2016年中考数学考前集训50题及答案详解

合集下载

2016年河南省中考数学试题及答案解析

2016年河南省中考数学试题及答案解析

2016年河南省中考数学试题及答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2016年)的相反数是()A.B.C.D.2.(2016年)某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示()A. 9.5×10-7B. 9.5×10-8C. 0.95×10-7D. 95×10-8 3.(2016年)下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( )A.B.C.D.4.(2016年)下列计算正确的是()5.(2016年)如图,过反比例函数的图像上一点A作AB⊥轴于点B,连接AO,若S△AOB=2,则的值为()A.2 B.3 C.4 D.56.(2016年)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A .6B .5C .4D .37.(2016年)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A .甲B .乙C .丙D .丁8.(2016年)如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为( )A .(1,-1)B .(-1,-1)C .0)D .(0,二、填空题9.(2016年)计算:0(2)-=______10.(2016年)如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为__.11.(2016年)若关于的一元二次方程有两个不相等的实数根,则的取值范围________.12.(2016年)在“XXX”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在同一组的概率是______.13.(2016年)已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________.14.(2016年)如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作OC AB和于点C,若OA=2,则阴影部分的面积为_____.15.(2016年)如图,已知AD∥BC,AB⊥BC,AB=3.点E为射线 BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为__________三、解答题16.(2016年)先化简,再求值:,其中的值从不等式组的整数解中选取.17.(2016年)在一次社会调查活动中,小华收集到某“XXX”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 7325 8430 8215 7453 7446 67547638 6834 7326 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:请根据以上信息解答下列问题:(1)填空:=__________,=__________;(2)补全频数统计图;(3)这20名“XXX”团队成员一天步行步数的中位数落在_________组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.18.(2016年)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O 分别交AC,BM于点D,E.(1)求证:MD=ME(2)填空:①若AB=6,当AD=2DM时,DE=___________;②连接OD,OE,当∠A的度数为____________时,四边形ODME是菱形.19.(2016年)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(2016年)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.(2016年)某班“数学兴趣小组”对函数的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量的取值范围是全体实数,与的几组对应值列表如下:其中,=____________.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该图象的另一部分.(3)观察函数图象,写出两条函数的性质:(4)进一步探究函数图象发现:①函数图象与轴有________个交点,所以对应方程有_______个实数根;②方程有___________个实数根;③关于的方程有4个实数根,的取值范围是___________________22.(2016年)(1)发现如图,点A 为线段BC 外一动点,且BC a =,AB b =. 填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE . ①找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.23.(2016年)如图1,直线y=43-x+n 交轴于点A ,交轴于点C (0,4).抛物线y=223x +bx+c 经过点A ,交轴于点B (0,-2).点P 为抛物线上一个动点,经过点P 作轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.参考答案1.B【详解】试题分析:根据相反数的定义可得的相反数是,故答案选B.考点:相反数.2.A【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.00000095=9.5×10﹣7.故答案选A.考点:科学记数法.3.C【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,根据看到的图形进行比较即可解答.【详解】解:A、主视图看到的是2行,3列,最下1行是3个,上面一行是1个,第2列是2个;左视图是2行,上下各1个;B.主视图看到的是3行,最下1行是2个,上面2行在下面1行的中间,各1个,左视图是3行,每行各一个;C.主视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个;左视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个,故主视图和左视图相同;D.主视图是2行2列,下面1行2个,上面1行1个,右面1列2个,左视图也是2行2列,下面1行2个,上面1行1个,左面1列2个.故选:C.【点睛】此题考查了从不同方向观察物体,重点是看清有几行几列,每行每列各有几个.4.A【解析】试题分析:选项A,根据二次根式的运算法则可得原式=,正确;选项B,根据乘方的运算法则可得原式=9,错误;选项C,不是同类项,不能合并,错误;选项D,根据积的乘方运算可得原式=,错误,故答案选A.考点:二次根式的运算;乘方的运算;积的乘方.5.C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.6.D【详解】试题分析:已知,在△ABC中,∠ACB=90°,AC=8,AB=10,根据勾股定理可得BC=6,又因DE垂直平分AC,∠ACB=90°,可得DE为△ABC的中位线,根据三角形的中位线定理可得DE=12BC=3,故答案选D.考点:勾股定理;三角形的中位线定理.7.A【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵x甲=x丙>x乙=x丁,∴从甲和丙中选择一人参加比赛,∵2S甲=2S乙<2S丙<2S丁,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.8.B【解析】试题分析:根据已知条件O(0,0),B(2,2),可求得D(1,1),OB与x轴、y轴的交角为45°,当菱形绕点O逆时针旋转,每秒旋转45°,时,8秒可旋转到原来的位置,因60÷8=7....4,所以第60秒时是第8循环的地上个位置,这时点D的坐标原来位置点D的坐标关于原点对称,所以为(-1,-1),故答案选B.考点:规律探究题.9.-1.【解析】试题分析:原式=1-2=-1.考点:实数的运算.10.110°.【解析】根据平行四边形的性质可得AB∥CD,根据平行线的性质可得∠1=∠CAB=20°,因BE⊥AB,可得∠EBA=90°,所以∠2=∠EBA+∠CAB=90°+20°=110°.11.k>.【解析】试题分析:已知一元二次方程有两个不相等的实数根,由此可得△=9+4k>0,解得k>.考点:根的判别式.12.1 4【详解】解:设四个小组分别记作A、B、C、D,画树状图如图:小明和小亮所有分组的情况共16种,小明和小亮被分在同一组的情况有4种,所以小明和小亮被分在同一组的概率为41 164.故答案为:14.考点:概率.13.(1,4).【解析】试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.1413π【详解】连结OC 、AC ,根据题意可得△OAC 为等边三角形,可得扇形AOC 和扇形OAC 的面积相等,因OA=2,可求得△AOC所以阴影部分面积为:扇形BOC 的面积-(扇形OAC 的面积-△AOC 的面积)=223026023603603πππ⨯⨯-(. 【点睛】本题考查了扇形的面积,熟练掌握面积公式是解题的关键.15.或. 【解析】试题分析:根据题意可得四边形ABNM 是矩形,所以AB=MN=3,AM=BN ,根据折叠的性质可得AB=AB ’,BE=B ’E ,点B ′为线段MN 的三等分点时,分两种情况:①当MB ’=1,B ’N=2时,在Rt △AMB ’中,由勾股定理求得AM=,设BE==B ’E=x ,在Rt △ENB ’中,由勾股定理可得,解得x=;②当MB ’=2,B ’N=1时,在Rt △AMB ’中,由勾股定理求得AM=,设BE==B ’E=x ,在Rt △ENB ’中,由勾股定理可得,解得x=.考点:矩形的性质;勾股定理;折叠的性质.16.原式=,当x=2,原式=-2.【解析】试题分析:先把分式化简,在解不等式组,确定x的取值,再代入求值即可.试题解析:原式=,解得,所以不等式组的整数解为-1,0,1,2,要使分式有意义,x只能取2,∴原式=.考点:分式的化简求值;不等式组的解法.17.(1))4,1;(2)图见解析;(3)B;(4)48.【分析】(1)根据题目中所给的数据,确定在7500≤<8500这个范围内数据的个数即可得m的值,确定在9500≤<10500这个范围内数据的个数即可得n的值;(2)根据(1)所得的数据补全统计图即可;(3)这20名“XXX”团队成员一天步行步数的中位数是第10个和第11的平均数,落在B 组;(4)用该团队的总人数乘以一天行走步数不少于7500步的人数所占的比重即可得答案.【详解】解:(1)由记录的数据可知,7500≤x<8500的有8430、8215、7638、7850这4个,即m=4;9500≤x<10500的有9865这1个,即n=1.(2)如图:(3)由于一共20个数据,其中位数是第10、11个数据的平均数,而第10、11个数据的平均数均落在B组,∴这20名“XXX ”团队成员一天行走步数的中位数落在B 组;(4)120×4314820++=(人) 所以该团队一天行走步数不少于7500步的人数约为48人.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.(1)详见解析;(2)(2)①2;②60°.【解析】试题分析:(1)根据直角三角形斜边的中线等于斜边的一半可得MA=MB ,即可得∠A=∠MBA,再由∠ADE+∠ABE=180°,∠ADE+∠MDE=180°可得∠MDE=∠MBA.用同样的方法可得∠MDE=∠A.所以∠MDE=∠MED,即可得MD=ME.(2)①由MD=ME,又MA="MB," 可得DE ∥AB ,所以MD DE MA AB =,又AD=2DM ,即13MD MA =,所以163DE =,可得DE=2;②当∠A=600时, △AOD 是等边三角形,这时∠DOE=600, △ODE 和△MDE 都是等边三角形,且全等.四边形ODME 是菱形.试题解析:(1)在Rt △ABC 中,点M 是AC 的中点,∴MA=MB ,∴∠A=∠MBA,∵四边形ABDE 是园内接四边形,∴∠ADE+∠ABE=180°,又因∠ADE+∠MDE=180°,∴∠MDE=∠MBA.同理可得∠MDE=∠A.∴∠MDE=∠MED,∴MD=ME.(2)①2;②60°.考点:圆的综合题.19.国旗应以0.3米/秒的速度匀速上升.【分析】通过解直角△BCD和直角△ACD分别求得BD、CD以及AD的长度,则易得AB的长度,则根据题意得到整个过程中旗子上升高度,由“速度=上升的高度时间”进行解答即可.【详解】解:在Rt△BCD中,BD=9米,∠BCD=45°,则BD=CD=9米.在Rt△ACD中,CD=9米,∠ACD=37°,则AD=CD•tan37°≈9×0.75=6.75(米).则AB=AD+BD=15.75米,所以上升速度v=15.752.250.345﹣(米/秒).答:国旗应以0.3米/秒的速度匀速上升.20.(1)一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)当购买A 型灯37只,B型灯13只时,最省钱.【详解】试题分析:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意列方程组,解方程组即可;(2)设购进A型节能灯m只,总费用为w元,根据题意求出w与x的函数关系式,再求得m的取值范围,根据一次函数的性质确定最省钱方案即可. 试题解析:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元.依题意得,解得.所以一只A型节能灯的售价是5元,一只B型节能灯的售价是7元.(2)设购进A型节能灯m只,总费用为w元,依题意得w=5m+7(50-m)=-2m+350,因-2<0,∴当m取最大值时w有最小值.∵m≤3(50-m),解得m≤37.5.而m为整数,∴当m=37时,w最小=-2×37+350=276.此时50-37=13.所以最省钱的购买方案是购进A型节能灯37只,B型节能灯13只.考点:二元一次方程组的应用;一次函数的应用.21.(1)0;(2)图见解析;(3)答案不唯一,合理即可;(4)①3,3;②2;③-1<a <0.【解析】试题分析:(1)观察表格,根据对称性即可得m=0;(2)根据表格描点,画出图象即可;(3)观察图象,写出函数的两条性质即可,可从函数的最值,增减性,图象的对称性等方面阐述,答案不唯一,合理即可;(4)①观察函数图像可得函数图像与轴有3个交点,所以对应方程有3个实数根;②由图象可知,函数图像与直线y=2有两个交点,所以方程有2个实数根;③方程有4个实数根,说明函数的图象与直线y=a有4个交点,由此可得的取值范围是-1<a<0.试题解析:(1)0;(2)(正确补全图象);(3)(可从函数的最值,增减性,图象的对称性等方面阐述,答案不唯一,合理即可);(4)①3,3;②2;③-1<a<0.考点:数形结合;阅读理解;二次函数综合题.22.(1)CB的延长线上,a+b;(2)①DC=BE,理由见解析;②BE的最大值是4;(3)AM的最大值是P的坐标为(【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论.【详解】解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b , 故答案为CB 的延长线上,a+b ;(2)①CD=BE ,理由:∵△ABD 与△ACE 是等边三角形,∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即∠CAD=∠EAB ,在△CAD 与△EAB 中,AD AB CAD EAB AC AE ⎧⎪∠∠⎨⎪⎩=== ,∴△CAD ≌△EAB ,∴CD=BE ;②∵线段BE 长的最大值=线段CD 的最大值,由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上,∴最大值为BD+BC=AB+BC=4;(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,则△APN 是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵∴最大值为;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=2,∴OE=BO-AB-AE=5-3-2=2-2,∴P(2-2,2).【点睛】考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.23.(1)y=22433x x --2;(2)当△BPD 为等腰直角三角形时,PD 的长为72或12;(3)1P ⎛ ⎝⎭,2P ⎛ ⎝⎭,32511,832P ⎛⎫ ⎪⎝⎭. 【分析】(1)先求得点A 的坐标,再利用待定系数法求抛物线的解析式即可;(2)设点P 的横坐标为m,可得P (m ,22433m m --2),D (m ,-2),若△BPD 为等腰直角三角形,则PD=BD.分两种情况:①当点P 在直线BD 的上方时,PD=22433m m -,再分点P 在y 轴的左侧和右侧两种情况,列方程求解即可;②当点P 在直线BD 的下方时,m >0,BD=m ,PD=22433m m -+,列方程求解即可; (3)由∠PBP /=∠OAC,OA=3,OC=4;可得AC=5,继而可得sin ∠PBP /=45,cos ∠PBP /=35,然后分 点P /落在x 轴上和点P /落在y 轴上两种情况分别讨论求解即可.【详解】(1)由直线y=43-x+n 过点C (0,4),得n=4,∴y=43-x+4. 当y=0时,0=43-x+4,解得x=3,∴A (3,0). ∵抛物线y=223x bx ++c 经过点A (3,0),B (0,-2), ∴0632b c c =++⎧⎨-=⎩ ,解得432b c ⎧=-⎪⎨⎪=-⎩, ∴y=22433m m --2. (2)设点P 的横坐标为,∴P (m ,22433m m --2),D (m ,-2). 若△BPD 为等腰直角三角形,则PD=BD.①当点P 在直线BD 的上方时,PD=22433m m -, (Ⅰ)若点P 在y 轴的左侧,则m <0,BD=-m ,∴22433m m -=-m , 解得m 1=0(舍去),m 2=12(舍去), (Ⅱ)若点P 在y 轴的右侧,则m >0,BD=m ,∴22433m m -=m , 解得m 1=0(舍去),m 2=72, ②当点P 在直线BD 的下方时,m >0,BD=m ,PD=22433m m -+, ∴22433m m -+=m , 解得m 1=0(舍去),m 2=12, 综上m=72或12; 即当△BPD 为等腰直角三角形时,PD 的长为72或12; (3)∵∠PBP /=∠OAC,OA=3,OC=4,∴AC=5,∴sin ∠PBP /=45,cos ∠PBP /=35, ①当点P /落在x 轴上时,过点D /作D /N ⊥x 轴于N ,交BD 于点M ,∠DBD /=∠ND /P /=∠PBP /,如图1,ND /-MD /=2,即35×(23m 2-43m )-(-45m )=2; 如图2,ND /-MD /=2,即35×(23m 2-43m )-(-45m )=2,解得:P )或P ); ②当点P /落在y 轴上时,如图3,过点D /作D /M ⊥x 轴交BD 于点M ,过点P /作P /N ⊥y 轴,交MD /的延长线于点N ,∠DBD /=∠ND /P /=∠PBP /,∵PN=BM, 即45×(23m 2-43m )=35m , ∴P (258,1132),综上,1P ⎛ ⎝⎭,2P ⎛ ⎝⎭,32511,832P ⎛⎫ ⎪⎝⎭.。

