 x ≤-5 时,
y = -( x + 5 ) -( x -1 )=-2x-4
当 -5 < x ≤ 1 时,
6
y = ( x + 5 ) -( x -1 ) = 6
一函次数函解数析:式y=一kx定+b是(方k≠程0);
可看成关于x、y的方程。
二方次程函不数一:定y=是ax函2+数bx+解c 析(式a≠。0) 例如:x2+y2=1
复习回顾
(1)炮弹发射
(解析法)
h=130t-5t2 (0≤t≤26)
(2)南极臭氧层空洞 (图象法)
人教A版必修一数学课件:1.2.2函数的表示法(第2课时分段函数及映射)
研修班
3
x+2,x≤-1 2 已知函数 f(x)=x ,-1<x<2 ,求 f(f(f(-3))) 2x,x≥2 【思路点拨】 由题目可获取以下主要信息: ①函数 f(x)是分段函数; ②本例是求值问题. 解答本题需确定 f(f(-3))的范围,为此又需 确定 f(-3)的范围,然后根据所在定义域代入相 应解析式逐步求解.
2018/12/1 研修班 8
对含有绝对值的函数,要作出其图象,首先应根据绝对值
的意义去掉绝对值符号,将函数转化为分段函数,然后分段作 出函数图象.由于分段函数在定义域的不同区间内解析式不一
样,因此画图时要特别注意区间端点处对应点的实虚之分.
2.写出下列函数的解析式并作出函数图象: (1)设函数y=f(x),当x<0时,f(x)=0;当x≥0时,f(x)=2; (2)设函数y=f(x),当x≤-1时,f(x)=x+1;当-1<x<1时,f(x)
2018/12/1
研修班
2
1.分段函数是一个函数还是几个函数?其定义域、值域各
是什么? 【提示】 分段函数是一个函数而非几个函数,其定义域是
各段定义域的并集,值域是各段值域的并集.
2.函数是映射吗? 【提示】 对比函数定义与映射定义可知,函数是特殊的映
射,是从非空数集到非空数集的映射.
2018/12/1
2018/12/1
研修班
4
【解析】 ∵-3≤-1,∴f(-3)=-3+2=-1 ∴f(f(-3))=f(-1)=1,
∵-1<1<2,
∴f(f(f(-3)))=f(1)=1.
(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相
应的解析式求得. (2)像本题中含有多层“f”的问题,要按照“由里到外”的顺序,层层
必修1课件:1.2.2函数的表示法
云在漫步
§1.2.2 函数的表示方法
学习目标
第一课时
1、掌握函数的三种表示法:列表法、图象法、解析法, 、掌握函数的三种表示法:列表法、图象法、解析法, 体会三种表示方法的特点。 体会三种表示方法的特点。 2、能根据实际问题情境选择恰当的方法表示一个函数。 、能根据实际问题情境选择恰当的方法表示一个函数。 3、体会数形结合思想在理解函数概念中的重要作用, 、体会数形结合思想在理解函数概念中的重要作用, 在图形的变化中感受数学的直观美。 在图形的变化中感受数学的直观美。
2010年12月26日星期日5 48分16秒 2010年12月26日星期日5时48分16秒 日星期日 云在漫步
图象法
列表法
二、由实际问题引入分段函数的概念 某市空调公交车的票价按下列规则制定: 例6 某市空调公交车的票价按下列规则制定: 公里以内(含 公里),票价 公里),票价2元 (1)5公里以内 含5公里),票价 元; ) 公里以内 公里以上, 公里, (2)5公里以上,每增加 公里,票价增加 元(不足 ) 公里以上 每增加5公里 票价增加1元 5公里的按 公里计算)。 公里的按5公里计算 公里的按 公里计算)。 如果某条线路的总里程为20公里 请根据题意, 公里, 如果某条线路的总里程为 公里,请根据题意,写出 票价与里程之间的函数解析式,并画出函数的图象。 票价与里程之间的函数解析式,并画出函数的图象。
1、正比例函数、反比例函数的一般式是怎样的? 正比例函数、反比例函数的一般式是怎样的?
y = kx( k ≠ 0)
k y = (k ≠ 0) x
S = 100t
C = 2πr
2019-2020学年人教a版数学必修1课件:1.2.2 第2课时分段函数与映射
(n∈N*,n≥3).
求 f(3),f(4),f[f(4)]的值. 【解析】由题意可知 f(1)=1,f(2)=2,则
f(3)=f(2)+f(1)=2+1=3,
f(4)=f(3)+f(2)=3+2=5,
f[f(4)]=f(5)=f(4)+f(3)=5+3=8.
