江苏省无锡市滨湖区中学九年级数学上册 一元二次方程单元综合测试卷B版

合集下载

九年级数学上册 一元二次方程单元综合测试卷B 试题

九年级数学上册 一元二次方程单元综合测试卷B  试题

一元二次方程单元测试卷B版本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。

班级___________姓名_______________得分_______________一、填空题〔每空2分,一共20分〕1.直接写出以下方程的解:〔1〕x2=4_______________;〔2〕x2-6x+9=0_____________;〔3〕x2=3x_____________.2.关于x的方程(m-3)x m2-1-x+3=0是一元二次方程,那么m=___________.3.等腰三角形的底和腰是方程x2-6x+8=0的两根,那么此三角形的周长是 .4.设a、b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,那么这个直角三角形的斜边长为_____________.5.假设关于x的一元二次方程(m+1)x2-2mx=1的一个根是1,那么m= .6.假设方程(m+1)x2+2mx+m-2=0有两个不相等的实数根,那么m的取值范围为___________. 7.关于x的一元二次方程x2-2(m-1)x+m2=0的两根互为倒数,那么m=_________.8.α、β是方程x2+3x+5=11的两个根,那么代数式4α2+β2+9α-2的值是___________.二、选择题〔每一小题3分,一共18分〕9. 假设方程(m -1)x 2+m x =1是关于x 的一元二次方程,那么m 的取值范围是 〔 〕A .m ≠1B .m ≥0C . m ≥0且m ≠1D .m 为任意实数 10.方程2x 2-(2-2)x =0的解是 〔 〕 A .x =±(2-1) B .x 1=0,x 2=2― 2 C .x 1=0,x 2=2―1 D . x 1=0,x 2=111.以下说法正确的选项是 〔 〕A .一元二次方程的一般形式为ax 2+bx +c =0B .一元二次方程ax 2+bx +c =0的根是x =-b ±b 2-4ac 2aC .方程x 2=x 的解是x =1 D .方程x (x +3)(x -2)=0的根有三个12.一同学将方程x 2-4x -3=0化成了(x +m ) 2=n 的形式,那么m 、n 的值应为 〔 〕A .m =-2,n =7B .m =2,n =7C .m =-2,n =1D .m =2,n =-713. 近年来全国房价不断上涨,我2021年的房价平均每平方米为7000元, 经过两年的上涨,2021年房价平均每平方米为8500元,假设这两年房价的平均增长率均为x ,那么关于x 的方程为( )A .8500)21(7000=+xB .8500)1(70002=+xC .7000)1(85002=+xD .7000)1(85002=-x14. 假设关于x 的方程(k -2)x 2+4x +4=0有实数根,那么 〔 〕A .k <3B .k ≤3C .k <3且k ≠2D .k ≤3且k ≠2 三、解答题〔一共62分〕15.解以下方程〔每一小题5分,一共25分〕:〔1〕4x 2-3x -1=0(公式法) 〔2〕2x 2-4x -7=0〔配方法〕 〔3〕(2x +1)(2x +3)=15〔4〕(3y -2)2=(2y -3)2 〔5〕 (2x +1)2-5(2x +1)+6=016.〔6分〕将a 、b 、c 、d 这4个数排成2行、2列,两边各加一条竖线,记成|a c b d|,现规定新定义:|a c b d |=ad -bc ,上述记号叫做2阶行列式.假设|x +1 x -11-x x +1|=6,试求x 的值.17.〔7分〕华联购物中心服装柜在销售中发现:“宝乐〞牌童装平均每天可售出20件,每件盈利40元.为了迎接“十·一〞国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经场调查发现:假如每件童装每降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?18.〔8分〕有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台那么所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购置一批图形计算器:〔1〕假设此单位需购置12台图形计算器,应去哪家公司购置花费较少?〔2〕假设此单位恰好花费7280元,在同一家公司购置了一定数量的图形计算器,请问是在哪家公司购置的,数量是多少?19.〔8分〕关于x 的一元二次方程kx 2-2(k +1)x +k -1=0有两个不相等的实数根x 1,x 2.〔1〕求k 的取值范围;〔2〕是否存在实数k ,使1x 1+1x 2=1成立?假设存在,恳求出k 的值;假设不存在,请说明理由.20.〔8分〕如图,等腰直角三角形ABC 中,AB =BC =8cm ,动点P 从A 出发,沿AB 向B 挪动,过点P 作PR ∥BC ,PQ ∥AC 交AC 、BC 于R 、Q .问:〔1〕□PQCR 的面积能否为7cm 2?假如能,恳求出P 点与A 点的间隔 ;假如不能,请说明理由.R Q P C BA〔2〕□PQCR的面积能为16cm2吗?能为20cm2吗?假如能,恳求出P点与A点的间隔;假如不能,请说明理由.本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。

部编数学九年级上册第21单元一元二次方程单元测试卷(B卷)(人教版)含答案

部编数学九年级上册第21单元一元二次方程单元测试卷(B卷)(人教版)含答案

第21单元一元二次方程单元测试卷(B卷)满分:100分时间:45分钟一、选择题(每小题4分,共24分)1.关于x的一元二次方程2x2﹣3x+5=0的二次项系数和一次项系数分别是( )A.2,﹣3B.2,3C.﹣3,2D.3,52.关于x的一元二次方程(x﹣1)2+1=0的根的情况是( )A.有两个相等的实数根B.只有一个实数根C.有两个不相等的实数根D.无实数根3.如果x=3是方程x2+ax﹣12=0的一个根,那么另一个根是( )A.4B.﹣4C.2D.﹣24.某工厂一月份生产机器100台,计划二、三月份共生产机器240台,设二、三月份的平均增长率为x,则根据题意列出方程是( )A.100(1+x)2=240B.100(1+x)+100(1+x)2=240C.100+100(1+x)+100(1+x)2=240D.100(1﹣x)2=2405.若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b之值为何?( )A.﹣25B.﹣19C.5D.176.如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是( )A.4B.4.5C.5D.5.5二、填空题(每空4,共40分)7.x|m|+3mx﹣4=0是关于x的一元二次方程,则m= .8.将方程x2﹣12x+1=0配方,写成(x+n)2=p的形式,n= ,p= ,则2n+p= .9.已知(a+b+1)(a+b﹣1)=63,则a+b= .10.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为 ,应邀请个球队。

11.设a,b是方程x2+x﹣2021=0的两个实数根,则a2+2a+b的值为 . 12.有一长方形的桌子,长为3m,宽为2m,一长方形桌布的面积是桌面面积的2倍,且将桌布铺到桌面上时各边垂下的长度相同,则桌布长为 m,宽为 m.四、解答题(共36分)13.(每小题5分,共20分)解方程:(1)(x+8)2=36;(2)x(5x+4)﹣(4+5x)=0;(3)x2+3=3(x+1);(4)2x2﹣x﹣6=014.(8分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.15.(8分)水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天售出100千克.通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出20千克,为了保证每天至少售出240千克,张阿姨决定降价销售.(1)若售价降低0.8元,则每天的销售量为 千克、销售利润为 元;(2)若将这种水果每千克降价x元,则每天的销售量是 千克(用含x的代数式表示);(3)销售这种水果要想每天盈利300元,张阿姨应将每千克的销售价降至多少元?第21单元一元二次方程单元测试卷(B卷)满分:100分时间:45分钟三、选择题(每小题4分,共24分)1.关于x的一元二次方程2x2﹣3x+5=0的二次项系数和一次项系数分别是( )A.2,﹣3B.2,3C.﹣3,2D.3,5【答案】A【解答】解:关于x的一元二次方程2x2﹣3x+5=0的二次项系数和一次项系数分别是2,﹣3.故选:A.2.关于x的一元二次方程(x﹣1)2+1=0的根的情况是( )A.有两个相等的实数根B.只有一个实数根C.有两个不相等的实数根D.无实数根【答案】D【解答】解:∵原方程可变形为x2﹣2x+2=0,∴Δ=(﹣2)2﹣4×1×2=﹣4<0,∴一元二次方程(x﹣1)2+1=0没有实数根.故选:D.3.如果x=3是方程x2+ax﹣12=0的一个根,那么另一个根是( )A.4B.﹣4C.2D.﹣2【答案】B【解答】解:设方程的另一个根是α,则αx=﹣12,把x=3代入上式,得3α=﹣12,解得α=﹣4.故选:B.4.某工厂一月份生产机器100台,计划二、三月份共生产机器240台,设二、三月份的平均增长率为x,则根据题意列出方程是( )A.100(1+x)2=240B.100(1+x)+100(1+x)2=240C.100+100(1+x)+100(1+x)2=240D.100(1﹣x)2=240【答案】B【解答】解:设二、三月份的平均增长率为x,则二月份的生产量为100×(1+x),三月份的生产量为100×(1+x)(1+x),根据题意,得100(1+x)+100(1+x)2=240.故选:B.5.若一元二次方程式x2﹣8x﹣3×11=0的两根为a、b,且a>b,则a﹣2b之值为何?( )A.﹣25B.﹣19C.5D.17【答案】D【解答】解:(x﹣11)(x+3)=0,x﹣11=0或x+3=0,所以x1=11,x2=﹣3,即a=11,b=﹣3,所以a﹣2b=11﹣2×(﹣3)=11+6=17.故选:D.6.如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是( )A.4B.4.5C.5D.5.5【答案】D【解答】解:x2﹣8x+15=0(x﹣3)(x﹣5)=0x1=3,x2=5,∴三角形的第三边x的范围是2<x<8,三角形的周长c的范围是10<c<16,则连接这个三角形三边的中点,得到的三角形的周长a的范围是5<a<8,∴三角形的周长可能是5.5,故选:D.四、填空题(每空4,共40分)7.x|m|+3mx﹣4=0是关于x的一元二次方程,则m= .【答案】±2【解答】解:由题意,得|m|=2,解得m=±2,故答案为:±2.9.将方程x 2﹣12x +1=0配方,写成(x +n )2=p 的形式,n= ,p=,则2n +p = .【答案】23【解答】解:x 2﹣12x +1=0,移项得,x 2﹣12x =﹣1,配方得,x 2﹣12x +62=﹣1+62,(x ﹣6)2=35,∴n =﹣6,p =35,∴2n +p =2×(﹣6)+35=23.9.已知(a +b +1)(a +b ﹣1)=63,则a +b = .【答案】±8【解答】解:(a +b +1)(a +b ﹣1)=(a +b )2﹣1=63∴(a +b )2=64则a +b =±8.10.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为 ,应邀请个球队。

【5套打包】无锡市初三九年级数学上(人教版)第21章《一元二次方程》单元检测试题(含答案解析)

【5套打包】无锡市初三九年级数学上(人教版)第21章《一元二次方程》单元检测试题(含答案解析)

人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(7)一、精心选一选,慧眼识金(每小题3分,共30分). 1.下列方程中,是一元二次方程的是( ).A .230x x y ++=B .2(2)x x x x -=+ C .221132x x ++=D .2150x x++= 2.方程(3)x x x +=的根是( ).A .3x =-B .0x =C .D .0x =或3x =-3.一元二次方程220x x -+=的根的情况是( ).A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .无实数根 4.用配方法解方程2410x x ++=,经过配方可得到( ).A .()223x += B .()225x += C .()223x -=D .()225x -=5判断方程02=++c bx ax (a ≠0,a ,b ,c 为常数)一个解x 的范围是( ). A .3<x <3.23 B .3.23<x <3.24 C .3.24<x <3.25 D .3.25 <x <3.266.若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( ).A .1B .5C .5-D .6 7.关于x 的一元二次方程230x ax a --=的一个根为6,另一个根为( ).A .2B .2-C .6-D .48.有一个面积为16 cm 2的梯形,它的一条底边长为3 cm ,另一条底边长比它的高长1c m ,若设这条底边长为x cm ,依据题意,列出方程整理后得( ).A .22350x x +-=B .22700x x +-=C .22350x x --=D .22700x x -+=9.方程的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .15C .12或15D .不能确定10.某商场销售一批名牌衬衫,平均每天可出售20件,每件盈利40元,为了扩大销售,增加盈利,减少库存,经调查发现:如果每件衬衫每降低1元,则商场平均每天多售出2件,若商场平均每天要盈利1200元,则每件衬衫应降价( ).3x =29180x x -+=A .10元B .20元C .25元D .10元或20元二、耐心填一填,一锤定音(每小题3分,共30分)11.把方程()()42213-+=-x x x 化成一元二次方程的一般形式为 ,它的二次项系数、一次项系数以及常数式的和为 .12.方程是一元二次方程,则m 的值为________. 13.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m ,若每年的平均年增长率相同,则其增长率为_______. 14.用配方法解关于x 的方程x 2+mx +n =0,此方程可变形为:2()2m x +=__________. 15.若关于的方程有两个实数根相等,则__________. 16.小亮在写作业时,一不小心,把方程23x-80x -=的一次项x 前的数字被墨水玷污了,但从题的条件中,他知道方程的一个解是2x =,请问你能帮助小亮求出被玷污的数字是________.17.在实数内定义运算“”,其法则为:,方程(43)的解为 .18.若两个连续偶数的积是288,则这两个数的和等于 .19.已知实数x 满足2(1)4(1)120x x ----=,则代数式1x -的值为______.20.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意一个实数对 (a ,b )进入其中时,会得到一个新的实数:21a b +-,例如把(3,-2)放入其中,就会得到32+(-2)-1=6. 现将实数对(m ,2m -)放入其中,得到实数2,则m 的值为___________.三、细心做一做,马到成功(共60分) 21.(每小题4分,共12分)解下列方程: (1) 2235x x +-= (2)2(53)40x +-= (3)22.(6分)当x 为何值时,代数式562++x x 的值与代数式1-x 的值相等?23.(7分)某村2016年的人均收入为20000元,2018年的人均收入为24200元 (1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?22(2)(3)20m m xm x --+--=x ()24110x k x -++=k =⊕22a b a b ⊕=-⊕⊕24x =2)2)(113(=--x x24.(8分)已知关于x 的方程222(1)0x m x m -++=.(1)当m 取何值时,方程有两个实数根?(2)为m 选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.25.(8分)已知关于x 的方程2210x kx +-=.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是1-,求k 值及方程的另一个根.26.(9分)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做一个正方形. (1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分人教版九年级上册第二十一章一元二次方程单元检测(含答案)一、单选题1.下列方程中,属于一元二次方程的是( ) A .213x x -=B .2 4x =C .2310x y ++=D .31x x +=2.关于x 的方程240x mx --=的一个根是13x =,则它的另一个根2x 是( ) A .3B .43C .43-D .533.关于 的一元二次方程 有两个实数根,则 的取值范围是( ) A . B . C . 且 D . 且 4.一元二次方程配方后可化为( )A .B .C .D .5.若m 是方程2210x x --=的根,则212m m +-的值为( ) A .0B .1C .1-D .26.下列方程,是一元二次方程的是( )①234y x +=, ②22340x x -+=, ③213x x-=, ④ 20x = A .①②B .①②④C .①③④D .②④7.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣2 8.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( ) A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠9.某电子产品经过连续两次降价,售价由4900元降到了3600元.设平均每月降价的百分率为x ,根据题意列出的方程是( ) A.()2490013600x += B.()2490013600x -= C.()24900123600x -=D.()2360014900x -=10.方程2230x x --=的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有且只有一个实数根D.没有实数根11.已知关于x 的一元二次方程230x x a ++=有一个根是2-,那么a 的值是( ) A.2-B.1-C.2D.1012.为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动,已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x 折,则有A.500(12)320x -=B.2500(1)320x -=C.250032010x ⎛⎫= ⎪⎝⎭D.2500132010x ⎛⎫-= ⎪⎝⎭二、填空题 13.已人教版九年级数学上:第21章一元二次方程综合培优试题(含答案)一.选择题1.若一元二次方程x 2﹣5x+4=0的两个实数根分别是a 、b ,则一次函数y=abx+a+b 的图象一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.用配方法解一元二次方程x 2﹣4x=5时,此方程可变形为( )A .(x+2)2=1B .(x ﹣2)2=1C .(x+2)2=9D .(x ﹣2)2=93.用配方法解一元二次方程4x 2-4x=1,变形正确的是( ) (A)(x-)2=0(B)(x-)2=(C)(x-1)2=(D)(2x-1)2=04.一个等腰三角形的三边长分别为m ,n ,3,且m ,n 是关于x 的一元二次方程x 2﹣8x+t ﹣1=0的两根,则t 的值为( ) A .16 B .18 C .16或17 D .18或195.长春市企业退休人员王大爷2011年的工资是每月2100元,连续两年增长后,2013年大王大爷的工资是每月2541元,若设这两年平均每年的增长率为x ,根据题意可列方程( )A . ()254112100=+xB . ()2100125412=-xC. ()2541121002=+xD . ()2100125412=-x6.关于x 的方程(2-a)x 2+5x-3=0有实数解,则整数a 的最大值是( ) (A)1 (B)2 (C)3 (D)47.下面关于x 的方程中:①ax 2+bx+c=0;②3(x ﹣9)2﹣(x+1)2=1③x 2++5=0;④x 2﹣2+5x 3﹣6=0;⑤3x 2=3(x ﹣2)2;⑥12x ﹣10=0是一元二次方程的个数是( ) A .1 B .2 C .3 D .48.关于x 的方程()01452=---x x a 有实数根,则a 满足( )A . a ≥1B . a >1且a ≠5C . a ≥1且a ≠5D . a ≠5 二.填空题9.方程x(x+4)=8x+12的一般形式是 ,一次项为 .10.某年一月我国南方发生禽流感的养鸡场100家,后来经过二、三月份的传染共有264家被感染,设二、三月份平均每月禽流感的感染率为x ,依题意列出方程是 .11.关于x 的一元二次方程012=+-x kx 有两个不相等的实数根,则k 的取值范围是 12.请给出c 的一个值,当c= 时,方程x 2-3x+c=0无实数根.13.(x ﹣4)2=18,则x= . 三.解答题14.用适当方法解方程.(1)1222+=-x x x(2)()()()83211=++-+x x x(3)522=-x x(4)()()3332-=-x x x15.“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元. (1)求11月份这两种水果的进价分别为每千克多少元?(2)时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了m%,香橙每千克的进价在11月份的基础上下降了m%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了m%,香橙购进的数量比11月份增加了2m%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求m 的值.16.已知关于x 的方程()()01222=-++-m x m x .求证:(1)方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.17. 已知关于x 的方程x 2-5x-m 2-2m-7=0. (1)若此方程的一个根为-1,求m 的值;(2)求证:无论m 取何实数,此方程都有两个不相等的实数根.答案一.选择题 1. D . 2. D 3. B. 4. C . 5. C 6. D. 7. A . 8. A二.填空题9. x 2-4x-12=0 -4x10. 100(1+x )+100(1+x )2=264. 11. k <41且0≠k ; 12. 3(答案不唯一) 13. 10或﹣2. 三.解答题14.(1)52,5221-=+=x x(2)1,321=-=x x (3)61,6121-=+=x x(4)32,321==x x 15. 解:(1)设11月份红桔的进价为每千克x 元,人教新版九年级数学上第21章一元二次方程单元练习试题含答案一.选择题(共10小题)1.下列哪个方程是一元二次方程( ) A .2x +y =1B .x 2+1=2xyC .x 2+=3D .x 2=2x ﹣32.一元二次方程3x 2﹣3x =x +2化为一般形式ax 2+bx +c =0后,a 、b 、c 的值分别是( ) A .3、﹣4、﹣2B .3、﹣3、2C .3、﹣2、2D .3、﹣4、23.关于x 的一元二次方程(m ﹣1)x 2+3x +m 2﹣1=0的一根为0,则m 的值是( ) A .±1B .±2C .﹣1D .﹣24.一元二次方程(x ﹣2018)2+2017=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .只有一个实数根D .无实数根5.若把方程x 2﹣6x ﹣4=0的左边配成完全平方的形式,则正确的变形是( ) A .(x ﹣3)2=5B .(x ﹣3)2=13C .(x ﹣3)2=9D .(x +3)2=56.若一个三角形的两边长分别为2和6,第三边是方程x 2﹣10x +21=0的一根,则这个三角形的周长为( ) A .7B .3或7C .15D .11或157.一元二次方程mx 2+mx ﹣=0有两个相等实数根,则m 的值为( )A.0 B.0或﹣2 C.﹣2 D.28.用22cm的铁丝围成一个面积为30cm2的矩形,则这个矩形的两边长是()A.5cm和6cm B.6cm和7cm C.4cm和7cm D.4cm和5cm9.已知A=a2﹣a+4,B=3a﹣1,则A、B的大小关系为()A.A>B B.A=B C.A<B D.不能确定10.已知某公司一月份的收益为10万元,后引进先进设备,收益连续增长,到三月份统计共收益50万元,求二月、三月的平均增长率,设平均增长率为x,可得方程为()A.10(1+x)2=50 B.10(1+x)2=40C.10(1+x)+10(1+x)2=50 D.10(1+x)+10(1+x)2=40二.填空题(共7小题)11.已知(m﹣1)x2﹣3x+1=0是关于x的一元二次方程,则实数m的取值范围是.12.给出一种运算:对于函数y=x n,规定y′=nx n﹣1.例如:若函数y=x4,则有y′=4x3.已知函数y=x3,则方程y′=12的解是.13.小明设计了一个魔术盒,当任意实数对(a,b)进入其中,会得到一个新的实数a2﹣2b+3,若将实数对(x,﹣3x)放入其中,得到一个新数为5,则x=.14.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是.15.对任意的两实数a,b,用min(a,b)表示其中较小的数,如min(2,﹣4)=﹣4,则方程x•min(2,2x﹣1)=x+1的解是.16.若实数a,b满足(a2+b2)(a2+b2﹣8)+16=0,则a2+b2=.17.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为;三.解答题(共3小题)18.(1)用配方法解方程:3x2﹣12x+9=0.(2)用公式法解方程:3x2﹣9x+4=0.19.求证:关于x的一元二次方程mx2+(3﹣2m)x+(m﹣3)=0(m≠0)总有两个不相等的实数根.20.某公司销售一种产品,进价为20元/件,售价为80元/件,公司为了促销,规定凡一次性购买10万件以上的产品,每多买1万件,每件产品的售价就减少2元,但售价最低不能低于40元/件,设一次性购买x万件(x>10)(1)若x=15,则售价应是元/件;(2)若以最低价购买此产品,求x的值;(3)当x>10时,求此产品的利润y(万元)与购买数量x(万件)的关系式;(4)经营中公司发现售出19万件的利润反而比售出24万件的利润还多,在促销条件不变的情况下,为了使每次销售的越多总利润也越多,最低售价应调整到多少元/件?并说明理由.参考答案一.选择题(共10小题)1.解:A、不是一元二次方程,故此选项错误;B、不是一元二次方程,故此选项错误;C、不是一元二次方程,故此选项错误;D、是一元二次方程,故此选项正确;故选:D.【点评】此题主要考查了一元二次方程定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.2.解:一元二次方程3x2﹣3x=x+2化为一般形式ax2+bx+c=0后,3x2﹣4x﹣2=0,则a=3,b=﹣4,c=﹣2.故选:A.【点评】此题主要考查了一元二次方程的一般形式,正确合并同类项是解题关键.3.解:把x=0代入方程得:0+0+m2﹣1=0,解得:m=±1,∵m﹣1≠0,∴m=﹣1,故选:C.【点评】本题主要考查对一元二次方程的解,一元二次方程的定义等知识点的理解和掌握,能理解一元二次方程的解的含义是解此题的关键.4.解:由原方程得到:(x﹣2018)2=﹣2017.∵(x﹣2018)2≥0,﹣2017<0,∴该方程无解.故选:D.【点评】考查了直接开平方法解一元二次方程.形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.5.解:x2﹣6x﹣4=0x2﹣6x=4x2﹣6x+9=13(x﹣3)2=13,故选:B.【点评】本题考查解一元二次方程﹣配方法,解答本题的关键是会用配方法解方程的方法.6.解:x2﹣10x+21=0,(x﹣3)(x﹣7)=0,则x﹣3=0,x﹣7=0,解得:x=3或7,当x=3时,2+3=5<6,不能组成三角形,故x=3不合题意舍去,当x=7时,2+6=8>7,可以组成三角形,则三角形的周长为2+6+7=15,故选:C.【点评】此题考查了利用因式分解法求一元二次方程的解,以及三角形的边角关系,利用因式分解法解方程时,首先将方程右边化为0,左边分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化两个一次方程来求解.7.解:∵一元二次方程mx2+mx﹣=0有两个相等实数根,∴△=m2﹣4m×(﹣)=m2+2m=0,解得:m=0或m=﹣2,经检验m=0不合题意,则m=﹣2.故选:C.【点评】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.8.解:设这个矩形的长为xcm,根据题意x(﹣x)=30,整理得x2﹣11x+30=0,解这个方程,得x1=5,x2=6,由x1=5得﹣x=6(与题设不符,舍去).由x2=6得﹣x=5.则这个矩形的长是6cm,宽是5cm.故选:A.【点评】本题考查了一元二次方程在实际生活中的应用及矩形的面积公式,表示出矩形的长与宽得出等式方程是解题关键.9.解:∵A=a2﹣a+4,B=3a﹣1,∴A﹣B=a2﹣a+4﹣3a+1=a2﹣4a+4+1=(a﹣2)2+1≥1>0,则A>B,故选:A.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.10.解:设平均增长率为x,则二月份的收益为10(1+x)万元,三月份的收益为10(1+x)2万元,根据题意得:10+10(1+x)+10(1+x)2=50,即10(1+x)+10(1+x)2=40.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共7小题)11.解:由题意可知:m﹣1≠0,∴m≠1,故答案为:m≠1,【点评】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.12.解:∵y=x3,∴y′=3x2,∵y′=12,∴3x2=12,解得,x=±2,故答案为:±2.【点评】本题考查解一元二次方程﹣直接开平方法、新定义,解答本题的关键是明确题目中的新定义,利用解方程的方法解答.13.解:根据题意,得:x2+6x+3=5,即x2+6x﹣2=0,∵a=1,b=6,c=﹣2,∴△=36﹣4×1×(﹣2)=44>0,则x==﹣3,故答案为:﹣3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.解:设这两天此股票股价的平均增长率为x,由题意得(1﹣10%)(1+x)2=1.故答案为:(1﹣10%)(1+x)2=1.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.15.解:①若2<2x﹣1,即x>1.5时,x+1=2x,解得x=1(舍);②若2x﹣1≤2,即x≤1.5时,x(2x﹣1)=x+1,解得x=或x=,故答案为:x=或x=.【点评】本题主要考查解一元二次方程,解题的关键是根据定义列出关于x的方程,并准确求解.16.解:令a2+b2=x,则原方程可化为:x(x﹣8)+16=0,∴x2﹣8x+16=0,即(x﹣4)2=0,∴x﹣4=0,解得x=4,即a2+b2=4,故答案为:4.【点评】本题考查了换元法解一元二次方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使复杂问题简单化,变得容易处理.17.解:根据题意得:α+β=1,α3﹣2021α﹣β=α(α2﹣2020)﹣(α+β)=α(α2﹣2020)﹣1,∵α2﹣α﹣2019=0,∴α2﹣2020=α﹣1,把α2﹣2020=α﹣1代入原式得:原式=α(α﹣1)﹣1=α2﹣α﹣1=2019﹣1=2018.【点评】本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.三.解答题(共3小题)18.解:(1)两边同除以3,得x2﹣4x+3=0,移项,得x2﹣4x=﹣3,配方,得x2﹣4x+4=﹣3+4,(x﹣2)2=1,x﹣2=±1,x1=3,x2=1;(2)∵a=3,b=﹣9,c=4,∴△=b2﹣4a c=(﹣9)2﹣4×3×4=33>0,∴方程有两个不相等的实数根为x=,x1=,x2=.【点评】本题考查了解一元二次方程,能熟记解一元二次方程的各个方法是解此题的关键.19.证明:∵mx2+(3﹣2m)x+(m﹣3)=0(m≠0),∴△=(3﹣2m)2﹣4m(m﹣3)=9﹣12m+4m2﹣4m2+12m=9>0,∴该方程总有两个不相等的实数根.【点评】本题主要考查根的判别式,计算出判别式并判断其符号是解题的关键.20.解:(1)由题意知,一次性购买x万件时,售价为80﹣2(x﹣10)=100﹣2x(元/件),当x=15时,100﹣2x=70(元/件),故答案为:70;(2)由题意知100﹣2x=40,解得:x=30;(3)根据题意知,y=(100﹣2x﹣20)x=﹣2x2+80x(10<x<30);(4)为了使每次销售的越多总利润也越多,最低售价应调整到60元/件,∵y=﹣2x2+80x=﹣2(x﹣20)2+800,∴当x≤20时,y随x的增大而增大,当x=20时,最低售价为60元/件.【点评】本题主要考查一元一次方程、二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程和函数解析式.人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(6) 一、选择题1.已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是()A .1B .0C .0或1D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根,那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.根据下列表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A. B. C.6.18 6.19x << D.6.19 6.20x <<4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( ) A.8 B.10 C.8或10 D.不能确定5.新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销量全球第一,2016年销量为50.7万辆,销量逐年增加,到2018年销量为125.6万辆.设年平均增长率为x ,可列方程为( )A .50.7(1+x )2=125.6B .125.6(1﹣x )2=50.7C .50.7(1+2x )=125.6D .50.7(1+x 2)=125.66.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-7、已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --8、已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --9、关于x 的一元二次方程222310x x a --+=的一个根为2,则a 的值是( )A .1B C .D .10、一个等腰三角形的底边长是6,腰长是一元二次方程x 2﹣8x +15=0的一根,则此三角形的周长是( ) A .16 B .12 C .14 D .12或16 二、填空题11.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可). 12.已知实数x 满足4x 2-4x+l=O ,则代数式2x+x21的值为________.13.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________14.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .15.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 . 16.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=+*x 的解为17、《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多 步.18、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________19、甲、乙两同学解方程x 2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和-10,则原方程为20、如图1,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了 元钱?三、解答题 21、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①2310x x -+=;②2(1)3x -=;③230x x -=;④224x x -=.22、关x 的一元二次方程(x-2)(x-3)=m 有两个不相等的实数根x 1、x 2,则m 的取值范围是 ;若x 1、x 2满图1。

