2013年八年级数学上册第一、二章综合测试题

合集下载

第一、二章综合测试题

第一、二章综合测试题

第一、二章综合测试题一、选择题:1.下列变化属于物理变化的是()A.自磷自燃B.食物变质C.酒精挥发D.镁带燃烧2.已知一种微粒的核电荷数,可以确定该微粒的()A.相对原子质量B.中子数C.质子数D.核外电子数3.下列物质,属于纯净物的是()A.矿泉水B.空气C.氧气D.稀有气体4.空气中含量最多的是()A.氧气B.稀有气体C.二氧化碳D.氮气5.当今世界面临的三大环境问题分别是酸雨、臭氧层空洞和温室效应,形成他们主要原因分别是人们向天空排放大量的()A.二氧化碳、二氧化硫、一氧化碳 B.二氧化硫、氟氯烃、二氧化碳C.二氧化硫、一氧化碳、氟氯烃 D.稀有气体、氟氯烃、二氧化硫6.我国城市及其周围地区的环境中,造成空气污染的主要污染物是()A.二氧化硫、二氧化氮、可吸入颗粒物 B.二氧化碳、氮气、氧气C.二氧化碳、氧气、二氧化硫 D.二氧化氮、氮气、可吸入颗粒物7.分子和原子的主要区别在于()A.分子在运动原子不运动 B.分子是构成物质的微粒而原子不是C.分子大原子小 D.在化学变化中分子可分而原子不可分8.能保持二氧化碳化学性质的最小微粒是()A.碳原子和氧原子B.二氧化碳分子C.氧分子D.碳单质9.原子的质量集中在()A.原子核上 B.质子上 C.中子上 D.电子上10.物质在微观上都是由微粒构成的。

下列关系正确的是()A.铁由离子构成 B.氮气由分子构成 C.氯化钠由原子构成 D.水由离子构成11.假设可作确定相对原子质量标准的碳原子的质量为bg,一个X原子的质量为mg,则X的相对原子质量为()A.m12bB.mbC.12bmD.12mb12.美英联军在伊拉克战场上,不顾全世界人民的反对,使用了后患无穷的贫铀炸弹。

其中含有23892U,它的相对原子质量为238,质子数为92,则23892U所含的中子数为()A.238 B.92 C.146 D.330 13.下列有关实验操作正确的是()A.B.C.D.13.决定元素种类的是()A.核外电子数 B.质子数 C.中子数 D.相对原子质量14.某矿泉水标签上印有主要的矿物成分如下(单位:mg/L):Ca:20、K:3、Mg:3、Zn:0.06、F:0.02等。

八年级上册第一二章数学试题

八年级上册第一二章数学试题

八年级上册第一二章数学试题一、选择题(共10小题,每小题3分,满分30分)1. 下列哪个选项是正确的整数比例?A. 3:5B. 0.6:0.2C. 1/2:3/4D. 2.5:1.52. 已知一个等腰三角形的底边长为6厘米,腰长为5厘米,那么它的面积是多少平方厘米?A. 10B. 12C. 15D. 183. 一个长方体的长、宽、高分别是10厘米、6厘米和8厘米,那么它的体积是多少立方厘米?A. 480B. 240C. 360D. 6004. 以下哪个分数是最简分数?A. 4/8B. 5/10C. 3/6D. 7/95. 一个圆的直径是14厘米,那么它的半径是多少厘米?A. 7B. 14C. 28D. 3.56. 一个数的平方等于它本身,这个数可能是多少?A. 0B. 1C. 2D. 以上都是7. 下列哪个选项是正确的小数比例?A. 0.3:0.6B. 0.4:0.8C. 0.6:0.2D. 0.9:0.38. 一个等差数列的前三项分别是2、5、8,那么它的第100项是多少?A. 200B. 203C. 205D. 2079. 一个三角形的内角和是多少度?A. 90B. 180C. 270D. 36010. 一个圆的周长是31.4厘米,那么它的直径是多少厘米?A. 5B. 10C. 15D. 20二、填空题(共10小题,每小题2分,满分20分)11. 一个等边三角形的边长是6厘米,那么它的高是_________厘米。

12. 一个圆的半径是7厘米,那么它的面积是_________平方厘米。

13. 一个长方体的体积是294立方厘米,它的长、宽、高分别是14厘米、3厘米和_________厘米。

14. 一个分数的分子是12,要使它成为最简分数,分母应该是_________。

15. 一个等腰梯形的上底是6厘米,下底是10厘米,高是8厘米,那么它的面积是_________平方厘米。

16. 一个数的立方是27,那么这个数是_________。

八年级上数学第一章测试题

八年级上数学第一章测试题

八年级上册数学第一章测试题一、选择题(本大题共 11 小题,每小题 3 分,共 33 分. ?在每小题所给出的四个选项中,只有一项是符合题目要求的)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm2.等腰三角形的一边长等于4,一边长等于 9,则它的周长是()A.17 B . 22 C .17 或22 D .133.适合条件∠A= 1∠B=1∠C的△ ABC是()23A.锐角三角形B.直角三角形 C .钝角三角形D.等边三角形4.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°5.一个多边形的内角和比它的外角的和的 2 倍还大 180°,这个多边形的边数是()A.5B.6C.7D.86.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定7.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高 D .直角三角形斜边上的高等于斜边的一半8.能把一个三角形分成两个面积相等的三角形是三角形的()A. 高线B. 中线C. 角平分线D. 以上都不对9.已知等腰△ABC的底边BC=8cm,│ AC-BC│=2cm,则腰AC的长为()A.10cm或6cm B.10cm C.6cm D.8cm或6cm10、在一个四边形中,如果有两个内角是直角,那么另外两个内角( ) .(A) 都是钝角(B) 都是锐角(C)一个是锐角,一个是直角(D)互为补角11.下列图形中,是正多边形的是()A.三条边都相等的三角形B.四个角都是直角的四边形C.四边都相等的四边形D.六条边都相等的六边形(14 题)(18 题)二、填空题(本大题共 8 小题,每小题 3 分,共 24 分.把答案填在题中横线上)12.三角形的三边长分别为5, 1+2x, 8,则 x 的取值范围是 ________.13.四条线段的长分别为5cm、6cm、8cm、13cm,?以其中任意三条线段为边可以构成___个三角形.14.如图:∠ A+∠B+∠ C+∠D+∠E+∠ F 等于 ________.15.如果一个正多边形的内角和是900°,则这个正多边形是正______边形.16.n 边形的每个外角都等于45°,则 n=________.17.将一个正六边形纸片对折,并完全重合,那么,得到的图形是________边形, ?它的内角和(按一层计算)是_______度.18.如图,已知∠ 1=20°,∠ 2=25°,∠ A=55°,则∠ BOC的度数是 _____.19.如果一个角的两边分别垂直于另一个角的两边,其中一个角为65°,则另一个角为______度.三、解答题(本大题共 4 小题,共 43 分,解答应写出文字说明,?证明过程或演算步骤)20.(10 分)如图, BD平分∠ ABC,DA⊥ AB,∠ 1=60°,∠ BDC=80°,求∠ C的度数.21.(10 分)如图:(1)画△ ABC的外角∠ BCD,再画∠ BCD的平分线CE.(2)作出 AC边上的高。

北师大版八年级上册数学第一二章测试题及参考答案

北师大版八年级上册数学第一二章测试题及参考答案

八年级数学上册第一、二章测试题一.填空题:(每小题2分,共20分)1. 已知直角三角形的三边长为6、8、x ,x 为斜边,则以x 为边的正方形的面积为____ _; 2.如右图:图形A 的面积是 ;3.2)3(-=________,327- =_________, 0)5(-的立方根是 ;4.210-的算术平方根是 ,16的平方根是 ;5.计算(508)2-÷的结果是 . 6.比较下列实数的大小(在 填上 > 、< 或 =) ①3-2-; ②215- 21; ③112 53。

7.若a 、b 互为相反数,c 、d 互为倒数,则______3=++cd b a ;8.在2,3.0,10,1010010001.0,125,722,0,1223π---•- 中,负无理数集合:{ };9.有两棵树,一棵高6米,另一棵高2米,两树相距5米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米; 10.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬 到B 点,那么它所行的最短路线的长是_____________; 二.选择题:(每小题3分,共24分) 11、数轴上点P 表示的数可能是( )A 、B 、C 、D 、12.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是 ( )715242520715202425157252024257202415(A)(B)(C)(D)13.已知一直角三角形的木版,三边的平方和为1800cm 2,则斜边长为 ( ) (A ) 80cm (B ) 30cm (C ) 90cm (D ) 120cmAB第10题图144225A14.下列语句中正确的是 ( ) (A )9-的平方根是3-(B )9的平方根是3(C )9的算术平方根是3±(D )9的算术平方根是3 15.下列运算中,错误的是 ( ) ①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ (A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个16.若9,422==b a ,且0<ab ,则b a -的值为 ( ) (A ) 2- (B ) 5± (C ) 5 (D ) 5-17、如下图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数 为( )A .0B .1C .2D .318、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A. 2cmB. 3cm B.C. 4cmD. 5cm三.计算题:(每小题3分,共20分) 19. 24612⨯ )32)(32(-+()2132-7002871+- |322|21121--⎪⎭⎫⎝⎛--19、(6分)求下列图形中阴影部分的面积.(2)1414220、(6分)请在同一个数轴上用尺规作出 2 和 5 的对应的点。

八年级数学上册一二章练习题

八年级数学上册一二章练习题

第一章:勾股定理一、选择题1.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A 、24cm 2B 、36cm 2C 、48cm 2D 、60cm 22.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为( ) (A ) 4 (B ) 8 (C ) 10 (D ) 123.如图,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是( )(A )321S S S =+ (B )232221S S S =+ (C )321S S S >+ (D ) 321S S S <+4. 若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ).(A )3cm 2 (B )32cm 2 (C )33cm 2 (D )4cm 26. 在下列以线段a 、b 、c 的长为三边的三角形中,不能构成 直角三角形的是 ( )(A )a=9 、b=41 、c=40 (B )a=11 、b=12 、c=15 (C )a ∶b ∶c=3∶4∶5 (D ) a=b=5 、c=257、△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33二、填空题1.等腰△ABC 的底边BC 为16,底边上的高AD 为6,则腰长AB 的长为____________。