分段函数的图象及应用 【例 2】已知函数 f(x)=1+|x|-2 x(-2<x≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 【 解 题 探 究 】 讨论x的取值范围 → 化简fx的解析式
•1.2 函数及其表示
1.2.2 函数的表示法
第2课时 分段函数与映射
目标定位
1.掌握简单的分段函数, 并能简单应用. 2.了解映射概念及它与函 数的联系.
重点难点
重点:分段函数的应用及 映射的判断. 难点:分段函数的应用.
• 1.分段函数
• 在函数的定义域内,对于自变量x的不同取值区间, 有 数着. 不对应同关的系_________,这样的函数通常叫做分段函
2a=4a,所以a=2.
• 5.某单位为鼓励职工节约用水,作出了如下规定: 每位职工每月用水不超过10立方米的,按每立方米 m元收费;用水超过10立方米的,超过部分按每立 方米2m元收费.某职工某月缴水费16m元,求该职 工这个月实际用水量.
【解析】该单位职工每月应缴水费y与实际用水量x满足的
关系式为y=m2mx,x-0≤ 10xm≤,1x0>,10.
映射的概念及应用
• 【例3】判断下列对应是不是从集合A到集合B的映 射.
• (1)A=N*,B=N*,对应关系f:x→|x-3|; • (2)A={平面内的圆},B={平面内的矩形},对应关
人教版高中数学必修一1.2.2_函数的表示法_第二课时ppt课件
考点一
课堂互动讲练
考点突破 分段函数图象的画法
根据分段区间及各段解析式.常用描点法画图,注意区间 端点的虚实.
例1 已知函数 f(x)=1+|x|- 2 x(-2<x≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 【思路点拨】 讨论x的取值范围
→ 化简fx的解析式
例2 从甲同学家到乙同学家的途中有一个公园 甲、乙两家到该公园的距离都是 2 km,甲 10 点钟 发前往乙家,如图表示甲从自家出发到乙家为止 过的路程 y(km)与时间 x(分钟)的关系.依图象回 下列问题:
(1)甲在公园休息了吗?若休息了,休息了多 长时间? (2)甲到达乙家是几点钟? (3)写出函数 y=f(x)的解析式. (4)计算当 x=50 分钟时,甲所走的路程.
x →y=12x.
【思路点拨】 解答本题可由映射定义出发,观察A中任何一 个元素在B中是否都有唯一元素与之对应. 【解】 (1)由于A中元素3在对应关系f作用下其与3的差的绝对 值为0,而0∉B,故不是映射. (2)因为一个圆有无数个内接矩形,即集合A中任何一个元素在 集合B中有无数个元素与之对应,故不是映射.
问题探究
x x≥0 1.y=|x|=-x x<0 可以说 y=|x|是两 个函数吗? 提示:y=|x|,x∈R,仍是一个函数,只是 x ∈[0,+∞)与 x∈(-∞,0)的对应关系不同, 对于具体 x 值,所用的对应关系是唯一的.
2.从定义上看,函数与映射有什么关系? 提示:对比函数定义与映射定义可知,函数是特殊的映射, 是从非空数集到非空数集的映射.并非所有映射都为函数.
将(60,4),(40,2)分别代入,得 k2=110,b=- 2.
1.2.2函数的表示法(第2课时)
1 1.2.2函数的表示法(二)求函数解析式
1、(1)已知f (x )是一次函数,且f [f (x )] = 4x – 1,求f (x )及f (2);
(2)已知2
1(1)1x f x x +=
-,求f (x )的解析式;
(3)已知12()f x +f (x ) = x (x ≠0),求f (x )的解析式;
(4)已知3f (x 5) + f (–x 5) = 4x ,求f (x )的解析式.
2、 设f (x )是R 上的函数,且满足f (0) = 1,并且对任意实数x ,y ,有f (x – y ) = f (x ) – y (2x – y + 1),求f (x )的表达式.
3、 已知f (x )为二次函数,且f (x +1)+f (x –1) = 2x 2–4x ,
求f (x )的表达式.
4、用长为l 的铁丝变成下部为矩形,上部为半圆形的框架如图所示,若矩形底边长为2x ,求此框架围成的面积y 与x 的函数关系式,并指出其定义域.