无锡滨湖区胡埭中学九年级数学上册第二十一章《一元二次方程》经典练习(含答案)

无锡滨湖区胡埭中学九年级数学上册第二十一章《一元二次方程》经典练习(含答案)

一、选择题1.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ).A .()40012900x +=B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++=C 解析:C【分析】设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长率为x ,根据题意得:400(1+x )2=900.故选:C .【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.2.下列方程中,没有实数根的是( )A .2670x x ++=B .25260x x --=C .22270x x -=D .2220x x -+-=D解析:D【分析】根据判别式的意义对各选项进行判断.【详解】A 、224641780b ac =-=-⨯⨯=>,则方程有两个不相等的实数根,所以A 选项不符合题意;B 、()()224541261290b ac =-=--⨯⨯-=>,则方程有两个不相等的实数根,所以B 选项不符合题意;C 、()224274207290b ac =-=--⨯⨯=>,则方程有两个不相等的实数根,所以C 选项不符合题意;D 、()()224241240b ac =-=-⨯-⨯-=-<,则方程没有实数根,所以D 选项符合题意.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠D解析:D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程, 0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.故选D【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.4.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关A解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.5.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根A 解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.6.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确是( )A .(1)81x x x ++=B .2181x x ++=C .1(1)81x x x +++=D .(1)81x x +=C解析:C【分析】平均一人传染了x 人,根据有一人患病,第一轮有(x+1)人患病,第二轮共有x+1+(x+1)x 人,即81人患病,由此列方程求解.【详解】解:设每轮传染中平均一个人传染了x 个人,根据题意得,x+1+(x+1)x=81故选:C .【点睛】本题考查了一元二次方程的应用,关键是得到两轮传染数量关系,从而可列方程求解. 7.《代数学》中记载,形如2833x x +=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为2x 的矩形,得到大正方形的面积为331649+=,则该方程的正数解为743-=.”小聪按此方法解关于x的方程2100x x m++=时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为().A.6 B.3532C.532D.535D解析:D 【分析】仿照题目中的做法可得空白部分小正方形的边长为52,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可.【详解】解:如图2,先构造一个面积为2x的正方形,再以正方形的边长为一边向外构造四个面积为52x的矩形,得到大正方形的面积为255045025752⎛⎫+⨯=+=⎪⎝⎭,∴57525352⨯=.故选:D.【点睛】本题考查了一元二次方程的几何解法,读懂题意并数形结合是解题的关键.8.已知a、b、m、n为互不相等的实数,且(a+m)( a+n)=2,(b+m)( b+n)=2,则ab﹣mn 的值为()A.4 B.1 C.﹣2 D.﹣1C解析:C【分析】先把已知条件变形得到a2+(m+n) a+mn﹣2=0,b2+( m+n) b+mn﹣2=0,则可把a、b看作方程x2+( m+n) x+mn﹣2=0的两实数根,利用根与系数的关系得到ab=mn﹣2,从而得到ab﹣mn的值.【详解】解:∵(a+m)( a+n)=2,(b+m)( b+n)=2,∴a2+( m+n)a+mn﹣2=0,b2+( m+n)b+mn﹣2=0,而a、b、m、n为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.9.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .2019A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.如图,是一个简单的数值运算程序,则输入x 的值为( )A 31B .31C 31或31D .无法确定C解析:C【分析】先根据数值运算程序可得一个关于x 的一元二次方程,再利用直接开平方法解方程即可得.【详解】由题意得:()2319x --=-, ()213x -=,13-=x ,13x =±即1x =或1x =,故选:C .【点睛】本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键.二、填空题11.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.1+x+x2=91【分析】如果设每个支干分出x 个小分支根据每个支干又长出同样数目的小分支可知:支干的数量为x 个小分支的数量为x•x=x2个然后根据主干支干和小分支的总数是91就可以列出方程【详解】解解析:1+x+x 2=91【分析】如果设每个支干分出x 个小分支,根据“每个支干又长出同样数目的小分支”可知:支干的数量为x 个,小分支的数量为x•x=x 2个,然后根据主干、支干和小分支的总数是91就可以列出方程.【详解】解:依题意得支干的数量为x 个,小分支的数量为x•x=x 2个,那么根据题意可列出方程为:1+x+x 2=91,故答案为:1+x+x 2=91.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,找到关键描述语,找到等量关系是解决问题的关键.12.解方程:268x x +=-解:两边同时加_________,得26x x ++________8=-+________则方程可化为(_______)2=________两边直接开平方得_____________即_________或_____________所以1x =__________,2x =___________.999x+31x+3=±1x+3=1x+3=-1-2-4【分析】根据配方法求解即可【详解】解:两边同时加9得99则方程可化为1两边直接开平方得x+3=±1即x+3=1或x+3=-1所以-2-4故答案解析:9 9 9 x+3 1 x+3=±1 x+3=1 x+3=-1 -2 -4【分析】根据配方法求解即可.【详解】解:两边同时加9,得26x x ++98=-+9,则方程可化为()23x +=1,两边直接开平方得x+3=±1,即x+3=1或x+3=-1,所以1x =-2,2x =-4.故答案为:9;9;9;x+3;1;x+3=±1;x+3=1;x+3=-1;-2;-4.【点睛】本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.13.一元二次方程 x ( x +3)=0的根是__________________.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.14.若二次式236x -的值与2x -的值相等,则x 的值为_______.-1或【分析】先根据题意列出关于x 的方程整理为一般式再利用因式分解法求解即可【详解】解:根据题意得:3x2-6=x-2整理得:3x2-x-4=0∴(x+1)(3x-4)=0∴x+1=0或3x-4=0解析:-1或43【分析】先根据题意列出关于x 的方程,整理为一般式,再利用因式分解法求解即可.【详解】解:根据题意,得:3x 2-6=x-2,整理,得:3x 2-x-4=0,∴(x+1)(3x-4)=0,∴x+1=0或3x-4=0, 解得1241,,3=-=x x ∴当x=-1或43时,二次式3x 2-6的值与x-2的值相等, 故答案为:-1或43【点睛】 本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.15.方程220x x +-=的两个根分别为,m n ,则11m n+的值为_________.;【分析】根据根与系数的关系可得出m+n=-1mn=-2将其代入中即可求出结论【详解】解:∵方程x2+x ﹣2=0的两个根分别为mn ∴m+n =﹣1mn =﹣2故答案为:【点睛】本题考查了根与系数的关系牢 解析:12; 【分析】根据根与系数的关系可得出m+n=-1,mn=-2,将其代入11n m m n mn++=中即可求出结论. 【详解】解:∵方程x 2+x ﹣2=0的两个根分别为m ,n ,∴m +n =﹣1,mn =﹣2, 111122n m n m m n mn mn mm +-∴+=+===-. 故答案为:12 . 【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a是解题的关键. 16.三角形两边长分别为3和5,第三边满足方程x 2-6x+8=0,则这个三角形的形状是__________.直角三角形【分析】先利用因式分解法解方程得到x1=4x2=2再利用三角形三边的关系得到x=4然后根据勾股定理的逆定理进行判断【详解】解:x2-6x+8=0(x-4)(x-2)=0x-4=0或x-2=解析:直角三角形【分析】先利用因式分解法解方程得到x 1=4,x 2=2,再利用三角形三边的关系得到x=4,然后根据勾股定理的逆定理进行判断.【详解】解:x 2-6x+8=0,(x-4)(x-2)=0,x-4=0或x-2=0,所以x 1=4,x 2=2,∵两边长分别为3和5,而2+3=5,∴x=4,∵32+42=52,∴这个三角形的形状是直角三角形.故答案为:直角三角形.【点睛】本题考查了解一元二次方程-因式分解法、勾股定理的逆定理和三角形三边的关系,熟练掌握相关的知识是解题的关键.17.已知1x ,2x 是关于x 的一元二次方程260x x a -+=的两个实数根,且221212x x -=,则a =________.8【分析】由一元二次方程根与系数的关系得:解方程可得进一步可得结论【详解】解:由一元二次方程根与系数的关系得:又∴∴∴解得故答案为:8【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解析:8【分析】由一元二次方程根与系数的关系得:126x x +=,12x x a =,解方程221212x x -=可得122x x -=,进一步可得结论.【详解】解:由一元二次方程根与系数的关系得:126x x +=,12x x a =,又221212x x -=,∴1212()()12x x x x +-=∴122x x -=,∴22121212()()43644x x x x x x a -=+-=-=解得,8a =,故答案为:8.【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 18.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键19.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.3【分析】题中三个等式左右两边分别相加后再移项可以通过配方法得到三个平方数的和为0然后根据非负数的性质可以得到abc 的值从而求得a+b+c 的值【详解】解:题中三个等式左右两边分别相加可得:即∴∴a=解析:3【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值.【详解】解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ++-+-=--,即222226110a b b c c a ++-+-+=,∴()()()2223110a b c -+++-=, ∴a=3,b=-1,c=1,∴a+b+c=3-1+1=3,故答案为3.【点睛】本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键. 20.已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则11a b+=_____.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1, ∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.三、解答题21.解下列方程:(1)2x 2﹣4x +1=0;(2)(2x ﹣1)2=(3﹣x )2.解析:(1)x 1=1+2,x 2=1﹣2;(2)x 1=﹣2,x 2=43 【分析】(1)利用配方法解一元二次方程;(2)利用因式分解法解方程.【详解】(1)解:2x 2﹣4x +1=0,x 2﹣2x =﹣12, x 2﹣2x +1=﹣12+1,即(x ﹣1)2=12,∴x ﹣1=,∴x 1=1+2,x 2=1﹣2; (2)解:(2x ﹣1)2=(3﹣x )2.(2x ﹣1)2﹣(3﹣x )2=0,[(2x ﹣1)+(3﹣x )][(2x ﹣1)﹣(3﹣x )]=0,∴x +2=0或3x ﹣4=0,∴x 1=﹣2,x 2=43. 【点睛】 本题考查一元二次方程的解法,熟练掌握配方法、因式分解法、公式法,并熟练运用是关键.22.用适当的方法解下列方程:(1)22580x x --=;(2)23(5)2(5)x x -=-.解析:(1)12x x ==2)12175,3x x == 【分析】 (1)用公式法求解即可;(2)用因式分解法求解即可.【详解】解:(1)2,5,8a b c ==-=-,2(5)42(8)890∴∆=--⨯⨯-=>,524b x a -±±∴==,1255,44x x ∴== (2)23(5)2(5)0x x ---=, 移项得,23(5)2(5)0x x ---=,因式分解得,(5)(317)0x x --=,50x ∴-=或3170x -=,12175,3x x ∴== 【点睛】本题主要考查解一元二次方程的解法,熟练掌握解一元二次方程的几种常用方法:直接开平方法、配方法、公式法、因式分解法,结合方程的特点选择合适、简便的方法是解题的关键.23.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,我市一家“大学生自主创业”的快递公司,今年7月份与9月份完成投递的快递总件数分别是10万件和12.1万件,现假设该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果每人每月最多可投递0.6万件,那么该公司现有的22名快递业务员能否完成今年10月份的快递投递任务?请说明理由.解析:(1)该快递公司投递总件数的月平均增长率为10%;(2)不能,理由见解析【分析】(1)设该快递公司投递总件数的月平均增长率为x ,根据“今年7月份与9月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年10月份的快递投递任务,再求出22名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年10月份的快递投递任务.【详解】解:(1)设该快递公司投递总件数的月平均增长率为x ,根据题意得:210(1)12.1x +=,解得:10.1x =,2 2.1x =-(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年10月份的快递投递任务是12.1(110%)13.31⨯+=(万件).平均每人每月最多可投递0.6万件, 22∴名快递投递员能完成的快递投递任务是:0.62213.213.31⨯=<,∴该公司现有的22名快递投递业务员不能完成今年10月份的快递投递任务.【点睛】此题主要考查了一元二次方程的应用,根据增长率一般公式列出方程即可解决问题. 24.解方程:2410y y --=.解析:12y =22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.【详解】解:2410y y --= 24=1y y -24+4=5y y -2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键. 25.已知关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0.(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个根x 1,x 2,且x 12+x 22=8,求k 的值.解析:(1)见解析;(2)-1或13【分析】(1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k -,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8, 整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解, ∵k ≠0,∴k 的值为﹣1或13. 【点睛】 本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.26.解下列方程:(1)2410x x --=;(2)(4)123x x x -=-.解析:(1)12x =22x =2)x 4=或x 3=-【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.【详解】(1)2410x x --=2445x x +=-2(2)5x -=则2x -=解得12x =22x =(2)解:(4)3(4)0x x x -+-=,(4)(3)0x x -+=,则40x -=或30x +=,解得x 4=或x 3=-.【点睛】此题考查解一元二次方程:直接开平方法、配方法、公式法、因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.27.请回答下列各题:(1)先化简,再求值:2319369x x x xx x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x = (2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.解析:(1)1-2)13m <-. 【分析】(1)根据分式的加减乘除混合运算法则计算即可,求值时注意分母有理化.(2)根据方程没有实数根,可知∆<0,进而求得m 得取值范围.【详解】(1)由题意得:原式23193(3)x x x xx x +--⎛⎫=-÷ ⎪--⎝⎭ 2(3)(3)(1)(3)(3)9x x x x x x x x ⎡⎤+----=⨯⎢⎥--⎣⎦ 2229(3)(3)9x x x x x x x --+-=⨯-- 29(3)(3)9x x x x x --=⨯-- 29(3)(3)9x x x x x --=⨯--3x x-=.3x =,∴原式313-===.(2)该方程没有实数根,2242430b ac m ∴∆=-=+⨯⨯<,故4120m +<,解得13m <-. 【点睛】本题考查分式的混合运算以及一元二次方程根的判别,熟练掌握分式运算法则以及根的判别公式是解题关键.28.解下列方程:(1)2810x x --=;(2)2(2)6(2)80x x ---+=.参考答案解析:(1)14x =,24x =;(2)16x =,24x =.【分析】(1)先对原方程配方,然后再运用直接开平方法解答即可;(2)先对原方程配方,然后再运用直接开平方法解答即可.【详解】解:(1)2810x x --=281x x -=281617x x -+=()2417x -=4x -=14x =,24x =(2)2(2)6(2)80x x ---+=[]2(2)31x --=51x =±,16x =,24x =.【点睛】本题考查了运用配方法解一元二次方程,正确的对原方程配方成为解答本题的关键.。

无锡滨湖区无锡市太湖格致中学九年级数学上册第二十一章《一元二次方程》习题(含答案)

无锡滨湖区无锡市太湖格致中学九年级数学上册第二十一章《一元二次方程》习题(含答案)

一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2±B .2-C .2D .4B 解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答.【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,∴240,20m m -=-≠,∴m=-2,故选:B .【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键.2.某超市今年1月份的营业额为50万元,已知2月至3月营业额的月增长率是1月至2月营业额的月增长率的2倍,3月份的营业额是66万元,设该超市1月至2月营业额的月增长率为x ,根据题意,可列出方程( )A .()50166x +=B .()250166x +=C .()2501266x +=D .()()5011266x x ++=D 解析:D【分析】根据2月份的营业额=1月份的营业额×(1+x ),3月份的营业额=2月份的营业额×(1+2x ),把相关数值代入即可得到相应方程.【详解】解:∵1月份的营业额为50万元,2月份的营业额比1月份增加x ,∴2月份的营业额=50×(1+x ),∴3月份的营业额=50×(1+x )×(1+2x ),∴可列方程为:50(1+x )(1+2x )=66.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .注意先求得2月份的营业额. 3.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠ B .1a ≥且5a ≠ C .1a ≥ D .1a <且5a ≠B解析:B【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5.故选:B .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.4.若关于x 的一元二次方程2(2)210m x x --+=有实数根,则m 的取值范围是( ) A .3m <B .3mC .3m <且2m ≠D .3m 且2m ≠D 解析:D【分析】根据一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac 的意义得到m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,然后解不等式组即可得到m 的取值范围.【详解】解:∵关于x 的一元二次方程(m-2)x 2-2x+1=0有实数根,∴m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,解得m≤3,∴m 的取值范围是 m≤3且m≠2.故选:D .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 5.下列方程中是一元二次方程的是( )A .210x +=B .220x -=C .21x y +=D .211x x+=B 解析:B【分析】直接利用一元二次方程的定义分析得出答案.【详解】解:A.210x +=,是一元一次方程,故本选项不符合题意.B.220x -=,是一元二次方程,故本选项符合题意.C.21x y +=,是二元二次方程,故本选项不符合题意.D.211x x+=,该方程分式方程,故本选项不符合题意. 故选B .【点睛】 此题主要考查了一元二次方程的定义,正确把握定义是解题关键.6.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .16B 解析:B【分析】设大正方形的边长为 a ,小正方形的边长为 b ,利用图1得到一个 a 与 b 关系式,再利用图2得到一个 a 与 b 关系式,即可求出 a 和 b ,然后再求图3阴影面积即可.【详解】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2,设大正方形边长为a ,小正方形的边长为b ,∴a -b +2=b ,如图2,阴影部分面积=a 2-2b 2+(b -2a b -)2=44,解得:b =6,∴a =10, 如图3,两个小正方形重叠部分的面积=()2b b a ⨯-=12.故答案为:B .【点睛】此题考查的是代数式的运算,正方形的性质,解一元二次方程,找到每个图中的等量关系式是解决此题的关键.7.下列一元二次方程中,没有实数根的是( )A .(2)(2)0x x -+=B .220x -=C .2(1)0x -=D .2(1)20x ++=D解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.8.方程23x x =的根是( )A .3x =B .0x =C .123,0x x =-=D .123,0x x ==D 解析:D【分析】先把方程化为一般式,再把方程左边因式分解得x (x ﹣3)=0,方程就可转化为两个一元一次方程x =0或x ﹣3=0,然后解一元一次方程即可.【详解】解:∵x 2=3x ,∴x 2﹣3x =0,∴x (x ﹣3)=0,∴x =0或x =3,故选:D .【点睛】本题考查了利用因式分解法解一元二次方程ax 2+bx +c =0的方法:先把方程化为一般式,再把方程左边因式分解,然后把方程转化为两个一元一次方程,最后解一元一次方程即可.9.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12-D 解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2, ∴x 1•x 2=12-=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 10.下列方程是关于x 的一元二次方程的是( )A .212x x x -=B .2(2)x x x -=C .23(2)x x =+D .20ax bx c ++=C 解析:C【分析】根据一元二次方程的定义逐项判断即可得.【详解】A 、方程212x x x -=中的1x不是整式,不满足一元二次方程的定义,此项不符题意; B 、方程2(2)x x x -=可整理为20x -=,是一元一次方程,此项不符题意;C 、方程23(2)x x =+满足一元二次方程的定义,此项符合题意;D 、当0a =时,方程20ax bx c ++=不是一元二次方程,此项不符题意;故选:C .【点睛】本题考查了一元二次方程,熟记一元二次方程的概念是解题关键.二、填空题11.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.12.若关于x 的一元二次方程240x x k -+=有两个相等的实数根,则k =______.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解题解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k -+=有两个相等的实数根,∴()224440b ac k ∆=-=--=, 解得:4k =;故答案为4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.13.某商贸公司2017年盈利100万元,2019年盈利144万元,且2017年到2019年每年盈利的增长率相同,则该公司2018年盈利_____万元.120【分析】设平均年增长率为x 列式求出年平均增长率即可算出结果【详解】解:设平均年增长率为x 根据题意得:整理得:开方得:解得:(舍去)则平均年增长率为20∴该公司2018年盈利100(1+20)=解析:120【分析】设平均年增长率为x ,列式()21001144x +=,求出年平均增长率,即可算出结果.【详解】解:设平均年增长率为x ,根据题意得:()21001144x +=,整理得:()21 1.44x +=,开方得:1 1.2x +=±,解得:10.2x =,2 2.2x =-(舍去),则平均年增长率为20%,∴该公司2018年盈利100(1+20%)=120(万元).故答案为:120.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的求解方法.14.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--,3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.15.已知方程22610x x -+=的两根为12,x x ,则2212x x +=_______.8【分析】利用一元二次方程根与系数的关系可列出两根之和及两根之积的值再对其进行变形即可求解【详解】由题可得:∴故答案为:8【点睛】本题考查一元二次方程根与系数的关系进行变形求值熟记结论且灵活变形是解解析:8【分析】利用一元二次方程根与系数的关系,可列出两根之和及两根之积的值,再对其进行变形即可求解.【详解】 由题可得:1212132x x x x +==,, ∴()222212121212329182x x x x x x +=+-=-⨯=-=, 故答案为:8.【点睛】 本题考查一元二次方程根与系数的关系进行变形求值,熟记结论且灵活变形是解题关键. 16.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m+n =_____.﹣2【分析】直接根据根与系数的关系求解即【详解】解:∵mn 是一元二次方程x2+2x ﹣7=0的两个根∴m+n =﹣2故答案为﹣2【点睛】本题考查一元二次方程根与系数的关系是重要考点难度较易掌握相关知识是解析:﹣2.直接根据根与系数的关系求解,即b m n a +=-. 【详解】解:∵m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,∴m+n =﹣2.故答案为﹣2.【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.17.已知关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是______.且【分析】根据题意一元二次方程有两个不相等的实数根可知根的判别式据此解一元一次不等式即可解题注意二次项系数不为零【详解】关于x 的一元二次方程有两个不相等的实数根即且故答案为:且【点睛】本题考查一元二 解析:13a >-且0a ≠.【分析】根据题意,一元二次方程2230ax x +-=有两个不相等的实数根,可知根的判别式2=40b ac ∆->,据此解一元一次不等式即可解题,注意二次项系数不为零.【详解】关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,2=40b ac ∴∆->即224(3)0a -⨯-> 4120a +>13a ∴>-且0a ≠ 故答案为:13a >-且0a ≠. 【点睛】本题考查一元二次方程根的判别式、一元一次不等式、一元二次方程的定义等知识,是重要考点,难度较易,掌握相关知识是解题关键.18.已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值是_____.-1【分析】一元二次方程的根就是一元二次方程的解就是能够使方程左右两边相等的未知数的值即把x=1代入方程求解可得m 的值【详解】把x=1代入方程(m-2)x2+4x-m2=0得到(m-2)+4-m2=解析:-1一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x =1代入方程求解可得m 的值.【详解】把x =1代入方程(m -2)x 2+4x -m 2=0得到(m -2)+4-m 2=0,整理得:220m m --=,因式分解得:()()120m m +-=,解得:m =-1或m =2,∵m -2≠0∴m =-1,故答案为:-1.【点睛】本题考查了一元二次方程的解的定义以及因式分解法解一元二次方程,解题的关键是正确的代入求解.注意:二次项系数不为0的条件.19.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一解析:3【分析】设每轮传染中平均一个人传染了x 人,则第一轮共有()1x +人患病,第二轮后患病人数有()21x +人,从而列方程,再解方程可得答案.【详解】解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.20.当x=______时,−4x 2−4x+1有最大值.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.三、解答题21.已知关于x 的一元二次方程kx 2+6x ﹣1=0有两个不相等的实数根.(Ⅰ)求实数k 的取值范围;(Ⅱ)写出满足条件的k 的最小整数值,并求此时方程的根.解析:(Ⅰ)k >﹣9且k ≠0;(Ⅱ)8k =-,112x =,214x = 【分析】(Ⅰ)根据一元二次方程的定义以及根的判别式得到k ≠0,且△>0,然后解两个不等式即可得到实数k 的取值范围;(Ⅱ)根据(Ⅰ)中k 的取值范围,任取一k 的值,然后解方程即可.【详解】解:(Ⅰ)根据题意得,k ≠0,且△>0,即2640k +>,解得k >﹣9,∴实数k 的取值范围为k >﹣9且k ≠0;(Ⅱ)由(1)知,实数k 的取值范围为k >﹣9且k ≠0,故取8k =-,所以该方程为28610x x -+-=,解得112x =,214x =. 【点睛】本题考查一元二次方程的根的判别式和解一元二次方程,解题的关键是熟练运用根的判别式和解一元二次方程的方法.22.用适当的方法解下列方程:(1)22580x x --=;(2)23(5)2(5)x x -=-.解析:(1)125544x x +-==;(2)12175,3x x == 【分析】 (1)用公式法求解即可;(2)用因式分解法求解即可.【详解】解:(1)2,5,8a b c ==-=-,2(5)42(8)890∴∆=--⨯⨯-=>,x ∴==,1255,44x x ∴== (2)23(5)2(5)0x x ---=, 移项得,23(5)2(5)0x x ---=,因式分解得,(5)(317)0x x --=,50x ∴-=或3170x -=,12175,3x x ∴== 【点睛】本题主要考查解一元二次方程的解法,熟练掌握解一元二次方程的几种常用方法:直接开平方法、配方法、公式法、因式分解法,结合方程的特点选择合适、简便的方法是解题的关键.23.已知关于x 的方程x 2﹣8x ﹣k 2+4k +12=0.(1)求证:无论k 取何值,这个方程总有两个实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.解析:(1)证明见解析;(2)k 的值为2或1或3.【分析】(1)先计算出△=4(k ﹣2)2,然后根据判别式的意义即可得到结论;(2)先利用因式分解法求出方程的解为x 1=﹣k +6,x 2=k +2,然后分类讨论:当AB =AC 或AB =BC 或AC =BC 时△ABC 为等腰三角形,然后求出k 的值.【详解】解:(1)证明:∵△=(﹣8)2﹣4(﹣k 2+4k +12)=4(k ﹣2)2≥0,∴无论k 取何值,这个方程总有两个实数根;(2)解:x 2﹣8x ﹣k 2+4k +12=0,(x +k ﹣6)(x ﹣k ﹣2)=0,解得:x 1=﹣k +6,x 2=k +2,当AB =AC 时,﹣k +6=k +2,则k =2;当AB =BC 时,﹣k +6=5,则k =1;当AC =BC 时,则k +2=5,解得k =3,综合上述,k 的值为2或1或3.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.24.已知:关于x 的一元二次方程()2223320x m x m m -++++=. (1)已知2x =是方程的一个根,求m 的值;(2)以这个方程的两个实数根作为ABC 中AB 、AC (AB <AC )的边长,当BC =时,ABC 是等腰三角形,求此时m 的值.解析:(1)m=0或m=1;(2)或.【分析】(1)把x=2代入方程x 2-(2m+3)x+m 2+3m+2=0得到关于m 的一元二次方程,然后解关于m 的方程即可;(2)先计算出判别式,再利用求根公式得到x 1=m+2,x 2=m+1,则AC=m+2,AB=m+1.然后讨论:当AB=BC 时,有AC=BC 时,有m 的一次方程即可.【详解】解:(1)∵x=2是方程的一个根,∴4-2(2m+3)+m 2+3m+2=0,∴m=0或m=1;(2)∵△=(2m+3)2-4(m 2+3m+2)=1,∴x=2312m +± ∴x 1=m+2,x 2=m+1,∵AB 、AC (AB <AC )的长是这个方程的两个实数根,∴AC=m+2,AB=m+1.∵△ABC 是等腰三角形,∴当AB=BC 时,有∴;当AC=BC 时,有∴,综上所述,当-1或时,△ABC 是等腰三角形.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,公式法解一元二次方程,也考查了等腰三角形的判定.25.设,a b 是一个直角三角形的两条直角边的长,且()()2222112a ba b +++=,求这个直角三角形的斜边长c 的值.【分析】对题目中所给的条件进行变形,利用整体思想求解出22a b +的值,从而结合勾股定理求解斜边长即可.【详解】由题意得()()22222120a b a b +++-=, ()()2222340a b a b +∴+-+=223a b ∴+=或224a b +=-(不合题意,舍去)则2223c a b =+=c ∴=负舍).【点睛】本题考查解一元二次方程及勾股定理的应用,能够准确从条件中求解出直角边的平方和是解题关键.26.火锅是重庆人民钟爱的美食之一;解放碑某老火锅店为抓住“十一黄金周”这个商机,通过网上广告宣传和实地派发传单等一系列促销手段吸引了不少本地以及外地游客,火锅店门庭若市.据店员统计;仅“十一黄金周”前来店内就餐选择红汤火锅和清汤火锅的游客共2500人,其中红汤火锅和清汤火锅的人均消费分别为80元和60元.(1)“十一”期间,若选择红汤火锅的人数不超过清汤火锅人数的1.5倍,求至少有多少人选择清汤火锅?(2)随着“十一”的结束,前来店内就餐的人数逐渐减少,据接下来的第二周统计数据显示,与(1)选择清汤火锅的人数最少时相比,选择红汤火锅的人数下降了a %,选择清汤火锅的人数不变,但选择红汤火锅的人均消费增长了a %,选择清汤火锅的人均消费增长了1%5a ,最终第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等,求a 的值.解析:(1)至少有1000人选择清汤火锅;(2)a 的值为10【分析】(1)设有x 人选择清汤火锅,则有(2500﹣x )人选择红汤火锅,根据选择红汤火锅的人数不超过清汤火锅人数的1.5倍列出一元一次不等式,然后解不等式取其最小值即可; (2)根据第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等列出关于a 的一元二次方程,然后解方程取其正值即可解答.【详解】解:(1)设有x 人选择清汤火锅,则有(2500﹣x )人选择红汤火锅,根据题意, 得:2500﹣x≤1.5x ,解得:x≥1000,答:至少有1000人选择清汤火锅;(2)根据题意,得:80(1+a%)×(2500﹣1000)(1﹣a%)+60(1+15a%)×1000=80×(2500﹣1000)+60×1000,整理,得:12x 2﹣120a=0,解得:a 1=10,a 2=0(不合题意,舍去),答:a 的值为10.【点睛】本题考查一元一次不等式的应用、一元二次方程的应用,解答的关键是理解题意,找准数量间的关系,正确列出不等式和方程.27.解方程:2x²-4x-3=0.解析:12x x == 【分析】 利用公式法解一元二次方程即可求解.【详解】解:2x²-4x-3=0∵ a=2,b=-4,c=-3,∴()()22=b 4442340ac ∆-=--⨯⨯-=>0, ∴一元二次方程有两个不相等的实数根,∴42242b x a -±±===,∴122222x x +==. 【点睛】本题考查了公式法解一元二次方程,熟练掌握一元二次方程的求根公式是解题关键. 28.若关于x 的一元二次方程x 2-6x +m +1=0的两根是x 1,x 2,且x 12+x 22=24,求m 的值. 解析:m =5.【分析】先根据根与系数的关系求得x 1+x 2=6、x 1x 2=m +1,再对x 12+x 22=24变形,然后将x 1+x 2=6、x 1x 2=m +1代入得到关于m 的方程,最后求解即可.【详解】解:∵x 1,x 2是关于x 的一元二次方程x 2-6x +m +1=0的两根,∴x1+x2=6,x1x2=m+1,∴x12+x22=(x1+x2)2-2x1x2=24,∴62-2(m+1)=24,解得:m=5.【点睛】本题主要考查了一元二次方程根与系数的关系和完全平方公式的应用,正确应用完全平方公式成为解答本题的关键.。