【8份】2016中考数学(贵州专版)复习题型专项集训及答案

【8份】2016中考数学(贵州专版)复习题型专项集训及答案

【8份】2016中考数学(贵州专版)复习题型专项集训及答案纵向复习 贵州8大题型专项目录题型专项(一) 计算求值题 .................................................................................................... 1 题型专项(二) 方程(组)、不等式(组)的解法与应用 ........................................................... 5 题型专项(三) 一次函数与反比例函数的综合 .................................................................. 10 题型专项(四) 二次函数知识的综合运用 .......................................................................... 15 题型专项(五) 解直角三角形的应用 .................................................................................. 23 题型专项(六) 特殊四边形的性质与判定 .......................................................................... 30 题型专项(七) 圆的有关证明与计算 .................................................................................. 38 题型专项(八)统计与概率的应用 (48)题型专项(一) 计算求值题本专项主要考查实数的运算、整式的运算与分式的化简求值.纵观近年本省9个地州考试试卷,这类题出现频繁,一般难度不大,实数的运算常结合特殊角的三角函数值进行考查,整式、分式的化简求值题型新而灵活,多以解答题形式呈现.类型1 实数的运算(2015·毕节)计算:(-2 015)0+|1-2|-2cos 45°+8+(-13)-2.【思路点拨】 先分别计算(-2 015)0=1,|1-2|=2-1,cos 45°=22,8=22,(-13)-2=9,然后代入算式计算即可.【解答】 原式=1+2-1-2×22+22+9 =2-2+22+9 =22+9.本题考查实数的混合运算.在计算过程中先需要熟悉每个知识点,如:零指数幂、绝对值的计算、特殊锐角三角函数值等;其次根据计算出的各值,按照实数运算的顺序计算出最终结果.1.(2015·台州)计算:6÷(-3)+|-1|-2 0150.2.(2015·遵义)计算:(3-π)0-12-|-3|+4sin 60°.类型2 整式的运算(2015·贵阳)先化简,再求值:(x +1)(x -1)+x 2(1-x)+x 3,其中x =2. 【思路点拨】 先运用平方差公式、单项式乘以多项式、合并同类项等知识进行化简,然后将给定值代入,按照实数运算法则进行计算.【解答】 原式=x 2-1+x 2-x 3+x 3=2x 2-1.当x =2时,原式2×22-1=7.本题考查了整式的混合运算——化简求值:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.单项式或多项式与多项式相乘时,应注意以下几个问题:①实质上是转化为单项式乘以单项式;②用单项式、多项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.1.(2015·南宁)先化简,再求值:(1+x)(1-x)+x(x +2)-1,其中x =12.2.(2015·常州)先化简,再求值:(x +1)2-x(2-x),其中x =2.3.(2015·北京)已知2a 2+3a -6=0.求代数式3a(2a +1)-(2a +1)(2a -1)的值.类型3 分式的化简求值(2015·遵义)先化简,再求值:3a -3a ÷a 2-2a +1a 2-aa -1,其中a =2. 【思路点拨】 先根据分式混合运算将分式进行化简,再将a =2代入进行求值. 【解答】 原式=3(a -1)a ·a 2(a -1)2-aa -1 =3a a -1-aa -1 =2a a -1. 当a =2时,原式=2×22-1=4.此题考查了分式的化简求值,分式的加减运算的关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.分式的化简求值,有时需要选取合适的x 的值代入,那么要保证化简前的分式与化简后得到的分式有意义;同时计算程序要简洁、分明.1.(2015·铜仁)先化简(2x +2+x +5x 2+4x +4)·x +2x 2+3x,然后选取一个你喜欢的数代入求值.2.(2015·毕节)先化简,再求值:(x 2+1x 2-x -2x -1)÷x +1x -1,其中x =-3.3.(2015·安顺)先化简,再求值:x +22x 2-4x ÷(x -2+8xx -2),其中x =2-1.4.(2015·黔东南)先化简,后求值:m -33m 2-6m ÷(m +2-5m -2),其中m 是方程x 2+2x -3=0的根.参考答案类型11.原式=-2+1-1=-2. 2.原式=1-23-3+4×32=-2-23+2 3 =-2.类型21.原式=1-x 2+x 2+2x -1=2x. 当x =12时,原式=2×12=1.2.原式=(x +1)2-x(2-x)=x 2+2x +1-2x +x 2=2x 2+1.当x =2时,原式=2x 2+1=2×22+1=9.3.原式=6a 2+3a -4a 2+1=2a 2+3a +1.当2a 2+3a -6=0,即2a 2+3a =6时,原式=6+1=7. 类型31. 原式=[2(x +2)(x +2)2+x +5(x +2)2]·x +2x (x +3)=2(x +2)+(x +5)(x +2)2·x +2x (x +3) =3(x +3)(x +2)2·x +2x (x +3) =3x (x +2).∵x 取0,-2,-3使分式无意义,∴x 只能取除0,-2,-3之外的值进行代入求值计算. ∴当x =1时,原式=3x (x +2)=1.2.原式=[x 2+1x (x -1)-2x x (x -1)]÷x +1x -1=(x -1)2x (x -1)·xx +1-1 =x -1x +1-1 =-2x +1.将x =-3代入,得-2x +1=-2-3+1=1.3.原式=x +22x (x -2)÷x 2-4x +4+8xx -2=x +22x (x -2)·x -2(x +2)2 =12x (x +2).当x =2-1时,原式=12(2-1)(2-1+2)=12(2-1)(2+1) =12. 4.原式=m -33m (m -2)÷[(m +2)(m -2)m -2-5m -2]=m -33m (m -2)÷(m +3)(m -3)m -2 =m -33m (m -2)·m -2(m +3)(m -3) =13m (m +3)=13m 2+9m.解一元二次方程x 2+2x -3=0,得x 1=1,x 2=-3,∵要分式有意义,则m 不能取-3,3,2,0, ∴当m =1时,原式=112.题型专项(二) 方程(组)、不等式(组)的解法与应用纵观贵州9地州近年中考试卷命题情况分析,一次方程(组)、一元二次方程、分式方程、一元一次不等式(组)的解法已成高频考点,重在考查解法的技能;近年来方程与不等式不但作为解决其他数学题的工具,而且已频频单独凸显在试卷解答题中,注重考查构建方程或不等式模型解决现实生活中的问题.类型1 解方程(组)(2015·黔西南)解方程:2x x -1+11-x=3. 【解答】 去分母,得2x -1=3(x -1). 去括号,得2x -1=3x -3. 移项、合并,得-x =-2. 系数化为1,得x =2.检验:把x =2代入x -1,得2-1=1≠0, ∴x =2是原分式方程的解.解分式方程的基本思想是将分式方程转化为整式方程,转化的具体方法是去分母,由于在分式方程转化为整式方程过程中,容易产生增根(使分母为零的未知数的值),所以解分式方程必须验根,这是一个容易被忽视的过程. 解方程(组)注重的是解题过程,解答这类问题必须注意步骤分明,简洁.1.(2015·南京)解方程:2x -3=3x .2.(2013·遵义)解方程组:⎩⎪⎨⎪⎧x -2y =4,2x +y -3=0.3.解方程:x 2-6x +8=0.类型2 解不等式(组)(2015·黔东南)解不等式组⎩⎪⎨⎪⎧2(x +2)>3x ,3x -12≥-2,并将它的解集在数轴上表示出来.【思路点拨】 先分别计算不等式2(x +2)>3x 及3x -12≥-2的解集,再确定它们的公共部分,最后将不等式组的解集表示在数轴上.【解答】 解不等式2(x +2)>3x ,得x <4.解不等式3x -12≥-2,得x≥-1.∴不等式组的解集为-1≤x<4. 将解集表示在数轴上,如图所示:解不等式组思路概括为“分开解,解中判”. 求解集过程可以借助口诀:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集. 在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆圈表示.1.(2015·上海)解不等式组:⎩⎪⎨⎪⎧4x>2x -6,x -13≤x +19,并把解集在数轴上表示出来.2.(2015·呼和浩特)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =-3m +2,x +2y =4的解满足x +y>-32,求出满足条件的m 的所有正整数值.类型3 方程(组)、不等式的应用(2015·铜仁)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区,现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷所用车辆与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种汽车各有多少辆.【思路点拨】 (1)根据等量关系“甲货车比乙货车每辆多装20件”可设乙货车每辆装x 件帐篷,根据等量关系“甲货车装1 000件和乙货车装800件辆数相等”列分式方程求解;(2)通过建立一元一次方程或二元一次方程组求甲、乙两种汽车的数量.【解答】 (1)设乙货车每辆装x 件帐篷,则甲货车每辆装(x +20)件,根据题意,得1 000x +20=800x.解得x =80. 经检验,x =80是原方程的解,且符合题意,x +20=100. 答:甲、乙两种货车每辆分别装100件、80件.(2)设乙汽车有y 辆,则甲汽车有(16-y)辆,根据题意,得 100(16-y)+80(y -1)+50=1 490. 解得y =4,16-y =12.答:甲、乙两种汽车分别是12辆、4辆.解答本题的关键是读懂题意,找出合适的等量关系,构建方程模型求解. 列方程(组)、不等式解应用题的一般步骤:审:审清题意,分清题中的已知量、未知量;设:设未知数,设其中某个未知量为x ,并注意单位,对于含有两个未知数的问题,需要设两个未知数;列:根据题意寻找等量(不等)关系列方程(不等式);解:解方程(不等式);验:检验方程(组)、不等式的解是否符合题意;答:写出答案(包括单位).1.(2015·山西)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300 kg ,用去了1 520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1 520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1 050元,则该经营户最多能批发西红柿多少kg?2.(2015·连云港)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6 000元购买的门票张数,现在只花费了4 800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.