2. 已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为 。

3.若正方形的面积为18cm 2,则正方形对角线长为__________cm 。

4. 一个直角三角形的两边长分别为3cm 和4cm,则第三边的长为 。

B6. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .7. 如下图,已知OA =OB ,那么数轴上点A 所表示的数是____________.8. 若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 . 10.在△ABC 中,∠C =90°, AB =5,则2AB +2AC +2BC =_______.三、解答题4. 小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竹竿比城门高1米,当他把竹竿斜着时,两端刚好顶着城门的对角,问竹竿长多少米?7. 如图,一个梯子AB 长2.5 米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,求梯子顶端A 下落了多少米?8. 如图,铁路上A 、B 两点相距25km, C 、D 为两村庄,若DA =10km,CB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处?第二章:实数一、填空题:(每题 3 分,共 36 分) 1、-2 的倒数是____。

八年级上册数学第一章和第二章综合测试

八年级上册数学第一章和第二章综合测试

八年级上册数学第一章和第二章综合测试(本卷共三部分,120分满分,考试时间90分钟)一.选择题(共15小题,每题4分,共60分)1.(2011•贵阳)如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( ) A.2.5B.C.D.2.(2010•临沂)如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为( ) A.B.C.D.3.(2010•长沙)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )5、12、13 A.3、4、5B.6、8、10C.、2、D.4.(2010•新疆)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用( )9m A.3m B.5m C.7m D.5.(2010•铁岭)如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为( ) A .米B .米C .(+1)米D .3米 6.(2014•巴中)要使式子有意义,则m 的取值范围是( ) A .m >﹣1B .m ≥﹣1C .m >﹣1且m ≠1D.m ≥﹣1且m ≠1 7.(2014•重庆)在中,a 的取值范围是( ) A .a ≥0B .a ≤0C .a >0D .a <0 8.(2015•日照)的算术平方根是( ) A .2B .±2C .D .± 9.(2014•潍坊)的立方根是( ) A .﹣1B .0C .1D .±1 10.(2014•威海)若a 3=﹣8,则a 的绝对值是( ) A .2B .﹣2C .D.﹣ 11.(2013•济南)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,发现此时绳子末端距离地面2m ,则旗杆的高度为(滑轮上方的部分忽略不计)为( ) A .12mB .13mC .16mD .17m12.(2002•滨州)如图,沿AC方向开山修路,为加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=210m,∠D=30°,要正好能使A、C、E成一直线,那么E、D两点的距离等于( )105m A.105m B.210m C.70m D.13.(2014•钦州)如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有( )4种 A.1种B.2种C.3种D.14.(2011•安徽)设,a在两个相邻整数之间,则这两个整数是( )4和5 A.1和2B.2和3C.3和4D.15.(2015•宜昌)下列式子没有意义的是( ) A.B.C.D.二.填空题(共5小题,每题4分,共20分)16.(2015•枣庄)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于 .17.(2003•吉林)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为 cm2.18.(2013•张家界)如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012= .19.(2015•泉州)比较大小:4 (填“>”或“<”)20.(2015•凉山州)的平方根是 .三.解答题(共4小题,共40分)21.(8分)计算:|﹣4|+(﹣)0﹣()﹣1.22.(10分)(1)计算:+()0+|﹣1|;(2)先化简,再求值:(x+2)2+x(2﹣x),其中x=.23.(10分)“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)24.(12分)已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F.(1)求证:GE=GF;(2)若BD=1,求DF的长.八年级上册数学第一章和第二章综合测试参考答案与试题解析一.选择题(共15小题)1.(2011•贵阳)如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( ) A.2.5B.C.D.考点:勾股定理;实数与数轴.分析:本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.解答:解:由勾股定理可知,∵OB==,∴这个点表示的实数是.故选D.点评:本题考查了勾股定理的运用和如何在数轴上表示一个无理数的方法.2.(2010•临沂)如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为( ) A.B.C.D.考点:勾股定理;三角形的外角性质;等腰三角形的性质;等边三角形的性质.分析:根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现∠BDE=90°,再进一步根据勾股定理进行求解.解答:解:∵△ABC和△DCE都是边长为4的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=4.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴BD==4.故选:D.点评:此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理.3.(2010•长沙)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )5、12、13 A.3、4、5B.6、8、10C.、2、D.考点:勾股定理的逆定理.分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.解答:解:A、32+42=52,故是直角三角形,故A选项不符合题意;B、62+82=102,故是直角三角形,故B选项不符合题意;C、()2+22≠()2,故不是直角三角形,故C选项符合题意;D、52+122=132,故是直角三角形,故D选项不符合题意.故选C.点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.(2010•新疆)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC 为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用( )9m A.3m B.5m C.7m D.考点:勾股定理的应用.专题:应用题;压轴题.分析:为了不让羊吃到菜,必须<等于点A到圆的最小距离.要确定最小距离,连接OA 交半圆于点E,即AE是最短距离.在直角三角形AOB中,因为OB=6,AB=8,所以根据勾股定理得OA=10.那么AE的长即可解答.解答:解:连接OA,交半圆O于E点,在Rt△OAB中,OB=6,AB=8,所以OA==10;又OE=OB=6,所以AE=OA﹣OE=4.因此选用的绳子应该不大于4m,故选A.点评:此题确定点到半圆的最短距离是难点.熟练运用勾股定理.5.(2010•铁岭)如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为( ) A.米B.米C.(+1)米D.3米考点:勾股定理的应用.分析:在Rt△ACB中,根据勾股定理可求得BC的长,而树的高度为AC+BC,AC的长已知,由此得解.解答:解:Rt△ABC中,AC=1米,AB=2米;由勾股定理,得:BC==米;∴树的高度为:AC+BC=(+1)米;故选C.点评:正确运用勾股定理,善于观察题目的信息是解题的关键.6.(2014•巴中)要使式子有意义,则m的取值范围是( ) A.m>﹣1B.m≥﹣1C.m>﹣1且m≠1D.m≥﹣1且m≠1考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:,解得:m≥﹣1且m≠1.故选:D.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.7.(2014•重庆)在中,a的取值范围是( )a<0 A.a≥0B.a≤0C.a>0D.考点:二次根式有意义的条件.分析:根据二次根式的性质:被开方数大于等于0,就可以求解.解答:解:a的范围是:a≥0.故选;A.点评:本题考查的知识点为:二次根式的被开方数是非负数.8.(2015•日照)的算术平方根是( )± A.2B.±2C.D.考点:算术平方根.专题:计算题.分析:先求得的值,再继续求所求数的算术平方根即可.解答:解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.点评:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.9.(2014•潍坊)的立方根是( ) A .﹣1B .0C .1D .±1考点:立方根.专题:计算题.分析:根据开立方运算,可得一个数的立方根.解答:解:的立方根是1,故选:C .点评:本题考查了立方根,先求幂,再求立方根.10.(2014•威海)若a 3=﹣8,则a 的绝对值是( ) A .2B .﹣2C .D.﹣考点:立方根;绝对值.专题:常规题型.分析:运用开立方的方法求解.解答:解:∵a 3=﹣8,∴a=﹣2.∴a 的绝对值是2故选:A .点评:本题主要考查开立方的知识,关键是确定符号. 11.(2013•济南)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,发现此时绳子末端距离地面2m ,则旗杆的高度为(滑轮上方的部分忽略不计)为( )17m A.12m B.13m C.16m D.考点:勾股定理的应用.专题:应用题.分析:根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.解答:解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选:D.点评:本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.12.(2002•滨州)如图,沿AC方向开山修路,为加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=210m,∠D=30°,要正好能使A、C、E成一直线,那么E、D两点的距离等于( )105m A.105m B.210m C.70m D.考点:勾股定理的应用;三角形的外角性质.专题:应用题.分析:连接ED,根据三角形内角与外角的关系可求出∠AED的度数,再根据勾股定理即可求出DE的长.解答:解:连接ED,可得∠AED=120°﹣30°=90°,故在Rt△BDE中,∠AED=90°,BD=210m,∠D=30°,解可得DE=105.故选A.点评:本题考查三角形的外角性质与勾股定理的应用.13.(2014•钦州)如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有( )4种 A.1种B.2种C.3种D.考点:勾股定理的应用.专题:计算题.分析:如图所示,找出从A点到B点的最短距离的走法即可.解答:解:根据题意得出最短路程如图所示,最短路程长为+1=2+1,则从A点到B点的最短距离的走法共有3种,故选:C.点评:此题考查了勾股定理的应用,弄清题意是解本题的关键.14.(2011•安徽)设,a在两个相邻整数之间,则这两个整数是( )4和5 A.1和2B.2和3C.3和4D.考点:估算无理数的大小.专题:计算题.分析:先对进行估算,再确定是在哪两个相邻的整数之间,然后计算介于哪两个相邻的整数之间.解答:解:∵16<19<25,∴4<<5,∴3<﹣1<4,∴3<a<4,∴a在两个相邻整数3和4之间;故选C.点评:此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.15.(2015•宜昌)下列式子没有意义的是( ) A.B.C.D.考点:二次根式有意义的条件.分析:根据二次根式的被开方数是非负数,可得答案.解答:解:A、没有意义,故A符合题意;B、有意义,故B不符合题意;C、有意义,故C不符合题意;D、有意义,故D不符合题意;故选:A.点评:本题考查了二次根式有意义的条件,二次根式的被开方数是非负数是解题关键.二.填空题(共5小题)16.(2015•枣庄)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于 8 .考点:勾股定理;直角三角形斜边上的中线.专题:计算题.分析:由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD 中,利用勾股定理来求线段CD的长度即可.解答:解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.故答案是:8.点评:本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得AC的长度是解题的难点.17.(2003•吉林)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为 49 cm2.考点:勾股定理.分析:根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.解答:解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.点评:熟练运用勾股定理进行面积的转换.18.(2013•张家界)如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012= .考点:勾股定理.专题:压轴题;规律型.分析:首先根据勾股定理求出OP4,再由OP1,OP2,OP3的长度找到规律进而求出OP2012的长.解答:解:由勾股定理得:OP4==,∵OP1=;得OP2=;依此类推可得OP n=,∴OP2012=,故答案为:.点评:本题考查了勾股定理的运用,解题的关键是由已知数据找到规律.19.(2015•泉州)比较大小:4 > (填“>”或“<”)考点:实数大小比较;二次根式的性质与化简.专题:推理填空题.分析:根据二次根式的性质求出=4,比较和的值即可.解答:解:4=,>,∴4>,故答案为:>.点评:本题考查了二次根式的性质和实数的大小比较等知识点,关键是知道4=,题目较好,难度也不大.20.(2015•凉山州)的平方根是 ±3 .考点:平方根;算术平方根.分析:首先化简,再根据平方根的定义计算平方根.解答:解:=9,9的平方根是±3,故答案为:±3.点评:此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.三.解答题(共4小题)21.(2015•丽水)计算:|﹣4|+(﹣)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.解答:解:原式=4+1﹣2=3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(2014•福州)(1)计算:+()0+|﹣1|;(2)先化简,再求值:(x+2)2+x(2﹣x),其中x=.考点:实数的运算;整式的混合运算—化简求值;零指数幂.分析:(1)本题涉及零指数幂、绝对值、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据完全平方公式、单项式成多项式,可化简整式,根据代数式求值,可得答案.解答:解:(1)原式=3+1+1=5;(2)原式=x2+4x+4+2x﹣x2=6x+4,当x=时,原式=6×+4=2+4=6.点评:本题考查了实数的运算,熟练掌握零指数幂、绝对值、二次根式的运算.23.(2015•娄底)“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)考点:勾股定理的应用.分析:根据题意结合锐角三角函数关系得出BH,CH,AB的长进而求出汽车的速度,进而得出答案.解答:解:此车没有超速.理由:过C作CH⊥MN于H,∵∠CBN=60°,BC=200米,∴CH=BC•sin60°=200×=100(米),BH=BC•cos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∵60千米/小时=m/s,∴=14.6(m/s)<≈16.7(m/s),∴此车没有超速.点评:此题主要考查了勾股定理以及锐角三角函数关系的应用,得出AB的长是解题关键.24.(2010•铜仁地区)已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F.(1)求证:GE=GF;(2)若BD=1,求DF的长.考点:勾股定理;直角三角形全等的判定.专题:计算题;证明题.分析:(1)根据已知条件易证明Rt△AEC≌Rt△DFC,得CE=CF,则DE=AF,从而进一步证明Rt△AFG≌Rt△DEG,就可得到GE=GF;(2)根据直角三角形的性质可以得到CE=AC,则CE=CD,即AB是CE的垂直平分线,则BC=BD=1.再根据直角三角形的性质进一步求得AB、BE的长,则AE=AB﹣BE,结合(1)中的全等三角形,知DF=AE.解答:(1)证明:∵DF∥BC,∠ACB=90°,∴∠CFD=90°.∵CD⊥AB,∴∠AEC=90°.在Rt△AEC和Rt△DFC中,∠AEC=∠CFD=90°,∠ACE=∠DCF,DC=AC,∴Rt△AEC≌Rt△DFC.∴CE=CF.∴DE=AF.而∠AGF=∠DGE,∠AFG=∠DEG=90°,∴Rt△AFG≌Rt△DEG.∴GF=GE.(2)解:∵CD⊥AB,∠A=30°,∴CE=AC=CD.∴CE=ED.∴BC=BD=1.又∵∠ECB+∠ACE=90°,∠A+∠ACE=90°,∴∠ECB=∠A=30°,∠CEB=90°,∴BE=BC=BD=.在直角三角形ABC中,∠A=30°,则AB=2BC=2.则AE=AB﹣BE=.∵Rt△AEC≌Rt△DFC,∴DF=AE=.点评:此题综合运用了全等三角形的判定和性质、直角三角形的性质以及线段垂直平分线的性质;用到的知识点为:直角三角形中30°所对的直角边是斜边的一半.。