无锡滨湖区无锡金桥双语实验学校初中部九年级数学上册第二十一章《一元二次方程》经典练习题(含答案)

无锡滨湖区无锡金桥双语实验学校初中部九年级数学上册第二十一章《一元二次方程》经典练习题(含答案)

一、选择题1.下列方程是关于x 的一元二次方程的是( )A .20ax bx c ++=B .210x y -+=C .2120x x +-=D .(1)(2)1x x x -+=-D解析:D【分析】利用一元二次方程定义进行解答即可.【详解】A 、当a =0时,不是一元二次方程,故此选项不合题意;B 、含有两个未知数,不是一元二次方程,故此选项不合题意;C 、不是整式方程,故此选项不合题意;D 、是一元二次方程,故此选项符合题意;故选:D .【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.722x -=⨯是下列哪个一元二次方程的根( ) A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+=C解析:C【分析】 根据求根公式逐一列出每个方程根的算式即可得出答案.【详解】A 、22730x x ++=的解为x =B 、22730x x --=的解为x =C 、22730x x +-=的解为x =D 、22730x x -+=的解为x =故选:C .【点睛】本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法. 3.下列方程中,没有实数根的是( )A .2670x x ++=B .25260x x --=C .22270x x -=D .2220x x -+-=D解析:D【分析】根据判别式的意义对各选项进行判断.【详解】A 、224641780b ac =-=-⨯⨯=>,则方程有两个不相等的实数根,所以A 选项不符合题意;B 、()()224541261290b ac =-=--⨯⨯-=>,则方程有两个不相等的实数根,所以B 选项不符合题意;C 、()224274207290b ac =-=--⨯⨯=>,则方程有两个不相等的实数根,所以C 选项不符合题意;D 、()()224241240b ac =-=-⨯-⨯-=-<,则方程没有实数根,所以D 选项符合题意.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y +=B .21()12y -=C .211()22y +=D .213()24y -=A 解析:A【分析】根据配方法解一元二次方程的步骤计算可得.【详解】解:∵2304y y +-=, ∴y 2+y=34, 则y 2+y+14=34+14, 即(y+12)2=1, 故选:A .【点睛】本题主要考查解一元二次方程-配方法,用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.5.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .5B 解析:B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根, ∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -, 而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是( )A .a <-2B .a >-2C .-2<a <0D .-2≤a <0C 解析:C【分析】由关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根可得2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解不等式即可求出a 的取值范围. 【详解】∵关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根, ∴2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭, 解得:a >−2,∵a <0,∴−2<a <0.故选C .【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的应用为解题关键.7.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2-D 解析:D【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②, ①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得, ∵240ax bx a +-=,240ax a -=24ax a =∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.8.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( )A .1B .0C .1-D .1或0A 解析:A【分析】由关于x 的方程x 2+mx=0的一个根为-1,得出将x=-1,代入方程x 2+mx=0求出m 即可.【详解】解:∵-1是方程x 2+mx=0的根,∴1-m=0,∴m=1,故答案为:A.【点睛】此题主要考查了一元二次方程的解,由方程的根为-1,代入方程是解决问题的关键. 9.方程23x x =的解为( )A .3x =B .3x =-C .10x =,23x =D .10x =,23x =-C解析:C【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:方程变形得:x 2-3x=0,分解因式得:x (x-3)=0,可得x=0或x-3=0,解得:x 1=3,x 2=0.故选:C .【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 10.如图,是一个简单的数值运算程序,则输入x 的值为( )A 1B .1C 1或1D .无法确定C解析:C【分析】 先根据数值运算程序可得一个关于x 的一元二次方程,再利用直接开平方法解方程即可得.【详解】由题意得:()2319x --=-, ()213x -=,1-=x ,1x =±即1x =或1x =,故选:C .【点睛】本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键.二、填空题11.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的 解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况.【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根,故答案为:2;-6;3;12;有两个不相等的实数根.【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式.12.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.20【分析】设每年绿化面积的增长率为x 根据该小区2019年及2021年的绿化面积即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】解:设每年绿化面积的增长率为x 依题意得:3000(1+x )解析:20%【分析】设每年绿化面积的增长率为x ,根据该小区2019年及2021年的绿化面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年绿化面积的增长率为x ,依题意,得:3000(1+x )2=4320,解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 13.一元二次方程(x +1)(x ﹣3)=3x +4化为一般形式可得_________.x2﹣5x ﹣7=0【分析】利用多项式乘多项式的法则展开再利用等式的性质进行移项合并进行计算【详解】(x +1)(x ﹣3)=3x +4x2﹣2x ﹣3=3x +4x2﹣5x ﹣7=0故答案是:x2﹣5x ﹣7=0解析:x 2﹣5x ﹣7=0 .【分析】利用多项式乘多项式的法则展开,再利用等式的性质进行移项、合并,进行计算.【详解】(x +1)(x ﹣3)=3x +4,x 2﹣2x ﹣3=3x +4,x 2﹣5x ﹣7=0.故答案是:x 2﹣5x ﹣7=0.【点睛】本题考查一元二次方程的变形,属于基础题型.14.若关于x 的一元二次方程240x x k -+=有两个相等的实数根,则k =______.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解题解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k -+=有两个相等的实数根,∴()224440b ac k ∆=-=--=, 解得:4k =;故答案为4.本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.15.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.2016【分析】将x=-1代入ax2﹣bx ﹣2016=0得到a+b ﹣2016=0然后将a+b 当作一个整体解答即可【详解】解:把x =﹣1代入一元二次方程ax2﹣bx ﹣2016=0得:a+b ﹣2016=解析:2016.【分析】将x=-1代入ax 2﹣bx ﹣2016=0得到a +b ﹣2016=0,然后将a+b 当作一个整体解答即可.【详解】解:把x =﹣1代入一元二次方程ax 2﹣bx ﹣2016=0得:a +b ﹣2016=0,即a +b =2016.故答案是2016.【点睛】本题主要考查了一元二次方程的解,理解一元二次方程的解的概念是解答本题的关键. 16.一元二次方程()10x x -=的根是________________________.【分析】利用因式分解法把原方程转化为x=0或x-1=0然后解两个一次方程即可;【详解】∵∴x=0或x-1=0解得故答案为:【点睛】本题考查了一元二次方程的解法先把方程的右边化为0再把左边通过因式分解解析:120,1x x ==【分析】利用因式分解法把原方程转化为x=0或x-1=0,然后解两个一次方程即可;【详解】∵()10x x -= ,∴ x=0或x-1=0,解得1x =0,21x = ,故答案为:1x =0,21x =【点睛】本题考查了一元二次方程的解法,先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,求解即可;17.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,共有________个队参加比赛.10【分析】设共有x 个队参加比赛根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程解之即可得出结论【详解】解:设共有x 个队参加比赛根据题意得:2×x (x-1)=90整理得:x2解析:10.设共有x 个队参加比赛,根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设共有x 个队参加比赛,根据题意得:2×12x (x-1)=90, 整理得:x 2-x-90=0,解得:x=10或x=-9(舍去).故答案为:10.【点睛】本题考查了一元二次方程的应用,根据每两队之间都进行两场比赛结合共比了90场列出关于x 的一元二次方程是解题的关键.18.已知1x ,2x 是方程2250x x --=的两个实数根,则2212123x x x x ++=__________.—1【分析】根据根与系数之间的关系解题即可【详解】∵是方程的两个实数根∴∴故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系解题的关键是根据公式正确计算解析:—1【分析】根据根与系数之间的关系解题即可.【详解】∵1x ,2x 是方程2250x x --=的两个实数根,∴122x x +=,125x x =,∴()()2222112*********x x x x x x x x ++++=+-=-=, 故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系,解题的关键是根据公式正确计算. 19.若()22214x y +-=,则22x y +=________.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±,223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.20.若方程()22110a x ax -+-=的一个根为1x =,则a =_______.或【分析】分类讨论方程为一元一次和一元二次把x=1代入方程计算即可求出a 的值【详解】解:若方程为一元一次方程此时此时解得当时方程的解是满足条件当时方程的解是不满足题意;若方程为一元二次方程此时此时此解析:1或2-【分析】分类讨论方程为一元一次和一元二次,把x =1代入方程计算即可求出a 的值.【详解】解:若方程为一元一次方程,此时210a -=,此时解得±1a =,当1a =时,方程的解是1x =满足条件,当1a =-时,方程的解是1x =-不满足题意;若方程为一元二次方程,此时210a -≠,此时±a ≠1,此时将1x =代入方程可得2110a a -+-=解得122,1()a a =-=舍综上所述,a =1或-2故答案为:1或2-【点睛】本题主要考查方程的相关定义,分类讨论是解题的关键.三、解答题21.某校园有一块正方形的空地,若从这块空地上划出部分区域栽种鲜花(如图阴影部分为花带),横向花带宽为2m ,纵向花带宽为1m ,栽种鲜花后剩余空地面积为42m 2,求原正方形空地的边长.解析:原正方形空地的边长为8m .【分析】观察图形得到阴影面积=正方形的面积-空白图形的面积,列方程解决问题.【详解】解:设正方形空地的边长为xm ,由题意得()()2142x x --=, 化简得23400x x --=,解得1285x x ==-,,因为0x >,故8x =,答:原正方形空地的边长为8m .【点睛】此题考查一元二次方程的实际应用—图形面积类问题,观察图形得到阴影面积=正方形的面积-空白图形的面积,由此列方程解决问题的思路是解题的关键.22.关于x 的一元二次方程()2220x k x k -++=. (1)判断方程根的情况,并说明理由.(2)若1x =是方程的一个根,求k 的值和方程的另一根.解析:(1)有两个实数根,证明见解析;(2)1k =,2x =【分析】(1)利用根的判别式进行判断根的情况,即可得到答案;(2)把1x =代入方程,即可求出k 的值,然后解一元二次方程,即可得到另一个根.【详解】解:(1)根据题意,在一元二次方程()2220x k x k -++=中, ∵2(2)42k k ∆=+-⨯,244k k =-+,2(2)0k =-,∴对于任意的实数k ,原方程总有两个实数根.(2)∵1x =是方程2(2)20x k x k -++=的一个根.∴1(2)120k k -+⨯+=,解得:1k =,∴原方程为2320x x -+=,解得:11x =,22x =,∴原方程的另一根为22x =. 【点睛】本题考查了解一元二次方程以及根的判别式,牢记当0∆≥时方程有两个实数根是解题的关键.23.某种品牌的衬衫,进货时的单价为50元.如果按每件60元销售,可销售800件;售价每提高1元,其销售量就减少20件.若要获得12000元的利润,则每件的售价为多少元? 解析:每件的售价为70元或80元.【分析】要求衬衫的单价,就要设每件的售价为x 元,则每件衬衫的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可.【详解】解:设每件的售价为x 元,根据题意,得()()50800206012000 ,x x ⎡⎤⎣⎦---=化简整理,得215056000x x -+=()70800()x x --=1270,80x x ∴==答:每件的售价为70元或80元.【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:解析:(1)①80;②74;③25x ≥(2)20件【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a 件时,单价恰好是50元,80-(a -10)×2=50,解得:a =25,而题目中“单价不得低于50元”,∴25x ≥时,单价是50元,故填:25x ≥;(2)因为1200>800,所以一定超过了10件,设购买了x 件这种服装且多于10件,根据题意得出:[80-2(x -10)]x =1200,解得:x 1=20,x 2=30,当x =20时,80-2(20-10)=60元>50元,符合题意;当x =30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键. 25.解下列方程:(1)2810x x --=;(2)2(2)6(2)80x x ---+=.参考答案解析:(1)14x =,24x =;(2)16x =,24x =.【分析】(1)先对原方程配方,然后再运用直接开平方法解答即可;(2)先对原方程配方,然后再运用直接开平方法解答即可.【详解】解:(1)2810x x --=281x x -=281617x x -+=()2417x -=4x -=14x =,24x =(2)2(2)6(2)80x x ---+=[]2(2)31x --=51x =±,16x =,24x =.【点睛】本题考查了运用配方法解一元二次方程,正确的对原方程配方成为解答本题的关键. 26.用一块边长为70cm 的正方形薄钢片制作一个长方体盒子.(1)如果要做成一个没有盖的长方体盒子,可先在薄钢片的四个角上截去四个相同的小正方形(如图①),然后把四边折合起来(如图②).当做成的盒子的底面积为2900cm 时,求该盒子的容积;(2)如果要做成一个有盖的长方体盒子,制作方案要求同时符合下列两个条件: ①必须在薄钢片的四个角上截去一个四边形(如图③阴影部分),②沿虚线折合后薄钢片即无空隙又不重叠地围成各盒面,求当底面积为2800cm 时,该盒子的高. 解析:(1)18000cm 3;(2)15cm【分析】(1)根据图中给出的信息,设四个相同的小正方形边长为x ,先表示出盒子的正方形底面的边长,然后根据底面积=900即可得到方程,求解即可;(2)该盒子的高为y ,根据底面积为800列出方程,解之即可.【详解】解:(1)设四个相同的小正方形边长为x ,由题意可得:(70-2x )2=900,解得:x 1=20,x 2=50(舍),∴该盒子的容积为900×20=18000cm 3;(2)设该盒子的高为y , 根据题意得:()7027028002y y -⨯-=, 解得:y 1=15,y 2=55(舍), 因此当底面积是800平方厘米时,盒子的高是15厘米.【点睛】本题主要考查了一元二次方程的实际运用,只要搞清楚盒子底面各边的长和盒子的高的关系即可作出正确解答.27.如图,在ABC 中,13AB AC ==厘米,10BC =厘米,AD BC ⊥于点D ,动点P 从点A 出发以每秒1厘米的速度在线段AD 上向终点D 运动.设动点运动时间为t 秒.(1)求AD的长;(2)当PDC△的面积为15平方厘米时,求t的值;(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得112PMD ABCS S=?若存在,请求出t的值;若不存在,请说明理由.解析:(1)12厘米;(2)6秒;(3)存在t的值为2或292814+或292814,使得S△PMD=112S△ABC.【分析】①根据等腰三角形性质和勾股定理解答即可;②根据直角三角形面积求出PD×DC×12=15即可求出t;③根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.【详解】解:(1)∵AB=AC=13,AD⊥BC,∴BD=CD=5cm,且∠ADB=90°,∴AD2=AC2-CD2∴AD=12cm.(2)AP=t,PD=12-t,又∵由△PDM面积为12PD×DC=15,解得PD=6,∴t=6.(3)假设存在t,使得S△PMD=112S△ABC.①若点M 在线段CD 上,即 0≤t≤52时,PD=12-t ,DM=5-2t , 由S △PMD =112S △ABC , 即 12×(12−t)(5−2t)=5, 2t 2-29t+50=0解得t 1=12.5(舍去),t 2=2.②若点M 在射线DB 上,即52≤t≤12. 由S △PMD =112S △ABC 得 12(12−t)(2t−5)=5, 2t 2-29t+70=0解得 t 1,t 2综上,存在t 的值为2或294或 294-,使得S △PMD =112S △ABC . 【点睛】 此题关键为利用三角形性质勾股定理以及分段讨论,在解方程时,注意解是否符合约束条件.28.解方程:(1)2(1)80x --=;(2)25210x x +-=.解析:(1)1x =±;(2)115x -+=,2x = 【分析】(1)根据直接开方法即可求出答案;(2)利用公式法求解一元二次方程,即可得到答案.【详解】(1)∵2(1)80x --=, ∴2(1)8x -=, ∴1x -=±∴1x =±;(2)∵5a =,2b =,1c =-∴2245(1)240∆=-⨯⨯-=>,∴21105x -±-±==,即115x -=,215x --=. 【点睛】此题考查了解一元二次方程的知识;解题的关键是熟练掌握一元二次方程的解法和二次根式的性质,从而完成求解.。

无锡市滨湖中学九年级数学上册第一单元《一元二次方程》检测(答案解析)

无锡市滨湖中学九年级数学上册第一单元《一元二次方程》检测(答案解析)