类型4 方程(组)、不等式与函数的综合应用(2015·黔西南)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元? 【思路点拨】 (1) 建立二元一次方程组求两种价格;(2)若每月用水量为x 吨,从x ≤12和x>12两个方面来考虑应交水为y 与x 之间函数关系;(3)根据用水量这一变量值,结合(2)问选择函数表达式求函数变量x 的值.【解答】 (1)设每吨水的政府补贴优惠价和市场调节价分别为a 元,b 元.依题意得⎩⎪⎨⎪⎧12a +12b =42,12a +8b =32.解得⎩⎪⎨⎪⎧a =1,b =2.5. 答:每吨水的政府补贴优惠价1元, 市场调节价2.5元. (2)当x≤12时,y =x.当x>12时,y =12+2.5(x -12),即y =2.5x -18.(3)当x =26时,y =2.5×26-18=65-18=47(元). 答:小黄家三月份应交水费47元.本题考查运用一次方程、一次函数及简单一元一次不等式综合解决实际问题. 解决这类问题,可以按照一般步骤:结合实际审题,构建方程或函数模型,求解方程或函数模型,检验结果写答案.按照解题的一般步骤可以顺利分析问题、解决问题.(2014·黔东南)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x >0)件甲种玩具需要花费y 元,请你求出y 与x 的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.参考答案类型11.方程两边乘x(x -3),得2x =3(x -3).解得x =9. 检验:当x =9时,x(x -3)≠0. ∴原方程的解为x =9.2.解法一:⎩⎪⎨⎪⎧x -2y =4,①2x +y -3=0,②由①得x =2y +4.③将③代入②,得2(2y +4)+y -3=0.解得y =-1.将y =-1代入③,得x =2×(-1)+4=2.所以原方程组的解是⎩⎪⎨⎪⎧x =2,y =-1.解法二:⎩⎪⎨⎪⎧x -2y =4,①2x +y -3=0.②①×2-②,得-5y = 5,即y =-1.将y =-1代入①,得 x -2×(-1)=4,即x =2.所以原方程组的解是⎩⎪⎨⎪⎧x =2,y =-1.3.配方,得x 2-6x +9=1,即(x -3)2=1,∴x -3=1或x -3=-1. ∴x 1=4,x 2=2. 类型21.解不等式4x >2x -6,得x >-3. 解不等式x -13≤x +19,得x≤2.∴不等式组的解集为:-3<x≤2. 在数轴上表示如图:2.⎩⎪⎨⎪⎧2x +y =-3m +2,①x +2y =4,②①+②得3(x +y)=-3m +6,即x +y =-m +2.代入不等式,得-m +2>-32.解得m <72.则满足条件的m 的正整数值为1,2,3.类型31.(1)设批发西红柿x kg, 西兰花y kg. 由题意得⎩⎪⎨⎪⎧x +y =300,3.6x +8y =1 520.解得⎩⎪⎨⎪⎧x =200,y =100.200×(5.4-3.6)+100×(14-8)=960(元). 答:两种蔬菜当天全部售完一共能赚960元钱.(2)设批发西红柿a kg, 由题意得(5.4-3.6)a +(14-8)×1 520-3.6a 8≥1 050.解得a≤100.答:该经营户最多能批发西红柿100 kg.2.(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x -80)元, 根据题意得6 000x =4 800x -80.解得x =400.经检验,x =400是原方程的根.答:每张门票的原定票价为400元.(2)设平均每次降价的百分率为y ,根据题意得400(1-y)2=324,解得y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%. 类型41.(1)设每件甲种玩具的进价是x 元,每件乙种玩具的进价是y 元,由题意得⎩⎪⎨⎪⎧5x +3y =231,2x +3y =141.解得⎩⎪⎨⎪⎧x =30,y =27. 答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元.(2)当0<x≤20时,y =30x ;当x >20时,y =20×30+(x -20)×30×0.7=21x +180. (3)设购进玩具z 件(x >20),则乙种玩具消费27z 元;当27z =21z +180,则z =30. 所以当购进玩具正好30件,选择购其中一种即可;当27z >21z +180,则z >30. 所以当购进玩具超过30件,选择购甲种玩具省钱;当27z <21z +180,则z <30. 所以当购进玩具少于30件,选择购乙种玩具省钱.题型专项(三) 一次函数与反比例函数的综合本专项主要考查一次函数与反比例函数的图象与字母系数的关系,图象交点、图象及其性质等的综合,在中考试题中常以解答题的形式呈现,选填题呈现较少.类型1 函数图象与字母系数的关系(2015·黔东南)若ab<0,则正比例函数y =ax 与反比例函数y =bx在同一坐标系的大致图象可能是(B)【思路点拨】 本题考查正比例函数与反比例函数的图象与性质,由正比例函数y =ax 过原点可知选项C 错误;∵a b <0,∴a 与b 异号,∴当a >0时b <0,当a <0时b >0;选项A 中a 与b 均大于0,故错误;选项B 中a <0,b >0,正确;选项D 中a 、b 均小于0,故错误.根据条件ab <0,可以得到a>0,b<0或a<0,b>0两种情况进行分类讨论,同时借助数形结合思想进行分析,解此类图象问题要善于以其中一个图象为参照,分析另一图象与该图象之间是否存在矛盾.1.(2013·毕节)一次函数y =kx +b(k≠0)与反比例函数y =kx (k≠0)的图象在同一直角坐标系下的大致图象如图所示,则k 、b 的取值范围是( )A .k >0,b >0B .k <0,b >0C .k <0,b <0D .k >0,b <02.(2015·兰州)在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx (k≠0)的图象大致是( )3.(2015·牡丹江)在同一直角坐标系中,函数y =-ax 与y =ax +1(a≠0)的图象可能是( )4.(2013·潍坊)设点A(x 1,y 1)和B(x 2,y 2)是反比例函数y =kx 图象上的两个点,当x 1<x 2<0时,y 1<y 2,则一次函数y =-2x +k 的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限类型2 一次函数与反比例函数的综合运用(2015·贵阳)如图,一次函数y =x +m 的图象与反比例函数y =kx的图象相交于A(2,1),B 两点.(1)求出反比例函数与一次函数的表达式;(2)请直接写出B 点的坐标,并指出使反比例函数值大于一次函数值的x 的取值范围.【思路点拨】 (1)直接运用待定系数法可求一次函数和反比例函数的解析式; (2)求x -1=2x 的解可得到一次函数与反比例函数的交点坐标,再结合图象分析,反比例函数图象在一次函数图象上方时,求出x 的取值范围.【解答】 (1)将点A(2,1)代入一次函数y =x +m ,解得 m =-1.所以一次函数的解析式为y =x -1.将点A(2,1)代入反比例函数y =k x ,解得 k =2.所以反比例函数的解析式为2x.(2)点B 的坐标为(-1,-2).由题意并结合图象知:当x<-1时,反比例函数的值大于一次函数的值; 当-1<x<0时,一次函数的值大于反比例函数的值; 当0<x<2时,反比例函数的值大于一次函数的值; 当x>2时,一次函数的值大于反比例函数的值,综上所述:当x<-1或0<x<2,反比例函数的值大于一次函数的值.(1)待定系数法的一般步骤:①写出函数解析式的一般式,其中包括未知的系数;②把自变量与函数的对应值代入函数解析式中,得到关于待定系数的方程或方程组;③解方程(组)求出待定系数的值,从而写出函数解析式.(2)比较两函数值的大小时,通常可运用数形结合的思想方法来解答.1.(2015·铜仁)如图,在平面直角坐标系xOy 中,直线y =k 1x +2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y =k 2x 在第一象限内的图象交于点B ,连接BO ,若S △OBC =1,tan∠BOC =13,则k 2的值是( )A .-3B .1C .2D .32.(2015·黔南)如图,函数y =-x 的图象是二、四象限的角平分线,将y =-x 的图象以点O 为中心旋转90°与函数y =1x 图象交于点A ,再将y =-x 的图象向右平移至点A ,与x 轴交于点B ,则点B 的坐标为________.3.(2014·六盘水)如图,一次函数y 1=k 1x +b(k 1≠0)的图象与反比例函数y 2=k 2x (k 2≠0)的图象交于A 、B 两点,观察图象,当y 1>y 2时,x 的取值范围是 .4.(2015·安顺)如图,在平面直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数y =mx的图象交于A(2,3)、B(-3,n)两点.(1)求一次函数和反比例函数的解析式;(2)若P 是y 轴上一点,且满足△PAB 的面积是5,直接写出OP 的长.5.(2015·黔东南)如图,已知反比例函数y =kx 与一次函数y =x +b 的图象在第一象限相交于点A(1,-k +4).(1)试确定这两个函数的表达式;(2)求出这两个函数的另一个交点B 的坐标,并求出△AOB 的面积.6.(2013·黔南)如图,一次函数y =kx +2的图形与反比例函数y =mx 的图象交于点P ,点P 在第一象限,PA ⊥x 轴于点A ,一次函数的图象分别交x 轴、y 轴于点C 、D ,且S △COD =1,CO OA =12. (1)求点D 的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象直接写出当x>0时,一次函数值大于反比例函数的值的x 的取值范围.参考答案类型1 1.C 2.A 3.B 4.A类型2 1.D 2.(2,0) 3.x>2或-1<x<0 4.(1)∵反比例函数y =mx 的图象经过点A(2,3),∴m =6.∴反比例函数的解析式是y =6x.∵点B(-3,n)在反比例函数y =6x的图象上,∴n =-2.∴B(-3,-2).∵一次函数y =kx +b 的图象经过A(2,3)、B(-3,-2)两点,∴⎩⎪⎨⎪⎧2k +b =3,-3k +b =-2.解得⎩⎪⎨⎪⎧k =1,b =1. ∴ 一次函数的解析式是y =x +1. (2)OP 的长为 3或1.5.(1)∵点A(1,-k +4)在反比例函数y =kx 的图象上,∴-k +4=k ,解得k =2.∴反比例函数解析式为y =2x ,点A 的坐标为(1,2).将点A(1,2)代入一次函数y =x +b ,得b =1. ∴一次函数解析式为y =x +1.(2)由⎩⎪⎨⎪⎧y =2x ,y =x +1,解得⎩⎪⎨⎪⎧x 1=1,y 1=2,⎩⎪⎨⎪⎧x 2=-2,y 2=-1.∴点B 的坐标为(-2,-1).对于直线y =x +1,令y =0得x =-1, ∴点C 的坐标为(-1,0).∴S △ABO =S △AOC +S △BOC =12OC ·|y A |+12OC ·|y B |=12×1×2+12×1×1=32.6.(1)在y =kx +2中,令x =0,得y =2,∴点D 的坐标为(0,2). (2)∵PA∥OD,∴Rt △PAC ∽Rt △DOC. ∵CO OA =12, ∴OD PA =CO CA =13,PA =6.又S △COD =1,可得12OC ·OD =1, ∴OC =1. ∴OA=2, ∴P(2,6).把P(2,6)分别代入y =kx +2与y =mx ,可得一次函数解析式为:y =2x +2,反比例函数解析式为:y =12x(x>0).(3)由图象知x>0时,一次函数值大于反比例函数的值的x 的取值范围为x>2.