八年级数学上册测试题及答案(1-6章)

八年级数学上册测试题及答案(1-6章)

八年级上册数学评价检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。

八年级上册数学第一章和第二章综合测试

八年级上册数学第一章和第二章综合测试

2021-2022学年度初中数学期末考试卷试卷副标题考试范围:初中数学八年级上测前两章;考试时间:120分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.四边形的内角和与外角和的数量关系,正确的是()A.内角和比外角和大180°B.外角和比内角和大180°C.内角和比外角和大360°D.内角和与外角和相等【答案】D【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.2.如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:①∠CDF=30°;②∠ADB=50°;③∠ABD=22°;④∠CBN=108°其中正确说法的个数是()A.1个B.2个C.3个D.4个【答案】D【分析】根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB,∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确∵AD∥BC,∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.3.如图,已知120AOB ∠=︒,在AOB ∠的平分线OM 上有一点C ,将一个60°角的顶点与点C 重合,它的两条边分别与直线OA ,OB 相交于点D ,E .下列结论:(1)CD CE =;(2)OE OD OC +=;(3)OE OD OC -=;(4)OC a =,OD b =,则=-OE a b ;其中正确的有( ).A .1个B .2个C .3个D .4个【答案】A【分析】 过C 点作CN OB ⊥于N 点,CF OA ⊥于F 点,根据AOB ∠的平分线OM 上有一点C ,得60AOC BOC ∠=∠=︒,CF CN =,从而得12ON OC =,12OF OC =,36060∠=︒-∠-∠-∠=︒FCN AOB CFO CNO ;当D ,E 在射线OA ,OB 上时,通过证明≌CFD CNE △△,得OE OD OC +=;当D ,E 在直线OA ,射线OB 上时,通过≌CFD CNE △△,得OE OD OC -=;当D ,E 在直线OA 、OB 上时,得OD OE OC -=,即可完成求解.【详解】过C 点作CN OB ⊥于N 点,CF OA ⊥于F 点∵OC 平分AOB ∠又∵120AOB ∠=︒∴60AOC BOC ∠=∠=︒,CF CN =,∴30∠=∠=︒OCF OCN ∴12ON OC =,12OF OC =,36060∠=︒-∠-∠-∠=︒FCN AOB CFO CNO ①当D ,E 在射线OA ,OB 上时60∠=∠=︒FCN DCE∴∠=∠FCD ECN∵CF CN =,90∠=∠=︒CFD CNE∴≌CFD CNE △△∴CD CE =,=FD NE∴+=++=++=+=OE OD ON NE OD ON DF OD ON OF OC .②如图,当D ,E 在直线OA ,射线OB 上时≌CFD CNE △△=+=+=++=+OE ON NE ON DF ON OF OD OC OD∴OE OD OC -=;③如图,当D ,E 在直线OA 、OB 上时≌CFD CNE △△∴OD OE OC -=综上:②③④错误;故选:A .【点睛】本题考查了角平分线、全等三角形、直角三角形两锐角互余的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.4.如图,AB ,CD 相交于点E ,且AB=CD ,试添加一个条件使得△ADE ≌△CBE .现给出如下五个条件:①∠A=∠C;②∠B=∠D;③AE=CE;④BE=DE;⑤AD=CB .其中符合要求有( )A.2个B.3个C.4个D.5个【答案】D【分析】延长DA、BC使它们相较于点F ,首先根据AAS证明△FAB≌△FCD,然后根据全等三角形的性质即可得到AF=FC,FD=FB,进而得到AD=BC,即可证明△ADE≌△CBE,可判断①、②的正误;根据SAS证明△ADE≌△CBE,即判断③、④的正误;连接BD,根据SSS证明△ADB≌△CBD,根据全等三角形的性质得到∠A=∠C,结合①即可证明⑤.【详解】延长DA、BC使它们相较于点F∵∠DAB=∠DCB,∠AED=∠BEC∴∠B=∠D又∵∠F=∠F,AB=CD∴△FAB≌△FCD∴AF=FC,FD=FB∴AD=BC∴△ADE≌△CBE,即①正确;同理即可证明②正确;∵AE=CE,AB=CD∴DE=BE又∵∠AED=∠BEC∴△ADE≌△CBE,③正确;同理即可证明④正确;连接BD,∵AD=CB,AB=CD,BD=BD∴△ADB≌△CBD∴∠DAB=∠BCD∴△ADE≌△CBE,⑤正确;故选D.【点睛】本题考查了三角形全等的判定方法,主要包括:SSS、SAS、AAS、ASA,难点在于添加辅助线来构造三角形全等,关键在于应根据所给的条件判断应证明哪两个三角形全等.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题5.“三角形的一个外角等于与它不相邻的两个内角的和”揭示了三角形的一个外角与它的两个内角之间的数量关系,请探索并写出三角形没有公共顶点的两个外角与它的第三个内角之间的关系:_______.【答案】三角形没有公共顶点的两个外角之和等于与它们都不相邻的一个内角加上180°【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式,再根据三角形的内角和定理整理即可得解.【详解】解:如图,根据三角形的外角性质,∠1=∠A+∠ACB ,∠2=∠A+∠ABC , ∴∠1+∠2=∠A+∠ACB+∠A+∠ABC ,根据三角形内角和定理,得∠A+∠ABC+∠ACB=180°,∴∠1+∠2=∠A+180°,∴三角形没有公共顶点的两个外角之和等于与它们都不相邻的一个内角加上180°. 故答案为:三角形没有公共顶点的两个外角之和等于与它们都不相邻的一个内角加上180°..【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键是解题的关键,作出图形更形急直观.6.设, , a b c 表示一个三角形三边的长,且他们都是自然数,其中a b c ≤≤,若b =2020,则满足此条件的三角形共有____个.【答案】2041210【分析】已知2020b =,根据三角形的三边关系求解,首先确定出a 、c 三边长取值范围,进而得出各种情况有几个三角形.【详解】解:a ,b ,c 表示一个三角形三边的长,且它们都是自然数,其中a b c ,如果2020b =,则02020a ,20204039c ,∴当2020c =时,根据两边之和大于第三边,则a 的取值范围为12020a ,有2020个三角形;当2021c =时,根据两边之和大于第三边,则a 的取值范围为22020a ,有2019个三角形;当2022c =时,根据两边之和大于第三边,则a 的取值范围为32020a ,有2018个三角形;⋯当4039c =时,根据两边之和大于第三边,则a 的取值范围为2020a =,有1个三角形;∴三角形数量是:(12020)2020(202020192018321)20412102+⨯+++⋯+++==, 故答案为:2041210.【点睛】本题主要考查一元一次不等式、三角形的三边关系,解题的关键是利用了在三角形中任意两边之和大于第三边,任意两边之差小于第三边的三边关系.三、解答题7.已知ABC 中,(1)如图1,点E 为BC 的中点,连AE 并延长到点F ,使=FE EA ,则BF 与AC 的数量关系是________.(2)如图2,若AB AC =,点E 为边AC 一点,过点C 作BC 的垂线交BE 的延长线于点D ,连接AD ,若DAC ABD ∠=∠,求证:AE EC =.(3)如图3,点D 在ABC 内部,且满足AD BC =,BAD DCB ∠=∠,点M 在DC 的延长线上,连AM 交BD 的延长线于点N ,若点N 为AM 的中点,求证:DM AB =.【答案】(1)BF AC =;(2)见解析;(3)见解析【分析】(1)通过证明BEF CEA △≌△,即可求解;(2)过点A 引AF CD ∥交BE 于点F ,通过≌ABF CAD 得到AF CD =,再通过AFE CDE ≌即可求解;(3)过点M 作MT AB ∥交BN 的延长线于点T ,MG AD ,在MT 上取一点K ,使得MK CD =,连接GK ,利用全等三角形的性质证明AB MT =、DM MT =,即可解决.【详解】证明:(1)BF AC =由题意可得:BE EC =在BEF 和CEA 中BE EC BEF CEA EF AE =⎧⎪∠=∠⎨⎪=⎩∴()BEF CEA SAS △≌△∴BF AC =(2)过点A 引AF CD ∥交BE 于点F ,如下图:由题意可得:CD BC ⊥,且∠=∠EAF ACD则AF BC ⊥又∵AB AC =∴AF 平分BAC ∠,∴BAF EAF ACD ∠=∠=∠∴在ABF 和CAD 中ABF DAC AB ACBAF ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABF CAD ASA ≌∴AF CD =在AFE △和CDE △中FAE DCE AEF CED AF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AFE CDE AAS △≌△∴AE EC =(3)证明:过点M 作MT AB ∥交BN 的延长线于点T ,MG AD ,在MT 上取一点K ,使得MK CD =,连接GK ,如下图:∵AB MT ∥∴ABN T ∠=∠∵ANB MNT ∠=∠,AN MN =∴()ANB MNT AAS △≌△∴BN NT =,AB MT =∵MG AD∴ADN MGN ∠=∠∵,AND MNG AN NM ∠=∠=∴()AND MNG AAS △≌△∴,AD MG DN NG ==∴BD GT =∵,BAN AMT DAN GMN ∠=∠∠=∠∴BAD GMT ∠=∠∵BAD BCD ∠=∠∴BCD GMK ∠=∠∵,AD BC AD GM ==∴BC GM =又∵MK CD =∴()BCD GMK SAS △≌△∴,GK BD BDC MKG =∠=∠∴,GK GT MDT GKT =∠=∠∴GKT T ∠=∠∴DM MT =∵AB MT =∴DM AB =【点睛】本题属于三角形综合题,考查了全等三角形的判定与性质,等腰三角形的判定与性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.8.如图,//AB CD ,点O 在直线CD 上,点P 在直线AB 和CD 之间,ABP PDQ α∠=∠=,PD 平分BPQ ∠.(1)求BPD ∠的度数(用含α的式子表示);(2)过点D 作//DE PQ 交PB 的延长线于点E ,作DEP ∠的平分线EF 交PD 于点F ,请在备用图中补全图形,猜想EF 与PD 的位置关系,并证明;(3)将(2)中的“作DEP ∠的平分线EF 交PD 于点F ”改为“作射线EF 将DEP ∠分为1:3两个部分,交PD 于点F ”,其余条件不变,连接EQ ,若EQ 恰好平分PQD ∠,请直接写出FEQ ∠=__________(用含α的式子表示).