一、选择题1.方程22(1)110mx m x -++-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±l B .m≥-l 且m≠1 C .m≥-lD .m >-1且m≠12.某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,则该厂七八月份的口罩产量的月平均减少率为 ( ) A .10% B .29% C .81%D .14.5%3.27742322x -±+⨯⨯=⨯是下列哪个一元二次方程的根( )A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+=4.若关于x 的一元二次方程2(2)210m x x --+=有实数根,则m 的取值范围是( ) A .3m <B .3mC .3m <且2m ≠D .3m 且2m ≠5.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b6.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有且只有一个实数根D .没有实数根7.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( ) 日一二 三 四 五 六12345abcdef图1图2A .17B .18C .19D .208.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( ) A .1,0B .1,0-C .1,1-D .2,2-9.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( ) A .1B .﹣1C .12D .12-10.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( ) A .1a ≥-且3a ≠ B .1a >-且3a ≠ C .1a ≥- D .1a >- 11.一元二次方程x 2﹣4x ﹣1=0配方后正确的是( ) A .(x ﹣2)2=1B .(x ﹣2)2=5C .(x ﹣4)2=1D .(x ﹣4)2=512.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根D .没有实数根二、填空题13.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________. 14.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.15.若二次式236x -的值与2x -的值相等,则x 的值为_______. 16.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____.17.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜__场18.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________. 19.若方程()22110a x ax -+-=的一个根为1x =,则a =_______.20.已知关于x 的方程x 2﹣px +q =0的两根为﹣3和﹣1,则p =_____,q =_____.三、解答题21.解方程. (1)2560x x -+=.(2)23(21)(21)x x -=-.(3)23139x x x -=--. 22.某水果超市以每千克20元的价格购进一批大枣,规定每千克大枣的售价不低于进价又不高于40元.经市场调查发现:大枣的日销售量y (千克)与每千克售价x (元)之间满足一次函数关系,其部分对应数据如下表所示:(2)该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为多少元? 23.阿里巴巴电商扶贫对某贫困地区一种特色农产品进行网上销售,按原价每件200元出售,一个月可卖出100件,通过市场调查发现,售价每件每降低1元,月销售件数就增加2件.(1)已知该农产品的成本是每件100元,在保持月利润不变的情况下,尽快销售完毕,则售价应定为多少元;(2)小红发现在附近线下超市也有该农产品销售,并且标价为每件200元,买五送一,在(1)的条件下,小红想要用最优惠的价格购买38件该农产品,应选择在线上购买还是线下超市购买?24.已知12,x x 是关于x 的一元二次方程()222110x m x m --+-=两个实数根.(1)求m 取值范围; (2)若()12210x x x -+=,求实数m 的值.25.已知关于x 的一元二次方程22210x k x k +++=()有两个不相等的实数根. (1)求k 的取值范围;(2)设方程的两个实数根分别为12,x x ,当1k =时,求2212x x +的值.26.解方程: (1)2237x x +=; (2)x(2x+5)=2x+5.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得. 【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程, ∴210m -≠, 解得1m ≠±,10m +≥, 解得:1m ≥-, ∴1m >-且1m ≠, 故选:D . 【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.A解析:A 【分析】设该厂七八月份的口罩产量的月平均减少率为x ,根据该厂六月份及八月份的口罩产量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论. 【详解】解:设该厂七八月份的口罩产量月平均减少率为x , 根据题意得,()2100181x -=,解得10.110%x ==,2 1.9x =(不合题意,舍去). 故选A . 【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.3.C解析:C 【分析】根据求根公式逐一列出每个方程根的算式即可得出答案. 【详解】A 、22730x x ++=的解为x =B 、22730x x --=的解为x =C 、22730x x +-=的解为x =D 、22730x x -+=的解为x =故选:C . 【点睛】本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法.4.D解析:D 【分析】根据一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac 的意义得到m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,然后解不等式组即可得到m 的取值范围. 【详解】解:∵关于x 的一元二次方程(m-2)x 2-2x+1=0有实数根, ∴m-2≠0且△≥0,即(-2)2-4×(m-2)×1≥0,解得m≤3, ∴m 的取值范围是 m≤3且m≠2. 故选:D . 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.C解析:C 【分析】由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出ab的值即可得到a 、b 的关系式 . 【详解】 解:由图可知21422S ab ab =⨯=, ∵1253S S =,∴1255102333S S ab ab ==⨯=, 又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭,∴133a ab b ==,(舍去),∴a=3b , 故先C . 【点睛】本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.6.D解析:D 【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.而()()2(2)4c a b a b =-++,根据三角形的三边关系即可判断.【详解】∵a ,b ,c 分别是三角形的三边, ∴a+b >c .∴c+a+b >0,c-a-b <0, ∴()()2(2)4c a b a b =-++2244()c a b =-+()()40c a b c a b =++--<,∴方程没有实数根. 故选:D . 【点睛】本题主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对2244()c a b -+进行因式分解.7.C解析:C 【分析】根据日历的特点得到8i e =+,8a e =-,列出一元二次方程解出e 的值. 【详解】解:根据日历的特点,同一列上下两个数相差7,前后两个数相差1, 则7h e =+,18i h e =+=+,7b e =-,18a b e =-=-, ∵最大的数与最小的数乘积是297,∴()()88297ai e e =-+=,解得19e =±,取正数,19e =. 故选:C . 【点睛】本题考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.8.D解析:D 【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根. 【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②,①-②=40b =,得0b =, ①+②=820a c +=, ∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得,∵240ax bx a +-=,240ax a -=24ax a =∴2x =± 故选:D . 【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.9.D解析:D 【分析】直接利用根与系数的关系解答. 【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12-=﹣12.故选:D . 【点睛】此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 10.B解析:B 【分析】方程有两个不相等的实数根,显然原方程应该是关于x 的一元二次方程,因此得到二次项系数不为0即当a-3≠0时,且判别式0∆>即可得到答案. 【详解】∵关于x 的方程()32a x 4x 10---=有两个不相等的实数根∴a-3≠0,且2∆--⨯-⨯-=+>a a=(4)4(3)(1)440a≥-且a≠3解得:1故选B.【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a的不等式,是解题的关键.11.B解析:B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:x2﹣4x﹣1=0x2-4x=1x2-4x+4=1+4(x-2)2=5,故选:B.【点睛】本题考查了解一元二次方程-配方法,解题的关键是会用配方法解答方程.12.B解析:B【分析】求出根的判别式,只要看根的判别式△=b2-4ac的值的符号就可以了.【详解】解:∵△=b2﹣4ac=9﹣4×2×(﹣4)=41>0,∴方程有两个不相等的实数根,故选:B.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题13.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的解析:2 -6 3 12 有两个不相等的实数根【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况. 【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根, 故答案为:2;-6;3;12;有两个不相等的实数根. 【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式.14.4315【分析】利用配方法将多项式转化为然后利用非负数的性质进行解答【详解】解:===∴当a=4b=3时多项式有最小值15故答案为:4315【点睛】此题考查了配方法的应用以及非负数的性质熟练掌握完全解析:4 3 15 【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答. 【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++ =2222(1)(1)(3)15a a b b b -++-+++ =22(1)(3)15a b b --+-+∴当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15. 故答案为:4,3,15. 【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.15.-1或【分析】先根据题意列出关于x 的方程整理为一般式再利用因式分解法求解即可【详解】解:根据题意得:3x2-6=x-2整理得:3x2-x-4=0∴(x+1)(3x-4)=0∴x+1=0或3x-4=0解析:-1或43【分析】先根据题意列出关于x 的方程,整理为一般式,再利用因式分解法求解即可. 【详解】解:根据题意,得:3x 2-6=x-2, 整理,得:3x 2-x-4=0, ∴(x+1)(3x-4)=0, ∴x+1=0或3x-4=0,解得1241,,3=-=x x ∴当x=-1或43时,二次式3x 2-6的值与x-2的值相等, 故答案为:-1或43【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.16.﹣【分析】由根与系数的关系即可求出答案【详解】解:∵一元二次方程2x2+3x ﹣1=0的两个根是x1x2∴x1x2=﹣故答案为:﹣【点睛】本题考查了根与系数的关系解题的关键是掌握根与系数的关系进行解题解析:﹣12【分析】由根与系数的关系,即可求出答案. 【详解】解:∵一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2, ∴x 1x 2=﹣12, 故答案为:﹣12. 【点睛】本题考查了根与系数的关系,解题的关键是掌握根与系数的关系进行解题.17.11【分析】设中国队在本届世界杯比赛中连胜x 场则共有(x+1)支队伍参加比赛根据一共比赛66场即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】设中国队在本届世界杯比赛中连胜x 场则共有(x解析:11 【分析】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,根据一共比赛66场,即可得出关于x 的一元二次方程,解之取其正值即可得出结论. 【详解】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛, 依题意,得:12x(x+1)=66, 整理,得:x 2+x-132=0,解得:x 1=11,x 2=-12(不合题意,舍去).所以,中国队在本届世界杯比赛中连胜11场.故答案为11.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 18.2016【分析】将x=a 代入可得然后由根与系数之间的关系得到整理即可得到答案【详解】解:由题意可知【点睛】本题考查了一元二次方程的解以及根与系数之间的关系熟练掌握基础知识是解题的关键解析:2016【分析】将x=a 代入2320190x x +-=,可得2320190a a +-=,然后由根与系数之间的关系得到3a b +=-,整理即可得到答案.【详解】解:由题意可知,2320190a a +-=,3a b +=-,232019a a ∴+=,24a a b ∴++23()a a a b =+++20193=-2016=.【点睛】本题考查了一元二次方程的解以及根与系数之间的关系,熟练掌握基础知识是解题的关键.19.或【分析】分类讨论方程为一元一次和一元二次把x=1代入方程计算即可求出a 的值【详解】解:若方程为一元一次方程此时此时解得当时方程的解是满足条件当时方程的解是不满足题意;若方程为一元二次方程此时此时此 解析:1或2-【分析】分类讨论方程为一元一次和一元二次,把x =1代入方程计算即可求出a 的值.【详解】解:若方程为一元一次方程,此时210a -=,此时解得±1a =,当1a =时,方程的解是1x =满足条件,当1a =-时,方程的解是1x =-不满足题意;若方程为一元二次方程,此时210a -≠,此时±a ≠1,此时将1x =代入方程可得2110a a -+-=解得122,1()a a =-=舍综上所述,a =1或-2故答案为:1或2-【点睛】本题主要考查方程的相关定义,分类讨论是解题的关键.20.-43【分析】由根与系数的关系可得出关于p 或q 的一元一次方程解之即可得出结论【详解】解:根据题意得﹣3+(﹣1)=p ﹣3×(﹣1)=q 所以p =﹣4q =3故答案为﹣43【点睛】本题考查了根与系数的关系解析:-4 3【分析】由根与系数的关系可得出关于p 或q 的一元一次方程,解之即可得出结论.【详解】解:根据题意得﹣3+(﹣1)=p ,﹣3×(﹣1)=q ,所以p =﹣4,q =3.故答案为﹣4,3.【点睛】本题考查了根与系数的关系,根据根与系数的关系找出-3+(-1)=-p,(-3)⨯(-1)=q 是解题的关键.三、解答题21.(1)12x =,23x =;(2)112x =,22x =;(3)2x =- 【分析】(1)利用因式分解法解方程,即可得到答案;(2)先移项,然后利用因式分解法解方程,即可得到答案;(3)先把分式方程化为整式方程,然后解方程即可得到答案.【详解】解:(1)2560x x -+=, (2)(3)0x x --=,∴12x =,23x =,∴原方程的解为:12x =,23x =.(2)23(21)(21)x x -=-,∴2(21)3(21)0x x ---=,∴(21)(213)0x x ---=,∴(21)(24)0x x --=, ∴112x =,22x =. ∴原方程的解为:112x =,22x =. (3)23139x x x -=--, ∴2(3)39x x x +-=-,∴22339x x x +-=-,∴36x =-,∴2x =-,经检验:2x =-为原方程的解,∴原方程的解为2x =-.【点睛】本题考查了解一元二次方程,解分式方程,解题的关键是熟练掌握解方程的方法,注意解分式方程时组要检验.22.(1)2160y x =-+;(2)商贸公司该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为30元.【分析】(1)用待定系数法求解即可;(2)根据总利润=每千克利润×数量列方程求解即可.【详解】解:(1)设一次函数解析式为:y kx b =+,将:()25,110;()30,100代入,得 ∴2511030100k b k b +=⎧⎨+=⎩解得:2160k b =-⎧⎨=⎩, ∴一次函数解析式为:2160y x =-+;,(2)由题意得:()()2021601000x x --+=整理得:210021000x x -+=,解得130x =,270x =(不合题意,舍去),即商贸公司该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为30元.【点睛】本题考查了待定系数法求函数解析式,一元二次方程的应用,熟练掌握待定系数法是解(1)的关键,列出方程式解(2)的关键.23.(1)售价应定为150元;(2)选择在线上购买更优惠【分析】(1)设售价应定为x 元,则每件的利润为()100-x 元,月销售量为(5002)-x 件,列出方程计算即可;(2)分别算出线上购买和线下购买的费用,再进行比较即可;【详解】解:(1)当售价为200元时月利润为()2001001001000-⨯=(元).设售价应定为x 元,则每件的利润为()100-x 元,月销售量为2001002(5002)1x x -+⨯=-件, 依题意,得:()()100500210000x x --=,整理,得:2350300000--=x x ,解得:1150x =,2200x =(舍去).答:售价应定为150元.(2)线上购买所需费用为150385700⨯=(元);∵线下购买,买五送一,∴线下超市购买只需付32件的费用,∴线下购买所需费用为200326400⨯=(元).57006400<.答:选择在线上购买更优惠.【点睛】本题主要考查了一元二次方程的应用,准确列方程计算是解题的关键.24.(1)54m ≤;(2)0m = 【分析】(1)利用根的判别式,因为方程有两个实数根,所以0∆≥,列式求出m 取值范围;(2)利用韦达定理公式得1221x x m +=-,2121x x m ⋅=-,代入原式得到与m 有关的一元二次方程,解出m 的值.【详解】(1)∵()222110x m x m --+-=有两个实数根,∴24b ac ∆=- ()()222141m m =----⎡⎤⎣⎦2244144m m m =-+-+45m =-+,∴450m -+≥45m -≥-54m ≤; (2)∵()222110x m m --+-=, ∴1221b x x m a +=-=-,2121x x m ⋅=-, ()12210x x x -+=11220x x x x -⋅+=()12120x x x x +-⋅=,()22110m m ---=22110m m --+=220m m -+=()20m m --=,∴0m =或2m =,∵由①知,54m ≤, ∴0m =.【点睛】 本题考查一元二次方程根的判别式和根于系数的关系式,解题的关键是熟练运用这两个知识点去解决问题.25.(1)14k >-;(2)7 【分析】(1)根据一元二次方程根的判别式可直接进行求解;(2)根据一元二次方程根与系数的关系可求解.【详解】(1)∵一元二次方程有两个不相等的实数根,∴()2221410k k +-⨯⨯>, 解得14k >-; (2)当1k =时,原方程为2310x x ++=,∵1x ,2x 是方程的根,∴123x x +=-,121=x x ,∴()22212121227x x x x x x +=+-=. 【点睛】本题主要考查一元二次方程根的判别式及韦达定理,熟练掌握一元二次方程根的判别式及韦达定理是解题的关键.26.(1)112x =,23x =;(2)11x =,252x =- 【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用因式分解法求解.【详解】解:(1)2x 2-7x+3=0,(2x-1)(x-3)=0,2x-1=0或x-3=0,所以x 1=12,x 2=3; (3)移项得,x (2x+5)-(2x+5)=0,因式分解得,(2x+5)(x-1)=0,∴x-1=0,2x+5=0,∴11x=,25 2x=-;【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.。

无锡滨湖区胡埭中学九年级数学上册第一单元《一元二次方程》检测题(包含答案解析)

无锡滨湖区胡埭中学九年级数学上册第一单元《一元二次方程》检测题(包含答案解析)

一、选择题1.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( )A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=122.下列方程是关于x 的一元二次方程的是( )A .20ax bx c ++=B .210x y -+=C .2120x x +-=D .(1)(2)1x x x -+=- 3.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20 4.方程22x x =的解是( ) A .0x =B .2x =C .10x =,22x =D .10x =,22x =5.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b 6.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==-7.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17 8.当分式2369x x x --+的值为0时,则x 等于( ) A .3 B .0 C .3± D .-39.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( )A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x10.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=0 11.已知x 1、x 2是一元二次方程x 2﹣4x ﹣1=0的两个根,则x 1•x 2等于( ) A .4B .1C .﹣1D .﹣4 12.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .290x += B .24410x x -+= C .210x x ++=D .210x x +-= 二、填空题13.一元二次方程 x ( x +3)=0的根是__________________.14.已知关于x 的一元二次方程230x mx +=+的一个根为1,则方程的另一个根为________.15.某校八年级举行足球比赛,每个班级都要和其他班级比赛一次,结果一共进行了6场比赛,则八年级共有_____个班级.16.已知方程22610x x -+=的两根为12,x x ,则2212x x +=_______.17.某农场的粮食产量在两年内从增加3000t 到3630,t 则平均每年增产的百分率是______________.18.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积六十步,只云长阔共十六步,问长多阔几何”.意思是:一块矩形田地的面积为60平方步,只知道它的长与宽共16步,根据题意得,设长为x 步,列出方程_______. 19.已知函数2y mx m m =++为正比例函数,则常数m 的值为______.20.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.三、解答题21.某口罩生产厂生产的口罩1月份平均日产量为30000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从2月份起扩大产量,3月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?22.火锅是重庆人民钟爱的美食之一;解放碑某老火锅店为抓住“十一黄金周”这个商机,通过网上广告宣传和实地派发传单等一系列促销手段吸引了不少本地以及外地游客,火锅店门庭若市.据店员统计;仅“十一黄金周”前来店内就餐选择红汤火锅和清汤火锅的游客共2500人,其中红汤火锅和清汤火锅的人均消费分别为80元和60元.(1)“十一”期间,若选择红汤火锅的人数不超过清汤火锅人数的1.5倍,求至少有多少人选择清汤火锅?(2)随着“十一”的结束,前来店内就餐的人数逐渐减少,据接下来的第二周统计数据显示,与(1)选择清汤火锅的人数最少时相比,选择红汤火锅的人数下降了a %,选择清汤火锅的人数不变,但选择红汤火锅的人均消费增长了a %,选择清汤火锅的人均消费增长了1%5a ,最终第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等,求a 的值.23.解方程:2420x x ++=.24.解方程:(1) 2890x x --=(2)(x+1)2=6x+625.阿里巴巴电商扶贫对某贫困地区一种特色农产品进行网上销售,按原价每件200元出售,一个月可卖出100件,通过市场调查发现,售价每件每降低1元,月销售件数就增加2件.(1)已知该农产品的成本是每件100元,在保持月利润不变的情况下,尽快销售完毕,则售价应定为多少元;(2)小红发现在附近线下超市也有该农产品销售,并且标价为每件200元,买五送一,在(1)的条件下,小红想要用最优惠的价格购买38件该农产品,应选择在线上购买还是线下超市购买?26.解下列方程:(1)2320x x +-=(2)()220x x x -+-=【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.2.D解析:D【分析】利用一元二次方程定义进行解答即可.【详解】A 、当a =0时,不是一元二次方程,故此选项不合题意;B 、含有两个未知数,不是一元二次方程,故此选项不合题意;C 、不是整式方程,故此选项不合题意;D 、是一元二次方程,故此选项符合题意;故选:D .【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.3.B解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.4.C解析:C移项并因式分解,得到两个关于x 的一元一次方程,即可求解.【详解】解:移项,得220x x -=,因式分解,得()20x x -=,∴0x =或20x -=,解得10x =,22x =,故选:C .【点睛】本题考查解一元二次方程,掌握因式分解法是解题的关键. 5.C解析:C【分析】由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出a b 的值即可得到a 、b 的关系式 .【详解】 解:由图可知21422S ab ab =⨯=, ∵1253S S =,∴1255102333S S ab ab ==⨯=, 又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭, ∴133a ab b ==,(舍去), ∴a=3b ,故先C .【点睛】 本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.6.B解析:B【分析】根据因式分解法解方程即可;()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.7.B解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.8.D解析:D【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可.【详解】 依题意得:230690x x x ⎧-⎨-+≠⎩=,解得x =−3.故选:D【点睛】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.9.C解析:C【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,200(1+x)2=500,故选:C.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.10.A解析:A【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.【详解】解:依题意得:(80+2x)(50+2x)=5400,即4000+260x+4x2=5400,化简为:4x2+260x-1400=0,即x2+65x-350=0.故选:A.【点睛】本题考查的是一元二次方程的应用,解此类题目要注意运用面积的公式列出等式再进行化简.11.C解析:C【分析】据一元二次方程的根与系数的关系得到两根之和即可.【详解】解:∵方程x2-4x-1=0的两个根是x1,x2,∴x1∙x2=-1.故选:C.【点睛】本题考查了一元二次方程ax2+bx+c=0的根与系数关系,两根之和是-ba,两根之积是ca.12.D 解析:D 【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误; C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.二、填空题13.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.14.3【分析】先将x=1代入求得m 的值然后解一元二次方程即可求出另一根【详解】解:∵一元二次方程的一个根为1∴1+m+3=0即m=-4∴(x-1)(x-3)=0x-1=0x-3=0∴x=1或x=3即该方解析:3【分析】先将x=1代入求得m 的值,然后解一元二次方程即可求出另一根.【详解】解:∵一元二次方程230x mx +=+的一个根为1∴1+m+3=0,即m=-4∴2430x x -+=(x-1)(x-3)=0x-1=0,x-3=0∴x=1或x=3,即该方程的另一根为3.故答案为3.【点睛】本题主要考查了一元二次方程的解和解一元二次方程,关于x 的一元二次方程230x mx +=+的一个根为1求得m 的值成为解答本题的关键.15.3【分析】设共有个班级参加比赛根据共有45场比赛列出方程求出方程的解即可得到结果【详解】解:设共有个班级参加比赛根据题意得:整理得:即解得:或(舍去)则共有3个班级球队参加比赛故答案为:3【点睛】此 解析:3.【分析】设共有x 个班级参加比赛,根据共有45场比赛列出方程,求出方程的解即可得到结果.【详解】解:设共有x 个班级参加比赛, 根据题意得:(1)62x x -=, 整理得:260x x --=,即(3)(2)0x x -+=, 解得:3x =或2x =-(舍去).则共有3个班级球队参加比赛.故答案为:3.【点睛】此题考查了一元二次方程的应用,解题的关键是找出等量关系“需安排6场比赛”. 16.8【分析】利用一元二次方程根与系数的关系可列出两根之和及两根之积的值再对其进行变形即可求解【详解】由题可得:∴故答案为:8【点睛】本题考查一元二次方程根与系数的关系进行变形求值熟记结论且灵活变形是解 解析:8【分析】利用一元二次方程根与系数的关系,可列出两根之和及两根之积的值,再对其进行变形即可求解.【详解】 由题可得:1212132x x x x +==,, ∴()222212121212329182x x x x x x +=+-=-⨯=-=, 故答案为:8.【点睛】 本题考查一元二次方程根与系数的关系进行变形求值,熟记结论且灵活变形是解题关键.17.【分析】此题是平均增长率问题一般用增长后的量=增长前的量×(1+增长率)参照本题如果设平均每年增产的百分率为x根据粮食产量在两年内从3000吨增加到3630吨即可得出方程求解【详解】解:设平均每年增解析:10%【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增产的百分率为x,根据“粮食产量在两年内从3000吨增加到3630吨”,即可得出方程求解.【详解】解:设平均每年增产的百分率为x;第一年粮食的产量为:3000(1+x);第二年粮食的产量为:3000(1+x)(1+x)=3000(1+x)2;依题意,可列方程:3000(1+x)2=3630;解得:x=-2.1(舍去)或x=0.1=10%故答案为:10%.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.18.x(16-x)=60【分析】由矩形的长与宽之间的关系可得出矩形的宽为(16-x)步再利用矩形的面积公式即可得出关于x的一元二次方程【详解】解:矩形的长为x步则宽为(16-x)步∴x(16-x)=60解析:x(16-x)=60【分析】由矩形的长与宽之间的关系可得出矩形的宽为(16-x)步,再利用矩形的面积公式即可得出关于x的一元二次方程.【详解】解:矩形的长为x步,则宽为(16-x)步,∴x(16-x)=60.故答案为:x(16-x)=60【点睛】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.19.-1【分析】根据正比例函数的概念可直接进行列式求解【详解】解:∵函数为正比例函数∴且解得:;故答案为-1【点睛】本题主要考查正比例函数的概念及一元二次方程的解法熟练掌握正比例函数的概念及一元二次方程解析:-1【分析】根据正比例函数的概念可直接进行列式求解.【详解】解:∵函数2y mx m m =++为正比例函数,∴20m m +=,且0m ≠,解得:1m =-;故答案为-1.【点睛】本题主要考查正比例函数的概念及一元二次方程的解法,熟练掌握正比例函数的概念及一元二次方程的解法是解题的关键.20.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造 解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键三、解答题21.(1)口罩日产量的月平均增长率为10%;(2)预计4月份平均日产量为39930个.【分析】(1)根据题意设口罩日产量的月平均增长率为x ,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为36300个,即可预计4月份平均日产量.【详解】(1)设口罩日产量的月平均增长率为x ,根据题意,得30000(1+x )2=36300,解得x 1=−2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%;(2)36300(1+10%)=39930(个).答:预计4月份平均日产量为39930个.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系.22.(1)至少有1000人选择清汤火锅;(2)a 的值为10【分析】(1)设有x 人选择清汤火锅,则有(2500﹣x )人选择红汤火锅,根据选择红汤火锅的人数不超过清汤火锅人数的1.5倍列出一元一次不等式,然后解不等式取其最小值即可; (2)根据第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等列出关于a 的一元二次方程,然后解方程取其正值即可解答.【详解】解:(1)设有x 人选择清汤火锅,则有(2500﹣x )人选择红汤火锅,根据题意, 得:2500﹣x≤1.5x ,解得:x≥1000,答:至少有1000人选择清汤火锅;(2)根据题意,得:80(1+a%)×(2500﹣1000)(1﹣a%)+60(1+15a%)×1000=80×(2500﹣1000)+60×1000,整理,得:12x 2﹣120a=0,解得:a 1=10,a 2=0(不合题意,舍去),答:a 的值为10.【点睛】本题考查一元一次不等式的应用、一元二次方程的应用,解答的关键是理解题意,找准数量间的关系,正确列出不等式和方程.23.12x =-22x =-【分析】方程利用配方法求出解即可.【详解】∵2420x x ++=,∴242x x +=-,∴24424x x ++=-+,∴()222x +=, ∴2x =-±∴12x =-22x =-【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 24.(1)11x =-,29x =;(2)11x =-,25x =.【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【详解】(2)289x x ,2228494x x -+=+2(4)25x -=,45x =±,∴11x =-,29x =;(2)()2166x x +=+, ()21(66)0x x +-+=, ()216(1)0x x +-+=, ()()1160++-=x x ,(1)(5)0x x +-=,11x =-, 25x =.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.25.(1)售价应定为150元;(2)选择在线上购买更优惠【分析】(1)设售价应定为x 元,则每件的利润为()100-x 元,月销售量为(5002)-x 件,列出方程计算即可;(2)分别算出线上购买和线下购买的费用,再进行比较即可;【详解】解:(1)当售价为200元时月利润为()2001001001000-⨯=(元).设售价应定为x 元,则每件的利润为()100-x 元,月销售量为2001002(5002)1x x -+⨯=-件, 依题意,得:()()100500210000x x --=,整理,得:2350300000--=x x ,解得:1150x =,2200x =(舍去).答:售价应定为150元.(2)线上购买所需费用为150385700⨯=(元);∵线下购买,买五送一,∴线下超市购买只需付32件的费用,∴线下购买所需费用为200326400⨯=(元).57006400<.答:选择在线上购买更优惠.【点睛】本题主要考查了一元二次方程的应用,准确列方程计算是解题的关键.26.(1)1x =,2x =2)11x =-,22x =【分析】(1)直接应用公式法即可求解;(2)利用因式分解法即可求解.【详解】解:(1)2320x x +-=1,2x ==∴1x =,2x (2)()220x x x -+-=因式分解可得:()()120x x +-=,即10x +=或20x -=,解得11x =-,22x =. 【点睛】本题考查解一元二次方程,根据方程特点选择合适的求解方法是解题的关键.。

无锡滨湖区梅梁中学九年级数学上册第一单元《一元二次方程》测试题(含答案解析)

无锡滨湖区梅梁中学九年级数学上册第一单元《一元二次方程》测试题(含答案解析)