题型专项(四) 二次函数知识的综合运用本专项主要考查二次函数与一次函数的综合运用,二次函数的图象与字母系数之间的关系,二次函数在实际生活中的应用,以选择题、填空题、解答题形式呈现.类型1 二次函数的图象与字母系数的关系(2015·黔东南)如图,已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,给出下列四个结论:①abc=0;②a+b +c>0;③a>b;④4ac-b 2<0.其中正确的结论有( C )A .1个B .2个C .3个D .4个【思路点拨】二次函数图象与a 、b 、c 之间关系问题解决:可以从一些特殊形式考虑:(1)含a +b +c 代数式,考虑当x =1时求y 值;(2)含a -b +c 代数式,考虑当x =-1时求y 值;(3)含4a +2b +c 代数式,考虑当x =2时求y 值;(4)含4a -2b +c 代数式,考虑当x =-2时求y值;(5) 含b 2-4ac 代数式,考虑由图象与x 轴交点个数来判断.1.(2015·毕节)二次函数y =ax 2+bx +c 的图象如图所示,则下列关系式错误的是( )A .a <0B .b >0C .b 2-4ac >0 D .a +b +c <02.(2015·枣庄)如图是二次函数y =ax 2+bx +c(a≠0)图象的一部分,对称轴为x =12,且经过点(2,0),有下列说法:①abc<0;②a+b =0;③4a+2b +c <0;④若(0,y 1),(1,y 2)是抛物线上的两点,则y 1=y 2.上述说法正确的是( )A .①②④B .③④C .①③④D .①②3.(2014·黔东南)如图,已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a +c ;③4a+2b +c >0;④b 2-4ac >0.其中正确结论的有( )A .①②③B .①②④C .①③④D .②③④4.(2013·遵义)二次函数y =ax 2+bx +c(a≠0)的图象如图所示,若M =a +b -c ,N =4a -2b +c ,P =2a -b ,则M 、N 、P 中,值小于0的数有( )A .3个B .2个C .1个D .0个5.(2014·达州)下图是二次函数y =ax 2+bx +c 的图象的一部分,对称轴是直线x =1.① b 2>4ac ;②4a-2b +c <0;③不等式ax 2+bx +c >0的解集是x≥3.5;④若(-2,y 1),(5,y 2)是抛物线上的两点,则y 1<y 2.上述4个判断中,正确的是( )A .①②B .①④C .①③④D .②③④6.(2014·安顺)如图,二次函数y =ax 2+bx +c(a>0)的图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C ,在下面五个结论中:①2a -b =0;②a+b +c>0;③c=-3a ;④只有当a =12时,△ABD 是等腰直角三角形;⑤使△ACB为等腰三角形的a 值可以有四个.其中正确的结论是________.(只填序号)类型2 二次函数与一次函数的综合运用(2013·贵阳)已知:直线y =ax +b 过抛物线y =-x 2-2x +3的顶点P ,如图所示.(1)顶点P 的坐标是______;(2)若直线y =ax +b 经过另一点A(0,11),求出该直线的表达式; (3)在(2)的条件下,若有一直线y =mx +n 与直线y =ax +b 关于x 轴成轴对称,求直线y =mx +n 与抛物线y =-x 2-2x +3的交点坐标.【思路点拨】 (3)求出直线y =ax +b 与x 轴的交点坐标和点A 关于x 轴的对称点的坐标,求出y =mx +n 的解析式,再与y =-x 2-2x +3组成方程组,求出交点坐标.【解答】 (1) ∵a=-1,b =-2,c =3,∴-b 2a =--22×(-1)=-1,4ac -b 24a =4×(-1)×3-(-2)24×(-1)=-12-4-4=4. ∴顶点坐标为P(-1,4).(2) ∵直线y =ax +b 经过顶点P(-1,4)和A(0,11),∴⎩⎪⎨⎪⎧4=-a +b ,11=a×0+b. 解得⎩⎪⎨⎪⎧a =7,b =11.∴直线y =ax +b 表达式为y =7x +11.(3)∵直线y =7x +11与x 轴,y 轴交点坐标分别为(-117,0),(0, 11),∴与x 轴成轴对称的直线y =mx +n 与x 轴,y 轴交点坐标分别为(-117,0),(0, -11).∴⎩⎪⎨⎪⎧0=-117m +n ,-11=m×0+n.解得⎩⎪⎨⎪⎧m =-7,n =-11.∴直线y =mx +n 表达式为y =-7x -11.∵直线y =-7x -11与抛物线y =-x 2-2x +3相交,∴⎩⎪⎨⎪⎧y =-7x -11,y =-x 2-2x +3. 解得⎩⎪⎨⎪⎧x 1=7,y 1=-60. ⎩⎪⎨⎪⎧x 2=-2,y 2=3.∴直线y =-7x -11与抛物线y =-x 2-2x +3的交点坐标为(7,-60),(-2, 3).二次函数与一次函数的综合运用中,常常需要求出两函数图象的交点坐标,只需联立两函数的解析式,即可求得结果;同时,二次函数图象中几个特殊点的坐标,往往是函数综合题中考查的重点内容.1.(2014·遵义)已知抛物线y =ax 2+bx 和直线y =ax +b 在同一坐标系内的图象如图所示,其中正确的是( )2.(2015·安徽)如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )3.(2015·泰州)已知二次函数y =x 2+mx +n 的图象经过点P(-3,1),对称轴是经过(-1,0)且平行于y 轴的直线.(1)求m 、n 的值;(2)如图,一次函数y =kx +b 的图象经过点P ,与x 轴相交于点A ,与二次函数的图象相交于另一点B ,点B 在点P 的右侧,PA ∶PB =1∶5,求一次函数的表达式.类型3 利用二次函数求最值(2015·毕节)某商场A 、B 两种商品,若买2件A 商品和1件B 商品,共需80元;若买3件A 商品和2件B 商品,共需135元,(1)设A 、B 两种商品每件售价分别为a 元、b 元,求a ,b 的值;(2)B 商品的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B 商品100件;若按销售单价每上涨1元,B 商品每天的销售量就减少5件,①求每天B 商品的销售利润y(元)与销售单价x(元)之间的函数关系式? ②求销售单价为多少元时,B 商品的销售利润最大,最大利润是多少?【思路点拨】 (1)由2件A 商品和1件B 商品需要80元,3件A 商品和2件B 商品需要135元,列二元一次方程组求解.(2)①根据利润=(售价-成本)×销量列出y 关于x 的函数关系式;②利用二次函数最值确定最大利润.【解答】 (1)根据题意,列方程得⎩⎪⎨⎪⎧2a +b =80,3a +2b =135,解得⎩⎪⎨⎪⎧a =25,b =30. 答:a 、b 的值分别为25,30. (2)①∵销售单价为x 元,∴销售量为100-5(x -30)件,根据题意得y =(x -20)[100-5(x -30)]=-5x 2+350x -5 000,即y 关于x 的函数关系式为y =-5x 2+350x -5 000(30≤x≤50).②由抛物线对称轴为x=-3502×(-5)=35,可知当售价为35元时,B商品每天的销售利润最大,最大利润为y=-5×352+350×35-5 000=1 125(元).答:当B商品定价为35元时,B商品每天的利润最大,最大利润为1 125元.此题主要考查了二次函数的应用以及用配方法求最大值,准确分析题意,列出y与x 之间的二次函数关系式是解题关键.1.(2015·黔南)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/时;当车流密度为20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流速度密度x的一次函数.(1)求彩虹桥上车流密度为100辆/小时的车流速度;(2)在交通高峰时段,为使彩虹桥上的车流速度大小40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.2.(2015·贵阳模拟)乐乐童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装平均每天可售出20件.为了迎接“六一”,童装店决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.(1)童装店降价前每天销售该童装可盈利多少元?(2)如果童装店想每天销售这种童装盈利1 200元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?(3)每件童装降价多少元童装店可获得最大利润,最大利润是多少元?3.(2015·黔西南模拟)某服装经销商发现某款新型运动服市场需求量较大,经过市场调查发现年销售量y(件)与销售单价x(元)之间存在如图所示的一次函数关系,而该服装的进价z(元)与销售量y(件)之间的关系如下表所示.已知每年支付员工工资和场地租金等费用总计2万元.(1)求y 关于x 的函数关系式.(2)写出该经销商经销这种服装的年获利w(元)关于销售单价x(元)的函数关系式.当销售单价x 为何值时,年获利最大?并求出这个最大值.(3)若经销商希望该服装一年的销售获利不低于2.2万元,请你根据图象帮助确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?参考答案类型1 1.D 2.A 3.B 4.A 5.B 6.③④ 类型2 1.D 2.A3.(1)∵二次函数对称轴是经过(-1,0)且平行于y 轴的直线, ∴-m2=-1,解得m =2.∵二次函数过点P(-3,1), ∴1=9-6+n , 解得n =-2.(2)二次函数解析式为y =x 2+2x -2.过P 作PC⊥x 轴于点C ,过B 作BD⊥x 轴于点D ,PC ∥BD ,∴△APC ∽△ABD. 又∵PA∶PB=1∶5, ∴PC BD =PA AB =PA PA +PB =16. ∵PC =1, ∴BD =6. ∴y B =6.∵B 在二次函数上,设B 点横坐标为x , ∴x 2+2x -2=6,解得x 1=2,x 2=-4(舍去).∴B 点坐标为(2,6),将B 、P 点代入一次函数得⎩⎪⎨⎪⎧2k +b =6,-3k +b =1,解得⎩⎪⎨⎪⎧k =1,b =4. ∴一次函数的表达式是y =x +4.类型3 1.(1)设车流速度v 与车流密度x 的函数关系式为v =kx +b ,由题意,得⎩⎪⎨⎪⎧80=20k +b ,0=220k +b ,解得⎩⎪⎨⎪⎧k =-25,b =88.∴当20≤x≤220时,v =-25x +88.当x =100时,v =48(千米/小时).(2)由题意,得⎩⎪⎨⎪⎧-25x +88>40,-25x +88<60.解得70<x<120.∴应控制大桥上的车流密度在7<x<120范围内.(3)设车流量为y 与x 之间的关系式为y =vx ,当20≤x≤220时,y =(-25x +88)x =-25(x -110)2+4 840,∴当x =110时,y 最大=4 840.∴当车流密度是110辆/千米时,车流量y 取得最大值是4 840辆/小时. 2.(1)童装店降价前每天销售该童装可盈利:(100-60)×20=800(元). (2)设每件童装降价x 元,根据题意,得(100-60-x)(20+2x)=1 200. 解得x 1=10,x 2=20.∵要使顾客得到较多的实惠, ∴x =20.答:童装店应该降价20元. (3)设每件童装降价x 元,可获利y 元,根据题意,得y =(100-60-x)(20+2x)=-2x 2+60x +800=-2(x -15)2+1 250. ∴当x =15时,y 最大=1 250.答:每件童装降价15元童装店可获得最大利润,最大利润是1 250元.3.(1)设y 关于x 的函数关系式为y =kx +b ,则⎩⎪⎨⎪⎧500=300k +b ,400=400k +b ,解得⎩⎪⎨⎪⎧k =-1,b =800.∴y =-x +800.。