【答案】(1)2BPD α∠=;(2)画图见解析,EF PD ⊥,证明见解析;(3)452α︒-或3452α︒-【分析】(1)根据平行线的传递性推出////PG AB CD ,再利用平行线的性质进行求解; (2)猜测EF PD ⊥,根据PD 平分,2BPQ BPD α∠∠=,推导出2BPD DPQ α∠=∠=,再根据//DE PQ 、EF 平分DEP ∠,通过等量代换求解;(3)分两种情况进行讨论,即当:1:3PEF DEF ∠∠=与:1:3DEF PEF ∠∠=,充分利用平行线的性质、角平分线的性质、等量代换的思想进行求解. 【详解】(1)过点P 作//PG AB ,//,//AB CD PG AB ,////PG AB CD ∴,,BPG ABP DPG PDQ αα∴∠=∠=∠=∠=,2BPD BPG DPG α∴∠=∠+∠=.(2)根据题意,补全图形如下:猜测EF PD ⊥,由(1)可知:2BPD α∠=,PD 平分,2BPQ BPD α∠∠=,2BPD DPQ α∴∠=∠=,//DE PQ ,2EDP DPQ α∴∠=∠=,1801804DEP BPD EDP α∴∠=︒-∠-∠=︒-,又EF 平分DEP ∠,19022PEF DEP α∠=∠=︒-,18090EFD PEF BPD ∴∠=︒-∠-∠=︒,EF PD ∴⊥. (3)①如图1,:1:3PEF DEF ∠∠=,由(2)可知:2,1804EPD DPQ EDP DEP αα∠=∠=∠=∠=︒-,:1:3PEF DEF ∠∠=,1454PEF DEP α∴∠=∠=︒-,313534DEF DEP α∠=∠=︒-,//DE PQ ,DEQ PQE ∴∠=∠,180EDQ PQD ∠+∠=︒, 2,EDP PDQ αα∠=∠=, 3EDQ EDP PDQ α∴∠=∠+∠=, 1801803PQD EDQ α∠=︒-∠=︒-, 又EQ 平分PQD ∠,139022PQE DQE DEQ PQD α∴∠=∠=∠=∠=︒-,331353(90)4522FEQ DEF DEQ ααα∴∠=∠-∠=︒--︒-=︒-;②如图2,1804DEP α∠=︒-,1803PQD α∠=︒-(同①);若:1:3DEF PEF ∠∠=,则有11(1804)4544DEF DEP αα∠=∠=⨯︒-=︒-,又113(1803)90222PQE DQE PQD αα∠=∠=∠=⨯︒-=︒-,//DE PQ ,3902DEQ PQE α∴∠=∠=︒-,1452FEQ DEQ DEF α∴∠=∠-∠=︒-,综上所述:3452FEQ α∠=︒-或452α︒-,故答案是:452α︒-或3452α︒-. 【点睛】本题考查了平行线的性质、角平分线、三角形内角和定理、垂直等相关知识点,解题的关键是掌握相关知识点,作出适当的辅助线,通过分类讨论及等量代换进行求解. 9.问题提出:(1)我们把两个面积相等但不全等的三角形叫做偏等积三角形,如图,ABC 中,7AC =9BC =,10AB =,P 为AC 上一点,当AP =______时,ABP △与CBP 是偏等积三角形; 问题探究:(2)如图,ABD △与ACD △是偏等积三角形,2AB =,6AC =,且线段AD 的长度为正整数,过点C 作//CE AB 交AD 的延长线于点E ,求AE 的长度; 问题解决:(3)如图,四边形ABED 是一片绿色花园,ACB △、DCE 是等腰直角三角形,90ACB DCE ∠=∠=︒(090)BCE <∠<︒.①ACD △与BCE 是偏等积三角形吗?请说明理由;②已知60m BE =,ACD △的面积为22100m .如图,计划修建一条经过点C 的笔直的小路CF ,F 在BE 边上,FC 的延长线经过AD 中点G .若小路每米造价600元,请计算修建小路的总造价.【答案】(1)72;(2)6;(3)①是偏等积三角形,理由见解析;②42000元【分析】(1)当AP CP =时,则72AP =,证ABP CBP S S ∆∆=,再证ABP ∆与CBP ∆不全等,即可得出结论;(2)由偏等积三角形的定义得ABD ACD S S ∆∆=,则BD CD =,再证()CDE BDA AAS ∆≅∆,则2CE AB ==,ED AD =,得2AE ED AD AD =+=,然后由三角形的三边关系求解即可; (3)①过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,证()ACM BCN AAS ∆≅∆,得AM BN =,则ACD BCE S S ∆∆=,再证ACD ∆与BCE ∆不全等,即可得出结论;②过点A 作//AN CD ,交CG 的延长线于N ,证得()AGN DGC AAS ∆≅∆,得到AN CD =,再证()ACN CBE SAS ∆≅∆,得ACN CBE ∠=∠,由余角的性质可证CF BE ⊥,然后由三角形面积和偏等积三角形的定义得12BCE S BE CF ∆=⋅,2100BCE ACD S S ∆∆==,求出70()CF m =,即可求解. 【详解】解:(1)当72AP CP ==时,ABP ∆与CBP ∆是偏等积三角形,理由如下: 设点B 到AC 的距离为h ,则12ABP S AP h ∆=⋅,12CBP S CP h ∆=⋅,ABP CBP S S ∆∆∴=,10AB =,7BC =,AB BC ∴≠,AP CP =,PB PB =, ABP ∴∆与CBP ∆不全等, ABP ∴∆与CBP ∆是偏等积三角形,故答案为:72;(2)设点A 到BC 的距离为n ,则12ABD S BD n ∆=⋅,12ACD S CD n ∆=⋅,ABD ∆与ACD ∆是偏等积三角形,ABD ACD S S ∆∆∴=,BD CD ∴=,//CE AB ,ECD B ∴∠=∠,E BAD ∠=∠,在CDE ∆和BDA ∆中,ECD B E BAD CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()CDE BDA AAS ∴∆≅∆,2CE AB ∴==,ED AD =,2AE ED AD AD ∴=+=,线段AD 的长度为正整数,AE ∴的长度为偶数,在ACE ∆中,6AC =,2CE =,6262AE ∴-<<+,即:48AE <<,6AE ∴=;(3)①ACD ∆与BCE ∆是偏等积三角形,理由如下: 过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,如图3所示:则90AMC BNC ∠=∠=︒,ACB ∆、DCE ∆是等腰直角三角形,90ACB DCE ∴∠=∠=︒,AC BC =,CD CE =,3603609090180BCN ACD ACB DCE ∴∠+∠=︒-∠-∠=︒-︒-︒=︒,180ACM ACD ∠+∠=︒, ACM BCN ∴∠=∠,在ACM ∆和BCN ∆中, AMC BNC ACM BCN AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ACM BCN AAS ∴∆≅∆,AM BN ∴=,12ACD S CD AM ∆=⋅,12BCE S CE BN ∆=⋅,ACD BCE S S ∆∆∴=,180BCE ACD ∠+∠=︒,090BCE ︒<∠<︒,ACD BCE ∴∠≠∠,CD CE =,AC BC =,ACD ∴∆与BCE ∆不全等, ACD ∴∆与BCE ∆是偏等积三角形;②如图4,过点A 作//AN CD ,交CG 的延长线于N ,则N GCD ∠=∠,G 点为AD 的中点, AG GD ∴=,在AGN ∆和DGC ∆中,N GCDAGN DGC AG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AGN DGC AAS ∴∆≅∆,AN CD ∴=,CD CE =,AN CE ∴=, //AN CD ,180CAN ACD ∴∠+∠=︒,90ACB DCE ∠=∠=︒,3609090180ACD BCE ∴∠+∠=︒-︒-︒=︒,BCE CAN ∴∠=∠,在ACN ∆和CBE ∆中,AN CE CAN BCE AC CB =⎧⎪∠=∠⎨⎪=⎩, ()ACN CBE SAS ∴∆≅∆,ACN CBE ∴∠=∠,1809090ACN BCF ∠+∠=︒-︒=︒, 90CBE BCF ∴∠+∠=︒,90BFC ∴∠=︒,CF BE ∴⊥.由①得:ACD ∆与BCE ∆是偏等积三角形,12BCE S BE CF ∆∴=⋅,2100BCE ACD S S ∆∆==, 22210070()60BCE S CF m BE ∆⨯∴===, ∴修建小路CF 的总造价为:6007042000⨯=(元).【点睛】本题考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明△A CM ≌△BCN 和△ACN ≌△CBE 是解题的关键,属于中考常考题型.10.如图1,点M 在直线AB 上,点P ,N 在直线CD 上,过点N 作NE ∥PM ,连接ME .(1)若AB ∥CD ,点E 在直线AB ,CD 之间,求证:∠MEN =∠BME +∠MPN ; (2)如图2,ME 的延长线交直线CD 于点Q ,作NG 平分∠ENQ 交EQ 于点G ,作EF 平分∠MEN ,过点E 作HE ∥NG .若点F ,H 分别在MP ,PQ 上,探究当∠MPQ +2∠FEH =90°时,线段NE 与NG 的大小关系.【答案】(1)见解析;(2)NE <NG ,见解析 【分析】(1)过点E 作//EF CD ,利用平行线的性质即可得出结论;(2)利用//NE PM ,EF 平分MEN ∠,可得MEF MFE FEN ∠=∠=∠;利用290MPQ FEH ∠+∠=︒,//HE NG ,NG 平分ENQ ∠可得45FEN ∠=︒;进而可得MEN ∆为等腰直角三角形,则PM QM ⊥,由于//NE PM ,于是NE MQ ⊥,根据垂线段最短可得NE NG <.【详解】解:(1)证明:过点E 作//EF AB ,如下图,//FE AB ,MEF BME ∴∠=∠.//AB CD ,//EF AB ,//EF CD ∴.FEN END ∴∠=∠. //NE PM , END MPD ∴∠=∠. FEN MPN ∴∠=∠. MEN MEF FEN ∠=∠+∠, MEN BME MPN ∴∠=∠+∠.(2)NE NG <,理由://NE PM , FEN MFE ∴∠=∠.EF 平分MEN ∠,FEN MEF ∴∠=∠, MEF MFE FEN ∴∠=∠=∠. //HE NG , HEN ENG ∴∠=∠.NG 平分ENQ ∠,12ENG ENQ ∴∠=∠.//NE PM ,MPQ ENQ ∴∠=∠.12HEN MPQ ∴∠=∠.290MPQ FEH ∠+∠=︒,∴1452MPQ FEH ∠+∠=︒.即45HEN FEH ∠+∠=︒,45FEN ∴∠=︒.45MEF MFE FEN ∴∠=∠=∠=︒. 90FME ∴∠=︒. //NE PM ,90NEQ FME ∴∠=∠=︒.即NE MQ ⊥. 垂线段最短,NE NG ∴<.【点睛】本题主要考查了平行线的性质,角平分线的定义,三角形的内角和定理.过点E 作已知直线的平行线是解题的关键.。