5、 经市场调查,某商品在近100天内,其销售量和价格均是时间t 的函数,且销售量近似地满足关系g (t ) =1
10933t -+ (t ∈N*,0<t ≤100),在前40天内价格为f (t ) =14
t + 22(t ∈N*,0≤t ≤40),在后60天内价格为1
()522f t t =-+(t ∈N*,40<t ≤100),求这种商品的日销售额的最大值(近似到1元).
D
C。
1函数的表示法3种表示法和分段函数
此五物之间,岂不为六一乎?”写作背景:宋仁宗庆历五年(1045年),参知政事范仲淹等人遭谗离职,欧阳修上书替他们分辩,被贬到滁州做了两年知州。到任以后,他内心抑郁,但还能发挥“宽简而不扰”的作风,取得了某些政绩。《醉翁亭记》就是在这个时期写就的。目标导学二:朗读文章,通文
会员免费下载 顺字1.初读文章,结合工具书梳理文章字词。2.朗读文章,划分文章节奏,标出节奏划分有疑难的语句。节奏划分示例
三种表示方法举例:
(1).解析法: y kx (k 0) , h 1 gt2
2
(2).列表法:
国内生产总值(单位:亿元)
年份
1990
1991
1992 1993
生产总值 18598.4 21662.5 26651.9 34560.5
(3).图象法:
我国人口出生率变化曲线Fra bibliotek例2.下表是某校高一(1)班三位同学在高一学年度几次 数学测试的成绩及班级平均分表:
(1)求f{f[f(-2)]} ;
(2)当f (x)=-7时,求x ;
解 (1) f{f[f(-2)]} = f{f[-1]}
= f{1} =0 (2)若x<-1 , 2x+3 <1,与
f (x)=-7相符,由
2x+3 =-7得x=-5
易知其他二段均不符合f (x)=-7 。
故 x=-5
思考
x+2, (x≤-1)
120
100
80 王伟
60
张城
赵磊
班平均分 40
(2)请你对这三位同学在高一学年度
20 的数学学习情况做一个分析,
0 第一次 第二次 第三次 第四次 第五次 第六次
例3 . 画出函数y | x | 的图象.
1.2.2函数的表示法(二)映射
例如:
f:平方
1
2
1
3
4
2
5
6
3
7
8
9
是函数
也是映射
学生甲 学生乙 学生丙 学生丁
f
高一3班
高一4班
只是映射
以下是不是映射?
①开平方
3
9
-3
4
2 -2
1
1
-1
以下是不是映射?
①开平方
3
9
-3
方
-1
2
1
-2
4
3 -3
9
以下是不是映射?
①开平方
记作:f:x y, x A, y B 或者f:A B,其中x称为原象,y称为象
象与原象的定义:
给定一个集合A到B的映射,且a∈A, b∈B,若a与b对应,则把元素b叫做a在 B中的象,而a叫做b的原象.
③求正弦 1
2
30
2
45
2
60
3
90
2
1
④乘以2 1
1
2 3
2
4
3
5
6
函数与映射之间的异同: 1)函数是一个特殊的映射; 2)函数:数集A数集都是数集,
a
e
a
e
a
e
bf
bf
bf
c
g
c d
g
c
g d
“原象集”不 能有剩余元素
“象集”可 以有剩余元 素
例1. 判断下列对应是否映射?有没有对 应法则?
a
e
a
e
a
e
bf
bf
bf
c
(新)人教版高中数学必修一1.2.2《函数的表示法》课件(共23张PPT)
的一种“程序”或“方法”.因此要把“2x + 1”及“ x + 1”看成一个整体来求解.
1 1 (2)设f( +1)= 2-1,则f(x)=________. x x (3)若对任意x∈R,都有f(x)-2f(-x)=9x+2,则f(x)= ________.
[答案]
(1)D (2)x2-2x(x≠1)
6.(2012· 全国高考数学文科试题江西卷)设函数f(x)= x2+1 x≤1 2 ,则f(f(3))=( x>1 x 1 A.5 2 C. 3 B.3 13 D. 9 )
[答案] D
7.已知函数f(x)=
2 x -4,0≤x≤2, 2x,x>2,
,则f(2)=
2.作图时忘记去掉不在函数定义域内的点 [例5] 数的值域. [错解]
x,-1≤x≤1, 由题意,得y= -x,x<-1或x>1.
x|1-x2| 画出函数y= 2 的图象,并根据图象指出函 1-x
[例 5]
(1)已知 f(x)=x2,求 f(2x+1);
(2)已知 f( x+1)=x+2 x,求 f(x). 1 (3)设函数 f(x)满足 f(x)+2f(x )=x (x≠0),求 f(x). [分析] 我们前面指出,对应法则“f”实际上是对“x”计算
5.(山东冠县武的高2012~2013月考试题)已知函数f(x)
x+1x≥0 = fx+2x<0
则f(-3)的值为( B.-1 D.2
)
A.5 C.-7
[答案] D
如图,在边长为4的正方形ABCD的边上有一点P,沿折 线BCDA由点B(起点)向点A(终点)运动,设点P运动的路程为 x,△APB的面积为y. (1)求y关于x的函数关系式y=f(x); (2)画出y=f(x)的图象; (3)若△APB的面积不小于2,求x的取值范围.