(完整word版)2016年中考数学压轴题70题精选(含答案及解析),推荐文档

(完整word版)2016年中考数学压轴题70题精选(含答案及解析),推荐文档

2016年中考数学压轴题70题精选(含答案)【001】如图13,二次函数y x px q( p 0)的图象与x轴交于A、B两点,与y轴交于点C( 0, -1),5A ABC的面积为4(1)求该二次函数的关系式;(2 )过y轴上的一点M (0, m)作y轴的垂线,若该垂线与A ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。

【002】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B ( 4, 0)、C (8 , 0)、D (8 , 8)抛物线y=ax2+bx过A、C两点.(1) 直接写出点A的坐标,并求出抛物线的解析式;(2) 动点P从点A出发•沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒•过点P作PE丄AB交AC于点E,①过点E作EF丄AD 于点F,交抛物线于点G当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得厶CEQ是等腰三角形?请直接写出相应的t值。

【003】抛物线y ax2 bx c(a 0)的顶点为M,与x轴的交点为A、B (点B在点A的右侧),△ ABM的三个内角/ M、/ A> Z B所对的边分别为m、a、b。

若关于x的一元二次方程(m a)x2 2bx (m a) 0 有两个相等的实数根。

(1)判断△ ABM的形状,并说明理由。

(2)当顶点M的坐标为(一2,—1)时,求抛物线的解析式,并画出该抛物线的大致图形。

(3)若平行于x轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与x轴相切,求该圆的圆心坐标。

k【004】一次函数y ax b的图象分别与x轴、y轴交于点M,N,与反比例函数y 的图象相交于点xA, B •过点A分别作AC x轴,AE y轴,垂足分别为C,E ;过点B分别作BF x轴,BD y轴,垂足分别为F, D, AC与BD交于点K,连接CD •k(1 )若点A , B 在反比例函数y 仝的图象的同一分支上,如图1,试证明:x① S 四边形AEDKS 四边形CFBK ;② AN BM •k-的图象的不同分支上,如图 2,则AN 与BM 还相等吗?试证 x明你的结论.(2) 连接BM ,如图2,动点P 从点第A2出题图沿折线ABC 方向第25个单位/秒的速度向终点 C 匀速运 动,设△ PMB 的面积为S(S 工0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量 t 的取值范围);(3) 在(2)的条件下,当t 为何值时,/ MPB 与/ BCO 互为余角,并求此时直线 OP 与直线AC 所 夹锐角的正切值.【006】如图,抛物线y ax 2 bx 3与x 轴交于A, B 两点,与y 轴交于C 点,且经过点(2, 3a),对称轴是直线x 1,顶点是M . (1 )求抛物线对应的函数表达式; (2)经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点 P ,使以点P , A, C , N 为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线y x 3与y 轴的交点是D ,在线段BD 上任取一点E (不与B , D 重合),经过 A, B, E 三点的圆交直线BC 于点F ,试判断△ AEF 的形状,并说明理由;(2)若点A ,B 分别在反比例函数S MK C F【005】如图1 ,在平面直角坐标系中,点点C 在x 轴的正半轴上,直线 AC 交y 轴于点(1)求直线AC 的解析式; y+ Ny,点A 的坐标为(一3, 4), O仝标原点,四边形ABCqE 校y 轴于点x ~ D K(4) 当E 是直线y x 3上任意一点时,(3)中的结论是否成立?(请直接写出结论).如图9,已知正比例函数和反比例函数的图象都经过点I{(第26题A(3,3).x函数和反比例函数的解析式;OA 向下平移m),求m 的值和这个一次函数的解析式;y I【007】(2 )把A O (1 )求 M(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积S与四边形OABD过点B作圆0的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由. NC分(3)yA(4,0, B(1,0, C(0, 2)三点.(1 )A(2三角形与F .-动点,过【009】如图,P作PM x轴,垂足为M,是否存在P点,使得以A, P, M为顶点的△OAC 相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△ DCA的面积最大,求出点D的坐标.【010】如图,抛物线y ax2 bx 4a经过A( (1)求抛物线的解析式; B •(2)已知点D(m, m 1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点 P ,使PA+PD 最小,求出点P 的坐标;⑶在抛物线上是否存在点 0,使厶QAB 与厶ABC 相似?如果存在,求出点 Q 的坐标;如果不存在,请 说明理由.【012】如图,已知抛物线y x 2 bx c 经过A(1,0) , B(0,2)两点,顶点为D . (1) 求抛物线的解析式;(2) 将厶OAB 绕点A 顺时针旋转90。

2016年中考数学试题分类解析汇编(第一辑)(29份)_3

2016年中考数学试题分类解析汇编(第一辑)(29份)_3

2016年全国各地中考数学试题分类解析汇编(第一辑)第13章轴对称一.选择题(共20小题)1.(2016•台湾)若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.2.(2016•成都)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)3.(2016•巴中)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.4.(2016•深圳)下列图形中,是轴对称图形的是()A.B.C.D.5.(2016•西宁)在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.6.(2016•重庆)下列交通指示标识中,不是轴对称图形的是()A.B.C.D.7.(2016•桂林)下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形8.(2016•泸州)下列图形中不是轴对称图形的是()A.B.C.D.9.(2016•菏泽)以下微信图标不是轴对称图形的是()A .B .C .D .10.(2016•北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .11.(2016•绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有( )A .1条B .2条C .3条D .4条12.(2016•重庆)下列图形中是轴对称图形的是( )A .B .C .D .13.(2016•邵阳)下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .14.(2016•漳州)下列图案属于轴对称图形的是( )A .B .C .D .15.(2016•舟山)在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是( )A .B .C .D .16.(2016•南充)如图,直线MN 是四边形AMBN 的对称轴,点P 时直线MN 上的点,下列判断错误的是( )A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM17.(2016•河北)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上18.(2016•内江)已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.B.C.D.不能确定19.(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE 垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.320.(2016•邵阳)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC2016年全国各地中考数学试题分类解析汇编(第一辑)第13章轴对称参考答案与试题解析一.选择题(共20小题)1.(2016•台湾)若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.【分析】直接利用轴对称图形的性质分析得出符合题意的答案.【解答】解:A、正三角形有3条对称轴,故此选项错误;B、正方形有4条对称轴,故此选项正确;C、正六边形有6条对称轴,故此选项错误;D、正八边形有8条对称轴,故此选项错误.故选:B.【点评】此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.2.(2016•成都)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.(2016•巴中)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是,故选D.【点评】此题考查了轴对称图形,熟练掌握轴对称图形的定义是解本题的关键.4.(2016•深圳)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(2016•西宁)在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:四个汉字中只有“善”字可以看作轴对称图形,故选D.【点评】考查了轴对称图形的知识,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.6.(2016•重庆)下列交通指示标识中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.7.(2016•桂林)下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形【分析】根据轴对称图形的概念,结合选项求解即可.【解答】解:A、直角三角形中只有等腰直角三角形为轴对称图形,本选项错误;B、平行四边形不是轴对称图形,本选项错误;C、直角梯形不是轴对称图形,本选项错误;D、正方形是轴对称图形,本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.(2016•泸州)下列图形中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9.(2016•菏泽)以下微信图标不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称.【解答】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选D.【点评】本题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.10.(2016•北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.(2016•绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:其对称轴有2条.故选:B.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.12.(2016•重庆)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,对称轴有两条,符合题意.故选:D.【点评】此题主要考查了轴对称图形,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.13.(2016•邵阳)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.14.(2016•漳州)下列图案属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.【解答】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故B不是轴对称图形;D、不能找出对称轴,故B不是轴对称图形.故选A.【点评】本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.15.(2016•舟山)在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.16.(2016•南充)如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.【点评】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.17.(2016•河北)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上【分析】如图在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要证明△PEM≌△PON 即可推出△PMN是等边三角形,由此即可对称结论.【解答】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MP N=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON.∴PM=PN,∵∠MPN=60°,∴△POM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选D.【点评】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的性质等知识,解题的关键是正确添加辅助线,构造全等三角形,属于中考常考题型.18.(2016•内江)已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.B.C.D.不能确定【分析】作出图形,根据等边三角形的性质求出高AH的长,再根据三角形的面积公式求出点P到三边的距离之和等于高线的长度,从而得解.【解答】解:如图,∵等边三角形的边长为3,∴高线AH=3×=,S△AB C=B C•AH=AB•PD+BC•PE+AC•PF,∴×3•AH=×3•PD+×3•PE+×3•PF,∴PD+PE+PF=AH=,即点P到三角形三边距离之和为.故选:B.【点评】本题考查了等边三角形的性质,根据三角形的面积求点P到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.19.(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE 垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【分析】过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.【点评】本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.20.(2016•邵阳)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC【分析】根据等腰三角形的两个底角相等,由AD=BD得到∠A=∠ABD,所以∠ABC >∠A,则对各C、D选项进行判断;根据大边对大角可对A、B进行判断.【解答】解:∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.故选A.【点评】本题考查了等腰三角形的性质:等腰三角形的两腰相等;等腰三角形的两个底角相等;等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.。