苏科版初中数学八年级上册第2章综合测试试卷含答-案答案在前2

苏科版初中数学八年级上册第2章综合测试试卷含答-案答案在前2

第2章综合测试答案解析一、1.【答案】D【解析】解:如图,过点D作DH AC于H ,AD是△ABC的角平分线,DF AB ,DF DH,在Rt△ADF和Rt△ADF中,AD ADDF DH ,Rt△ADF≌Rt△ADH(HL),S S△△,在Rt ADF Rt ADHDE DG Rt△DEF和Rt△DGH中,DF DH ,Rt△DEF≌Rt△DGH(HL),S S△△,△ADGRt DEF Rt DGH25和△AED的面积分别为60和35,3560S△.故选:D .△△,S SRt DEF Rt DGH Rt DEF22.【答案】D【解析】解:连接OA、OB ,A 80,ABC ACB 100,O是AB,AC垂直平分线的交点,OA OB,OA OC,OAB OBA,OCA OAC,OB OC,OBA OCA 80,,OB OC ,BCO CBO 10,故选:D.OBC OCB10080203.【答案】D【解析】解:AB AC BD ,B C ,BAD 1,1C 2,BAD 1C 2,,C 21180C 12,1221180,即B 1BAD 180312=180°.故选:D.4.【答案】C【解析】解;如图1,当=90,只有两个点符合要求,如图2,当为锐角与钝角时,符合条件的点有4个,分别是AC AB,3 AB BC,2AC BC,AB BC .满足条件的点C共有:2或4个.故选:C.1初中数学八年级上册1/65.【答案】C【解析】解:AB AC,AD平分BAC,DE AB,DF AC ,△ABC是等腰三角形,AD BC,BD CD ,BED DFC 90,DE DF ,AD垂直平分EF ,(4)错误;又AD所在直线是△ABC 的对称轴,(1)DEF DFE;(2)AE AF;(3)AD平分EDF.故选:C.6.【答案】C【解析】解:观察选项可得:只有C是轴对称图形.故选:C.7.【答案】B【解析】解:BCA 35,B 80,BAC 180BCA B 180358065,△ABC与△ADC关于AC 所在的直线对称,DAB BAC 65.故选:B.8.【答案】C【解析】解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.是轴对称图形,故本选项正确;D.不是轴对称图形,故本选项错误;故选:C.9.【答案】B【解析】解:由图分析可得题中所给的“10:05”与“20:01”成轴对称,这时的时间应是20:01.故选:B.10.【答案】A【解析】解:连接A A.1由折叠的性质可得:AA DE,DA DA,又D是AB 中点,DA DB ,DB DA1,BA1D B,1 1ADA B,又12ADA12ADE AA BC,AA ,,ADE B,DE∥BC,1 211111h211h , 1,同理,2h 2 2…经过第n次操作后得到的折痕2322222 D E到BC u1n 11 1的距离h2.h2,故选:A.n2018n120172 2二、11.【答案】4初中数学八年级上册2/6【解析】解:过D作DF AC于F,AD是△ABC的角平分线,DE AB,DE DF2,11 1△,△ABC的面积为9,△ADC的面积为954,S AB DE525AC DF4,ADB22 21AC24,AC4故答案为:4.212.【答案】50【解析】解:DM是AB的垂直平分线,AD BD,ABD A,等腰△ABC中,AB AC,180A180 AABC C,DBC ABC ABD A15,解得:A50.故答案2 2为:50.13.【答案】70或55【解析】解:根据题意,一个等腰三角形的一个角等于70,①当这个角是底角时,即该等腰三角形的底角的度数是70,②当这个角是顶角时,设该等腰三角形的底角是x,则2x70180,解得x55,即该等腰三角形的底角的度数是55.故答案为:70或55.14.【答案】805020【解析】解:A80,①当B80时,△ABC是等腰三角形;②当B18080250时,△是等腰三角形;③当B18080220时,△ABC是等腰三角形;故答案为:80、50、ABC20.15.【答案】60【解析】解:由题意可得:2390,330,260,12,160.故答案为:60.16.【答案】3【解析】解:如图:一个等边三角形的对称轴有3条,故答案为:3.17.【答案】3【解析】解:A,B,C,D,E,H、I是轴对称图形,F、G、J都不是轴对称图形.故不是轴对称初中数学八年级上册3/6图形的有3个,故答案为:3.18.【答案】TAXI【解析】解:IXAT是经过镜子反射后的字母,则这车车顶上字牌上的字实际是TAXI.故答案为TAXI.三、19.【答案】证明:DE是BC的垂直平分线,BE EC,DE BC,A90,DA AB.又BD是ABC的平分线,DA DE,又BD BD,△ABD≌△EBD,AB BE,BC2AB.【解析】DE垂直平分BC,则有BC2BE,只要证明BE AB即可,由BD是B的平分线,DAB DEB90,BD BD,可证△ABD≌△EBD,从而有BE AB.20.【答案】解:AB、AE边上的垂直平分线m1、m2交BE分别为点C、D,AC BC,AD DE,B BAC,E EAD,BC CD DE,AC CD AD,△ACD是等边三角形,CAD ACD ADC60,BAC EAD30,BAE BAC CAD EAD120. 【解析】由AB、AE边上的垂直平分线m、m交BE分别为点C、D,根据线段垂直平分线的性质,可1 2得AC BC,AD DE,又由BC CD DE,易得△ACD是等边三角形,继而求得BAE的度数.21.【答案】解:C ABC2A,C ABC A5A180,A36.则C ABC2A72.又BD是AC边上的高,则DBC90C18.【解析】根据三角形的内角和定理与C ABC2A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得DBC的度数.22.【答案】(1)证明:过点A作AF BC于点F,AD AE,DF EF,BD CE,BF CF,AB AC.(2)B BAD,C EAC,BAE BEA,ADC DAC,除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC.【解析】(1)首先过点A作AF BC于点F,由AD AE,根据三线合一的性质,可得DF EF,又由BD CE,可得BF CF,然后由线段垂直平分线的性质,可证得AB AC.(2)根据等腰三角形的判定解答即可.23.【答案】证明:以AD为轴作△ABD的对称△AB'D(如图),则有B'D BD,AB'AB AC,B'ABD60,1ADB'ADB90BDC,所以2ADB'ADB BDC180BDC BDC180,所以C、D、B'在一条直线上,所以△ACB'是等边三角形,所以CA CB'CD+DB'CD BD.初中数学八年级上册4/6【解析】以AD为轴作△ABD的对称△AB'D,后证明C、D、B'在一条直线上,及△ACB'是等边三角形,继而得出答案.24.【答案】(1)△ABC的周长AB BC AC2a2a710a2a a23.(2)当a 2.5时,AB2a2a72 6.25 2.573,BC10a210 6.25 3.75,AC a 2.5,>,当a 2.5时,三角形存在,3 2.5 3.75 周长a;当a3时,23 6.2539.2523 6.2539.25AB a2a,BC10a21091,AC a3,31<8.当a3时,三角2729378形不存在.(3)△ABC与△DEF成轴对称图形,点A与点D是对称点,点B与点E是对称点,EF BC,DF AC,10a24b2,即a2b26;a3b,即a b3、把a b3代入a2b26,3(a b)6a b2.【解析】(1)利用三角形周长公式求解:△ABC的周长AB BC AC.(2)利用三角形的三边关系求解:AB BC>AC,AB AC>BC,AC BC>AB,再分别代入a的两个值验证三边关系是否成立即可.(3)利用轴对称图形的性质求解:△ABC≌△DEF,可得,EF BC,DF AC,代入值再分解因式即可.25.【答案】(1)如图所示:△ABC的面积:1235 7.5.(2)如图所示:初中数学八年级上册5/6(3)A1(1,5),1(1,0)C1(4,3).B,【解析】(1)利用三角形的面积求法即可得出答案.(2)首先找出A、B、C三点关于y轴的对称点,再顺次连接即可.(3)根据坐标系写出各点坐标即可.26.【答案】解:【解析】利用轴对称图形的性质,从图形中的各点向l引垂线并延长相同的距离,找到对应点顺次连接.初中数学八年级上册6/6第2 章综合测试一、选择题(共10 小题)1.如图,AD 是△ABC 的角平分线,DF AB ,垂足为F ,DE DG ,△ADG 和△AED 的面积分别为60 和 35,则△EDF 的面积为()A.25B.5.5C.7.5D.12.52.