函数的表示方法第1课时 (2)
(2) 函数图象既可以是连续的曲线,也可 以是直线、折线、离散的点等等。
练习: 国内跨省市之间邮寄信函,每封信 函的质量和对应的邮资如表.
信函质 0<m≤ 20<m≤ 40<m≤ 60<m≤ 80<m≤1 量 20 40 60 80 00 (m)/g
邮资 (M)/分 80 160 240 320 400
t∈[0,5)
30 0 5 10 15 20 25 30
v/(cm/s)
t/s
3t , t∈[5,10) 30 v(t ) t∈[10,20) 25 30, 3t 90, t∈[20,30]. 20
15
思考:某质点在30s内运动速度v是时间t的函数,它的图 像如图,用解析法表示出这个函数,并求出9s时质点的 v/(cm/s) 速度. t∈[0,5) 10 t ,
2, 3, y 4, 5,
0 < x 5, 5 < x 10,
y 5
10 < x 15, 3 15 < x 20, 2
1
0 5 10 15 20 X
4
我们把上述两例中的函数叫做分段函数: 即分区间定义的函数. 分段函数的图象要分段作出!
注意: (1)有时表示函数的式子可以不止一个, 对于分几个式子表示的函数,不是几个函数, 而是一个函数,我们把它称为分段函数.
例一、 下列对应是不是A到B的映射? 1 A={1,2,3,4},B={3,4,5,6,7,8,9} ,f:乘 2加1 2 A=N+,B={0,1} ,f: x 除以2得的余数 3 A=R+,B=R,f:求平方根 ss 4 A={x|0≤ x<1},B={y|y≥1} f:取倒数
函数的表示(二)(叶)
2, 提示:y= 3,
0<x≤5, 5<x≤10.
问题3:x与y之间有何特点? 提示:x在不同区间内取值时,与y所对应的关系不同.
[导入新知]
如果函数y=f(x),x∈A,根据自变量x在不同的取值 范围内,函数有着不同的对应关系,称这样的函数为分 段函数.
分段函数 [提出问题]
某市空调公共汽车的票价按下列规则判定: (1)5 千米以内,票价 2 元; (2)5 千米以上,每增加 5 千米,票价增加 1 元(不足 5 千米的按 5 千米计算). 已知两个相邻的公共汽车站间相距 1 千米,沿途(包括 起点站和终点站)有 11 个汽车站.
问题1:从起点站出发,公共汽车的行程x(千米)与票价
1.2.2 函数的表示
[典例]
(1)已知函数 f(x)是一次函数,若 f[f(x)]=4x+8,求
f(x)的解析式. (2)已知 f(x)是二次函数, 且满足 f(0)=1, f(x+1)-f(x)=2x, 求 f(x)的解析式.
例:求下列函数的解析式: 1+x 1+x2 1 ①已知 f( x )= 2 +x,求 f(x); x ②已知 f( x+1)=x+2 x,求 f(x).
[类题通法] 判断一个对应是否为映射的两个关键点 (1)对于 A 中的任意一个元素,在 B 中是否有元素对应; (2)B 中的对应元素是否是唯一的. 注意:“一对一”或“多对一”的对应都是映射.
[活学活用] 已知 A={1,2,3,„,9},B=R,从集合 A 到集合 B 的映射 f: x x→ . 2x+1 (1)与 A 中元素 1 相对应的 B 中的元素是什么? 4 (2)与 B 中元素 相对应的 A 中的元素是什么? 9
函数的表示法(2)省公开课获奖课件说课比赛一等奖课件
1.2.2 │ 三维目的
3.情感、态度与价值观 从学生熟知旳实际问题入手,能使学生主动参加 数学学习活动,对数学有好奇心和求知欲;把数学和 实际问题相联络,使学生初步体会数学与人类生活旳 亲密联络及对人类历史发展旳作用;经过学生之间相 互交流合作,让学生学会与人合作,并能与别人交流 思想,培养合作意识.