2016年中考数学压轴题及解析分类汇编

2016年中考数学压轴题及解析分类汇编

中考数学压轴题及解析分类汇编问题中考数学压轴:等腰三角形问题中考数学压轴:直角三角形问题问题中考数学压轴:梯形问题中考数学压轴:面积问题2016中考数学压轴题:函数相似三角形问题(一)例1、直线113y x=-+分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.图1思路点拨1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角.2.用待定系数法求抛物线的解析式,用配方法求顶点坐标.3.第(3)题判断∠ABQ =90°是解题的前提.4.△ABQ 与△COD 相似,按照直角边的比分两种情况,每种情况又按照点Q 与点B 的位置关系分上下两种情形,点Q 共有4个.满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG . 因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°.因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么BQ ==. Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况: ①当3BQ BA =3=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --.②当13BQ BA =13=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是BQ =.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,sin 1∠=,cos 1∠=①当3BQ BA=时,BQ = 在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=.当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --.②当13BQ BA =时,BQ =31(,2)3Q ,41(,0)3Q -. 例2、 Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m与n的数量关系;(2)当tan∠A=12时,求反比例函数的解析式和直线AB的表达式;(3)设直线AB与y轴交于点F,点P在射线FD上,在(2)的条件下,如果△AEO 与△EFP相似,求点P的坐标.图1思路点拨1.探求m与n的数量关系,用m表示点B、D、E的坐标,是解题的突破口.2.第(2)题留给第(3)题的隐含条件是FD//x轴.3.如果△AEO与△EFP相似,因为夹角相等,根据对应边成比例,分两种情况.满分解答(1)如图1,因为点D(4,m)、E(2,n)在反比例函数kyx=的图像上,所以4,2.m kn k=⎧⎨=⎩整理,得n=2m.(2)如图2,过点E作EH⊥BC,垂足为H.在Rt△BEH中,tan∠BEH=tan∠A=12,EH=2,所以BH=1.因此D(4,m),E(2,2m),B(4,2m+1).已知△BDE的面积为2,所以11(1)2222BD EH m⋅=+⨯=.解得m=1.因此D(4,1),E(2,2),B(4,3).因为点D(4,1)在反比例函数kyx=的图像上,所以k=4.因此反比例函数的解析式为4yx =.设直线AB 的解析式为y =kx +b ,代入B (4,3)、E (2,2),得34,22.k b k b =+⎧⎨=+⎩ 解得12k =,1b =.因此直线AB 的函数解析式为112y x =+.图2 图3 图4(3)如图3,因为直线112y x =+与y 轴交于点F (0,1),点D 的坐标为(4,1),所以FD // x 轴,∠EFP =∠EAO .因此△AEO 与△EFP 相似存在两种情况:①如图3,当EA EF AO FP ==.解得FP =1.此时点P 的坐标为(1,1).②如图4,当EA FPAO EF ==.解得FP =5.此时点P 的坐标为(5,1).考点伸展本题的题设部分有条件“Rt △ABC 在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m 与n 的数量关系不变.第(2)题反比例函数的解析式为12y x =-,直线AB 为172y x =-.第(3)题FD 不再与x 轴平行,△AEO 与△EFP 也不可能相似.图52016中考数学压轴题函数相似三角形问题(二)例3、如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2思路点拨1.第(2)题用含S 的代数式表示x 2-x 1,我们反其道而行之,用x 1,x 2表示S .再注意平移过程中梯形的高保持不变,即y 2-y 1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB 与x 轴的夹角不变,直线AB 与抛物线的对称轴的夹角不变.变化的直线PQ 的斜率,因此假设直线PQ 与AB 的交点G 在x 轴的下方,或者假设交点G 在x 轴的上方.满分解答(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3). (3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF .因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4GAF ∠=,tan 5DQ t PQD QP t∠==-,所以345t t =-.解得207t =.图3 图4例4、 如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1思路点拨1.点A 与点B 的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B ′ 的坐标、AC 和B ′C 的长.2.抛物线左右平移,变化的是对称轴,开口和形状都不变.3.探求△ABC 与△B ′CD 相似,根据菱形的性质,∠BAC =∠CB ′D ,因此按照夹角的两边对应成比例,分两种情况讨论.满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =. (2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4. 因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B ′ (6,0),可得A B ′=如图2,由AM //CN ,可得''''B N B C B M B A =,即28=.解得'B C =AC =ABC 与△B ′CD 中,∠BAC =∠CB ′D .①如图3,当''AB B C AC B D ==,解得'3B D =.此时OD =3,点D 的坐标为(3,0).②如图4,当''AB B D AC B C ==,解得5'3B D =.此时OD =133,点D 的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B ′CD 与△AB B ′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B ′CD 与△C B B ′相似,这两个三角形有一组公共角∠B ,根据对应边成比例,分两种情况计算.2016中考数学压轴题函数相似三角形问题(三)例5 、 如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,图1思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程. 4.把△DCA 可以分割为共底的两个三角形,高的和等于OA . 满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x . ①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4. 如果2==CO AOPM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意. 如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4. 解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4 (3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S . 由于225212-+-=m m n ,所以m m S 42+-=. 例6 、 如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图 备用图思路点拨1.先解读背景图,△ABC 是等腰三角形,那么第(3)题中符合条件的△DEF 也是等腰三角形.2.用含有x 的式子表示BD 、DE 、MN 是解答第(2)题的先决条件,注意点E 的位置不同,DE 、MN 表示的形式分两种情况.3.求两圆相切的问题时,先罗列三要素,再列方程,最后检验方程的解的位置是否符合题意.4.第(3)题按照DE 为腰和底边两种情况分类讨论,运用典型题目的结论可以帮助我们轻松解题. 满分解答(1)如图2,作BH ⊥AC ,垂足为点H .在Rt △ABH 中,AB =5,cosA =310AH AB =,所以AH =32=12AC .所以BH 垂直平分AC ,△ABC 为等腰三角形,AB =CB =5. 因为DE //BC ,所以AB AC DB EC =,即53y x=.于是得到53y x =,(0x >). (2)如图3,图4,因为DE //BC ,所以DE AE BC AC =,MN AN BC AC =,即|3|53DE x -=,1|3|253x MN -=.因此5|3|3x DE -=,圆心距5|6|6x MN -=.图2 图3 图4在⊙M 中,115226M r BD y x ===,在⊙N 中,1122N r CE x ==. ①当两圆外切时,5162x x +5|6|6x -=.解得3013x =或者10x =-. 如图5,符合题意的解为3013x =,此时5(3)15313x DE -==. ②当两圆内切时,5162x x -5|6|6x -=. 当x <6时,解得307x =,如图6,此时E 在CA 的延长线上,5(3)1537x DE -==; 当x >6时,解得10x =,如图7,此时E 在CA 的延长线上,5(3)3533x DE -==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534BF =.图8 图9 图10 图11考点伸展:第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例 7 如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.思路点拨1.数形结合思想,把OC OB OA⋅=2转化为212t x x =⋅.2.如果AQ ∥BC ,那么以OA 、AQ 为邻边的矩形是正方形,数形结合得到t =b . 3.分类讨论tan ∠ABO =23,按照A 、B 、C 的位置关系分为四种情况.A 在y 轴正半轴时,分为B 、C 在y 轴同侧和两侧两种情况;A 在y 轴负半轴时,分为B 、C 在y 轴同侧和两侧两种情况. 满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB t b,+=t OC tb . 所以-=⋅t OC OB (|||||tb)( +t t b )|-=2|t 22|OA t tb ==.即22b t t t -=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=.(2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x .①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x +2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2OA ABO OB ∠==,得23OB OA =. ①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5).②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).2016中考数学压轴题函数等腰三角形问题(一)例1、如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2思路点拨1.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备. 2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C . 满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-. ①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3). ②当PA =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H.考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP=AD时,AM垂直平分PD,那么△PCM∽△MBA.所以12 PC MBCM BA==.因此12PC=,32m=.②如图4,当PA=PD时,P在AD的垂直平分线上.所以DA=2PO.因此42m m-=.解得43m=.第(2)题的思路是这样的:如图6,在Rt△OHM中,斜边OM为定值,因此以OM为直径的⊙G经过点H,也就是说点H在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P与O重合时,是点H运动的起点,∠COH=45°,∠CGH=90°.图6 图7例2 如图1,已知一次函数y =-x +7与正比例函数43y x = 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒. ①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4).令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C P P O RC O R A S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,AB =OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7. 在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =.如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ 时,那么12cos AQ A AP∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cos=⋅∠来求解.AP AQ A2016中考数学压轴题函数等腰三角形问题(二)例3 如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1思路点拨1.第(1)题求证MN∶NP的值要根据点N的位置分两种情况.这个结论为后面的计算提供了方便.2.第(2)题探求相似的两个三角形有一组邻补角,通过说理知道这两个三角形是直角三角形时才可能相似.3.第(3)题探求等腰三角形,要两级(两层)分类,先按照点N 的位置分类,再按照顶角的顶点分类.注意当N 在AB 的延长线上时,钝角等腰三角形只有一种情况.4.探求等腰三角形BNP ,N 在AB 上时,∠B 是确定的,把夹∠B 的两边的长先表示出来,再分类计算.满分解答(1)如图2,图3,作NQ ⊥x 轴,垂足为Q .设点M 、N 的运动时间为t 秒. 在Rt △ANQ 中,AN =5t ,NQ =4t ,AQ =3t .在图2中,QO =6-3t ,MQ =10-5t ,所以MN ∶NP =MQ ∶QO =5∶3. 在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MPQN MN=,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-.(Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=.(Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=. (Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况.②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4、如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少? (3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1思路点拨1.证明△DCE ∽△EBF ,根据相似三角形的对应边成比例可以得到y 关于x 的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF 为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m xx y-=.整理,得y 关于x 的函数关系为218y x x m m=-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.2016中考数学压轴题函数相似三角形问题(三)例5 已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1思路点拨1.用待定系数法求抛物线的解析式,这个解析式在第(2)、(3)题的计算中要用到. 2.过点M 作MN ⊥AB ,根据对应线段成比例可以求FA 的长. 3.将∠EDC 绕点D 旋转的过程中,△DCG 与△DEF 保持全等.4.第(3)题反客为主,分三种情况讨论△PCG 为等腰三角形,根据点P 的位置确定点Q 的位置,再计算点Q 的坐标.满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C 三点的抛物线的解析式为1613652++-=x x y .(2)把56=x 代入1613652++-=x x y ,求得512=y .所以点M 的坐标为⎪⎭⎫⎝⎛512,56.如图2,过点M 作MN ⊥AB ,垂足为N ,那么DADNFA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO =1,EF=2GO .(3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。