如图, A 80,点O 是AB ,AC 垂直平分线的交点,则BCO的度数是()A.40B.30C.20D.103.如图,已知AB AC BD ,那么()A.1= 2B.21+2=180C.1+32=180D.312=1804.如图,B 是直线l 上的一点,线段AB 与l 的夹角为0<<180,点C 在l 上,若以A、B 、C 为顶点的三角形是等腰三角形,则满足条件的点C 共有()A.2 个B.3 个C.2 个或 4 个D.3 个或 4 个5.如图,在△ABC 中,AB AC ,AD 平分BAC ,DE AB ,DF AC ,E 、F 为垂足,则下列四个结论:(1)DEF DFE;(2)AE AF;(3)AD 平分EDF;(4)EF 垂直平分AD .其中正确的有()初中数学八年级上册1 / 6A.1 个B.2 个C.3 个D.4 个6.将一张矩形的纸对折,然后用笔尖在上面扎出“B ”,再把它铺平,你可见到()A B C D7.如图,△ABC 与△ADC 关于AC 所在的直线对称,BCA 35, B 80,则DAC 的度数为()A.55B.65C.75D.858.下列“表情”中属于轴对称图形的是()A B C D9.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A.10: 05B.20: 01C.20 :10D.10: 0210.如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A落在BC 边上的A1 处,称为第1 次操作,折痕DE 到BC 的距离记为h1 ,还原纸片后,再将△ADE 沿着过AD 中点D1 的直线折叠,使点A落在DE 边上的A2 处,称为第 2 次操作,折痕D1E1 到BC 的距离记为h2 ,按上述方法不断操作下去…经过第 2018 次操作后得到的折痕D2017 E2017 到BC 的距离记为h2018 ,若h 1 1 ,则h2018 的值为()1A.2B.220171220171C.1D. 222016122016二、填空题(共8 小题)11.如图,AD 是△ABC 的角平分线,DE AB ,垂足为E ,若△ABC 的面积为 9,DE 2 ,AB 5,则AC 长是________.12.如图,等腰△ABC 中,AB AC ,AB 的垂直平分线MN 交AC 于点D ,DBC 15,则 A 的度数是________度.13.等腰三角形有一个角为70,则底角的度数为________.14.在△ABC 中, A 80,当 B ________时,△ABC 是等腰三角形.15.数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图所示,12,若 3 30,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证1等于________.16.一个等边三角形的对称轴有________条.17.在字母A、B、C、D、E、F、G、I、J 中不是轴对称图形的有________个.18.在上学的路上,小刚从电瓶车的后视镜里看到一辆汽车,车顶字牌上的字在平面镜中的像是IXAT ,则这辆车车顶字牌上的字实际是________.三、解答题(共8 小题)19.如图,已知在Rt△ABC 中, A 90,BD 是ABC 的平分线,DE 是BC 的垂直平分线.试说明BC 2AB .20.如图,已知△ABE ,AB 、AE 边上的垂直平分线m1 、m2 交BE 分别为点C 、D ,且BC CD DE ,求BAE 的度数.21.如图,在△ABC 中, C ABC 2A,BD 是AC 边上的高,求DBC 的度数.22.如图,点D 、E 在△ABC 的边BC 上,AD AE ,BD CE ,(1)求证:AB AC ;(2)若BAC 108,DAE 36,直接写出图中除△ABC 与△ADE 外所有的等腰三角形.123.如图,已知△ABC 中,AB AC ,D 是△ABC 外一点且ABD 60,ADB 90BDC .求证:2AC BD CD .24.△ABC 的三边长分别为:AB 2a2 a 7 ,BC 10 a2 ,AC a ,(1)求△ABC 的周长(请用含有a 的代数式来表示);(2)当a 2.5和 3 时,三角形都存在吗?若存在,求出△ABC 的周长;若不存在,请说出理由;(3)若△ABC 与△DEF 成轴对称图形,其中点A与点D 是对称点,点B 与点E 是对称点,EF 4 b2 ,DF 3 b ,求a b 的值.25.如图,在平面直角坐标系中,A(1,5),B(1, 0) ,C(4,3).(1)求出△ABC 的面积;(2)在图中作出△ABC 关于y 轴的对称图形△A B C ;1 1 1(3)写出点A1 ,B1 ,C1 的坐标.26.请你在图中以直线l 为对称轴作出所给图形的另一半.。

2013最新北师大版八年级数学上册第一二章综合培优题

2013最新北师大版八年级数学上册第一二章综合培优题

一.填空题: 1.已知直角三角形的三边长为 6、& X , x 为斜边,则以面积为 _____ ;2 .如右图:图形A 的面积是;3.』匸3产= _______ , {匸27= _______ , (-5)0的立方根是; 4 .在棱长为5 dm 的正方体木箱中,现放入一根长12dm 的铁棒,102的算术平方根是,.16的平方根是;7 .若a 、b 互为相反数,c 、d 互为倒数,则祁时匕而= ___________ 8.在一 .12,0,22,3 -125,0.101001000^ , J0^,0.3, 中,负实数集合:{};72—9. 有两棵树,一棵高6米,另一棵高2米,两树相距5米,一 只小鸟从一棵树的树梢飞到 另一棵树的树梢,至少飞了米;10. 一只蚂蚁从长、宽都是 3,高是8的长方体纸箱的A 点沿纸箱爬到B 点, 那么它所行的最短路线的长是 _____________________ ; 11 .—的相反数是 __________ ,绝对值等于—的数是 _____________ ,|3- I—O12. _______________________ —的算术平方根是 , —-= 。

13. ____ ______________________ 的平方根等于它本身, ____ 的立方根等于它本身, _________________________ 的算术平方根 等于它本身。

14. _______________________________________ 已知I x I 的算术平方根是 8,那么一是 ______________________________________ 。

15. 填入两个和为6的无理数,使等式成立:—+—=6。

16. _____________________________ 大于一,小于—的整数有 个。

17.若I 2a-5 I 与 ___________ 互为相反数,则a= , b= 。

八年级数学上册第一二章测试题

八年级数学上册第一二章测试题

八年级上册第一、二章训练题一、选择题(每小题3分,共18分) 1、如图所示,OP 为∠AOB 的平分线,PD ⊥OA ,若PD=4, 则P 到OB 的距离是( )A 、 4B 、 6C 、 8D 、 102、在ΔABC 中,AB=AC,∠B=40°,则∠A 的度数是( ) A 、40° B 、50° C 、100° D 、140° 3、下列式子是利用平方差公式的是( ) A 、a ²+b ²=(a+b ) B 、-x ²-2xy-y ²=-(x+y )² C 、-a ²-b ²=(a+b )(a-b ) D 、a ²-b ²=(a+b )(a-b )4、等腰三角形的两边分别为5和10,则它的周长为( )A 、15B 、20C 、20或25D 、255、如图所示,ΔABC 与ΔDEF 关于直线l 对称,∠C=20°,∠D=25°,则∠B 的 度数为( )A 、45°B 、85°C 、 115°D 、135° 6、若(x ²+9)(x+3)( )=x 4-81,则括号内填入的代数式是( )A 、x-3B 、3-xC 、3+xD 、x-9 二、填空题(每小题3分,共18分) 1、(x-2)²=________________ 2、点(2,-3)关于y 轴对称点的坐标是______ 3、多项式9x ²+1加上一个单项式后,使它能够成为一个整式的完全平方,请你写出一个符合条件的单项式_________4、小明从平面镜里看到背后墙上挂着的电子钟的时间为50:21,则实际时间为_________5、符号 叫做二阶行列式,规定它的运算法则是根据材料化简6、如图,∠EAF=15°,AB=BC=CD=DE=EF , 则∠DEF=____三、解答题(每小题8分,共64分) 1、已知∠AOB 内有两点M 、 N 请找一点P ,使P 到OA 、 OB 的距离相等,且P 到M 、 N 两点的距离也相等。