│ 预习探究
[思考] 分段函数的对应关系不同,那么分段函数是由几 个不同的函数构成的吗?
解:不是.分段函数旳定义域只有一种,只但是在定 义域旳不同区间上相应关系不同,所以分段函数是一 种函数.
│ 预习探究
知识点三 映射的概念 设 A,B 是两个________非__空__旳__集__合________,如果按某一个
列表法
列出___表__格___来表示两个变量之 间的对应关系
│ 预习探究
[思考] (1)任何一个函数都可以用解析法、列表法、图 像法三种形式表示吗?
解:不一定.如:函数的对应关系是:当 x 为有理数时, 函数值等于 1,当 x 为无理数时,函数值等于 0.此函数就无 法用图像法表示.
│ 预习探究
A.f(x)=-2x-3 C.f(x)=2x+3
B.f(x)=2x+1 D.f(x)=-2x-3 或 f(x)=2x+1
│ 考点类析
[答案] D
[解析] 设 f(x)=ax+b,则 f[f(x)]=f(ax+b)=a(ax+b)+b =a2x+ab+b=4x+3,
所以 a2=4 且 ab+b=3,解得 a=-2,b=-3 或 a=2, b=1.
│ 预习探究
[思考] (1)从映射 f:A→B 的角度理解函数,A 就是 定__义__域____,函数的值域 C___⊆_____B.
1.2.2函数的表示法
例题剖析
例3 某种笔记本的单价是5元,买x(x{1,2,3,4,5}) 个笔记本需要y元。试用函数的三种表示法表示函数 y=(x)。 解:这个函数的定义域是数集{1,2,3,4,5}用解 析法可将函数y=f(x)表示为y=5x,x{1,2,3,4,5}. 用列表法可将函数表示为 笔记本数x 钱数y 1 5 2 10 3 15 4 20 5 25
y 100
90 80
70
.
班♦ 平 均 分
■
▲
ቤተ መጻሕፍቲ ባይዱ. . . .
▲
.
■ ▲
王伟
♦
▲
♦ ▲
■
■
♦
♦ 张城
▲ ■
■
♦
赵磊
60 0
1
2
3
4
5
6
x
例5 画出函数y=|x|的图象. 解:由绝对值的概念,我们有
y=
图象如下:
x, x≥0, -x, x<0.y
5
4 3 2
1 -3 -2 -1 0 1
2 3 x
有些函数在它的定义域中,对于自变量X的不同取值 范围,对应关系不同,这样函数通常称为分段函数。
第一次 第二次 王伟 张城 赵磊 班级平均分 98 90 68 88.2 87 76 65 78.3
第三次 91 88 73 85.4
第三次 92 75 72 80.3
第五次 88 86 75 75.7
第六次 95 80 82 82.6
y 100
90 80
70
.
班♦ 平 均 分
■
▲
. . . .
▲
应关系f,在集合B中都有唯一的元素和它对应,那么这个
函数的表示方法(2)
(2)分段函数的定义域是各段定义域的并集,值
域是各段值域的并集。
例2、 画出函数 y
= | x |的图象.
变一: 画出函数 y
= | x+1| 的图象. 变二: 画出函数 y = |x-1| 的图象. 变三: 画出函数 y = |x|+1的图象. 变四: 画出函数 y = |x|-1的图象.
变五: 画出函数 y = | x-1 |+ |x + 4|的图象,并求函
问题2、在函数的定义中,若将“A,B是两个 非空的数集”改为“A,B是两个非空的集合”, 会得到什么概念呢?
设A、B是两个非空的集合,如果按某个确定的对应 关系f,使对于集合A中的任意一个数x,在集合B中都 有唯一确定的数 f(x)和它对应,那么就称f:A→B为集 合A到集合B的一个 映 射 。
例4. 下面哪些对应是从A到B的映射?哪些是函数?
数的值域。
x 5,x 1 2 例3、 已知函数f(x) x , 求f (3),f[f ( 3)];
(2)画出y f (x)的图像;
1 (3)若f(a)= ,求a的值 . 2
函数的定义:
设A、B是两个非空的数集,如果按某个确定的对应 关系f,使对于集合A中的任意一个数x,在集合B中都 有唯一确定的数 f(x)和它对应,那么就称f:A→B为集 合A到集合B的一个函数。
A 9 4 1 A 1 -1 2 -2 3 -3
(3 ) (1 )
开平方
B 3 -3 2 -2 1 -1
A 求正弦 B
30o
45
o
1 2
2 2
60o
3 2
90o
(2)
1
求平方 B 1 4
A
第一章 1.2.2(2)简单函数作图
1.2.2 第2课时
探究点一 :函数图象的作法
例1 画出函数 y=|x|的图象.