2016年中考数学考前集训50题和答案详解

2016年中考数学考前集训50题和答案详解

天津南开区2016年中考数学考前集训50题1.下列命题中,真命题是()A.菱形的对角线互相平分且相等B.矩形的对角线互相垂直平分C.对角线相等且垂直的四边形是正方形D.对角线互相平分的四边形是平行四边形2.估计32 的值()11A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间3.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是()A. B. C. D.4.如图,已知在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A.1B.1或3C.1或7D.3或75.如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连结BC.若∠P=360,则∠BC0等于( )A.27°B.30°C.36°D.54第5题图第6题图第7题图6.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=580,则∠BCD等于()A.116°B.32°C.58°D.64°7.如图,已知□ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA/E/,连接DA/.若∠ADC=600,∠ADA/=500,则∠DA/E/的大小为()A.130°B.150°C.160°D.170°8.如图,已知A(,y 1),B (2,y 2)为反比例函数y=图象上的两点,动点P (x,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A.(,0) B.(1,0) C.(,0) D.(,0)9.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=-x+6于A 、B 两点,若反比例函数y=(x>0)的图象与△ABC 有公共点,则k 的取值范围是( )A.2≤k ≤9B.2≤k ≤8C.2≤k ≤5D.5≤k ≤8 10.在同一平面直角坐标系中,函数y=kx +b 与y=bx 2+kx 的图象可能是( )11.如图,在等腰直角三角形ABC 中,∠C=900,AC=6,D 是AC 上一点,若tan ∠DBA=,则AD 长是( )A. B.2C.1D.212.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC →CB 运动,到点B 停止.过点P 作PD ⊥AB 于点D,PD 的长y(cm)与点P 的运动时间x(秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( ) A.1.2cmB.1.5cmC.1.8cmD.2cmCABD13.在一条笔直的公路旁依次有A 、B 、C 三个村庄,甲、乙两人同时分别从A 、B 两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C 村,最终到达C 村.甲、乙两人到C 村的距离y 1,y 2(km )与行驶时间x (h )之间的函数关系如图所示,以下分析错误的是:A.A 、C 两村间的距离为120 kmB.点P 的坐标为(1,60)C.点P 的意义表示经过1小时甲与乙相遇且距C 村60 kmD.乙在行驶过程中,仅有一次机会距甲10 km14.如图,∠ABC=800,O 为射线BC 上一点,以点O 为圆心,21BO 为半径作⊙O.要使射线BA 与⊙O 相切,应将射线BA 绕点B 按顺时针方向旋转( )A.40°或80°B.50°或100°C.50°或110°D.60°或120°15.如图,在正方形ABCD 外侧作直线DE,点C 关于直线DE 的对称点为M,连接CM,AM,其中AM 交直线DE 于点N.若450<∠CDE<900,当MN=3,AN=4时,正方形ABCD 的边长为( )A .7B .5C .5 2D .52216.如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于C,抛物线顶点为D,下列四个命题:①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG 周长的最小值为6.其中真命题的序号是()A.①B.②C.③D.④17.如图,∠1=700,直线a平移后得到直线b,则∠2-∠3= .18.已知在Rt△ABC中,∠C=900,点P、Q分别在边AB、AC上,AC=4,BC=AQ=3,如果△APQ与△ABC相似,那么AP的长等于.19.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m= .20.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.21.如图,菱形纸片ABCD,∠A=600,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.22.如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为 cm2.23.把球放在长方体纸盒内,球的一部分露在盒外,其截面如图.已知EF=CD=80cm,则截面圆的半径为 cm.24.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB,调整为坡度i=1:的新传送带AC(如图所示).已知原传送带AB的长是4米.那么新传送带AC的长是米.25.如图,在平行四边形ADBO中,圆O经过点A、D、B,如果圆O的半径OA=4,那么弦AB= .26.如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度约为m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)27.已知a,b满足+|b﹣|=0.则分式()÷= .28.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.29.已知A(3,2)是平面直角坐标中的一点,点B是x轴负半轴上一动点,联结AB,并以AB为边在x轴上方作矩形ABCD,且满足BC:AB=1:2,设点C的横坐标是a,如果用含a的代数式表示D 点的坐标,那么D点的坐标是.30.已知△ABC中,AB=AC=5,BC=6(如图所示),将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A、B、C分别与D、E、F对应.若以点A、D、E为顶点的三角形是等腰三角形,且AE为腰,则m的值是.31.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.32.关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是.33.如图,Rt△ABC,∠ACB=900,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC 沿CF翻折,使点B落在CD的延长线上的点B/处,两条折痕与斜边AB分别交于点E、F,则线段B/F的长为.34.如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.35.在矩形ABCD中,AD=15,点E在边DC上,联结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为点G,如图,如果AD=3GD,那么DE= .36.如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2.37.如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是.(把你认为正确的说法的序号都填上)38.如图,利用热气球探测器测量大楼AB的高度.从热气球P处测得大楼顶部B的俯角为370,大楼底部A的俯角为600,此时热气球P离地面的高度为120 m.试求大楼AB的高度(精确到0.1 m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3≈1.73)39.如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P.点C在OP上,且BC=PC.(1)求证:直线BC是⊙O的切线;(2)若OA=3,AB=2,求BP的长.40.如图,已知在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.(1)求证:∠BCP=∠BAN;(2)求证: =.41.某校八年级学生小明、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小明:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.[利润=(销售价﹣进价)×销售量](1)请你根据以上对话信息,求出y(千克)与x(元)(x>0)的函数关系式;(2)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?42.如图,轮船从B处以每小时60海里的速度沿南偏东200方向匀速航行,在B处观测灯塔A位于南偏东500方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,求C处与灯塔A 的距离.43.如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=600,过点D作⊙O的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.44.如图,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是300,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是480,若坡角∠FAE=300,求大树的高度(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)45.如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)求证:AC2=CO﹒CP;(3)若3PD,求⊙O的直径.46.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:(1)求y(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?47.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?48.如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0),与y轴交于点C.直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.(1)求该抛物线所对应的函数关系式;(2)连接BE. 求h为何值时,△BDE的面积最大;(3)已知定点M(-2,0),请问是否存在这样的直线y=h,使△OFM是等腰三角形?若存在,求出h 的值和点G的坐标;若不存在,说明理由.49.抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.50.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0)、点B(0,﹣8),直线AC与y轴交于点C(0,﹣4).P是抛物线上A、B两点之间的一点(P不与点A、B重合),过点P作PD∥y轴交直线AC于点D,过点P作PE⊥AC于点E.(l)求抛物线所对应的函数表达式.(2)若四边形PBCD为平行四边形,求点P的坐标.(3)求点E横坐标的最大值.答案详解1.【解答】解:A 、菱形的对角线互相平分且垂直,所以A 选项错误; B 、矩形的对角线互相平分且相等,所以B 选项错误;C 、对角线互相垂直平分且相等的四边形是正方形,所以C 选项错误;D 、对角线互相平分的四边形为平行四边形,所以D 选项正确.故选D . 2.【解答】解:∵7441126<=<,故3<431123<-<<4;故选B .3.【解答】解:a >0,b >0时,抛物线开口向上,对称轴x=﹣<0,在y 轴左边,与y 轴正半轴相交,a <0,b <0时,抛物线开口向下,对称轴x=﹣<0,在y 轴左边,与y 轴正半轴坐标轴相交,D 符合.故选D .4.【解答】解:因为AB=CD ,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS 证得△ABP ≌△DCE , 由题意得:BP=2t=2,所以t=1,因为AB=CD ,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS 证得△BAP ≌△DCE , 由题意得:AP=16﹣2t=2,解得t=7.所以,当t 的值为1或7秒时.△ABP 和△DCE 全等.故选C . 5.A6.【解答】解:∵AB 是⊙O 的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=90°﹣∠ABD=32°,∴∠BCD=∠A=32°.故选B .7.【解答】解:∵四边形ABCD 是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°, ∵∠ADA ′=50°,∴∠A ′DC=10°,∴∠DA ′B=130°,∵AE ⊥BC 于点E ,∴∠BAE=30°,∵△BAE 顺时针旋转,得到△BA ′E ′,∴∠BA ′E ′=∠BAE=30°,∴∠DA ′E ′=∠DA ′B+∠BA ′E ′=160°.故选:C .8.【解答】解:∵把A (,y 1),B (2,y 2)代入反比例函数y=得:y 1=2,y 2=,∴A (,2),B (2,),∵在△ABP 中,由三角形的三边关系定理得:|AP ﹣BP|<AB ,∴延长AB 交x 轴于P ′,当P 在P ′点时,PA ﹣PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:,解得:k=﹣1,b=,∴直线AB 的解析式是y=﹣x+,当y=0时,x=,即P (,0),故选:D .9.【解答】解:∵点C (1,2),BC ∥y 轴,AC ∥x 轴,∴当x=1时,y=﹣1+6=5, 当y=2时,﹣x+6=2,解得x=4,∴点A 、B 的坐标分别为A (4,2),B (1,5), 根据反比例函数系数的几何意义,当反比例函数与点C 相交时,k=1×2=2最小,设反比例函数与线段AB相交于点(x,﹣x+6)时k值最大,则k=x(﹣x+6)=﹣x2+6x=﹣(x﹣3)2+9,∵1≤x≤4,∴当x=3时,k值最大,此时交点坐标为(3,3),因此,k的取值范围是2≤k≤9.故选:A.10.C11.【解答】解:作DE⊥AB于E点.∵tan∠DBA==,∴BE=5DE,∵△ABC为等腰直角三角形,∴∠A=45°,∴AE=DE.∴BE=5AE,又∵AC=6,∴AB=6.∴AE+BE=5AE+AE=6,∴AE=,∴在等腰直角△ADE中,由勾股定理,得AD=AE=2.故选B.12.略。

2016广西中考数学复习集训(第1讲:实数及其运算)含答案

2016广西中考数学复习集训(第1讲:实数及其运算)含答案

第一单元数与式第1讲实数的有关概念实数的概念及其分类整数和分数统称为有理数,有理数和①______统称为实数,实数有如下分类:实数⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫整数⎩⎪⎨⎪⎧正整数②负整数分数⎩⎪⎨⎪⎧正分数③ 有限小数或④ 小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正无理数负无理数无限不循环小数数轴、绝对值、相反数、倒数(1)ab =1a 、b 互为倒数;(2)0没有倒数;(3)倒数等于本身的数是1或-1.科学记数法和近似数用科学记数法表示较大的正数或较小的正数的方法:(1)将较大正数N(N >1)写成a×10n的形式,其中1≤a<10,指数n 等于原数的整数位数减1;(2)将较小正数N(N <1)写成a×10n的形式,其中1≤a <10,指数n 等于原数中左起第一个非零数前零的个数(含小数点前面的零)的相反数.命题点1 实数的概念及分类(2014·柳州)在下列选项中,属于无理数的是( ) A .2B .πC.32D .-2常见的无理数包括三种情况:(1)含有根号,但开方开不出来;(2)含有π的数;(3)人为构造的且有一定规律的数,且后面要加上省略号,如1.010 010 001….1.(2015·贺州)下列各数是负数的是( )A .0 B.13 C .2.5D .-1 2.在实数12,22,π2中,分数的个数是( )A .3个B .2个C .1个D .0个3.(2015·钦州)下列实数中,无理数是( )A .-1B.12C .5D. 34.(2014·南宁)如果水位升高3 m 时水位变化记作+3 m ,那么水位下降3 m 时水位变化记作( ) A .-3 m B .3 m C .6 m D .-6 m命题点2 数轴、绝对值、相反数、倒数(2015·玉林)12的相反数是( )A .-12B.12C .-2D .2一般地,我们确定一个数的相反数时,只需在这个数前面加上负号即可.如:数a 的相反数是-a.1.(2015·南宁)3的绝对值是( )A .3B .-3 C.13D .-132.(2015·贵港)3的倒数是( )A .3B .-3 C.13D .-133.(2015·天津模拟)如图,在数轴上点A 表示的数可能是( )A .1.5B .-1.5C .-2.6D .2.64.(2015·来宾)-2 015的相反数是________. 命题点3 科学记数法与近似数(2015·南宁)南宁快速公交(简称:BRT)将在今年底开始动工,预计2016年下半年建成并投入试运营,首条BRT 西起南宁火车站,东至南宁东站,全长约为11 300米,其中数据11 300用科学记数法表示为( )A .0.113×105B .1.13×104C .11.3×103D .113×102任何一个大于10的数表示成a ×10n时,确定a 和n 有如下规律:其中a 是整数数位只有一位的数,n是原数的整数数位减去1.如果数含有万、亿这样的数字单位,应先将数还原,再用科学记数法表示.1.(2015·北海)某市户籍人口1 694 000人,则该市户籍人口数据用科学记数法可表示为( )A .1.694×104人B .1.694×105人C .1.694×106人D .1.694×107人2.(2014·玉林)将6.18×10-3化为小数的是( )A .0.000 618B .0.006 18C .0.061 8D .0.6183.(2015·贵港)一种花瓣的花粉颗粒直径约为0.000 006 5米,将数据0.000 006 5用科学记数法表示为________.4.(2015·崇左)据统计,参加“崇左市2015年初中毕业升学考试”的人数用科学记数法表示为1.47×104人,则原来的人数是________人.1.(2015·益阳)下列实数中,是无理数的为( )A. 3B.13 C .0D .-32.(2014·宁波)下列各数中,既不是正数也不是负数的是( )A .0B .-5 C. 3D .23.(2015·柳州)如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到( )A.147.40元 B .143.17元 C .144.23元 D .136.83元4.(2015·崇左)一个物体做左右方向的运动,规定向右运动4 m 记作+4 m ,那么向左运动4 m 记作( )A .-4 mB .4 mC .8 mD .-8 m5.(2014·凉山)在实数5,227,0,π2,36,-1.414,有理数有( ) A .1个B .2个C .3个D .4个6.(2015·河池)-3的绝对值为( )A .-3B .-13C.13D .37.(2014·桂林)2 014的倒数是( )A.12 014B .-12 014C .|2 014|D .-2 0148.(2015·龙岩)数轴上到原点的距离等于1的点所表示的数是( )A .±1B .0C .1D .-19.(2015·杭州)统计显示,2013年底杭州市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为( )A .11.4×104B .1.14×104C .1.14×105D .0.114×10610.(2013·玉林)计算:|-1|=________.11.(2015·玉林)将太阳半径696 000 km 这个数值用科学记数法表示是__________km. 12.(2013·昭通)实数227,7,-8,32,36,π3中的无理数是________.13.某种原子直径为1.2×10-2纳米,把这个数化为小数是________纳米.14.写出一个x 的值,使|x -1|=x -1成立,你写出的x 的值是________. 15.(原创)已知点A 表示的数为3,则与点A 距离5个单位长度的数是________.16.(2015·北京)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( )A .aB .bC .cD .d17.(2014·呼和浩特)实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .ac >bcB .|a -b|=a -bC .-a <-b <cD .-a -c >-b -c参考答案考点解读①无理数②零③负分数④无限循环⑤原点⑥正方向⑦单位长度⑧符号⑨两侧⑩距离○11乘积○121a○13a×10n各个击破例1 B题组训练 1.D 2.C 3.D 4.A例2 A题组训练 1.A 2.C 3.C 4.2 015例3 B题组训练 1.C 2.B 3.6.5×10-6 4.14 700 整合集训1.A 2.A 3.A 4.A 5.D 6.D7.A8.A9.C10.1 11.6.96×10512.7,32,π313.0.01214.答案不唯一,如:2 15.-2或8 16.A 17.D。