北师大版八年级数学上册一至三章综合测试(含答案)

北师大版八年级数学上册一至三章综合测试(含答案)

北师大版八年级数学上册一~三章测试题一、选择题1、下列实数是无理数的是( )A .﹣1B .3C .3.14D .31 2、在实数5、3-、0、31-、3.1415、π、144、36、2.123122312223…… 中 无理数的个数为( )A 、2个B 、3个C 、4个D 、5个3、从学校向东走600 m,再向南走500 m 到小伟家;从学校向南走500 m,再向西走300 m 到小亮家,则下列结论正确的是( )A. 小亮家在小伟家的正东600 m 处B. 小亮家在小伟家的正南500 m 处C. 小亮家在小伟家的正西900 m 处D. 小亮家在小伟家的正北600 m 处4、在平面直角坐标系中,点P (3,﹣1)关于x 轴对称的点的坐标是( )A .(﹣3,﹣1)B .(﹣3,1)C .(﹣1,3)D .(3,1)5.直角三角形两条直角边长分别是3cm ,4 cm .那么斜边的长是( )A.9cmB.6cmC.7cmD.5cm6、已知a +2+|b -1|=0,则(a +b )2017的值为( ) A .-1 B .1 C .32015 D .-320157、下列二次根式中能与3合并的是( )A.18B.30C.48D.54 8、在平面直角坐标系中,点(-1,m 2+1)一定在 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 9、下列运算中,错误的是 ( )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ (A) 1个 ( B) 2个 (C) 3个 (D) 4个10.在平面直角坐标系中,点 B 的坐标为(3,-4),而直线 A B 平 行于 x 轴,那么点 A 的坐标可能为( )A .(3,-2)B .(2,4)C .(-3,2)D .(-3,-4)二、填空题11、比较大小: 23- 32.(用“>”、“<”或“=”号填空)12、已知点(2,y )和点(x ,3)关于y 轴对称,则x + y =_______________。

八年级上册数学第一、二章综合练习(含答案)

八年级上册数学第一、二章综合练习(含答案)

八年级上册数学第一、二章综合练习(含答案)一、 选择题:(每小题3分,共30分)1、下列各数中,没有平方根的是( )A 、2)3(- B 、1- C 、0 D 、12、下列等式中,错误的是( )A 、864±=±B 、1511225121±=C 、62163-=-D 、1.0001.03-=- 3、下列命题中正确的是( )A 、有理数是有限小数B 、无限小数是无理数C 、数轴上的点与有理数一一对应D 、数轴上的点与实数一一对应4、计算3(2)(21)a a --的结果是( ) A 、 4242a a - B 、4242a a -+ C 、43168a a -+ D 、43168a a --5、在实数23-,0, 3.14-中,无理数有( ) A 、1个 B 、2个 C 、3个 D 、4个6、下列各式中,正确的是( )A 、(a -b )2 = a 2-2ab -b 2B 、(-b +a )(b +a )= b 2-a 2C 、(a +b )2 = a 2+b 2D 、(a +b )2 = a 2+2a b +b 27、下列各式比较大小正确的是( )A 、32-<-B 、6655->-C 、14.3-<-πD 、310->-8、计算34(510)(710)⨯⨯的正确结果是( ) A 、 73510⨯ B 、 83.510⨯ C 、90.3510⨯ D 、73.510⨯ 9、已知x m =a, x n =b,那么x 3m+2n 的值等于( )A 、3a+2bB 、a 3+b 2C 、a 3b 2D 、a 3m b 2n10、已知 a +b =5,ab=-2 ,那么a 2+b 2的值为( )A 、25B 、29C 、33D 、不确定二、填空题(每小题3分,共15分)11、49的平方根是 ,算术平方根是 ;338-的立方根是______。

12、32a a a ⋅⋅= ;423)2(z xy -= 。

苏科版初中数学八年级上册第1章综合测试试卷-含答案02

苏科版初中数学八年级上册第1章综合测试试卷-含答案02

第1章综合测试一、单选题1.下列命题中,真命题是( ). A .周长相等的锐角三角形都全等 B .周长相等的直角三角形都全等 C .周长相等的钝角三角形都全等D .周长相等的等腰直角三角形都全等.2.在下列四组条件中,能判定ABC DEF △≌△的是( ) A .AB DE =,BC EF =,A D ∠=∠ B .A D ∠=∠,C F ∠=∠,AC DE = C .A E ∠=∠,B F ∠=∠,C D ∠=∠D .AB DE =,BC EF =,ABC △的周长等于DEF △的周长3.如图,ABC AEF △≌△,AB AE =,B E ∠=∠,则对于结论:①AC AF =;②FAB EAB ∠=∠;③EF BC =;④EAB FAC ∠=∠,其中正确结论的个数是( )A .1个B .2个C .3个D .4个4.下列各图中,a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧ABC △全等的是( )A .甲和乙B .只有乙C .甲和丙D .乙和丙5.如图,在ABCD 中,延长CD 到E ,使DE CD =,连接BE 交AD 于点F ,交AC 于点G .下列结论中:①DE DF =;②AG GF =;③AF DF =;④BG GC =;⑤BF EF =,其中正确的有( )A .1个B .2个C .3个D .4个二、填空题6.下面三个命题:底边和顶角对应相等的两个等腰三角形全等;两边及其中一边上的中线对应相等的两个三角形全等;斜边和斜边上的中线对应相等的两个直角三角形全等,其中正确的命题的序号为________. 7.如图,已知ABC DEF △≌△,A 和D 是对应顶点,若80A ∠=︒,65B ∠=︒,则F ∠=________︒8.如图,已知ACD BCE ∠=∠,AC DC =,如果要得到ACB DCE △≌△,那么还需要添加的条件是________.(填写一个即可,不得添加辅助线和字母)9.如图,将两根钢条AB ,CD 的中点O 连在一起,使AB ,CD 可以绕点O 自由转动,就做成一个测量工件,则AC 的长等于内槽宽BD ,则OBD OAC △≌△判定方法是________.(用字母表示)10.如图,在Rt ABC △中,90C ∠=︒,10AC =,5BC =,PQ AB =,点P 和点Q 分别在AC 和AC 的垂线AD 上移动,则当AP =________时,才能使ABC △和APQ △全等.11.如图,ABC ADE △≌△,点E 在BC 上,若80C ∠=︒,则DEB ∠=________.12.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上________块,其理由是________.13.如图, 6 cm AB =, 4 cm AC BD ==,CAB DBA ∠=∠,点P 在线段AB 上以2 cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为()t s .设点Q 的运动速度为cm/s x ,若使得ACP BPQ △≌△全等,则x 的值为________.三、解答题14.如图,ABC DBE △≌△,点D 在边AC 上,BC 与DE 交于点P ,已知162ABE ︒∠=,30DBC ∠=︒,求CDE ∠的度数.15.已知:如图,点B 、F 、C 、E 在一条直线上,BF CE =,AC DF =,且AC DF ∥.求证:ABC DEF △≌△.16.如图,已知在四边形ABCD 中,点E 在AD 上,180B AEC ︒∠+∠=,BAC D ∠=∠,BC CE =.求证:AC DC =.17.如图,点E 在ABC △的外部,点D 在BC 上,DE 交AC 于点F ,123∠=∠=∠,AB AD =.求证:ABC ADE △≌△.18.如图,90ACB ∠=︒,AC BC =,BE CE ⊥,AD CE ⊥.求证:ACD CBE △≌△.19.如图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将ADE △沿AE 对折至AFE △,延长EF 交BC 于点G ,连接AG .(1)求证:ABG AFG △≌△; (2)求BG 的长.第1章综合测试答案解析一、1.【答案】D【解析】解:A .周长相等的锐角三角形的对应角不一定相等,对应边也不一定相等,假命题;B .周长相等的直角三角形对应锐角不一定相等,对应边也不一定相等,假命题;C .周长相等的钝角三角形对应钝角不一定相等,对应边也不一定相等,假命题;D.由于等腰直角三角形三边之比为,故周长相等时,等腰直角三角形的对应角相等,对应边相等,故全等,真命题.故选:D .2.【答案】D【解析】解:A 中不是夹角相等;B 中不是夹边相等;C 中没有至少一条边;故选:D .3.【答案】C【解析】解:ABC AEF △≌△,AC AF ∴=,EF BC =,EAF BAC ∠=∠,故①③正确;EAF EAB BAF ∠=∠+∠ ,BAC FAC BAF ∠=∠+∠,EAB FAC ∴∠=∠,故④正确;条件不足,无法证明FAB EAB ∠=∠,故②错误;综上所述,结论正确的是①③④共3个.故选:C .4.【答案】D【解析】解:a a = ,c c =,边a 和边c 的夹角相等,∴乙和三角形ABC 全等()SAS ,5050︒︒= ,7272︒=︒,且72︒所对的72a =︒所对的a ,∴三角形ABC 和丙全等()AAS ,故选:D .5.【答案】B【解析】解: 四边形ABCD 是平行四边形,AB CD ∴∥,AB CD =,即AB CD ∥,ABF E ∴∠=∠,DE CD = ,AB DE ∴=,在ABF △和DEF △中,ABF EAFB DFE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩ ,()ABF DEF AAS ∴△≌△,AF DF ∴=,BF EF =;可得③⑤符合题意,故选:B .二、6.【答案】①②【解析】解:①底边和顶角对应相等的两个等腰三角形全等;正确;②两边及其中一边上的中线对应相等的两个三角形全等;正确;③斜边和斜边上的中线对应相等的两个直角三角形全等;错误;故答案为:①②.7.【答案】35【解析】解:ABC DEF △≌△,A 与D 是对应顶点,F ACB ∴∠=∠,又180A ∠=︒ ,65B ∠=︒,180806535ACB ∴∠=︒-︒-︒=︒,35F ACB ∴∠=∠=︒,故答案为:35.答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