解 由绝对值的概念, 有
x, x≥0, y= -x,x<0.
所以,函数 y=|x|的图象如图所示.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
1.2.2 第2课时
探究点一 :函数图象的作法
主目录
探要点、究所然
当堂测、查疑缺
1.2.2 第2课时 (4) y
1 f ( x) x x
2
1
0
1 2
x
明目标、所然
当堂测、查疑缺
探要点、究所然
1.2.2 第2课时
探究点一 :函数图象的作法
跟踪训练 1 作出下列函数的图象: 1 (2)y=x; (1)y=1-x,x∈Z; (3)y=x2-4x+3,x∈[1,3].
1 y x (4) x
解 (1)因为 x∈Z,所以图象为一条直线上的孤立点,如图 1 所示;
明目标、知重点
第一章 集合与函数概念
§1.2 函数及其表示 1.2.2 函数的表示法
第2课时 分段函数及映射
探要点、究所然
1.2.2 第2课时
探究点一 :函数图象的作法
思考 作函数的图象通常分为哪几步?
答 通常分为三步,即列表、描点、连线.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
反思与感悟
(1)画函数图象时首先要考虑函数的定义域. (2)要标出关键
点,如图象的顶点、端点、与坐标轴的交点等,要分清这些关键点是实心 还是虚心.(3)要掌握常见函数图象的特征.(4)函数图象既可以是连续的曲 线,也可以是直线、折线、离散的点等等.
1.2.2函数的表示法2学案
1.2.2《函数的表示方法》导学案【使用说明】1、认真阅读课本,提前预习,明确基本概念,完成课前导学与自测部分, 要求:人人参与并独立完成;2、课堂积极讨论,大胆展示,发挥高效学习小组作用,完成合作探究部分;3、针对学生在预习环节可能解决不了的问题,课堂上教师进行点拨指导。
【学习目标】1.进一步理解函数的概念,了解函数表示的多样性,能熟练掌握函数的三种不同的表示方法;2.在理解掌握函数的三种表示方法基础上,了解函数不同表示法的优缺点,针对具体问题能合理地选择表示方法;【课前导学与自测】预习教材第20-22页,找出疑惑之处,完成新知学习分段函数:在函数的定义域内,对于自变量x 的不同取值区间,有着 ,这样的函数通常叫做 。
我市出租汽车收费标准如下:在3km 以内(含3km)路程按起步价8元收费,超过3km 以外的路程按1.6元/km 收费.试写出收费额关于路程的函数解析式,并画出函数图象.【精讲点拨】例1.作出下列各函数的图象,并指出函数的定义域和值域:(提示:分段函数的定义域和值域分别是各段函数的定义域和值域的并集。
)(1)1(01)()(1)x f x x x x ⎧<<⎪=⎨⎪≥⎩; (2)222(0)()2(0)x x x f x x x x ⎧+≥=⎨--<⎩例2.将函数1y x =-表示成分段函数的形式,并画出图象,并根据图象指出函数的定义域和值域。
变式1:函数y=|x-2|(x +1)。
变式2:f (x )= | x +1|+| x -2|。
【巩固练习】1.设函数22(2)()2(2)x x f x x x ⎧+≤=⎨>⎩,则(4)f -= ,若0()8f x =,则0x = 。
2.已知1(0)()(0)0(0)x x f x x x π+>⎧⎪==⎨⎪<⎩,则{[(1)]}f f f -= 。
3.国内投寄信函(外埠),假设每封信函不超过20g 时付邮资80分;超过20g 不超过40g 时付邮资160分;依次类推,写出每封xg(100x 0≤<)的信与所付邮资y 之间的函数解析式,并画出这个函数的图象。
高中数学 1.2.2函数表示法(二)课件 新人教A版必修1
1
30
2
2
45
2
60
3
90
2 1
h
2
A 求 平 方 B39-3来自24-2
1
1
-1
h
3
A 开 平 方 B
3
9
-3
4
2 -2
1
1 -1
h
4
A 乘 以 2 B
1
1
2
3
2
4
5
3
6
h
5
A乘 以 4B
0
1
4
2
3
12
4
5
20
h
6
映射f:A→B,可理解为以下4点:
函映数射
设A,B是两个非空的数集集合,如果按某一个 确定的对应关系f,使对于集合A中的任意一 个元素x,在集合B中都有唯一确定的元素y与 之对应,那么就称对应f:A→B为从集合A到集 合B的一个函映数射。
由此可知,映射是函数的推广,函 数是一种特殊的映射。
h
1
判断下列对应是不是映射?如果是,那这个映射 是函数吗?