一、选择题1.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( )A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=122.某超市今年1月份的营业额为50万元,已知2月至3月营业额的月增长率是1月至2月营业额的月增长率的2倍,3月份的营业额是66万元,设该超市1月至2月营业额的月增长率为x ,根据题意,可列出方程( )A .()50166x +=B .()250166x +=C .()2501266x += D .()()5011266x x ++= 3.方程22x x =的解是( )A .0x =B .2x =C .10x =,22x =D .10x =,2x =4.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=5.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1- 6.用配方法解方程23620x x -+=时,方程可变形为( )A .21(3)3x -=B .21(1)33x -=C .21(1)3-=xD .2(31)1x -=7.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( )A .6人B .7人C .8人D .9人8.《代数学》中记载,形如2833x x +=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为2x 的矩形,得到大正方形的面积为331649+=,则该方程的正数解为743-=.”小聪按此方法解关于x 的方程2100x x m ++=时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为( ).A .6B .3532C .532D .535 9.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12- 10.若关于x 的一元二次方程2(1)210m x x +--=有实数根,则m 的取值范围是( ) A .2m >-B .2m ≥-C .2m >-且1m ≠-D .2m ≥-且1m ≠- 11.一元二次方程x 2﹣4x ﹣1=0配方后正确的是( ) A .(x ﹣2)2=1B .(x ﹣2)2=5C .(x ﹣4)2=1D .(x ﹣4)2=5 12.下列方程中,有两个不相等的实数根的是( )A .x 2=0B .x ﹣3=0C .x 2﹣5=0D .x 2+2=0 二、填空题13.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.14.已知0x =是关于x 的一元二次方程()()22213340m x m x m m -+++-=的一个根,则m =__________.15.写出有一个根为1的一元二次方程是______.16.一元二次方程()10x x -=的根是________________________.17.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.18.已知1x ,2x 是关于x 的一元二次方程260x x a -+=的两个实数根,且221212x x -=,则a =________.19.若a 是方程210x x ++=的根,则代数式22020a a --的值是________.20.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____. 三、解答题21.某口罩生产厂生产的口罩1月份平均日产量为30000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从2月份起扩大产量,3月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?22.已知:关于x 的一元二次方程()2223320x m x m m -++++=. (1)已知2x =是方程的一个根,求m 的值;(2)以这个方程的两个实数根作为ABC 中AB 、AC (AB <AC)的边长,当BC =时,ABC 是等腰三角形,求此时m 的值.23.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.24.解方程(1)()221250x --= (2)()22132x x y x x y ⎧-=+⎪⎨--=⎪⎩25.请回答下列各题:(1)先化简,再求值:2319369x x x xx x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x = (2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围. 26.解方程:(1)2(1)80x --=;(2)25210x x +-=.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.2.D解析:D【分析】根据2月份的营业额=1月份的营业额×(1+x ),3月份的营业额=2月份的营业额×(1+2x ),把相关数值代入即可得到相应方程.【详解】解:∵1月份的营业额为50万元,2月份的营业额比1月份增加x ,∴2月份的营业额=50×(1+x ),∴3月份的营业额=50×(1+x )×(1+2x ),∴可列方程为:50(1+x )(1+2x )=66.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .注意先求得2月份的营业额.3.C解析:C【分析】移项并因式分解,得到两个关于x 的一元一次方程,即可求解.【详解】解:移项,得220x x -=,因式分解,得()20x x -=,∴0x =或20x -=,解得10x =,22x =,故选:C .【点睛】本题考查解一元二次方程,掌握因式分解法是解题的关键. 4.D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).5.D解析:D【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程.【详解】解:x (2﹣x )+(2﹣x )=0,(2﹣x )(x +1)=0,2﹣x =0或x +1=0,所以x 1=2,x 2=﹣1.故选:D .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).6.C解析:C【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-,二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C .【点睛】 本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.7.B解析:B【分析】设参加活动的同学有x 人,从而可得每位同学赠送的贺卡张数为(1)x -张,再根据“共送贺卡42张”建立方程,然后解方程即可得.【详解】设参加活动的同学有x 人,由题意得:(1)42x x -=,解得7x =或6x =-(不符题意,舍去),即参加活动的同学有7人,故选:B .【点睛】本题考查了一元二次方程的实际应用,依据题意,正确建立方程是解题关键. 8.D解析:D【分析】 仿照题目中的做法可得空白部分小正方形的边长为52,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可.【详解】解:如图2,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为52x 的矩形,得到大正方形的面积为255045025752⎛⎫+⨯=+= ⎪⎝⎭,∴5252⨯=. 故选:D .【点睛】本题考查了一元二次方程的几何解法,读懂题意并数形结合是解题的关键.9.D解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12-=﹣12. 故选:D .此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 10.D解析:D【分析】根据一元二次方程的定义和判别式的意义得到10m +≠且240b ac =-≥,然后求写出两不等式的公共部分即可.【详解】根据题意得10m +≠且()()224(2)4110b ac m =-=--+⨯-≥, 解得1m ≠-且2m ≥-.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.11.B解析:B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:x 2﹣4x ﹣1=0x 2-4x=1x 2-4x+4=1+4(x-2)2=5,故选:B .【点睛】本题考查了解一元二次方程-配方法,解题的关键是会用配方法解答方程.12.C解析:C【分析】利用直接开平方法分别求解可得.【详解】解:A .由x 2=0得x 1=x 2=0,不符合题意;B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意;D .x 2+2=0无实数根,不符合题意;【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.二、填空题13.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.14.-4【分析】根据方程根的定义把代入原方程求出m 的值【详解】解:将代入原方程得解得∵该方程是一元二次方程∴即∴故答案是:【点睛】本题考查一元二次方程根的定义和解一元二次方程需要注意一元二次方程的二次项 解析:-4【分析】根据方程根的定义,把0x =代入原方程,求出m 的值.【详解】解:将0x =代入原方程,得2340m m +-=,解得14m =-,21m =,∵该方程是一元二次方程,∴10m -≠,即1m ≠,∴4m =-.故答案是:4-.【点睛】本题考查一元二次方程根的定义和解一元二次方程,需要注意一元二次方程的二次项系数不能为0.15.(答案不唯一)【分析】有一个根是1的一元二次方程有无数个只要含有因式x1的一元二次方程都有一个根是1【详解】可以用因式分解法写出原始方程然后化为一般形式即可如化为一般形式为:故答案为:【点睛】本题考 解析:20x x -=(答案不唯一)【分析】有一个根是1的一元二次方程有无数个,只要含有因式x -1的一元二次方程都有一个根是1.【详解】可以用因式分解法写出原始方程,然后化为一般形式即可,如()10x x -=,化为一般形式为:20x x -=故答案为:20x x -=.【点睛】本题考查的是一元二次方程的根,有一个根是1的一元二次方程有无数个,写出一个方程就行.16.【分析】利用因式分解法把原方程转化为x=0或x-1=0然后解两个一次方程即可;【详解】∵∴x=0或x-1=0解得故答案为:【点睛】本题考查了一元二次方程的解法先把方程的右边化为0再把左边通过因式分解解析:120,1x x ==【分析】利用因式分解法把原方程转化为x=0或x-1=0,然后解两个一次方程即可;【详解】∵()10x x -= ,∴ x=0或x-1=0,解得1x =0,21x = ,故答案为:1x =0,21x =【点睛】本题考查了一元二次方程的解法,先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,求解即可;17.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传 解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.18.8【分析】由一元二次方程根与系数的关系得:解方程可得进一步可得结论【详解】解:由一元二次方程根与系数的关系得:又∴∴∴解得故答案为:8【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是 解析:8【分析】由一元二次方程根与系数的关系得:126x x +=,12x x a =,解方程221212x x -=可得122x x -=,进一步可得结论.【详解】解:由一元二次方程根与系数的关系得:126x x +=,12x x a =,又221212x x -=,∴1212()()12x x x x +-=∴122x x -=,∴22121212()()43644x x x x x x a -=+-=-=解得,8a =,故答案为:8.【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 19.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.20.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 三、解答题21.(1)口罩日产量的月平均增长率为10%;(2)预计4月份平均日产量为39930个.【分析】(1)根据题意设口罩日产量的月平均增长率为x ,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为36300个,即可预计4月份平均日产量.【详解】(1)设口罩日产量的月平均增长率为x ,根据题意,得30000(1+x )2=36300,解得x 1=−2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%;(2)36300(1+10%)=39930(个).答:预计4月份平均日产量为39930个.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系.22.(1)m=0或m=1;(2)或.【分析】(1)把x=2代入方程x 2-(2m+3)x+m 2+3m+2=0得到关于m 的一元二次方程,然后解关于m 的方程即可;(2)先计算出判别式,再利用求根公式得到x 1=m+2,x 2=m+1,则AC=m+2,AB=m+1.然后讨论:当AB=BC 时,有AC=BC 时,有m 的一次方程即可.【详解】解:(1)∵x=2是方程的一个根,∴4-2(2m+3)+m 2+3m+2=0,∴m=0或m=1;(2)∵△=(2m+3)2-4(m 2+3m+2)=1,∴x=2312m +± ∴x 1=m+2,x 2=m+1,∵AB 、AC (AB <AC )的长是这个方程的两个实数根,∴AC=m+2,AB=m+1.∵△ABC 是等腰三角形,∴当AB=BC 时,有∴;当AC=BC 时,有∴,综上所述,当-1或时,△ABC 是等腰三角形.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,公式法解一元二次方程,也考查了等腰三角形的判定.23.(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法. 24.(1)123,2x x ==-;(2)51x y =⎧⎨=⎩【分析】(1)方程移项后,运用直接开平方法求解即可;(2)方程组运用加减消元法求解即可.【详解】解:(1)()221250x --= ()22125x -=215x -=或215x -=-∴123,2x x ==-;(2)()22132x x y x x y ⎧-=+⎪⎨--=⎪⎩①② 由①得:4x y =+③,把③代入②可得:1342x y y -+-=, 5x =,∴1y =,∴方程组的解为51x y =⎧⎨=⎩. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.同时还考查了二元一次方程组的解法.25.(1)12)13m <-. 【分析】(1)根据分式的加减乘除混合运算法则计算即可,求值时注意分母有理化.(2)根据方程没有实数根,可知∆<0,进而求得m 得取值范围.【详解】(1)由题意得:原式23193(3)x x x xx x +--⎛⎫=-÷ ⎪--⎝⎭ 2(3)(3)(1)(3)(3)9x x x x x x x x ⎡⎤+----=⨯⎢⎥--⎣⎦ 2229(3)(3)9x x x x x x x --+-=⨯-- 29(3)(3)9x x x x x --=⨯-- 29(3)(3)9x x x x x --=⨯--3x x-=.3x =,∴原式1===. (2)该方程没有实数根,2242430b ac m ∴∆=-=+⨯⨯<,故4120m +<,解得13m <-. 【点睛】本题考查分式的混合运算以及一元二次方程根的判别,熟练掌握分式运算法则以及根的判别公式是解题关键.26.(1)1x =±;(2)1x =,2x = 【分析】(1)根据直接开方法即可求出答案;(2)利用公式法求解一元二次方程,即可得到答案.【详解】(1)∵2(1)80x --=, ∴2(1)8x -=, ∴1x -=±∴1x =±;(2)∵5a =,2b =,1c =-∴2245(1)240∆=-⨯⨯-=>,∴21105x -±-±==,即115x -=,215x --=.【点睛】此题考查了解一元二次方程的知识;解题的关键是熟练掌握一元二次方程的解法和二次根式的性质,从而完成求解.。

九年级上册一元二次方程单元综合测试(Word版 含答案)

九年级上册一元二次方程单元综合测试(Word版 含答案)

九年级上册一元二次方程单元综合测试(Word版含答案)一、初三数学一元二次方程易错题压轴题(难)1.阅读下面材料:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,它通常用字母d表示,我们可以用公式(1)2n nS na d-=+⨯来计算等差数列的和.(公式中的n表示数的个数,a表示第一个数的值,)例如:3+5+7+9+11+13+15+17+19+21=10×3+10(101)2-×2=120.用上面的知识解决下列问题.(1)计算:2+8+14+20+26+32+38+44+50+56+62+68+74+80+86+92+98+104+110+116(2)某县决定对坡荒地进行退耕还林.从2009年起在坡荒地上植树造林,以后每年植树后坡荒地的实际面积按一定规律减少,下表为2009、2010、2011、2012四年的坡荒地面积的统计数据.问到哪一年,可以将全县所有坡荒地全部种上树木.【答案】(1)1180;(2)到2017年,可以将全县所有的坡荒地全部种上树木.【解析】【分析】(1)根据题意,由公式(1)2n nS na d-=+⨯来计算等差数列的和,即可得到答案;(2)根据题意,设再过x年可以将全县所有的坡荒地全部种上树木.列出方程,解方程即可得到答案.【详解】解:(1)由题意,得6d=,20n=,2a=,∵(1)2n nS na d-=+⨯,∴20(201)22062S-=⨯+⨯401140=1180=+;(2)解:设再过x年可以将全县所有的坡荒地全部种上树木.根据题意,得1200x+(1)2x x-×400=25200,整理得:(x ﹣9)(x+14)=0,∴x =9或x =﹣14(负值舍去).∴2009+9-1=2017;答:到2017年,可以将全县所有的坡荒地全部种上树木.【点睛】本题考查了一元二次方程的应用,解一元二次方程,以及计算等差数列的和公式,解题的关键是熟练掌握题意,正确找出等量关系,列出方程进行解题.2.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?【答案】(1)这两年藏书的年均增长率是20%;(2)到2018年底中外古典名著的册数占藏书总量的10%.【解析】【分析】(1)根据题意可以列出相应的一元二次方程,从而可以得到这两年藏书的年均增长率; (2)根据题意可以求出这两年新增加的中外古典名著,从而可以求得到2018年底中外古典名著的册数占藏书总量的百分之几.【详解】解:(1)设这两年藏书的年均增长率是x ,()2517.2x +=,解得,10.2x =,2 2.2x =-(舍去),答:这两年藏书的年均增长率是20%;(2)在这两年新增加的图书中,中外古典名著有()7.2520%0.44-⨯=(万册), 到2018年底中外古典名著的册数占藏书总量的百分比是:5 5.6%0.44100%10%7.2⨯+⨯=, 答:到2018年底中外古典名著的册数占藏书总量的10%.【点睛】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答,这是一道典型的增长率问题.3.某连锁超市派遣调查小组在春节期间调查某种商品的销售情况,下面是调查后小张与其 他两位成员交流的情况.小张:“该商品的进价为 24元/件.”成员甲:“当定价为 40元/件时,每天可售出 480件.”成员乙:“若单价每涨 1元,则每天少售出 20件;若单价每降 1元,则每天多售出 40件.” 根据他们的对话,请你求出要使该商品每天获利 7680元,应该怎样合理定价?【答案】要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件【解析】 【分析】设每件商品定价为x 元,则在每件40元的基础上涨价时每天的销售量是[]48020(40)x --件,每件商品的利润是(24)x -元,在每件40元的基础上降价时每天的销量是[]48040(40)x +-件,每件的利润是(24)x -元,从而可以得到答案.【详解】解:设每件商品定价为x 元.①当40x ≥时,[](24)48020(40)7680x x ---= ,解得:1240,48;x x ==②当40x <时,[](24)48040(40)7680x x -+-=,解得:1236,40x x ==(舍去),.答:要使该商品每天获利7680元,应定价为36元/件、40元/件或48元/件.【点睛】本题考查的是一元二次方程中的升降价对销售量产生影响方面的应用,用含有未知数的代数式表示销售量是这一类题的关键.4.阅读下列材料计算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t ,则:原式=(1﹣t )(t +)﹣(1﹣t ﹣)t =t +﹣t 2﹣+t 2= 在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:(1)计算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+) (2)因式分解:(a 2﹣5a +3)(a 2﹣5a +7)+4(3)解方程:(x 2+4x +1)(x 2+4x +3)=3【答案】(1);(2)(a 2﹣5a +5)2;(3)x 1=0,x 2=﹣4,x 3=x 4=﹣2【解析】【分析】(1)仿照材料内容,令+=t代入原式计算.(2)观察式子找相同部分进行换元,令a2﹣5a=t代入原式进行因式分解,最后要记得把t换为a.(3)观察式子找相同部分进行换元,令x2+4x=t代入原方程,即得到关于t的一元二次方程,得到t的两个解后要代回去求出4个x的解.【详解】(1)令+=t,则:原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣﹣t+t2+=(2)令a2﹣5a=t,则:原式=(t+3)(t+7)+4=t2+7t+3t+21+4=t2+10t+25=(t+5)2=(a2﹣5a+5)2(3)令x2+4x=t,则原方程转化为:(t+1)(t+3)=3t2+4t+3=3t(t+4)=0∴t1=0,t2=﹣4当x2+4x=0时,x(x+4)=0解得:x1=0,x2=﹣4当x2+4x=﹣4时,x2+4x+4=0(x+2)2=0解得:x3=x4=﹣2【点睛】本题考查用换元法进行整式的运算,因式分解,解一元二次方程.利用换元法一般可达到降次效果,从而简便运算.5.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg ,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg );(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x 千克,则x{1﹣[60%+1.6%(90﹣x )]}=12,整理得:x 2﹣65x ﹣750=0,(x ﹣75)(x+10)=0,解得:x 1=75,x 2=﹣10(舍去),60%+1.6%(90﹣x )=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用6.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根.(1)求a 的取值范围;(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值.【答案】(1)a≥0且a≠6;(2)a 的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x 1+x 2=﹣2-6a a ,x 1x 2=-6a a ,由(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣66a - 是是负整数,即可得66a -是正整数.根据a 是整数,即可求得a 的值2.【详解】(1)∵原方程有两实数根, ∴260(2)4(6)*0a a a a -≠⎧⎨∆=-->⎩, ∴a≥0且a≠6.(2)∵x 1、x 2是关于x 的一元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根,∴x 1+x 2=﹣26a a -,x 1x 2=6a a -,∴(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=-6a a ﹣26a a -+1=﹣66a -. ∵(x 1+1)(x 2+1)是负整数, ∴﹣66a -是负整数,即66a -是正整数. ∵a 是整数,∴a ﹣6的值为1、2、3或6,∴a 的值为7、8、9或12.【点睛】 本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a 的不等式是解此题的关键.7.有n 个方程:x 2+2x ﹣8=0;x 2+2×2x ﹣8×22=0;…x 2+2nx ﹣8n 2=0.小静同学解第一个方程x 2+2x ﹣8=0的步骤为:“①x 2+2x=8;②x 2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x 1=4,x 2=﹣2.” (1)小静的解法是从步骤 开始出现错误的.(2)用配方法解第n 个方程x 2+2nx ﹣8n 2=0.(用含有n 的式子表示方程的根)【答案】(1)⑤;(2)x 1=2n ,x 2=﹣4n .【解析】【分析】(1)根据移项要变号,可判断;(2)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半,使左边是一个完全平方式,然后用直接开平方法求解.【详解】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为⑤;(2)x 2+2nx ﹣8n 2=0,x 2+2nx=8n 2,x 2+2nx+n 2=8n 2+n 2,(x+n )2=9n 2,x+n=±3n ,x 1=2n ,x 2=﹣4n .8.如图,在平面直角坐标系中,正方形ABCD 的顶点A 在y 轴正半轴上,顶点B 在x 轴正半轴上,OA 、OB 的长分别是一元二次方程x 2﹣7x+12=0的两个根(OA >OB ).(1)求点D 的坐标.(2)求直线BC 的解析式.(3)在直线BC 上是否存在点P ,使△PCD 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.【答案】(1)D(4,7)(2)y=3944x (3)详见解析【解析】试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE 和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b (k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C 的对称点时,△PCD为等腰三角形,然后求解即可.试题解析:(1)x2﹣7x+12=0,解得x1=3,x2=4,∵OA>OB,∴OA=4,OB=3,过D作DE⊥y于点E,∵正方形ABCD,∴AD=AB,∠DAB=90°,∠DAE+∠OAB=90°,∠ABO+∠OAB=90°,∴∠ABO=∠DAE,∵DE⊥AE,∴∠AED=90°=∠AOB,∵DE⊥AE∴∠AED=90°=∠AOB,∴△DAE≌△ABO(AAS),∴DE=OA=4,AE=OB=3,∴OE=7,∴D(4,7);(2)过点C作CM⊥x轴于点M,同上可证得△BCM≌△ABO,∴CM=OB=3,BM=OA=4,∴OM=7,∴C(7,3),设直线BC的解析式为y=kx+b(k≠0,k、b为常数),代入B(3,0),C(7,3)得,,解得,∴y=x﹣;(3)存在.点P与点B重合时,P1(3,0),点P与点B关于点C对称时,P2(11,6).考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数9.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣32 ,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c b a++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得21(舍去)或x=21-,∴点P (21-,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P(32,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.10.如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH 是正方形ABCD的外接正方形.探究一:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.因为正方形ABCD的面积为1,则正方形EFGH的面积为2,所以EF=FG=GH=HE2EB=x,则BF2﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE2﹣x在Rt△AEB中,由勾股定理,得x2+2﹣x)2=12解得,x1=x2=2 2∴BE=BF,即点B是EF的中点.同理,点C,D,A分别是FG,GH,HE的中点.所以,存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍探究二:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍?(仿照上述方法,完成探究过程)探究三:已知边长为1的正方形ABCD,一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)探究四:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍?(n>2)(仿照上述方法,完成探究过程)【答案】不存在,详见解析【解析】【分析】探究二,根据探究一的解答过程、运用一元二次方程计算即可;探究三,根据探究一的解答过程、运用一元二次方程根的判别式解答;探究四,根据探究一的解答过程、运用一元二次方程根的判别式解答.【详解】探究二:因为正方形ABCD的面积为1,则正方形EFGH的面积为3,所以EF=FG=GH=HE,设EB=x,则BF x,∵Rt△AEB≌Rt△BFC,∴BF=AE﹣x,在Rt△AEB中,由勾股定理,得,x2+x)2=12,整理得x2x+1=0,b2﹣4ac=3﹣4<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍;探究三:因为正方形ABCD的面积为1,则正方形EFGH的面积为4,所以EF=FG=GH=HE=2,设EB=x,则BF=2﹣x,∵Rt△AEB≌Rt△BFC,∴BF=AE=2﹣x,在Rt△AEB中,由勾股定理,得,x2+(2﹣x)2=12,整理得2x2﹣4x+3=0,b2﹣4ac=16﹣24<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍,故答案为不存在;探究四:因为正方形ABCD的面积为1,则正方形EFGH的面积为n,所以EF=FG=GH=HE,设EB=x,则BF﹣x,∵Rt△AEB≌Rt△BFC,∴BF=AE﹣x,在Rt△AEB中,由勾股定理,得,x2+﹣x)2=12,整理得2x2﹣+n﹣1=0,b2﹣4ac=8﹣4n<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、一元二次方程的解法等知识.读懂探究一的解答过程、正确运用一元二次方程根的判别式是解题的关键.。

无锡滨湖区雪浪中学九年级数学上册第一单元《一元二次方程》测试(答案解析)

无锡滨湖区雪浪中学九年级数学上册第一单元《一元二次方程》测试(答案解析)

一、选择题1.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x += 2.下列方程中,没有实数根的是( )A .2670x x ++=B .25260x x --=C .22270x x -=D .2220x x -+-= 3.用配方法解方程2x 4x 70+-=,方程应变形为( ) A .2(2)3x += B .2 (x+2)11= C .2 (2)3?x -= D .2()211x -= 4.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17 5.当分式2369x x x --+的值为0时,则x 等于( ) A .3 B .0 C .3± D .-36.若关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根,则a 的取值范围是( )A .a <-2B .a >-2C .-2<a <0D .-2≤a <0 7.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( ) A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根 8.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是( )A .4B .5C .6D .79.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=0 10.《代数学》中记载,形如2833x x +=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为2x 的矩形,得到大正方形的面积为331649+=,则该方程的正数解为743-=.”小聪按此方法解关于x 的方程2100x x m ++=时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为( ).A .6B .3532C .532D .535 11.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( ) A .1B .-1C .1或-1D .0 12.一元二次方程x (x ﹣2)=x ﹣2的解是( )A .x 1=x 2=0B .x 1=x 2=1C .x 1=0,x 2=2D .x 1=1,x 2=2 二、填空题13.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.14.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.15.已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则21a +3β的值为________.16.三角形两边长分别为3和5,第三边满足方程x 2-6x+8=0,则这个三角形的形状是__________.17.当m ______时,关于x 的一元二次方程2350mx x -+=有两个不相等的实数根. 18.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.19.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜__场20.当x=______时,−4x 2−4x+1有最大值.三、解答题21.用适当的方法解下列方程:(1)22580x x --=;(2)23(5)2(5)x x -=-.22.已知:关于x 的一元二次方程()232220-+++=tx t x t (0t >). (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于t 的函数,且221=⋅+y t x x ,求这个函数的解析式.23.解方程:2x²-4x-3=0.24.已知关于x 的一元二次方程x 2-2x+k=0.(1)若方程有实数根,求k 的取值范围;(2)在(1)的条件下,如果k 是满足条件的最大的整数,且方程x 2-2x+k=0一根的相反数是一元二次方程(m-1)x 2-3mx-7=0的一个根,求m 的值.25.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩26.某文具商从荷花池小商品批发市场购进一批书包,每个进价50元.调查发现,当销售价为80元时,每季度可售出500个;如果售价每降低1元,那么平均每季度可多售出40个.(1)当降价2元时,平均每季度销售书包_____个.(2)某文具商要想平均每季度赢利18000元,且尽可能让利与顾客,应该如何定价?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.2.D解析:D【分析】根据判别式的意义对各选项进行判断.【详解】A 、224641780b ac =-=-⨯⨯=>,则方程有两个不相等的实数根,所以A 选项不符合题意;B 、()()224541261290b ac =-=--⨯⨯-=>,则方程有两个不相等的实数根,所以B 选项不符合题意;C 、()224274207290b ac =-=--⨯⨯=>,则方程有两个不相等的实数根,所以C 选项不符合题意;D 、()()224241240b ac =-=-⨯-⨯-=-<,则方程没有实数根,所以D 选项符合题意.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.B解析:B【分析】根据配方法解一元二次方程的方法解答即可.【详解】解:用配方法解方程2470x x ,方程应变形为24411x x ++=,即()2211x +=. 故选:B .【点睛】本题考查了一元二次方程的解法,熟练掌握配方的方法是解题的关键. 4.B解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.5.D解析:D【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可.【详解】 依题意得:230690x x x ⎧-⎨-+≠⎩=,解得x =−3.故选:D【点睛】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.6.C解析:C【分析】由关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根可得2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭,解不等式即可求出a 的取值范围. 【详解】∵关于x 的一元二次方程ax 2+2x -12=0(a <0)有两个不相等的实数根, ∴2214244202b ac a a ⎛⎫∆=-=-⨯⨯-=+> ⎪⎝⎭, 解得:a >−2,∵a <0,∴−2<a <0.故选C .【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的应用为解题关键.7.C解析:C【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根.【详解】解:∵△=22-4×1×3=-8<0,∴方程23210x x ++=没有实数根.故选:C .【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.8.B解析:B【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x-1)=10, 化简,得x 2-x-20=0,解得x 1=5,x 2=-4(舍去),∴参加此次比赛的球队数是5队.故选:B .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.9.A解析:A【分析】本题可设长为(80+2x ),宽为(50+2x ),再根据面积公式列出方程,化简即可.【详解】解:依题意得:(80+2x )(50+2x )=5400,即4000+260x+4x 2=5400,化简为:4x 2+260x-1400=0,即x 2+65x-350=0.故选:A .【点睛】本题考查的是一元二次方程的应用,解此类题目要注意运用面积的公式列出等式再进行化简.10.D解析:D【分析】 仿照题目中的做法可得空白部分小正方形的边长为52,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可.【详解】解:如图2,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为52x 的矩形,得到大正方形的面积为255045025752⎛⎫+⨯=+= ⎪⎝⎭,∴5252⨯=. 故选:D .【点睛】本题考查了一元二次方程的几何解法,读懂题意并数形结合是解题的关键.11.B解析:B【分析】把0x =代入,求出a 的值即可.【详解】解:把0x =代入可得210a -=,解得1a =±,∵一元二次方程二次项系数不为0,∴1a ≠,∴1a =-,故选:B .【点睛】本题考查一元二次方程的解,注意二次项系数不为0.12.D解析:D【分析】方程x (x ﹣2)=x ﹣2移项后,运用因式分解法可以求得方程的解,本题得以解决.【详解】解:x (x ﹣2)=x ﹣2,移项,得x (x ﹣2)﹣(x ﹣2)=0,提公因式,得(x ﹣2)(x ﹣1)=0,∴x ﹣2=0或x ﹣1=0,解得x =2或x =1.故选:D .【点睛】本题考查解解一元二次方程﹣因式分解法,解题的关键是会利用提公因式法解方程.二、填空题13.4315【分析】利用配方法将多项式转化为然后利用非负数的性质进行解答【详解】解:===∴当a=4b=3时多项式有最小值15故答案为:4315【点睛】此题考查了配方法的应用以及非负数的性质熟练掌握完全解析:4 3 15【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答.【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++=2222(1)(1)(3)15a a b b b -++-+++=22(1)(3)15a b b --+-+∴当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15.故答案为:4,3,15.【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键. 14.6【分析】根据新定义可得出mn 为方程x2+2x ﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n )2﹣2mn 中即可得出结论【详解】解:∵(x ◆2)﹣5=x2+解析:6【分析】根据新定义可得出m 、n 为方程x 2+2x ﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m 2+n 2=(m+n )2﹣2mn 中即可得出结论.【详解】解:∵(x ◆2)﹣5=x 2+2x+4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m 2+n 2=(m+n )2﹣2mn=6.故答案为6.【点睛】 本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键. 15.10【分析】原方程变为()-3()-1=0得到β是方程x2-3x-1=0的两根根据根与系数的关系得到关系式代入求出即可【详解】解:∵α2+3α﹣1=0∴()-3()-1=0∵实数αβ满足α2+3α﹣解析:10【分析】 原方程变为(21a)-3(1a )-1=0,得到1a 、β是方程x 2-3x-1=0的两根,根据根与系数的关系得到关系式,代入求出即可.【详解】解:∵α2+3α﹣1=0, ∴(21a )-3(1a )-1=0, ∵实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1, ∴1a 、β是方程x 2﹣3x ﹣1=0的两根, ∴1a +β=3, a β =﹣1,2131a a=+, ∴原式=1+3a +3β=1+3(1a+β)=1+3×3=10, 故答案为10.【点睛】 本题考查了根与系数的关系,熟练的根据根与系数的关系进行计算是解题的关键. 16.直角三角形【分析】先利用因式分解法解方程得到x1=4x2=2再利用三角形三边的关系得到x=4然后根据勾股定理的逆定理进行判断【详解】解:x2-6x+8=0(x-4)(x-2)=0x-4=0或x-2=解析:直角三角形【分析】先利用因式分解法解方程得到x 1=4,x 2=2,再利用三角形三边的关系得到x=4,然后根据勾股定理的逆定理进行判断.【详解】解:x 2-6x+8=0,(x-4)(x-2)=0,x-4=0或x-2=0,所以x1=4,x2=2,∵两边长分别为3和5,而2+3=5,∴x=4,∵32+42=52,∴这个三角形的形状是直角三角形.故答案为:直角三角形.【点睛】本题考查了解一元二次方程-因式分解法、勾股定理的逆定理和三角形三边的关系,熟练掌握相关的知识是解题的关键.17.m<且m≠0【分析】根据一元二次方程的定义及判别式的意义得出m≠0且△=(-3)2-4m×5=9-20m>0解不等式组确定m的取值范围【详解】解:∵关于x的一元二次方程mx2-3x+5=0有两个不相解析:m<920且m≠0.【分析】根据一元二次方程的定义及判别式的意义得出m≠0,且△=(-3)2-4m×5=9-20m>0,解不等式组,确定m的取值范围.【详解】解:∵关于x的一元二次方程mx2-3x+5=0有两个不相等的实数根,∴m≠0,且△=(-3)2-4m×5=9-20m>0,解得m<920且m≠0,故当m<920且m≠0时,关于x的一元二次方程mx2-3x+5=0有两个不相等的实数根.故答案是:m<920且m≠0.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一解析:3【分析】设每轮传染中平均一个人传染了x人,则第一轮共有()1x+人患病,第二轮后患病人数有()21x+人,从而列方程,再解方程可得答案.解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.19.11【分析】设中国队在本届世界杯比赛中连胜x 场则共有(x+1)支队伍参加比赛根据一共比赛66场即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】设中国队在本届世界杯比赛中连胜x 场则共有(x解析:11【分析】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,根据一共比赛66场,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,依题意,得:12x(x+1)=66, 整理,得:x 2+x-132=0,解得:x 1=11,x 2=-12(不合题意,舍去).所以,中国队在本届世界杯比赛中连胜11场.故答案为11.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 20.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.三、解答题21.(1)12x x ==2)12175,3x x == 【分析】(1)用公式法求解即可;(2)用因式分解法求解即可.【详解】解:(1)2,5,8a b c ==-=-,2(5)42(8)890∴∆=--⨯⨯-=>,524b x a -±±∴==,12x x ∴== (2)23(5)2(5)0x x ---=, 移项得,23(5)2(5)0x x ---=,因式分解得,(5)(317)0x x --=,50x ∴-=或3170x -=,12175,3x x ∴== 【点睛】本题主要考查解一元二次方程的解法,熟练掌握解一元二次方程的几种常用方法:直接开平方法、配方法、公式法、因式分解法,结合方程的特点选择合适、简便的方法是解题的关键.22.(1)证明见解析;(2)222 1.y t t =++【分析】(1)先求解()2242b ac t =-=+,再证明>0, 即可得出结论;(2)把原方程化为:()()1220,x tx t ---=再解方程,根据0t >,12x x <,确定12,x x ,最后代入函数解析式即可得到答案.【详解】(1)证明: ()232220-+++=tx t x t , (),32,22,a t b t c t ∴==-+=+()()22=43242+2b ac t t t ∴-=-+-⎡⎤⎣⎦22912488t t t t =++--244t t =++()22t =+, t >0,()22t ∴=+>0,所以原方程有两个不相等的实数根.(2) ()232220-+++=tx t x t , ()()1220,x tx t ∴---=10x ∴-=或220,tx t --=1x ∴=或22,x t=+ 0t >,22t∴+>1,12x x <,1221,2,x x t∴==+ ∴ 221=⋅+y t x x2221t t ⎛⎫=++ ⎪⎝⎭ 222 1.t t =++【点睛】本题考查的一元二次方程根的判别式,利用因式分解法解一元二次方程,不等式的性质,列函数关系式,掌握以上知识是解题的关键.23.1222,22x x +-== 【分析】 利用公式法解一元二次方程即可求解.【详解】解:2x²-4x-3=0∵ a=2,b=-4,c=-3,∴()()22=b 4442340ac ∆-=--⨯⨯-=>0, ∴一元二次方程有两个不相等的实数根,∴x ===∴122222x x +==. 【点睛】本题考查了公式法解一元二次方程,熟练掌握一元二次方程的求根公式是解题关键. 24.(1)k≤1;(2)2【分析】(1)结合题意,根据判别式的性质计算,即可得到答案;(2)结合(1)的结论,可得k 的值,从而计算得方程x 2-2x+k=0的根,并代入到()21370m x mx ---=,通过求解一元一次方程方程,即可得到答案.【详解】(1)由题意知:44k ∆=-且0∆≥即:4-4k≥0∴k≤1(2)k≤1时,k 取最大整数1当k=1时,221x x -+的解为:121x x ==根据题意,1x =是方程()21370m x mx ---=的一个根 ∴()()()2113170m m -⨯--⨯--= ∴m=2.【点睛】本题考查了一元二次方程、一元一次方程的知识;解题的关键是熟练掌握一元二次方程判别式、一元一次方程的性质,从而完成求解.25.(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-.(2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.26.(1)580;(2)70元.【分析】(1)根据降价后销量=降价前销量+增加的销量可求得结果;(2)设定价x 元,根据每季度的总利润=每个玩具利润×降价后每天的销售数量列出方程,解方程可求得定价.【详解】(1)500240580+⨯=(个).故答案为:580.(2)设定价x 元,根据题意得:(50)[50040(80)]18000x x -+-=,解得:1272.5,70x x ==,∵尽可能让利与顾客,70x ∴=.答:应该定价70元.【点睛】本题主要考查一元二次方程的实际应用,理解题意找到题目隐含的等量关系是解决问题的关键.。