八年级数学八年级(上)数学第一、二章测试题-

八年级数学八年级(上)数学第一、二章测试题-

八年级(上)数学第一、二章测试题一、填空题(每小题2分,共30分)1.若等腰三角形的一边长为3cm ,另一边长为4cm ,则它的周长为 cm.2.若等腰三角形的一角为70度º,则它的顶角为 度3.直角三角形一直角边是5,斜边上的中线等于6.5,则另一直角 边等于 4.直角三角形的两锐角的平分线相交而成的钝角为 度.5.等腰三角形中,和顶角相邻的外角平分线和底边的位置关系是 。

6.在Rt △ABC 中,∠B=Rt ∠,AB=2cm,AC=3cm,则BC= cm 。

7.在△ABC 中,AB=AC ,BD 是角平分线,如果∠A =500,那么∠BDC = 度。

8.三角形的三边分别为a 、b 、c 且满足bc ab c b a 222222+=++,则这个三角形(按边分类)一定是 三角形。

9.等腰三角形的底边长为10cm ,一腰上的中线把这个三角形的周长分为两部分,这两部分之差为4cm ,那么这个等腰三角形的腰长是 cm 。

10.在△ABC 中,AB 及AC 边的垂直平分线相交于O 点,∠A =800,则∠BOC = 度。

11.如图,AB ∥EF ∥CD ,∠C=70度,∠F=120度º.则∠FBC= 。

12.如图,在Rt △ABC 中,DE 是斜边AB 的中垂线,∠CAD=20º,则∠B= 。

13.如图,在△ABC 中,∠C=Rt ∠,AC=BC,AD 平分∠CAB,若CD=2cm,则DB= cm. 14如图,在△ABC 中,∠C=Rt ∠,AB=2,BC=1,则∠ABC 的平分线BD= .15、一架长25dm 的梯子,斜立在与水平地面铅直的墙上,这时梯足距墙角7dm ;若梯子的顶端沿墙下滑4dm ,则梯足将沿地面滑开 dm. 二、选择题(每小题3分,共30分)16、判定两个等腰三角形全等的条件可以是…………………… ( ) A 、有一腰和顶角对应相等 B 、有两边对应相等 C 、有顶角和一个底角对应相等 D 、有两角对应相等 17、使两个直角三角形全等的条件是…………………… ( )A 、两直角边对应相等;B 、一锐角对应相等;C 、两锐角对应相等;D 、斜边相等DC B A第13题DCBA第12题ABCD 第14题EDCBA F 第11题FE DCBA18、在△ABC 中,AB=AC ,下列推理中错误的是……………………( )。

八年级上册第一二章综合测试题

八年级上册第一二章综合测试题

八年级第一二章综合测试题姓名: 班级: : 评分:一、 选择题( 本大题共10小题, 每小题3分,共30分) 1、在下列各数中是无理数的有( )-0.333…, 4, 5, π-, 3π, 3.1415, 2.010101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的正整数组成).A.3个B.4个C. 5个D. 6个 2、下列说法正确的是( )A. 有理数只是有限小数B. 无理数是无限小数C. 无限小数是无理数D.3π是分数 3、下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C. 2是2的平方根D. –3是2)3(-的平方根 4、若规定误差小于1, 那么60的估算值为( )A. 3B. 7C. 8D. 7或8 5、如图2,一圆柱高8cm ,底面半径为2cm , 一只蚂蚁从点A 爬到点B 处吃食,要爬行的 最短路程( ∏ = 3)是( ) A 、20cm B 、10cmC 、14cmD 、无法确定6、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多 1 m ,当它把绳子的下端拉开5 m 后,发现下端刚好接触地面,则旗杆的高为 ( ) (A )8cm (B )10cm (C )12cm (D )14cm7、下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a 、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( )A 、5组;B 、4组;C 、3组;D 、2组8、.等腰三角形的一腰长为13,底边长为10,则它的面积为( ) A.65 B.60 C.120 D.1309、下列式子正确的是( )A 、9)9(2-=-B 、525±=C 、1)1(33-=- D 、2)2(2-=- 10、放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( )A .600米 B. 800米 C. 1000米 D. 不能确定 二、填空题:(每题2分,共20分)11、在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______. 12、已知Rt ⊿ABC 中,a=3,b=4则c= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
C
E
D A
2013年秋学期八年级数学月考试题
一、选择题(本大题共10题,每小题3分,共30分) 1、下面各组中的三条线段能组成三角形的是( )
A 、2cm 、3cm ,5cm
B 、1cm 、6cm 、6cm
C 、2cm 、6cm 、9cm
D 、5cm 、3cm 、10cm 2、下列说法正确的是( )A .面积相等的两个三角形全等 B .周长相等的两个三角形全等
C .三个角对应相等的两个三角形全等;
D .能够完全重合的两个三角形全等
3、等腰三角形的一边长等于4,一边长等于9,则它的周长是( ) A .17 B .13 C .17或22 D .22
4、对于△ABC 与△DEF ,已知∠A =∠D ,∠B =∠E ,则下列条件①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF
中,能判定它们全等的有( )A .①② B .①③ C .②③ D .③④ 5、一个三角形的两边分别为3和8,第三边长是一个偶数,则第三边的长不能为( )
A 、6
B 、8
C 、10
D 、12
6、如图,要测量河岸相对两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再作出BF 的垂线DE ,使A 、C 、E 在同一直线上,可以证明△EDC ≌△ABC 得ED =AB ,因此测得DE 的长就是AB 的长,判断△EDC ≌△ABC 的理由是 ( )A 、ASA B 、SAS C 、SSS D 、HL
7、过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的 边数是( )A 、8 B 、9 C 、10 D 、11
8、根据下列已知条件,能唯一画出△ABC 的是( )
A.AB =3 , BC =4, AC =8
B.∠A =60°,∠B =45°, AB =4
C.AB =3 , BC =3 , ∠A =30°
D.∠C=90°, AB =6、
9、如下图2,BE ⊥AC ,CF ⊥AB ,且BE =CF ,利用有关三角形全等的判定公 理可直接判定△BEC ≌△CFB ,依据是( ) A 、HL B 、SSS C 、SAS D 、ASA 10、如图所示,已知△ABC 为直角三角形,∠B =90°,若沿图中虚线剪去∠B ,
则∠1+∠2 等于( ) A 、90°B 、135° C 、270°D 、315° 二、填空题(每小题3分,共24分)
11.如图,除公共边AB 外,根据下列括号内三角形全等的条件,在横线上添加
适当的条件,使△ABC 与△ABD 全等:(1) , (SSS );(2) , (ASA ); (3)∠1=∠2 , (SAS );(4) ,∠3=∠4 (AAS ).
12、如图,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高,则根据图形填空: (1)BE = =21 ; ⑵∠BAD = =2
1
;⑶∠AFB = =900;
A B
C
E F 图9
13、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。

14、如图,△ABO 翻折得到△DCO ,则△ABO △DCO ,其对应角为___ ___.对应边为 。

15、如图,飞机要从A 地飞往B 地,因受大风影响,一开始就
偏离航线(AB )18°(即∠A =18°),飞到了C 地,已知 ∠ABC =10°,现在飞机要达到B 地需以 的角飞 行(即∠BCD 的度数).
16、11.十边形的外角和是 0;如果十边形的各个内角都相等,那么它的一个内角是 0 17、如图,CD AB //,CD AB =,请你添加一个条件
使CDE ABF ∆∆≌,依据是 。

(用简写法)
18、已知一个多边形的所有内角与它的一个外角之和是2400°,那么这个多边形的边数是 ,这个外角的度数是 .
三、解答题(共66分,解答应写出文字说明,•证明过程或演算步骤。

) 19、(6分)按要求作图,并标出位置。

(1)作出BC 和AB 边上的高(4分)
(2)作出AC 边上的中线(2分) 20、求出下列图中x 的值:( 共6分)
21、证明:三角形三个内角的和等于180°.(6分)
已知:△ABC (如图).求证:∠A +∠B +∠C =180°.
(1)
x 0
x 0
A
B
C
3 4
1 2
(第11题)
D
F 第(12)题
E
D C
B
A
(第14题)
A
D
O
C
B
A
B
C
D E
F D
21题图
C
B
A
(第13题)
C
B
A
(3)
(3)4x ︒
3x ︒3x ︒
2x ︒
(2)
B
A
E
21
F C
D
22、(6分)如图,在直角三角形ABC 中,∠ACB =90°,CD 是AB 边上的高,AB =10cm ,BC =8cm ,AC =6cm ,求(1)△ABC 的面积;(2)CD 的长.
23、(8分)一个多边形的外角和是内角和的7
2
,求这个多边形的边数和内角和。

24、(8分)如图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.
证明: ∵AD 平分∠BAC
∴∠________=∠_________( 角平分线的定义 )
在△ABD 和△ACD 中 _________( ____________)
_________( ____________)
_________( ____________)
∴△ABD ≌△ACD ( )
25、(8分)如图,已知∠A =∠C ,AF =CE ,DE ∥BF ,求证:△ABF ≌△CDE .
A
B C
D ⎪⎪⎩⎪⎪⎨⎧A
B
C
D
A
B C D
26、(8分)已知:如图,AB⊥AC,AC⊥DC,AD=BC,求证:⑴AB=CD;⑵AD∥CB
27、(10分)如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC = 140°,∠BGC =
110°,求∠A的度数。

G
F E
D
C
B
A
四、附加题.(10分)如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B.
求证:AB=AC+CD.。

相关文档
最新文档