若函数f(x)的定义域为[a,b],则f(g(x))的定义 域应由不等式a≤g(x)≤b解出即得。
练习 若函数f(x)的定义域为[1,4],则函数f(x+2)
的定义域为_[_-1_,_2_]_.
h
10
例 已知f(2x-1)的定义域是[0,3],求f(x)定义域。
已知f(g(x))的定义域,求f(x)定义域的方法: 已知f(g(x))的定义域为D,则f(x)的定义域为
h
17
1、A中每个元素在B中必有唯一的象 2、对A中不同的元素,在B中可以有相同的象 3、允许B中元素没有原象 4、A中元素与B中元素的对应关系,可以 是:一对一,多对一,但不能一对多
函数的表示方法
1.2.2 函数的表示法第1课时导入新课问题 1.我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题.回忆初中学过的三种表示法:解析法、图象法和列表法各是怎样表示函数的?(1)解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.(2)图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法. (3)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.例题1.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元,试用三种表示法表示函数y=f(x).解:这个函数的定义域是数集{1,2,3,4,5},用解析法可将函数y=f(x)表示为用列表法可将函数y=f(x)表示为用图象法可将函数y=f(x)表示为点评:解析法的特点是:简明、全面地概括了变量间的关系;可以通过解析式求出任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域; 但是并不是所有的函数都能用解析法表示,只有函数值随自变量的变化发生有规律的变化时,这样的函数才可能有解析式,否则写不出解析式,也就不能用解析法表示.例如:张丹的年龄n(n∈N*)每取一个值,那么他的身高y(单位:cm)总有唯一确定的值与之对应,因此身高y是年龄n的函数y=f(n),但是这个函数的解析式不存在,函数y=f(n)不能用解析法来表示.图象法的特点是:直观形象地表示自变量的变化,相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质,图象法在生产和生活中有许多应用,如企业生产图,股市走势图等; 列表法的特点是:不需要计算就可以直接看出与自变量的值对应的函数值,列表法在实际生产和生活中也有广泛的应用,如银行利率表、列车时刻表等等.注意:①解析法:必须注明函数的定义域,否则认为使函数解析式有意义的自变量的取值范围是函数的定义域;②函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;③图象法:根据实际情境来决定是否连线;④列表法:选取的自变量要有代表性,应能反映定义域的特征.2.已知函数f(x)在[-1,2]上的图象如图所示,求f(x)的解析式.3.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:请你对这三位同学在高一学年度的数学学习情况做一个分析.注:思考做学情分析,具体要分析什么?怎么分析?借助什么工具?做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.为了研究学生的学习情况,将离散的点用虚线连接,这样便于研究成绩的变化特点.拓展提升问题:变换法画函数的图象都有哪些?解答:变换法画函数的图象有三类:1.平移变换:(1)将函数y=f(x)的图象向左平移a(a>0)个单位得函数y=f(x+a)的图象;2(2)将函数y=f(x)的图象向右平移a(a>0)个单位得函数y=f(x-a)的图象; (3)将函数y=f(x)的图象向上平移b(b>0)个单位得函数y=f(x)+b 的图象; (4)将函数y=f(x)的图象向下平移b(b>0)个单位得函数y=f(x)-b 的图象. 简记为“左加(+)右减(-),上加(+)下减(-)”. 2.对称变换:(1)函数y=f(x)与函数y=f(-x)的图象关于直线x=0即y 轴对称; (2)函数y=f(x)与函数y=-f(x)的图象关于直线y=0即x 轴对称; (3)函数y=f(x)与函数y=-f(-x)的图象关于原点对称. 3.翻折变换:(1)函数y=|f(x)|的图象可以将函数y=f(x)的图象位于x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留y=f(x)的x 轴上方部分即可得到.(2)函数y=f(|x|)的图象可以将函数y=f(x)的图象y 轴右边部分翻折到y 轴左边替代原y 轴左边部分并保留y=f(x)在y 轴右边部分图象即可得到.函数的图象是对函数关系的一种直观、形象的表示,可以直观地显示出函数的变化状况及其特性,它是研究函数性质时的重要参考,也是运用数形结合思想研究和运用函数性质的基础.另一方面,函数的一些特性又能指导作图,函数与图象是同一事物的两个方面,是函数的不同表现形式.函数的图象可以比喻成人的相片,观察函数的图象可以解决研究其性质,当然,也可以由函数的性质确定函数图象的特点.借助函数的图象来解决函数问题,函数的图象问题是高考的热点之一,应引起重视. 课堂小结本节课学习了:函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课题学习】 1. 函数 f ( x) = | x − 1|的 图象是 ( )
x2 2. 已知函数 f ( x) = 1 1 − x ⑴画出函数的图象;
x>0 x=0 x<0
⑵求 f (1), f (−1), f [ f (−1)]的值.