无锡市九年级数学上册第一单元《一元二次方程》检测(答案解析)

无锡市九年级数学上册第一单元《一元二次方程》检测(答案解析)

一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2± B .2- C .2 D .4 2.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A 51-B 51+C 53+D 21 3.已知4是关于x 的方程()2120x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .7或10C .10或11D .11 4.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4B .-1或-4C .-1或4D .1或-4 5.当分式2369x x x --+的值为0时,则x 等于( ) A .3B .0C .3±D .-3 6.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3 B .6 C .8D .9 7.方程23x x =的根是( ) A .3x = B .0x = C .123,0x x =-=D .123,0x x == 8.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( )A .1B .-1C .1或-1D .0 9.若关于x 的一元二次方程2(1)210m x x +--=有实数根,则m 的取值范围是( ) A .2m >-B .2m ≥-C .2m >-且1m ≠-D .2m ≥-且1m ≠- 10.一元二次方程x 2﹣4x ﹣1=0配方后正确的是( ) A .(x ﹣2)2=1B .(x ﹣2)2=5C .(x ﹣4)2=1D .(x ﹣4)2=5 11.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1 12.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022 B .2021 C .2020 D .2019二、填空题13.一元二次方程 x ( x +3)=0的根是__________________.14.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.15.已知方程2x 2+4x ﹣3=0的两根分别为出x 1和x 2,则x 1+x 2+x 1x 2=_____.16.用配方法解方程x 2+4x+1=0,则方程可变形为(x+2)2=_____.17.一元二次方程()10x x -=的根是________________________.18.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.19.北京奥运会的主会场“鸟巢”让人记忆深刻.在鸟巢设计的最后阶段,经过了两次优化,鸟巢的结构用钢量从5.4万吨减少到4.2万吨.若设平均每次用钢量降低的百分率为x ,根据题意,可得方程_______20.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.三、解答题21.解方程.(1)2560x x -+=.(2)23(21)(21)x x -=-.(3)23139x x x -=--. 22.已知关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0.(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个根x 1,x 2,且x 12+x 22=8,求k 的值.23.某公司一月份营业额为10万元,若二、三月份增长率相同,到三月份时,营业额达到12.1万元.求二、三月份的平均增长率.24.阿里巴巴电商扶贫对某贫困地区一种特色农产品进行网上销售,按原价每件200元出售,一个月可卖出100件,通过市场调查发现,售价每件每降低1元,月销售件数就增加2件.(1)已知该农产品的成本是每件100元,在保持月利润不变的情况下,尽快销售完毕,则售价应定为多少元;(2)小红发现在附近线下超市也有该农产品销售,并且标价为每件200元,买五送一,在(1)的条件下,小红想要用最优惠的价格购买38件该农产品,应选择在线上购买还是线下超市购买?25.(1)解方程290x (直接开平方法)(2)若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,求m 的值.26.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答.【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,∴240,20m m -=-≠,∴m=-2,故选:B .【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键. 2.B解析:B【分析】根据上图可知正方形的边长为a+b ,下图长方形的长为a+b+b ,宽为b ,并且它们的面积相等,由此可列出(a+b )2=b(a+b+b),解方程即可求得结论.【详解】解:根据题意得:正方形的边长为a+b ,长方形的长为a+b+b ,宽为b ,则(a+b )2=b(a+b+b),即a 2﹣b 2+ab=0, ∴2)10a a b b +-=(,解得:12a b -±=, ∵a b>0,∴12a b -+=,∴当a=1时,12b ==, 故选:B .【点睛】 本题考查了图形的拼接、解一元二次方程、正方形的面积、长方形的面积,正确理解题意,找到隐含的数量关系列出方程是解答的关键.3.C解析:C【分析】把x=4代入已知方程求得m 的值;然后通过解方程求得该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【详解】解:把x=4代入方程得16-4(m+1)+2m=0,解得m=6,则原方程为x 2-7x+12=0,解得x 1=3,x 2=4,因为这个方程的两个根恰好是等腰△ABC 的两条边长,①当△ABC 的腰为4,底边为3时,则△ABC 的周长为4+4+3=11;②当△ABC 的腰为3,底边为4时,则△ABC 的周长为3+3+4=10.综上所述,该△ABC 的周长为10或11.故选C .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了三角形三边的关系.4.D解析:D【分析】根据一元二次方程的解的定义知,x=-2满足关于x 的一元二次方程2x 2+3ax -2a 2=0,可得出关于a 的方程,通过解方程即可求得a 的值.【详解】解:将x=-2代入一元二次方程2x 2+3ax -2a 2=0,得:()()222-23-2-20a a ⨯+⋅=,化简得:2+340a a -=,解得:a=1或a=-4.故选:D .本题考查了一元二次方程的解的定义.一元二次方程ax 2+bx+c=0(a≠0)的所有解都满足该一元二次方程的关系式.5.D解析:D【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可.【详解】 依题意得:230690x x x ⎧-⎨-+≠⎩=,解得x =−3.故选:D【点睛】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.6.D解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.7.D解析:D【分析】先把方程化为一般式,再把方程左边因式分解得x (x ﹣3)=0,方程就可转化为两个一元一次方程x =0或x ﹣3=0,然后解一元一次方程即可.【详解】解:∵x 2=3x ,∴x 2﹣3x =0,∴x (x ﹣3)=0,∴x =0或x =3,【点睛】本题考查了利用因式分解法解一元二次方程ax 2+bx +c =0的方法:先把方程化为一般式,再把方程左边因式分解,然后把方程转化为两个一元一次方程,最后解一元一次方程即可.8.B解析:B【分析】把0x =代入,求出a 的值即可.【详解】解:把0x =代入可得210a -=,解得1a =±,∵一元二次方程二次项系数不为0,∴1a ≠,∴1a =-,故选:B .【点睛】本题考查一元二次方程的解,注意二次项系数不为0.9.D解析:D【分析】根据一元二次方程的定义和判别式的意义得到10m +≠且240b ac =-≥,然后求写出两不等式的公共部分即可.【详解】根据题意得10m +≠且()()224(2)4110b ac m =-=--+⨯-≥, 解得1m ≠-且2m ≥-.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.B解析:B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:x 2﹣4x ﹣1=0x 2-4x=1(x-2)2=5,故选:B .【点睛】本题考查了解一元二次方程-配方法,解题的关键是会用配方法解答方程.11.C解析:C【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值.【详解】解:∵(a +m )( a +n )=2,(b +m )( b +n )=2,∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0,而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.12.A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 二、填空题13.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.14.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法 解析:3【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案.【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=,∴1h =-,4k =∴143h k +=-+=故答案是:3.【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解. 15.﹣【分析】根据根与系数的关系得到x1+x2=﹣=﹣2x1x2=﹣然后利用整体代入的方法计算【详解】根据题意得x1+x2=﹣=﹣2x1x2=﹣所以x1+x2+x1x2=﹣2﹣=﹣故答案为:﹣【点睛】本解析:﹣72【分析】 根据根与系数的关系得到x 1+x 2=﹣42=﹣2,x 1x 2=﹣32,然后利用整体代入的方法计算.【详解】根据题意得x 1+x 2=﹣42=﹣2,x 1x 2=﹣32, 所以x 1+x 2+x 1x 2=﹣2﹣32=﹣72. 故答案为:﹣72. 【点睛】 本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a. 16.3【分析】先移项再两边配上4写成完全平方公式即可【详解】解:∵∴即故答案为:3【点睛】本题考查了用配方法解一元二次方程掌握用配方法解一元二次方程的步骤即可解析:3【分析】先移项,再两边配上4,写成完全平方公式即可.【详解】解:∵241x x +=-,∴24414x x ++=-+,即()223x +=,故答案为:3.【点睛】本题考查了用配方法解一元二次方程,掌握用配方法解一元二次方程的步骤即可. 17.【分析】利用因式分解法把原方程转化为x=0或x-1=0然后解两个一次方程即可;【详解】∵∴x=0或x-1=0解得故答案为:【点睛】本题考查了一元二次方程的解法先把方程的右边化为0再把左边通过因式分解解析:120,1x x ==【分析】利用因式分解法把原方程转化为x=0或x-1=0,然后解两个一次方程即可;【详解】∵()10x x -= ,∴ x=0或x-1=0,解得1x =0,21x = ,故答案为:1x =0,21x =【点睛】本题考查了一元二次方程的解法,先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,求解即可;18.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一 解析:3【分析】设每轮传染中平均一个人传染了x 人,则第一轮共有()1x +人患病,第二轮后患病人数有()21x +人,从而列方程,再解方程可得答案.【详解】解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.19.54(1-x )2=42【分析】根据题意经过两次的钢量减少最后的结果应该是原来的(1-x )2倍列出方程即可【详解】解:根据题意有:54(1-x )2=42故答案为:54(1-x )2=42【点睛】本题考查解析:5.4(1-x )2=4.2【分析】根据题意,经过两次的钢量减少,最后的结果应该是原来的(1-x )2倍,列出方程即可.【详解】解:根据题意有:5.4(1-x )2=4.2故答案为:5.4(1-x )2=4.2【点睛】本题考查一元二次方程的实际应用问题,属于基础题.20.【分析】由在绿地中开辟三条宽为xm 的道路后剩余绿地的面积为144m2即可得出关于x 的一元二次方程此题得解【详解】解:设道路的宽为xm 根据题意得:(18﹣2x )(15﹣x )=144解得:或(舍去)答:解析:3【分析】由在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设道路的宽为xm ,根据题意得:(18﹣2x )(15﹣x )=144,解得:13x =或221x =(舍去),答:道路的宽为3m .故答案为:3.【点睛】此题考查一元二次方程的应用,根据题意找出等量关系,正确列方程是解题的关键.三、解答题21.(1)12x =,23x =;(2)112x =,22x =;(3)2x =- 【分析】(1)利用因式分解法解方程,即可得到答案;(2)先移项,然后利用因式分解法解方程,即可得到答案;(3)先把分式方程化为整式方程,然后解方程即可得到答案.【详解】解:(1)2560x x -+=, (2)(3)0x x --=,∴12x =,23x =,∴原方程的解为:12x =,23x =.(2)23(21)(21)x x -=-,∴2(21)3(21)0x x ---=,∴(21)(213)0x x ---=,∴(21)(24)0x x --=, ∴112x =,22x =. ∴原方程的解为:112x =,22x =. (3)23139x x x -=--, ∴2(3)39x x x +-=-,∴22339x x x +-=-,∴36x =-,∴2x =-,经检验:2x =-为原方程的解,∴原方程的解为2x =-.【点睛】本题考查了解一元二次方程,解分式方程,解题的关键是熟练掌握解方程的方法,注意解分式方程时组要检验.22.(1)见解析;(2)-1或13 【分析】(1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k -,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8, 整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解, ∵k ≠0,∴k 的值为﹣1或13. 【点睛】 本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.23.这两个月营业额的平均增长率是10%【分析】用增长后的量=增长前的量×(1+增长率),即可表示出三月份的营业额,根据三月份营业额达到12.1万元,即可列方程求解.【详解】解:设这两个月营业额的平均增长率是x ,由题意可得:10(1+x )2=12.1,解得x 1=0.1;x 2=﹣2.1(不合题意舍去).答:这两个月营业额的平均增长率是10%.【点睛】此题主要考查了求平均变化率的问题.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .24.(1)售价应定为150元;(2)选择在线上购买更优惠【分析】(1)设售价应定为x 元,则每件的利润为()100-x 元,月销售量为(5002)-x 件,列出方程计算即可;(2)分别算出线上购买和线下购买的费用,再进行比较即可;【详解】解:(1)当售价为200元时月利润为()2001001001000-⨯=(元).设售价应定为x 元,则每件的利润为()100-x 元,月销售量为2001002(5002)1x x -+⨯=-件, 依题意,得:()()100500210000x x --=,整理,得:2350300000--=x x ,解得:1150x =,2200x =(舍去).答:售价应定为150元.(2)线上购买所需费用为150385700⨯=(元);∵线下购买,买五送一,∴线下超市购买只需付32件的费用,∴线下购买所需费用为200326400⨯=(元).57006400<.答:选择在线上购买更优惠.【点睛】本题主要考查了一元二次方程的应用,准确列方程计算是解题的关键.25.(1)13x =,23x =-;(2)4【分析】(1)利用直接开平方法求解可得答案;(2)根据常数项为0得出关于m 的方程,解之求出m 的值,结合一元二次方程的定义可得答案.【详解】(1)解:290x (直接开平方法)29x =,∴3x =±,∴13x =,23x =-.(2)解:∵关于x 的一元二次方程()221534m x x m m +++-=的常数项为0, ∴210340m m m +≠⎧⎨--=⎩, 解得4m =,1m =-(舍去),∴m 的值为4.【点睛】本题主要考查解一元二次方程的能力,也考查了一元二次方程的定义,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26.(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-. (2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.。

无锡滨湖区河埒中学九年级数学上册第二单元《二次函数》测试卷(含答案解析)

无锡滨湖区河埒中学九年级数学上册第二单元《二次函数》测试卷(含答案解析)

