函数的几种表示方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D

C

B

A

1.2.2 函数的表示方法 第一课时 函数的几种表示方法

【教学目标】

1.掌握函数的三种主要表示方法

2.能选择恰当的方法表示具体问题中的函数关系 3.会画简单函数的图像 【教学重难点】

教学重难点:图像法、列表法、解析法表示函数 【教学过程】 一、复习引入:

1.函数的定义是什么?函数的图象的定义是什么? 2.在中学数学中,画函数图象的基本方法是什么?

3.用描点法画函数图象,怎样避免描点前盲目列表计算?怎样做到描最少的点却能显示出图象的主要特征?

二、讲解新课:函数的表示方法

表示函数的方法,常用的有解析法、列表法和图象法三种.

⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.

例如,s=602

t ,A=π2

r ,S=2rl π,y=a 2

x +bx+c(a ≠0),y=

2-x (x ≥2)等等都是用解析

式表示函数关系的.

优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.

⑵列表法:就是列出表格来表示两个变量的函数关系.

学号 1 2 3 4 5 6 7 8 9 身高

125

135

140

156

138

172

167

158

169

用列表法来表示函数关系的.公共汽车上的票价表

优点:不需要计算就可以直接看出与自变量的值相对应的函数值. ⑶图象法:就是用函数图象表示两个变量之间的关系.

例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本

中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.

优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.

三、例题讲解

例1某种笔记本每个5元,买 x ∈{1,2,3,4}个笔记本的钱数记为y

(元),试写出以x 为自变量的函数y 的解析式,并画出这个函数的图像

解:这个函数的定义域集合是{1,2,3,4},函数的解析式为 y=5x ,x ∈{1,2,3,4}.

它的图象由4个孤立点A (1, 5) B (2, 10) C (3, 15) D (4, 20)组成,如图

所示

变式练习1 设,)(331--+=+x x x x f 221)(--+=+x x x x g 求f [g (x )]。

解:)1

(3)1()1(3x x x x x x f +-+=+∴x x x f 3)(3-=

2)1

()1(2-+=+x x x x g ∴2)(2-=x x g

∴[]=)(x g f 296246-+-x x x

例2作出函数x x y 1

+

=的图象

列表描点:

Q P O G N M L K

(0.2, 5.0)(0.3, 4.0)(0.4, 3.0)(1.0, 2.0)(2.0, 2.5)(3.0, 3.3)(4.0, 4.3)(5.0, 5.2)

K'L'M'N'G'O'P'Q'

(-5.0, -5.2)(-4.0, -4.3)(-3.0, -3.3)(-2.0, -2.5)(-1.0, -2.0)(-0.4, -3.0)(-0.3, -4.0)(-0.2, -5.0)

变式练习2 画出函数y =∣x ∣与函数y=∣x -2∣的图象

四、小结 本节课学习了以下内容:函数的表示方法及图像的作法 【板书设计】 一、 函数的表示方法 二、 典型例题

例1: 例2: 小结:

【作业布置】

课本第56习题2.2:1,2,3,4

1.2.2 函数的表示方法 第一课时 函数的几种表示方法

一 、 预习目标

通过预习理解函数的表示 二 、预习内容

1.列表法:通过列出与对应 的表来表示的方法叫做列表法

2.图象法:以为横坐标,对应的为纵坐标的点的集合,叫做函数y=f (x )的图象,这种用“图形”表示函数的方法叫做图象法.

3.解析法(公式法):用来表达函数y=f (x )(x ∈A )中的f (x ),这种表达函数的方法叫解析法,也称公式法。

4.分段函数:在函数的定义域内,对于自变量x 的不同取值区间,有着 ,这样的函数通常叫做。

三、提出疑惑

同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

D C

B A

疑惑点

疑惑内容

课内探究学案

一 、学习目标

1.掌握函数的三种主要表示方法

2.能选择恰当的方法表示具体问题中的函数关系 3.会画简单函数的图像

学习重难点:图像法、列表法、解析法表示函数 二 、 学习过程

表示函数的方法,常用的有解析法、列表法和图象法三种.

⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.

例如,s=602

t ,A=π2

r ,S=2rl π,y=a 2

x +bx+c(a ≠0),y=

2-x (x ≥2)等等都是用解析

式表示函数关系的.

优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.

⑵列表法:就是列出表格来表示两个变量的函数关系.

学号 1 2 3 4 5 6 7 8 9 身高

125

135

140

156

138

172

167

158

169

用列表法来表示函数关系的.公共汽车上的票价表

优点:不需要计算就可以直接看出与自变量的值相对应的函数值. ⑶图象法:就是用函数图象表示两个变量之间的关系. 例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.

优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.

三、例题讲解

例1某种笔记本每个5元,买x ∈{1,2,3,4}个笔记本的钱数记为y (元),

试写出以x 为自变量的函数y 的解析式,并画出这个函数的图像

变式练习 1 设,)(331--+=+x x x x f 221)(--+=+x x x x g 求f [g (x )]。

例2作出函数

x x y 1

+

=的图象

变式练习2 画出函数y =∣x ∣与函数y=∣x -2∣的图象 三、当堂检测

相关文档
最新文档