问题 2. 化简函数y = | x|的解析式,说说此函数解析式的特点.
x+4 2 问 题3. 已知函数y = x − 2x −x + 2 ⑴求 f { f [ f (5)]}的值; ⑵画出函数的图象.
x
0 4
0<x x>4
2 ( x + 1) 问 题4. 画出函数y = −x
高一数学导学案
October 28, 2011
问题 6. 某客运公司确定客票价格的方法是:如果行程不超过100千米,票价是每千米0.5元,如果 超过100千米,超过部分按每千米0.4元定价,则客运票价y(元)与行程千米数 x(千米)之间的 函数关系式是 _____ . b a b 问 题7. 若定义运算a b = 则函数 f ( x) = x a a<b
高一数学 第 1 页(共4页)
高一数学导学案
October 28, 2011
第二课时
【探究新知】 问题 1. 当 x > 1时, f ( x) = x + 1;当 x 1时, f ( x) = − x,请写出函数 f ( x)的解析式.这个函数的解析
式有什么特点?与 f ( x) = x − 1, g( x) = x2 在解析式上有什么区别?
高一数学 第 3 页(共4页)
高一数学导学案
October 28, 2011
3. 某人驱车以52千米/时的速度从A地驶往260千米远处的 B地,到达 B地并停留1.5小时后,再 以65千米/时的速度返回A地.试将此人驱车走过的路程设 x ∈ R,对于函数 f ( x)满足条件 f ( x2 +1) = x4 +5 x2 −3,那么对所有的 x ∈ R, f ( x2 −1) = _____ . 【拓展提升】 已知函数y = f (n), n ∈ N∗ ,满足 f (n + 1) = f (n) + 2, n ∈ N∗ 且 f (1) = 1. ⑴求: f (2), f (3), f (4), f (5); ⑵猜想 f (n) =?, n ∈ N∗ .
x
0
的图像.
x>0
问 题5. 某市”招手即停”公共汽车的票价按下列规则制定: ⑴乘坐汽车5千米以内(含5千米),票价2元; ⑵5千米以上,每增加5千米,票价增加1元(不足5千米按5千米计算). 如果某条线路的总里程为20千米,请根据题意,写出票价与里程之间的函数解析式,并画出 函数的图象.
高一数学 第 2 页(共4页)
(2 − x)的值域是 _____ .
问题 8. 如图,在梯形ABCD中,AB = 10, CD = 6, AD = BC = 4,动 点P从 B点开始沿着折线 BC 、CD、DA前进至A,若P点运动 的路程为 x, PAB的面积为y. ⑴写出y = f ( x)的解析式,指出函数的定义域; ⑵画出函数的图象并求出函数的值域.
高一数学导学案
October 28, 2011
§1.2.2函数的表示方法
班级:_____ 学号:_____ 姓名:_____ 【三维目标】 1. 知识与技能 (1)体会简单复合函数的含义,会求简单的复合函数的定义域; (2)根据条件能用配凑法或换元法,代定系数法求一些函数的解析式. 2. 过程与方法 能够利用函数的解析式进行合理的推理,培养比较、分析、综合及抽象和概括能力. 3. 情感、态度与价值观 体验数学的应用意识及数形结合思想方法在解题中的应用。 【重点难点】 重点是函数的三种表示方法、分段函数和映射的概念. 难点是分段函数的表示及其图 象、映射概念的理解. 【学法指导】 课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的 不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以 使函数在形与数两方面的结合得到更充分的表现,使我们通过函数的学习更好地体会数形结合 这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要 注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方 式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,所以我们应将更多的精 力集中理解函数的概念,同时,课本也体现了从特殊到一般的思维过程. 【知识链接】 初中学过的函数的三种表示法:解析法、图象法和列表法
【回顾反思】 你学到了哪些知识、方法,通过学习,你有什么收获。
高一数学 第 4 页(共4页)