一、选择题1.抛物线y =ax 2+bx +c (a ≠0)的图象大致如图所示,下列说法: ①2a +b =0;②当﹣1<x <3时,y <0;③若(x 1,y 1)(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④9a +3b +c =0, 其中正确的是( )A .①②④B .①④C .①②③D .③④2.已知()()()112233,,,,,x y x y x y 是抛物线245y x x =--+图像上的任意三点,在以下哪个取值范围中,分别以1y 、2y 、3y 为长的三条线段不一定能围成一个三角形的是( ) A .5122x -<< B .7122x -<<- C .30x -<< D .41x -<<-3.将抛物线2yx 先向上平移2个单位长度,再向左平移1个单位长度,则得到新抛物线的解析式为( ) A .()212y x =-+ B .()212y x =-- C .()212y x =++D .()=+-2y x 124.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .5.已知抛物线2y x bx c =++的顶点在x 轴上,且经过点(3,)A m n -、(3,)B m n +,则n 的值为( )A .3B .6C .9D .126.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限7.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 8.二次函数y =ax 2+bx+c (a >0)的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2,点P (m ,n )是图象上一点,那么下列判断正确的是( ) A .当n <0时,m <0 B .当n >0时,m >x 2 C .当n <0时,x 1<m <x 2D .当n >0时,m <x 19.已知抛物线y=-x 2+bx+c 与x 轴交于A,B 两点(A 在原点O 左侧,B 在原点O 右侧),与y 轴交于C 点,且OC=OB,令COAO=m ,则下列m 与b 的关系式正确的是( )A .m=2b B .m=b+1C .m=6bD . m=2b +110.抛物线()2526y x =-+-可由25y x =-如何平移得到( ) A .先向右平移2个单位,再向下平移6个单位 B .先向右平移2个单位,再向上平移6个单位 C .先向左平移2个单位,再向下平移6个单位 D .先向左平移2个单位,再向上平移6个单位11.二次函数2y ax bx c =++的图象如图所示,则下列关于该函数说法中正确的是( )A .0b <B .0c >C .0a b c ++=D .240b ac -<12.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( ) A .22(1)5y x =-++ B .22(1)5y x =--+ C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5y12 5 0 -3 -4 -3 0 5 12利用二次函数的图象可知,当函数值0y >时,x 的取值范围是______.14.已知二次函数2(0)y ax bx c a =++≠,其函数y 与自变量x 之间的部分对应值如下表所示,则42a b c ++=___________. x3- 1-0 1 3y55215272 72 31215.已知点()1,A a m y -、()2,B a n y -、()3,C a b y +都在二次函数221y x ax =-+的图象上,若0m b n <<<,则1y 、2y 、3y 的大小关系是_________.16.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________17.二次函数2y x bx c =++的图象如图所示,则一元二次方程28x bx c ++=-的根是____________.18.若123(4,),(1,),(1,)A y B y C y --为二次函数245y x x =-+的图象上的三点,则123,,y y y 的大小关系为__________.19.如图,抛物线2yx 与直线y x =交于O ,A 两点,将抛物线沿射线OA 方向平移42个单位.在整个平移过程中,抛物线与直线3x =交于点D ,则点D 经过的路程为______.20.在平面直角坐标系xOy 中,函数y=x 2的图象经过点M (x 1,y 1),N (x 2,y 2)两点,若﹣4<x 1<﹣2,0<x 2<2,则y 1 ______y 2 .(用“<”,“=”或“>”号连接)三、解答题21.如图,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于点A ,B (点A 在B的左侧),与y 轴交于点C .(1)若OB=OC=3,求抛物线的解析式及其对称轴;(2)在(1)的条件下,设点P 在抛物线的对称轴上,求PA+PC 的最小值和点P 的坐标.22.某水果店批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售将减少20千克.(1)现要保证每天盈利5520元,同时又要让顾客得到实惠,那么每千克应涨价多少元? (2)要使每天获利不少于6000元,求涨价x 的范围.23.如图,二次函数2y x bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,OB OC =.点D 在函数图象上,//CD x 轴,且2CD =,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值.(2)如图①,连接BE ,线段OC 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标.(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得PQN 与APM △的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.24.在平面直角坐标系xOy 中,抛物线2223y x nx n n =-++-与y 轴交于点C ,与x 轴交于点,A B ,点A 在B 的左边,x 轴正半轴上一点D ,满足.OD OA OB =+ (1)①当2n =时,求点D 的坐标和抛物线的顶点坐标; ②当2AB BD =时,求n 的值;(2)过点D 作x 轴的垂线交抛物线于P ,作射线CP ,若射线CP 与x 轴没有公共点,直接写出n 的取值范围.25.某滑雪场在滑道上设置了几个固定的计时点.一名滑雪者从山坡滑下,测得了滑行距离s (单位:m )与滑行时间t (单位:s )的若干数据,如下表所示:位置1 位置2 位置3 位置4 位置5 位置6 位置7 滑行时间/s t 0 1.07 1.40 2.08 2.46 2.79 3.36 滑行距离/m s51015202535s t t s 点(如图).可以看出,其中绝大部分的点都近似位于某条抛物线上.于是,我们可以用二次函数()20s at bt c t =++≥来近似地表示s 与t 的关系.(1)有一个计时点的计时装置出现了故障,这个计时点的位置编号可能是_________; (2)当0t =时,0s =,所以c =________;(3)当此滑雪者滑行距离为30m 时,用时约为________s (结果保留一位小数). 26.如图,已知抛物线2y x bx c =-++经过点(1,0)A -,(3,0)B ,与y 轴交于点C ,点P 是抛物线上一动点,连接PB ,PC .(1)求抛物线的解析式;(2)①如图1,当点P 在直线BC 上方时,过点P 作PD x ⊥轴于点D ,交直线BC 于点E .若2PE ED =,求PBC 的面积;②抛物线上是否存在一点P ,使PBC 是以BC 为底边的等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】①由图示知,对称轴是直线x =3122ba-=-,则2a+b =0,故说法正确; ②由图示知,当﹣1<x <3时,y <0,故说法正确;③若(x 1,y 1)(x 2,y 2)在函数图象上,当1<x 1<x 2时,y 1<y 2,故说法错误;④由图示知,当x =3时,y =0,即9a+3b+c =0,故说法正确. 综上所述,正确的说法是①②④. 故选:A . 【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.2.A解析:A 【分析】先将二次函数解析式化为顶点式,分别根据自变量x 的取值范围确定y 的范围,再根据任意两边之和是否大于第三边即可判断. 【详解】 解:245y x x =--+=()229x -++,∴抛物线的对称轴为直线2x =-且抛物线开口向下,A 选项,当5122x -<<时,1194y <≤,当12y y ,取3,3y 取9时,123y y y +<,两边之和小于第三边,不能构成三角形,故符合题意;B 选项,当7122x -<<-时,2794y <≤,2727+944>,所以以1y 、2y 、3y 为长的三条线段能围成一个三角形,故不符合题意;C 选项,当30x -<<时,59y <≤,同理三条线段能围成一个三角形,故不符合题意;D 选项,当41x -<<-时,59y <≤,同理三条线段能围成一个三角形,故不符合题意. 故选:A . 【点睛】本题主要考查二次函数的取值范围问题,涉及三角形成立的条件,解题的关键是确定y 的取值范围,再根据任意两边之和是否大于第三边判断.3.C解析:C 【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可. 【详解】 解:将抛物线2yx 先向上平移2个单位长度,再向左平移1个单位长度,就得到抛物线:2(1)2y x =++. 故答案为:C . 【点睛】本题考查二次函数的图象与性质,图象平移规律“左加右减,上加下减”是解题关键.4.C解析:C 【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案. 【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0, ∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600, ∴顶点坐标为(20,600), ∵s 从0开始到最大值时停止, ∴0≤t≤20, ∴C 选项符合题意, 故选:C . 【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.5.C解析:C 【分析】先根据A 、B 两点的坐标可求出抛物线的对称轴,然后确定顶点坐标为(,0)m ,进而求得m 的值,最后代入即可. 【详解】解:∵抛物线26y x x c =++经过(3,)A m n -、(3,)B m n +,∴抛物线对称轴为直线332m m x m -++==,∵抛物线与x 轴只有一个交点,故顶点为(,0)m ,2()y x m ∴=-.当3x m =+时,239y ==.故答案为C . 【点睛】本题主要考查了二次函数的性质、运用二次函数顶点坐标与对称轴的求解等知识点,掌握二次函数的性质是解答本题的关键.6.C解析:C 【分析】根据图像判断二次函数的系数a 、b 、c 的正负性,即可求得. 【详解】∵二次函数图像开口向下 ∴a <0又∵二次函数图形与y 轴交点在y 正半轴上 ∴c >0∵对称轴在y 轴左侧∴02ba -< ∴b <0∴ac <0,bc <0∴点(,)A ac bc 在第三象限 故选C 【点睛】本题考查二次函数的图像与性质,掌握二次函数图像与系数的关系是解题关键.7.A解析:A 【分析】根据题意结合函数的图象,得出图中A 、B 、C 的坐标,再利用待定系数法求出函数关系式即可. 【详解】解:50.26 2.24 2.52+==(米) 根据题意和所建立的坐标系可知,A (-5,12),B (0,52),C (52,0), 设排球运动路线的函数关系式为y=ax 2+bx+c ,将A 、B 、C 的坐标代入得:125252255042a b c c a b c ⎧-+=⎪⎪⎪=⎨⎪⎪++=⎪⎩, 解得,1485,,75152a b c =-=-=, ∴排球运动路线的函数关系式为2148575152y x x =--+, 故选:A . 【点睛】本题考查待定系数法求二次函数的关系式,根据题意得出图象所过点的坐标是正确解答的关键.8.C解析:C 【分析】首先根据a 判断二次函数图象的开口方向,再确定对称轴,根据图象和二次函数的性质分析得出结论. 【详解】 解:∵a >0,∴开口向上,以对称轴在y 轴左侧为例可以画图二次函数y =ax 2+bx+c 的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2, 无法确定x 1与x 2的正负情况,∴当n <0时,x 1<m <x 2,但m 的正负无法确定,故A 错误,C 正确; 当n >0时,m <x 1 或m >x 2,故B ,D 错误,均不完整 故选:C .【点睛】本题主要考查二次函数图象与x 轴交点的问题,熟练掌握二次函数图象及图像上的坐标特征是解题的关键.9.B解析:B【分析】利用数形结合得思想,先表示出A 、B 的横坐标,再代入到解析式建立方程,进而分别求解即可.【详解】由题意:OC c =,则OB c =,即B 的横坐标为c ,代入解析式有:20c bc c -++=, 则可解得:1c b =+, 根据CO m AO =,可得c OA m =,即A 的横坐标为c m-,代入解析式有:20c c b c m m ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,整理得:210c b m m --+=, 将1c b =+代入可得;2110b b m m +--+=,即2210m b bm m---=, 210m b bm ∴---=,整理得:()210m bm b --+=,对其因式分解可得:()()110m b m -++=⎡⎤⎣⎦,解得:1m b =+,或1m =-(舍去),故选:B .【点睛】本题考查了二次函数与一元二次方程的关系,能够利用数形结合的思想,准确将图中的信息转化为解方程是解决问题的关键.10.C解析:C【分析】按照“左加右减,上加下减”的规律求则可.【详解】解:因为()2526y x =-+-.所以将抛物线25y x =-先向左平移2个单位,再向下平移6个单位即可得到抛物线()2526y x =-+-.故选:C .【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减. 11.C解析:C【分析】由抛物线的开口方向判断a 与0,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】A .因为抛物线的开口向下,则a<0;又因为抛物线的对称轴在y 轴右侧,则-2b a>0,所以b>0,故A 错误;B .抛物线与y 轴的交点在y 轴负半轴,则c<0,故B 错误;C .抛物线与x 轴一个交点为(1,0),则x=1时,0y a b c =++=,故C 正确;D .抛物线与x 轴有两个交点,则240b ac ∆=->,故D 错误,故选C.【点睛】本题考查了二次函数的图象与系数的关系、二次函数的图象与×轴的交点等知识点,明确二次函数的相关性质是解题的关键. 12.B解析:B【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,抛物线y=2x 2的图象向右平移1个单位所得函数图象的关系式是:y=-2(x-1)2; 由“上加下减”的原则可知,抛物线y=-2(x-1)2的图象向上平移5个单位长度所得函数图象的关系式是:y=-2(x-1)2+5.故选:B .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.二、填空题13.或【分析】由表格给出的信息可看出对称轴为直线x =1a >0开口向上与x 轴交于(−10)(30)两点则y>0时x 的取值范围即可求出【详解】根据表格中给出的二次函数图象的信息对称轴为直线x =1a >0开口向解析:1x <-或3x >【分析】由表格给出的信息可看出,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则y>0时,x 的取值范围即可求出.【详解】根据表格中给出的二次函数图象的信息,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则当函数值y>0时,x 的取值范围是x<-1或x>3.故答案为:x<-1或x>3.【点睛】本题考查了二次函数的图象及其性质,正确掌握才能灵活运用.14.【分析】先根据和的函数值相同可得二次函数的对称轴为从而可得再根据时的函数值可得从而可得由此即可得【详解】和的函数值相同此二次函数的对称轴为即当时则故答案为:【点睛】本题考查了二次函数的性质正确求出二 解析:152【分析】先根据0x =和1x =的函数值相同可得二次函数的对称轴为12x =,从而可得=-b a ,再根据1x =-时的函数值可得152a b c ,从而可得1522a c ,由此即可得. 【详解】 0x =和1x =的函数值相同,∴此二次函数的对称轴为12x =, 122b a ∴-=,即=-b a , 当1x =-时,152ya b c , 1522a c , 则4242abc a a c , 2a c , 152=, 故答案为:152. 【点睛】本题考查了二次函数的性质,正确求出二次函数的对称轴是解题关键. 15.【分析】先根据二次函数解析式找出开口方向与对称轴再根据ABC 点与对称轴的距离判断y 值得大小即可【详解】∵二次函数∴对称轴方程为且抛物线开口向上∴横坐标离对称轴x=a 越远y 越大a-m 离x=a 有m 个单位解析:231y y y >>【分析】先根据二次函数解析式找出开口方向与对称轴,再根据A 、B 、C 点与对称轴的距离判断y 值得大小即可.【详解】∵二次函数221y x ax =-+∴对称轴方程为22a x a -=-=,且抛物线开口向上, ∴横坐标离对称轴x=a 越远,y 越大,a-m 离x=a 有m 个单位长度,a-n 离x=a 有n 个单位长度,a+b 离x=a 有b 个单位长度,又∵0m b n <<<, ∴231y y y >>,故答案为:231y y y >>.【点睛】本题考查二次函数的对称性和增减性,根据二次函数解析式确定函数图像的对称轴是解答本题的关键 .16.【分析】根据判别式的意义得到△=b2-4a=0然后a 取一个不为0的实数再确定对应的b 的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x 轴只有一个交点∴△=b2-4a=0若a=1则b 可解析:12【分析】根据判别式的意义得到△=b 2-4a=0,然后a 取一个不为0的实数,再确定对应的b 的值.【详解】解:∵二次函数y=ax 2+bx+1(a≠0)的图象与x 轴只有一个交点,∴△=b 2-4a=0,若a=1,则b 可取2.故答案为1,2(答案不唯一).【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.17.【分析】根据题目中的函数解析式可知当时从而可得到一元二次方程的根本题得以解决【详解】由图象可知当时即时∴一元二次方程的根是故答案为:【点睛】本题考查了二次函数与一元二次方程的关系解答本题的关键是明确 解析:122x x ==-【分析】根据题目中的函数解析式可知,当8y =-时,2x =-,从而可得到一元二次方程28x bx c ++=-的根,本题得以解决.【详解】由图象可知,当8y =-时,2x =-,即2x =-时,28x bx c ++=-,∴一元二次方程28x bx c ++=-的根是122x x ==-,故答案为:122x x ==-.【点睛】本题考查了二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】先将二次函数的解析式化成顶点式再根据二次函数的增减性即可得【详解】二次函数化成顶点式为由二次函数的性质可知当时y 随x 的增大而减小点在此二次函数的图象上且故答案为:【点睛】本题考查二次函数的顶 解析:123y y y >>【分析】先将二次函数的解析式化成顶点式,再根据二次函数的增减性即可得.【详解】二次函数245y x x =-+化成顶点式为22()1y x =-+,由二次函数的性质可知,当2x ≤时,y 随x 的增大而减小,点123(4,),(1,),(1,)A y B y C y --在此二次函数的图象上,且4112-<-<<, 123y y y ∴>>,故答案为:123y y y >>.【点睛】本题考查二次函数的顶点式和增减性,熟练掌握二次函数的性质是解题关键.19.【分析】根据函数图象平移的知识点判断即可;【详解】由题意可知将图形沿进行平移不妨设由题意可得:∵讨论时的运动路程∴将代入则有即讨论时y 值的变化当时的最小值为∴当时y 随x 增大而减小时∴y 从9运动至路程 解析:172【分析】根据函数图象平移的知识点判断即可;【详解】由题意可知将图形沿y x =进行平移,不妨设()2y x a a =-+,由题意可得:04a ≤≤,∵讨论3x =时的运动路程,∴将3x =代入则有()22359y a a a a =-+=-+,即讨论04a ≤≤时,y 值的变化, 当52a =时,y 的最小值为114, ∴当50<2a ≤时,y 随x 增大而减小,0a =时,9y =, ∴y 从9运动至114,路程为1125944-=, 当542a ≤≤时,y 随x 的增大而增大,4a =时,5y =, y 从114运动至4,路程为119544-=, ∴总路程为25934174442+==; 故答案是:172. 【点睛】 本题主要考查了二次函数图象平移的应用,准确分析计算是解题的关键.20.>【分析】根据二次函数的性质即可求解【详解】解:由y=x2可知∵a=1>0∴抛物线的开口向上∵抛物线的对称轴为y 轴∴当x >0时y 随x 的增大而增大∵-4<x1<-20<x2<2∴2<-x1<4∴y1>解析:>【分析】根据二次函数的性质即可求解.【详解】解:由y=x 2可知,∵a=1>0,∴抛物线的开口向上,∵抛物线的对称轴为y 轴,∴当x >0时,y 随x 的增大而增大,∵-4<x 1<-2,0<x 2<2,∴2<-x 1<4,∴y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上的点的坐标特征及二次函数的性质.当a >0时,开口向上,在对称轴的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a <0,开口向下,在对称轴的左侧y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小;三、解答题21.(1)243y x x =-+,对称轴为直线2x =;(2)最小值为32,点P 坐标(2,1). 【分析】(1)根据题意得到B 、C 两点坐标,利用待定系数法及对称轴公式求解即可;(2)连接BC 交对称轴于点P ,根据对称性及两点之间线段最短可知此时PA+PC 最小,根据勾股定理可求出最小值,再由B 、C 两点坐标求出解析式,从而求得点P 坐标.【详解】解:(1)由题意知,B(3,0),C(0,3),将B 、C 坐标代入可得:3930c b c =⎧⎨++=⎩, 解得:43b c =-⎧⎨=⎩, ∴抛物线的解析式为243y x x =-+, ∴对称轴为直线42221b x a -=-=-=⨯; (2)∵点A ,B 关于直线2x =对称,∴连接BC 交对称轴于点P ,此时PA+PC=PB+PC 的值最小,最小值为BC ,在Rt OBC 中,OB=OC=3,∴22223332BC OB OC =+=+=,∵B(3,0),C(0,3),∴直线BC 的解析式为3y x =-+,把x =2代入3y x =-+得:y =1,∴点P(2,1),∴PA+PC 的最小值为32,点P 的坐标为(2,1).【点睛】本题考查了二次函数的性质,待定系数法求表达式,轴对称最短,勾股定理等知识,熟练掌握二次函数的性质及待定系数法求解析式是解题的关键.22.(1)每千克水果应涨价2元;(2)510x ≤≤【分析】(1)设每千克应涨价x 元,由题意列出方程,解方程即可求解;(2)根据题意表示出每天的利润,然后利用每天的获利等于6000元,解出两个x 的值,然后根据二次函数的性质即可得出答案.【详解】(1)设每千克应涨价x 元,由题意列方程得:(10+x )(500﹣20x )=5520,解得:x =2或x =13,为了使顾客得到实惠,那么每千克应涨价2元;答:每千克水果应涨价2元.(2)根据题意得,每天的获利为()()21050020203005000w x x x x =+-=-++ 令6000w =,即22030050006000x x -++=,解得125,10x x ==,20a =-<,∴要使每天获利不少于6000元,涨价x 的范围为510x ≤≤,答:每千克水果涨价x 的范围是510x ≤≤.【点睛】本题主要考查一元二次方程及二次函数的应用,根据题意列出方程及二次函数是解题的关键.23.(1)2b =-,3c =-;(2)点F 坐标为(0,2)-;(3)存在,Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭ 【分析】(1)由条件可求得抛物线对称轴,则可求得b 的值;由OB=OC ,可用c 表示出B 点坐标,代入抛物线解析式可求得c 的值;(2)可设F (0,m ),则可表示出F′的坐标,由B 、E 的坐标可求得直线BE 的解析式,把F′坐标代入直线BE 解析式可得到关于m 的方程,可求得F 点的坐标;(3)设点P 坐标为(n ,0),可表示出PA 、PB 、PN 的长,作QR ⊥PN ,垂足为R ,则可求得QR 的长,用n 可表示出Q 、R 、N 的坐标,在Rt △QRN 中,由勾股定理可得到关于n 的二次函数,利用二次函数的性质可知其取得最小值时n 的值,则可求得Q 点的坐标,【详解】解:(1)∵CD//x 轴,2CD =,∴抛物线对称轴为直线:1l x =, ∴12b -=,即2b =-, ∵OB OC =,(0,)C c ,∴B 点坐标为(,0)c -, ∴202c c c =++,解得3c =-或0c(舍去);∴3c =-. (2)设点F 坐标为(0,)m ,∵对称轴是直线:1l x =,∴点F 关于直线l 的对称点F '的坐标为(2,)m ,由(1)可知抛物线解析式为y=x 2-2x-3=(x-1)2-4,∴E (1,-4),∵直线BE 经过点(3,0)B ,(1,4)E -,∴直线BE 的表达式为26y x =-,∵点F '在BE 上,∴2262m =⨯-=-,即点F 坐标为(0,2)-.(3)存在点Q 满足题意.设点P 坐标为(,0)n ,则1PA n =+,3PB PM n ==-,223PN n n =-++, 如解图,连接QN ,过点Q 作QR PN ⊥,垂足为R ,∵PQN APM SS =, ∴1(1)(3)2n n +- ()21232n n QR =-++⋅, ∴1QR =,①点Q 在直线PN 的左侧时,Q 点坐标为()21,4n n n --,R 点坐标为()2,4n n n -,N 点坐标为()2,23n n n --,∴()2242323RN n n n n n =----=-+∴在Rt QRN 中,221(23)NQ n =+-,∴当3n 2=时,NQ 取得最小值1, 此时Q 点坐标为115,24⎛⎫- ⎪⎝⎭; ②点Q 在直线PN 的右侧时,Q 点坐标为()21,4n n +-,同理21RNn =-,221(21)NQ n =+-, ∴当12n =时,NQ 取得最小值1, 此时Q 点坐标为315,24⎛⎫-⎪⎝⎭,综上所述:满足题意的点Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭.【点睛】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F 点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR 的长,用勾股定理得到关于n 的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.24.(1)①()4,0D ,顶点为()2,1-;②2n =或0n =;(2)1311313n n -+<<<或【分析】(1)①把n=2代入2223y x nx n n =-++-求得243y x x =-+经过配方即可求得顶点坐标;再令y=0,求出x 的值,可得A ,B 的坐标,根据OD OA OB =+可求出点D 的坐标;②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),根据2AB BD =列式求解即可; (2)首先求出点P 的坐标,再根据抛物线与x 轴有两个交点以及点P 的纵坐标大于0求出n 的取值范围即可.【详解】(1)①把2n =代入2223y x nx n n =-++-,得243y x x =-+配方得,()221y x =--∴顶点为()2,1-令0y =,则()221=0x --解得,1x =或3,即点()()1,0,3,0,A B∴OA=1,OB=3∵.OD OA OB =+∴OD=4∴()4,0D②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),则有,12=2bx x n α+=,2123b x n n ax ==+-, 2222121212()24x x x x x x n +=++=,2222224226226x x n n n n n +=--+=-+22222121212()2226226124x x x x x x n n n n n -=+-=-+--+=-∴21AB x x =-=122OA OB x x n +=+=222BD OD OB n x n n n =-=-=-=∵2AB BD =∴2(n =解得,n=2,n=-6当n=-6时,点D 在点B 的左侧,不合题意,舍去,∴n=2;当点A 在x 轴负半轴,B 在x 轴正半轴上时,2AB OA =即OB OA =所以,抛物线对称轴为y 轴,此时0n =综上所述,2n =或0n =(3)∵CP 与x 轴没有公共点,∴CP//x 轴或CP 斜向上,当x=0时,23y n n =+-∴点P 的纵坐标为23n n +-,代入2223y x nx n n =-++-得 220-=x nx ,解得,0x =(舍去),2x n =,∴2(2,3)P n n n +-∴23n n +->0, ∴2113()24n +>解得,122n +>或122n +<-,即,12n >或12n <- ∵抛物线2223y x nx n n =-++-与x 轴交于点,A B ,∴△=22(2)4(3)0n n n --+->,解得,3n <,∴n 3n n <<<或 【点睛】 本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用函数图象,从而求出相关字母的取值. 25.(1)3;(2)0;(3)3.1【分析】(1)由图像及表格可直接进行解答;(2)把t=0代入求解即可;(3)从表格选两个点代入函数解析式求解即可.【详解】解:(1)由表格及图像可得:出现故障的位置编号可能是位置3;故答案为3;(2)把t=0,s=0代入()20s at bt c t =++≥得:c=0; 故答案为0;(3)由(2)可得:把t=1.07,s=5和t=2.08,s=15代入()20s at bt t =+≥得: 221.07 1.0752.08 2.0815a b a b ⎧+=⎨+=⎩,解得: 2.511.98a b ≈⎧⎨≈⎩, ∴二次函数的解析式为:()22.51 1.980s t t t =+≥, 把s=30代入解析式得:()230 2.51 1.980t t t =+≥, 解得:123.1, 3.9t t ≈≈-(不符合题意,舍去),∴当此滑雪者滑行距离为30m 时,用时约为3.1s ;故答案为3.1.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键.26.(1)2y x 2x 3=-++;(2)①32PBC S =△;②111,22P ⎛⎫++ ⎪ ⎪⎝⎭,21122P ⎛ ⎝⎭.【分析】(1)将A (-1,0),B (3,0)代入y=-x 2+bx+c ,可求出答案;(2)①先求出点C 的坐标,进而可求得直线BC 的函数关系式,再设()2,23P m m m -++,进而可表示出点E 的坐标为(,3)E m m -+,再根据PD=3ED 列出方程求解即可;②设点P 的坐标为()2,23P m m m -++,根据PB=PC 可得PB 2=PC 2,进而可列出方程求解即可.【详解】(1)抛物线2y x bx c =-++经过点()1,0A -,()3,0B , 22(1)0330b c b c ⎧---+=∴⎨-++=⎩, 解得23b c =⎧⎨=⎩∴抛物线解析式为2y x 2x 3=-++.(2)①在2y x 2x 3=-++中,当0x =时,3y =,()0,3C ∴设直线BC 的解析式为y kx b =+,则330b k b =⎧⎨+=⎩, 31b k =⎧∴⎨=-⎩∴直线BC 的解析式为3y x =-+,若2PE ED =,则3PD ED =,设()2,23P m m m -++,则(,3)E m m -+, 2233(3)m m m ∴-++=-+,即2560m m -+=,解得12m =,23m =(舍)当2m =时,()2,3P ,()2,1E ,则1PE =,131322PBC S ∴=⨯⨯=△, ②假设存在点P ,使PBC 是以BC 为底边的等腰三角形,设点P 的坐标为()2,23P m m m -++, ∵PBC 是以BC 为底边的等腰三角形,∴PB=PC ,∴PB 2=PC 2, ∵()2,23P m m m -++,B (3,0),C (0,3),∴(m-3)2+(-m 2+2m+3)2=m 2+(-m 2+2m+3-3)2整理得m 2-m-3=0,解得m 1=1132+,m 2=1132-, 当m=1132+时,-m 2+2m+3=1132+, ∴点P 的坐标为(1132+,1132+), 当m=113-时,-m 2+2m+3=113-, ∴点P 的坐标为(113-,113-), 综上所述:抛物线上存在一点P ,使PBC 是以BC 为底边的等腰三角形,此时点P 的坐标为1113113,22P ⎛⎫++ ⎪ ⎪⎝⎭,2113113,22P ⎛⎫-- ⎪ ⎪⎝⎭.【点睛】本题是二次函数综合题,考查的是二次函数的性质,等腰三角形的性质,两点距离公式等知识,其中,熟练掌握方程的思想方法解题的关键.。

江苏新课标版九年级上册一元二次方程测试B(数学)

江苏新课标版九年级上册一元二次方程测试B(数学)

江苏新课标一元二次方程测试(B卷)数学试卷一、精心选一选。

(每题3分,共 30分)1x 的方程(m 2 + mx +1=0是一元二次方程,则m的取值范围是().若对于一) x 2A . m≠2B. m>0 C. m≥0且m≠2D. m为任何实数2.方程x2 0 的解的个数为()A . 0 B. 1 C. 2 D.1或2 3.已知 0和一 1都是某个方程的解,此方程是()A .x2 1 0 B.x( x 1) 0C.x2 x 0 D.x x 14.将方程x2 4x 3 0 的左侧配成完整平方式,得方程()A .(x 2)2 4 B.( x 2)2 7C.(x 2)2 1 D.(x 2)2 35.以下方程中,有两个相等的实数根的方程是()A .x2 6x 0 B.x2 6 0C.x2 2 x 9 0 D.x2 6x 9 06.若2x 1 与2x 1 互为倒数,则实数x 为()A .±1B.± 1 C.±2D.± 2 2 27x 的方程x2mx n 0的两个根是1 3 m n().若,一,则、的值分别为A . m=2,n=- 3 B. m= 2 ,n=3C.m= 1 , n=3 D. m=1, n=- 38x 的方程x22x k 0有实数根,则k的取值范围是().已知对于A . k<l B. k≤ 1 C. k≤一 l D. k≥1 9.某商品连续两次降价,每次都降20%后的价钱为 m元,则原价是()A .m 元B. 1.2m元C.m元D. 0.82 m元1.22 0.8210.某商场一月份的营业额200万元,一月、二月、三月的营业额共l 000万元,假如均匀每月增加率为 x ,则由题意列方程为()A . 200( 1+ x)2=1000B . 200+200 ×2 x =1C.200+200 ×3 x =1000 D .200[1+ ( 1+ x )+(1+ x )2]=1000二、耐心填一填.(每题2分,共 20分)11.一元二次方程( 1+3 x )( x 一 3) =2 x 2+1 化为一般形式为: ________________ ,二次项系数为: _________,一次项系数为: _________ ,常数项为: ____________. 12.对于 x 的方程( a — 2) x 2+ a x +5=0是一元二次方程的条件是 ___________. 13.方程 3( x +7) = x ( x +7)的解为 ____________. . 2一 ________+2= (x ________ ________) 2.14 x15.假如 x 2 +m x +16 是一个完整平方式,则 m 的值为 __________.16.若对于 x 的一元二次方程 x 2— 3 x +m=0 有实数根,则 m 的取值范围是 ___________. 17.已知直角三角形三边长为连续整数,则它的三边长是 _________.18.当 P=_____时, 5k p 2 4 p 6 与1 k p 是同类项.219.某电脑企业在 5月 1日将 500台电脑投放市场,经市场调研发现,该批电脑每隔 10天均匀日销售量减少2台,现准备用 38天销售完该批电脑, 则估计该企业 5月 1日到 5月 10日的均匀日 销售量是 ___________台.20.当 x =__________ 时,代数式 x 2+5 x +6有最 _________值是 ___________. 三、专心想想.(共 50分)21.(每题 5分,共 20分)解方程:(1)( x一1)2( ) ( x 一 ) 2 ( 一 x )=4=22 3 5 5(3) 3 x 2+5( 2 x +1) =0 ( 4) x 2— 4 x +1=0 22.( 5分)已知一元二次方程( m 一 1) x 2+7mx +m 2+3m 一 4=0有一个根为零,求 m 的值.23.( 5分)设 m 为整数,且 4<m<40 时,方程 x 2— 2( 2m 一 3) x +4m 2— 14m+8=0 有两个不相等的整数根,求 m 的值及方程的根.24.( 6分)已知对于 x 的方程 x 2—2( m+1) x +m 2— 2m — 3=0的两个不相等实数根中有一个根为 0,能否存在实数 k ,使对于 x 的方程 x 2一( k 一 m ) x 一 k 一 m 2+5m — 2=0 的两个实数根 x 1, x 2之差的绝对值为 1?若存在,求出 k 的值;若不存在,请说明原因.25.( 7分)某校 2006年捐钱 1万元给希望工程,此后每年都捐钱,计划到 2008年共捐钱4.75 万元,问该校捐钱的均匀年增加率是多少?26.( 7分)有一面积为 150 m 2的矩形鸡场,鸡场的一边靠墙(墙长l8 m ),另三边用篱笆笆围成,假如篱笆笆的长为 35 m .求鸡场的长和宽.。

无锡滨湖区河埒中学九年级数学上册第二十一章《一元二次方程》经典练习卷(含答案)

无锡滨湖区河埒中学九年级数学上册第二十一章《一元二次方程》经典练习卷(含答案)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AM AF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM 2.方程2240x x --=经过配方后,其结果正确的是( )A .()215x -=B .()217x -=C .()214x -=D .()215x +=3.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A .512B .512C 53+ D 214.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠B .1a ≥且5a ≠C .1a ≥D .1a <且5a ≠ 5.一元二次方程2610x x +-=配方后可变形为( ) A .()2310x +=B .()238x +=C .()2310x -=D .()238x -=6.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+7.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根8.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -= C .2(1)0x -=D .2(1)20x ++=9.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay yy y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2 B .3C .4D .510.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( ) A .12B .15C .12或15D .1811.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( ) A .15% B .40% C .25% D .20% 12.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( )A .1B .0C .1-D .1或013.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( ) A .1a ≥-且3a ≠ B .1a >-且3a ≠ C .1a ≥-D .1a >- 14.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定 15.如果2是方程x²−3x+k=0的一个根,则此方程的另一根为( )A .2B .1C .−1D .−2二、填空题16.解方程:268x x +=-解:两边同时加_________,得26x x ++________8=-+________ 则方程可化为(_______)2=________ 两边直接开平方得_____________ 即_________或_____________所以1x =__________,2x =___________.17.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.18.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____.19.已知 12,x x 是一元二次方程()23112x -=的两个解,则12x x +=_______. 20.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.21.已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值是_____. 22.当m ______时,关于x 的一元二次方程2350mx x -+=有两个不相等的实数根. 23.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______. 24.若()22214x y +-=,则22x y +=________.25.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.26.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________.三、解答题27.用配方法解方程:22510x x -+=28.新冠疫情蔓延全球,口罩成了人们的生活必须品.某商店销售一款口罩,每袋进价为12元,计划每袋售价大于12元但不超过20元,通过市场调查发现,这种口罩每袋售价为18元时,日均销售量为50袋,而当每袋售价提高1元时,日均销售量就减少5袋. (1)在每袋售价为18元的基础上,将这种口罩的售价每袋提高x 元,则日均销售量是_________袋;(用含x 的代数式表示)(2)经综合考察,要想使这种口罩每天赢利315元,该商场每袋口罩的销售价应定为多少元?29.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),若苗圃园的面积为72平方米.求这个苗圃园垂直于墙的一边长为多少米?30.(1)解方程290x (直接开平方法)(2)若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,求m 的值.。

【5套打包】无锡市初三九年级数学上(人教版)第21章《一元二次方程》单元检测试题(含答案)

【5套打包】无锡市初三九年级数学上(人教版)第21章《一元二次方程》单元检测试题(含答案)

人教版九年级上册数学单元知识检测题:第二十一章一元二次方程(含答案)一、选择题1.已知y=0是关于y的一元二次方程(m﹣1)y2+my+4m2﹣4=0的一个根,那么m的值是( )A. 0B. 1C. ﹣1D. ±12.要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A. a≠0B. a≠3C. a≠3且b≠-1D. a≠3且b≠-1且c≠03.如果2是方程x2﹣c=0的一个根,那么c的值是()A. 4B. ﹣4C. 2D. -24.一元二次方程x2+6x-7=0的解为( )A. x1=1,x2=7B. x1=-1,x2=7C. x1=-1,x2=-7D. x1=1,x2=-75.一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.用配方法解一元二次方程时,下列变形正确的是().A. B. C.D.7.一元二次方程的两根分别为和,则为()A. B. C. 2 D.8.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是,则这种植物每个支干长出的小分支个数是()A. B. C. D.9.已知、是一元二次方程的两个实数根,下列结论错误的是( )A. B. C.D.10.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )A. x(x﹣1)=30B. x(x+1)=30C. =30D. =3011.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A. x(x+1)=210B. x(x﹣1)=210C. 2x(x﹣1)=210D. x(x﹣1)=210二、填空题12.方程转化为一元二次方程的一般形式是________.13.若关于x的一元二次方程(m+2)x2+3x+m2-4=0的一个根为0,则m的值为=________.14.方程x2+2x=0的解为________.15.在的括号中添加一个关于的一次项,使方程有两个相等的实数根________16.如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是________.17.都匀市体育局要组织一次篮球赛.赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?设应邀请x支球队参加比赛,则列方程为:________。

无锡滨湖区无锡金桥双语实验学校初中部九年级数学上册第二十一章《一元二次方程》经典练习题(含答案)

无锡滨湖区无锡金桥双语实验学校初中部九年级数学上册第二十一章《一元二次方程》经典练习题(含答案)

一、选择题1.方程22(1)10m x -+-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±l B .m≥-l 且m≠1 C .m≥-l D .m >-1且m≠1 2.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( )A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=123.722x -=⨯是下列哪个一元二次方程的根( )A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+=4.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( ) A .-3B .0C .1D .-3或05.若关于x 的一元二次方程2(2)210m x x --+=有实数根,则m 的取值范围是( ) A .3m < B .3m C .3m <且2m ≠ D .3m 且2m ≠6.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( ) A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠7.下列一元二次方程中,有两个不相等实数根的是( ) A .2104x x -+= B .2390x x ++= C .2250x x -+= D .25130x x -=8.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( ) 日一二 三 四 五 六图1 图2A .17B .18C .19D .209.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay yy y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .510.用配方法解方程23620x x -+=时,方程可变形为( ) A .21(3)3x -= B .21(1)33x -=C .21(1)3-=x D .2(31)1x -=11.在元旦庆祝活动中,参加活动的同学互赠贺卡,共送贺卡42张,则参加活动的同学有( ) A .6人 B .7人 C .8人 D .9人 12.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( ) A .1 B .-1C .1或-1D .013.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人. A .40 B .10 C .9 D .8 14.已知一元二次方程x 2﹣6x+c =0有一个根为2,则另一根及c 的值分别为( ) A .2,8B .3,4C .4,3D .4,815.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根D .没有实数根二、填空题16.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.17.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.18.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.19.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____. 20.一元二次方程(x +2)(x ﹣3)=0的解是:_____.21.一元二次方程()10x x -=的根是________________________.22.三角形两边长分别为3和5,第三边满足方程x 2-6x+8=0,则这个三角形的形状是__________.23.关于x 的方程2880kx x -+=有两个实数根,则k 的取值范围______________. 24.对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则(m +2)(n +2)=_____.25.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,共有________个队参加比赛.26.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.三、解答题27.解方程: (1)()2316x -=(2)22410x x --=(用公式法解)28.设,a b 是一个直角三角形的两条直角边的长,且()()2222112a b ab +++=,求这个直角三角形的斜边长c 的值.29.某商场销售一批衬衫,每件进价是120元,当每件衬衫售价为160元时,平均每天可售出20件,为了扩大销售,尽快清库,增加盈利,商场经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)当每件衬衫降价5元时,每天可销售多少件衬衫?商场获得的日盈利是多少? (2)若商场平均每天想盈利1200元,则每件衬衫应降价多少元?30.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),若苗圃园的面积为72平方米.求这个苗圃园垂直于墙的一边长为多少米?。

无锡滨湖区河埒中学九年级数学上册第二十二章《二次函数》经典练习卷(含答案)

无锡滨湖区河埒中学九年级数学上册第二十二章《二次函数》经典练习卷(含答案)

一、选择题1.()11,y -()20,y ()34,y 是抛物线22y x x c =-++上三点的坐标,则1y ,2y ,3y 之间的大小关系为( ) A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y << 2.如果二次函数2112y x ax =-+,当1x ≤时,y 随x 的增大而减小,且关于x 的分式方程4311x a x x++=--有正整数解,则所有符合条件的a 的值之和为( ). A .9 B .8 C .4 D .33.一次函数y =ax +c 与二次函数y =ax 2+bx +c 在同一个平面坐标系中图象可能是( ) A . B .C .D .4.已知二次函数2(0)y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②420a b c ++>;③b a c <+;④230c b -<;⑤2(1)a b an bn n +>+≠,其中正确的个数有( )A .1个B .2个C .3个D .4个5.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位B .先向左平移4个单位,在向下平移1个单位C .先向右平移4个单位,在向上平移1个单位D .先向右平移4个单位,在向下平移1个单位6.抛物线28y x x q =++与x 轴有交点,则q 的取值范围是( )A .16q <B .16q >C .16q ≤D .16q ≥ 7.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D . 8.我校门口道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落上同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是( )A .13米B .12米C .25米D .35米 9.要在抛物线()4y x x =-上找点(),P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下( )甲:若5b =,则点P 的个数为0乙:若4b =,则点P 的个数为1丙:若3b =,则点P 的个数为1A .甲乙错,丙对B .甲丙对,乙错C .甲乙对,丙错D .乙丙对,甲错 10.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .11.如图所示,一段抛物线:()233044y x x x =-+≤≤记为1C ,它与x 轴交于两点O ,1A ;将1C 绕1A 旋转180°得到2C ,交x 轴于2A ;将2C 绕2A 旋转180°得到3C ,交x 轴于3A ;⋅⋅⋅如此进行下去,直至得到506C ,则抛物线506C 的顶点坐标是( )A .()2020,3B .()2020,3-C .()2022,3D .()2022,3- 12.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x7- 6- 5- 4- 3- 2- y 27- 13-3- 3 5 3 则当时,的值为()A .5 B .3- C .13- D .27-13.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( )A .3a 1-<<-B .2a 1-<<C .1a 0-<<D .2a 4<<14.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( ) A .x =-3 B .x =-1 C .x =-2 D .x =415.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( )A .22(1)5y x =-++B .22(1)5y x =--+C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.已知抛物线243y x x =-+与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M 平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为______.17.抛物线2y x x =+向下平移2个单位长度,再向左平移3个单位长度,得到的抛物线表达式为____.18.已知抛物线y =x 2+9的最小值是y =_____.19.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,有下列4个结论:①0abc >;②240b ac ->;③关于x 的方程20ax bx c ++=的两个根是12x =-,23x =;④关于x 的不等式20ax bx c ++>的解集是2x >-.其中正确的结论是___________.20.写出一个开口向下的二次函数的表达式______.21.小明从如图所示的二次函数()20y ax bx c a =++≠图象中,观察得出了下面五条信息:①32a b =;②240b ac -=;③ 0ab >;④0a b c ++<;⑤20b c +>.你认为正.确.信息的有_______________.(请填序号)22.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____.23.已知二次函数246y x x =--,若16x -≤≤,则y 的取值范围为____. 24.二次函数2y ax bx c =++(a 、b 、c 为常数,0a ≠)中的x 与y 的部分对应值如下表:x 1-0 3 yn 3 3 当0n <时,下列结论中一定正确的是_______.(填序号即可)①0abc <;②若点()12,C y -,()2,D y π在该拋物线上,则12y y <;③4n a < ;④对于任意实数t ,总有()2496at bt a b +≤+.25.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为﹣3,则点D 的横坐标最大值为_____.26.若函数21y mx x =++的图象与x 轴只有一个公共点,则m 的值是_______.参考答案三、解答题27.如图用长为30m 的篱笆围成一个一边靠墙的矩形养鸡场ABCD ,已知墙长14m ,设边AB 的长为xm ,矩形ABCD 的面积为ym 2.(1)求y 与x 之间的函数关系式,并求出函数y 的最大值.(2)当y =108时,求x 的值.28.已知二次函数2y x bx c =-++的图象过点()()0,3,2,3(1)此二次函数的表达式,并用配方法将其化为()2y a x h k =-+的形式 (2)画出此函数的图象;(3)借助图象,判断若03x <<,则y 的取值范围是29.已知关于x 的方程(k-1)x 2+(2k-1)x+2=0.(1)求证:无论k 取任何实数时,方程总有实数根;(2)当抛物线y =(k-1)x 2+(2k-1)x+2图象与x 轴两个交点的横坐标均为整数,且k 为正整数时,若P (a ,y 1),Q (1,y 2)是此抛物线上的两点,且y 1>y 2,请结合函数图象确定实数a 的取值范围.(3)已知抛物线y =(k-1)x 2+(2k-1)x+2恒过定点,求出定点坐标30.如图,二次函数2y x bx c =-++与x 轴交于点B 和点()1,0A -,与y 轴交于点()0,4C ,与一次函数y x a =+交于点A 和点D .(1)求出a、b、c的值;(2)若直线AD上方的抛物线存在点E,可使得EAD面积最大,求点E的坐标;(3)点F为线段AD上的一个动点,点F到(2)中的点E的距离与到y轴的距离之和记为d,求d的最小值及此时点F的坐标.。

无锡滨湖区无锡市太湖格致中学九年级数学上册第一单元《一元二次方程》测试卷(答案解析)

无锡滨湖区无锡市太湖格致中学九年级数学上册第一单元《一元二次方程》测试卷(答案解析)

一、选择题1.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD ,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x 米,则x 的值为( )A .3B .4C .3或5D .3或4.5 2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x += 3.某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,则该厂七八月份的口罩产量的月平均减少率为 ( )A .10%B .29%C .81%D .14.5%4.下列方程属于一元二次方程的是( )A .222-=x x xB .215x x+= C .220++=ax bx c D .223x x += 5.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=60506.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根 7.方程(2)2x x x -=-的解是( ) A .2 B .2-,1 C .1-D .2,1- 8.方程23x x =的解为( ) A .3x = B .3x =-C .10x =,23x =D .10x =,23x =- 9.下列方程是关于x 的一元二次方程的是( )A .212x x x -=B .2(2)x x x -=C .23(2)x x =+D .20ax bx c ++=10.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022 B .2021 C .2020 D .201911.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5- B .5 C .10319- D .1031912.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-2020二、填空题13.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______. 14.将方程2630x x +-=化为()2x h k +=的形式是______.15.已知0x =是关于x 的一元二次方程()()22213340m x m x m m -+++-=的一个根,则m =__________.16.写出有一个根为1的一元二次方程是______.17.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____. 18.关于x 的方程2880kx x -+=有两个实数根,则k 的取值范围______________. 19.若a ,b 是方程22430x x +-=的两根,则22a ab b +-=________.20.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________.三、解答题21.已知关于x 的方程()2222x kx x k +=--,当k 取何值时,此方程(1)有两个不相等的实数根;(2)没有实数根.22.已知关于x 的一元二次方程kx 2+6x ﹣1=0有两个不相等的实数根.(Ⅰ)求实数k 的取值范围;(Ⅱ)写出满足条件的k 的最小整数值,并求此时方程的根.23.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,我市一家“大学生自主创业”的快递公司,今年7月份与9月份完成投递的快递总件数分别是10万件和12.1万件,现假设该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果每人每月最多可投递0.6万件,那么该公司现有的22名快递业务员能否完成今年10月份的快递投递任务?请说明理由.24.解方程:(1)23620x x -+=(2)222(3)9x x -=-25.解下列方程(1)2210x x ++= (2)233x x26.解方程:(1)2(1)80x --=; (2)25210x x +-=.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设AD 长为x 米,四边形ABCD 是矩形,根据矩形的性质,即可求得AB 的长;根据题意可得方程x (30−4x )=54,解此方程即可求得x 的值.【详解】解:设与墙头垂直的边AD 长为x 米,四边形ABCD 是矩形,∴BC =MN =PQ =x 米,∴AB =30−AD−MN−PQ−BC =30−4x (米),根据题意得:x (30−4x )=54,解得:x =3或x =4.5,∴AD 的长为3或4.5米.故选:D .【点睛】考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.2.A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.3.A解析:A【分析】设该厂七八月份的口罩产量的月平均减少率为x ,根据该厂六月份及八月份的口罩产量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设该厂七八月份的口罩产量月平均减少率为x ,根据题意得,()2100181x -=,解得10.110%x ==,2 1.9x =(不合题意,舍去).故选A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 4.D解析:D【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可.【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误;C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误;D 223x x +=符合一元二次方程的定义,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.5.D【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.A解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.7.D解析:D【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程.【详解】解:x (2﹣x )+(2﹣x )=0,(2﹣x )(x +1)=0,2﹣x =0或x +1=0,所以x 1=2,x 2=﹣1.故选:D .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).8.C解析:C【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:方程变形得:x 2-3x=0,分解因式得:x (x-3)=0,可得x=0或x-3=0,解得:x 1=3,x 2=0.故选:C .【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 9.C解析:C【分析】根据一元二次方程的定义逐项判断即可得.【详解】A 、方程212x x x -=中的1x不是整式,不满足一元二次方程的定义,此项不符题意; B 、方程2(2)x x x -=可整理为20x -=,是一元一次方程,此项不符题意;C 、方程23(2)x x =+满足一元二次方程的定义,此项符合题意;D 、当0a =时,方程20ax bx c ++=不是一元二次方程,此项不符题意;故选:C .【点睛】本题考查了一元二次方程,熟记一元二次方程的概念是解题关键.10.A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 11.A解析:A【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.12.A解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.二、填空题13.0【分析】由于定义一种运算*为:m*n=mn+n所以关于x的方程x*(a*x)=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可以得到关解析:0【分析】由于定义一种运算“*”为:m*n=mn+n,所以关于x的方程x*(a*x)=14-变为(a+1)x2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a的关系式,即可解决问题.【详解】解:由x*(a*x)=14-得(a+1)x2+(a+1)x+14=0,依题意有a+1≠0,△=(a+1)2-(a+1)=0,解得,a=0,或a=-1(舍去).故答案为:0.【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题.14.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数解析:()2312x+=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x+-=∴263x x+=∴26939x x+++=∴()2312x+=故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解. 15.-4【分析】根据方程根的定义把代入原方程求出m 的值【详解】解:将代入原方程得解得∵该方程是一元二次方程∴即∴故答案是:【点睛】本题考查一元二次方程根的定义和解一元二次方程需要注意一元二次方程的二次项 解析:-4【分析】根据方程根的定义,把0x =代入原方程,求出m 的值.【详解】解:将0x =代入原方程,得2340m m +-=,解得14m =-,21m =,∵该方程是一元二次方程,∴10m -≠,即1m ≠,∴4m =-.故答案是:4-.【点睛】本题考查一元二次方程根的定义和解一元二次方程,需要注意一元二次方程的二次项系数不能为0.16.(答案不唯一)【分析】有一个根是1的一元二次方程有无数个只要含有因式x1的一元二次方程都有一个根是1【详解】可以用因式分解法写出原始方程然后化为一般形式即可如化为一般形式为:故答案为:【点睛】本题考 解析:20x x -=(答案不唯一)【分析】有一个根是1的一元二次方程有无数个,只要含有因式x -1的一元二次方程都有一个根是1.【详解】可以用因式分解法写出原始方程,然后化为一般形式即可,如()10x x -=,化为一般形式为:20x x -=故答案为:20x x -=.【点睛】本题考查的是一元二次方程的根,有一个根是1的一元二次方程有无数个,写出一个方程就行.17.【分析】根据根与系数关系即可得出a+b 和ab 的值再对代数式变形整体代入即可【详解】解:∵ab 是方程的两个实数根∴∴故答案为:【点睛】本题考查根与系数关系熟记根与系数关系的公式是解题关键 解析:22019【分析】根据根与系数关系即可得出a+b 和ab 的值,再对代数式11a b+变形整体代入即可. 【详解】解:∵a ,b 是方程2220190+-=x x 的两个实数根,∴2a b +=-,2019ab =-, ∴112220192019a b a b ab +-+===-. 故答案为:22019. 【点睛】 本题考查根与系数关系.熟记根与系数关系的公式是解题关键.18.且【分析】利用根的判别式b2-4ac 由于原方程有实数根那么判别式大于或等于零【详解】解:∵关于x 的方程有两个实数根且解得:且故答案为且【点睛】关于x 的方程有两个实数根(1)说明这是一个一元二次方程故 解析:k 2≤且0k ≠【分析】利用根的判别式b 2-4ac .由于原方程有实数根,那么判别式大于或等于零.【详解】解:∵关于x 的方程2880kx x -+=有两个实数根,2(8)480k ∆=--⋅⋅≥,且0k ≠,解得:k 2≤且0k ≠,故答案为k 2≤且0k ≠,.【点睛】关于x 的方程有两个实数根,(1)说明这是一个一元二次方程,故“二次项系数不能为0”;(2)“根的判别式△的值要大于或等于0”;这两个条件要同时满足,解题时不要忽略了第一个条件.19.4【分析】根据根与系数的关系得出a+b=-2ab=-再变形后代入即可求出答案【详解】解:∵是方程的两根∴故答案为:4【点睛】本题考查了根与系数的关系能够整体代入是解此题的关键解析:4【分析】根据根与系数的关系得出a+b=-2,ab=-32,再变形后代入,即可求出答案.【详解】解:∵a ,b 是方程22430x x +-=的两根, ∴42232a b ab ⎧+=-=-⎪⎪⎨⎪=-⎪⎩, ()()()222222224a ab b a a b b a b a b +-=+-=--=-+=-⨯-=.故答案为:4.【点睛】本题考查了根与系数的关系,能够整体代入是解此题的关键.20.48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30由此即可求解【详解】解:设平均每次降价的百分率为x 则第一次降价后的价格为48(1-x)第二次降解析:48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30,由此即可求解.【详解】解:设平均每次降价的百分率为x ,则第一次降价后的价格为48(1-x),第二次降价后的价格为48(1-x)(1-x),由题意,可列方程为:48(1-x)2=30.故答案为:48(1-x)2=30.【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到相应的等量关系,注意第二次降价后的价格是在第一次降价后的价格的基础上得到的.三、解答题21.(1)54k >; (2)54k <. 【分析】先化方程为一般形式,它是关于x 一元二次方程,据一元二次方程判别式和根的情况列出关于k 的不等式求解.【详解】方程化为:22(21)(2)0x k x k +-+-=, ∴∆22(21)4(2)1215k k k =--⨯-=-.(1)当12150k ->,54k >时,方程有两个不相等的实数根;(2)当12150k -<,54k <时,方程没有实数根. 【点睛】 此题考查一元二次方程的判别式,其关键是撑握判别式与一元二次方程根情况的关系,并据此和题意列出不等式.22.(Ⅰ)k >﹣9且k ≠0;(Ⅱ)8k =-,112x =,214x = 【分析】(Ⅰ)根据一元二次方程的定义以及根的判别式得到k ≠0,且△>0,然后解两个不等式即可得到实数k 的取值范围;(Ⅱ)根据(Ⅰ)中k 的取值范围,任取一k 的值,然后解方程即可.【详解】解:(Ⅰ)根据题意得,k ≠0,且△>0,即2640k +>,解得k >﹣9,∴实数k 的取值范围为k >﹣9且k ≠0;(Ⅱ)由(1)知,实数k 的取值范围为k >﹣9且k ≠0,故取8k =-,所以该方程为28610x x -+-=,解得112x =,214x =. 【点睛】本题考查一元二次方程的根的判别式和解一元二次方程,解题的关键是熟练运用根的判别式和解一元二次方程的方法.23.(1)该快递公司投递总件数的月平均增长率为10%;(2)不能,理由见解析【分析】(1)设该快递公司投递总件数的月平均增长率为x ,根据“今年7月份与9月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年10月份的快递投递任务,再求出22名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年10月份的快递投递任务.【详解】解:(1)设该快递公司投递总件数的月平均增长率为x ,根据题意得:210(1)12.1x +=,解得:10.1x =,2 2.1x =-(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年10月份的快递投递任务是12.1(110%)13.31⨯+=(万件).平均每人每月最多可投递0.6万件, 22∴名快递投递员能完成的快递投递任务是:0.62213.213.31⨯=<,∴该公司现有的22名快递投递业务员不能完成今年10月份的快递投递任务.【点睛】此题主要考查了一元二次方程的应用,根据增长率一般公式列出方程即可解决问题.24.(1)1x =,2x =2)x=3或x=9. 【分析】(1)根据公式法即可求出答案;(2)根据因式分解法即可求出答案.【详解】解:(1)∵3x 2-6x+2=0,∴a=3,b=-6,c=2,∴△=36-24=12,∴6363x ±±==∴13x =,233x = (2)∵2(x-3)2=x 2-9,∴2(x-3)2=(x-3)(x+3),∴(x-3)[(2(x-3)-(x+3)]=0,∴(x-3)(x-9)=0∴x-3=0,x-9=0∴x=3或x=9.【点睛】本题考查解一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.25.(1)121x x ==-;(2)123,4x x ==.【分析】(1)利用配方法解一元二次方程即可得;(2)利用因式分解法解一元二次方程即可得.【详解】(1)2210x x ++=,2(1)0x +=,解得121x x ==-;(2)233x x ,2330x x , 3310x x ,即()()340x x --=,30x -=或40x -=,3x =或4x =,即123,4x x ==.【点睛】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、因式分解法、公式法、换元法等,熟练掌握各解法是解题关键.26.(1)1x =±;(2)1x =,2x = 【分析】(1)根据直接开方法即可求出答案;(2)利用公式法求解一元二次方程,即可得到答案.【详解】(1)∵2(1)80x --=, ∴2(1)8x -=, ∴1x -=±∴1x =±;(2)∵5a =,2b =,1c =-∴2245(1)240∆=-⨯⨯-=>,∴21105x -±-±==,即115x -=,215x --=. 【点睛】此题考查了解一元二次方程的知识;解题的关键是熟练掌握一元二次方程的解法和二次根式的性质,从而完成求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.关于x的方程(m-)x-x+3=0是一元二次方程,则m=______ _____.
3.等腰三角形的底和腰是方程x2-6x+8=0的两根,则此三角形的周长是.
4.设a、b是一个直角三角形两条直角边的长,且(a2+b2)(a2+b2+1)=12,则这个直角三角形的斜边长为_________ ____.
一元二次方程单元测试卷B版
班级___________姓名_______________得分_______________
一、填空题(每空2分,共20分)
1.直接写出下列方程的解:
(1)x2=4_______________;( 2)x2-6x+9=0_____________;(3)x2=3x_____________.
11.下列说法正确的是()
A.一元二次方程的一般形式为ax2+bx+c=0
B.一元二次方程ax2+bx+c=0的根是x=
C.方程x2=x的解是x=1
D.方程x(x+3)(x-2)=0的根m)=n的形式,则m、n的值应为()
A.m=-2,n=7 B.m=2,n=7
16.(6分)将a、b、c、d这4个数排成2行、2列,两边各加一条竖线,记成||,现规定新定义:||=ad-bc,上述记号叫做2阶行列式.若||=6,试求x的值.
17.(7分)华联 购物中心服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装每降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?
A.k<3 B.k≤3 C.k<3且k≠2 D.k≤3且k≠2
三、解答题(共62分)
15.解下列方程(每小题5分,共25分):
(1)4x-3x-1=0(公式法)(2)2x-4x-7=0(配方法)(3)(2x+1)(2x+3)=15
(4)(3y-2)=(2y-3)(5)(2x+1)-5(2x+1)+6=0
C.m=-2,n=1 D.m=2,n=-7
13.近年来全国房价不断上涨,我市2008年的房价平均每平方米为7000元,经过两年的上涨,2010年房价平均每平方米为8500元,假设这两年房价的平均增长率均为 ,则关于 的方程为
( )
A. B.
C. D.
14.若关于x的方程(k-2)x2+4x+4=0有实数根,则()
5.若关于x的一元二次方程(m+1)x2-2mx=1的一个根是1,则m= .
6.若方程(m+1)x2 +2mx+m-2 =0有两个不相等的实数根,则m的取值范围为___________.
7.已知关于x的一元二次方程x2-2(m-1)x+m2=0的两根互为倒数,则m=_________.
8.已知α、β是方程x2+3x+5=11的两个根,则代数式4α2+β2+9α-2的值为___________.
二、选择题(每小题3分,共18分)
9.若方程(m-1)x2+x=1是关于x的一元二次方程,则m的取值范围是()
A.m≠1 B.m≥0C.m≥0且m≠1 D.m为任意实数
10.方程x2-(2-)x=0的解是()
A.x=±(-1) B.x1=0,x2=2―C.x1=0,x2=―1 D.x1=0,x2=1
20.(8分)如图,等腰直角三角形ABC中,AB=BC=8cm,动点P从A出发,沿AB向B移动,过点P作PR∥BC,PQ∥AC交AC、BC于R、Q.问:
18.(8分)有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:
(1)若此单位需购买12台图形计算器,应去哪家公司购买花费较少?
(2)若此单位恰好花费7280元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数 量是多少?
19. (8分)已知关于x的一元二次方程kx-2(k+1)x+k-1=0有两个不相等的实数根x1,x2.
(1)求k的取值范围;
(2)是否存在实数k,使+= 1成立?若存在,请求出k 的值;若不存在,请说明理由.
相关文档
最新文档