2016年天津市河西区中考数学考前集训50题及答案详解

2016年天津市河西区中考数学考前集训50题及答案详解

2016年中考数学考前集训50题1.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 有一个根为0,则m 的值( )A.0B.1或2C.1D.22.已知二次函数)(32为常数m m x x y +-=的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程 032=+-m x x 的两实数根是( )A.x 1=1,x 2=-1B.x 1=1,x 2=2C.x 1=1,x 2=-2D.x 1=1,x 2=33.如图,己知∠POx=1200,OP=4,则点P 的坐标是( ) A.(2,4) B.(-2,4) C.)2,32(- D.)32,2(-4.如图是某射击选手5次射击成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是( )A .7、9B .7、8C .8、9D .8、106.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠C=900时,如图1,测得AC=4;当∠C=1200时,如图2,则AC=( )A.22B.4C.62D.247.如图,在矩形ABCD 中,AB=3,BC=2,点E 为AD 中点,点F 为BC 边上任一点,过点F 分别作BE,CE 的垂线,垂足分别为点G,H,则FG+FH 为( ) A.25 B.1025 C.10103 D.10538.使关于x 的分式方程211=--x k 的解为非负数,且使反比例函数xk y -=3图象过第一、三象限时满足条件的所有整数k 的和为( )A.0B.1C.2D.39.如图,已知双曲线)0(>=k xk y 经过直角三角形OAB 斜边OB 的中点D,与直角边AB 相交于点C.若△OBC 的面积为3,则k 值是( )A.3B.2C.4D.2310.若点A(m,y 1),B(m+1,y 2)都在二次函数y=ax 2+4ax +2(a>0)的图象上,且y 1<y 2,则m 取值范围是( ) A.m>25- B.m ≥-2 C.m<-1 D.m ≤-311.如图,直线333+=x y 与x 轴、y 轴分别相交于A 、B 两点,圆心P 的坐标为(1,0),⊙P 与y 轴相切于点O.若将⊙P 沿x 轴向左移动,当⊙P 与该直线相交时,满足横坐标为整数的点P 的个数是( ) A.3 B.4 C.5 D.612.如图,在Rt △ABC 中,∠ACB=900,AC=BC=2,点P 是AB 的中点,点D,E 是AC,BC 边上的动点,且AD=CE,连接DE.有下列结论:①∠DPE=900;② 四边形PDCE 面积为1;③ 点C 到DE 距离的最大值为22.其中正确个数是( ) A.0 B.1 C.2 D.313.如图,已知在△ABC 中,BC=10,BC 边上的高h=5,点E 在边AB 上,过点E 作EF ∥BC,交AC 边于点F.点D 为BC 上一点,连接DE 、DF.设点E 到BC 的距离为x,则△DEF 的面积S 关于x 的函数图象大致为( )14.如图,一次函数与反比例函数(0)k y x x=>的图象在第一象限交于A 、B 两点,交x 轴于点C,交y 轴于点D ,且12CB BA =.点E 在线段OA 上一点,OE=3EA,若△AEB 的面积为S,则S 与k 之间的关系满足( ) A .S k 27= B .k=3S C .S k 38= D .S k 25=15.已知抛物线y=-(x-1)2+m(m 是常数),点A (x 1,y 1),B (x 2,y 2)在抛物线上,若x 1<1<x 2,x 1+x 2>2,则下列大小比较正确的是( ).A.m>y 1>y 2B.m>y 2>y 1C.y 1>y 2>mD.y 2>y 1>m 16.如图,点P 是半径为1的⊙A 上一点,延长AP 到C ,使PC=AP ,以AC 为对角线作▱ABCD .若AB=3,则平行四边形ABCD 面积的最大值为( )A .2B .23C .3D .3317.在半径为13的⊙O 中,弦AB ∥CD ,弦AB 和CD 的距离为7,若AB=24,则CD 的长为( )A .10B .430C .10或430D .10或216518.已知13+=a ,则12221)11(22+----÷+a a a a a a = . 19.分解因式:x 3﹣2x 2+x= .20.如图,在Rt △ABC 中,∠ACB=90°,∠ABC=25°,将△ABC 绕点C 顺时针旋转至△A ′B ′C ,使得点A ′恰好落在AB 上,则旋转角度为 .21.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,P 是BC 边中点,AP 交BD 于点Q. 则OBOQ 的值为___________.22.如图,直线121-=x y 与x 轴交于点B ,与双曲线)0(>=x xk y 交于点A ,过点B 作x 轴的垂线,与双曲线x k y =交于点C .且AB=AC ,则k 的值为 .23.如图,△ABC 中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE .若BE=9,BC=12,则cosC= .24.已知点P 是半径为1的⊙O 外一点,PA 切⊙O 于点A ,且PA=1,AB 是⊙O 的弦,AB=2,连接PB ,则PB= .27.如图,在钝角△ABC 中,已知∠A 为钝角,边AB,AC 的垂直平分线分别交BC 于点D,E. 若BD 2+CE 2=DE 2,则∠A的度数为 .28.甲、乙两车分别从A,B两地同时相向匀速行驶.当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达A地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C地.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则B,C两地相距千米.29.已知a,b是关于x的方程x2-(2k+1)x+k(k+1)=0的两个实数根,则a+b+ab的最小值是 .30.若关于x的一元二次方程-x2+2ax+2-a=0的一根x1≥1,另一根x2≤-1,则抛物线y=-x2+2ax+2-a的顶点到x轴距离的最小值是.31.如图,在⊙○中,点A在圆内,B、C在圆上,其中OA=7,BC=18,∠A=∠B=600,则tan∠OBC=______.32.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值=33.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为 .34.已知正数a ,b 有如下性质:ab b a 2≥+.当a=b 时,ab b a 2=+,a+b 取得最小值ab 2错误!未找到引用源。

2016广西中考数学复习集训(第3讲:整式)含答案

2016广西中考数学复习集训(第3讲:整式)含答案

第3讲 整式整式的相关概念整式的运算因式分解【易错提示】 因式分解必须分解到每一个多项式不能再分解为止.1.求代数式的值主要用代入法,代入法分为直接代入法、间接代入法和整体代入法.2.整式的运算时不要盲目入手,先观察式子的结构特征,确定解题思路,结合有效的数学思想:整体代入、降次、数形结合、逆向思维等,使解题更加方便快捷.命题点1 整式的运算(2015·南宁)先化简,再求值:(1+x)(1-x)+x(x +2)-1,其中x =12.【思路点拨】 先利用公式进行整式的乘法运算,再进行整式的加减运算,化简后代入求值. 【解答】进行整式的运算时,要先进行整式的乘法运算,再进行合并同类项,结果应为最简的,代入求值时,要注意整体添加括号.1.(2015·钦州)计算(a3)2的结果是( )A.a9 B.a6C.a5 D.a2.计算2xy2+3xy2的结果是( )A.5xy2 B.xy2C.2x2y4 D.x2y43.(2015·玉林)下列运算中,正确的是( )A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b-3ba2=0 D.5a2-4a2=14.(2015·柳州)计算:a·a=________.5.(2015·河池)先化简,再求值:(3-x)(3+x)+(x+1)2.其中x=2.命题点2因式分解(2015·玉林)分解因式:2x2+4x+2=__________.因式分解,首先需观察看有无公因式可提,然后再考虑是否可用公式法分解,直到分解到不能再分解为止.1.(2015·贺州)把多项式4x2y-4xy2-x3分解因式的结果是( )A.4xy(x-y)-x3B.-x(x-2y)2C.x(4xy-4y2-x2)D.-x(-4xy+4y2+x2)2.(2015·北海)下列因式分解正确的是( )A.x2-4=(x+4)(x-4)B.x2+2x+1=x(x+2)+1C.3mx-6my=3m(x-6y)D.2x+4=2(x+2)3.一次课堂练习,小敏同学做了如下4道因式分解题,你认为小敏同学做得不够完整的一题是( ) A.x2-y2=(x+y)(x-y)B.x2-2xy+y2=(x-y)2C.x2y-xy2=xy(x-y)D.x3-x=x(x2-1)4.(2015·南宁)因式分解:ax+ay=________.5.(2015·梧州)因式分解:ax2-4a=________.1.(2015·柳州)在下列单项式中,与2xy是同类项的是( )A.2x2y2 B.3yC.xy D.4x2.(2015·河池)下列计算,正确的是( )A.x3·x4=x12 B.(x3)3=x6C.(3x)2=9x2 D.2x2÷x=x3.(2015·临沂)多项式mx2-m与多项式x2-2x+1的公因式是( )A.x-1 B.x+1C.x2-1 D.(x-1)24.(2015·贵港)下列因式分解错误的是( )A.2a-2b=2(a-b)B.x2-9=(x+3)(x-3)C.a2+4a-4=(a+2)2D.-x2-x+2=-(x-1)(x+2)5.(2015·自贡)为庆祝抗战70周年,我市某楼盘让利于民,决定将原价a元/米2的商品房降价10%销售,降价后的售价为( )A.a-10% B.a·10%C.a(1-10%) D.a(1+10%)6.若3×9m×27m=311,则m的值为( )A.2 B.3C.4 D.57.若(m-n)2=8,(m+n)2=2,则m2+n2=( )A.10 B.6C.5 D.38.(2015·桂林)单项式7a3b2的次数是________.9.(2014·滨州)写出一个运算结果是a6的算式________________________________________________________________________. 10.(2014·株洲)计算:2m2·m8=________.11.(2015·来宾)分解因式:x3-2x2y=________.12.(2015·金华)已知a+b=3,a-b=5,则代数式a2-b2的值是________.13.(2015·株洲)因式分解:x2(x-2)-16(x-2)=____________.14.(2013·遂宁)为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示.按照下面的规律,摆第(n)个图,需用火柴棒的根数为________.15.(2014·柳州模拟)化简:x2(3-x)+x(x2-2x).16.(2015·梧州)先化简,再求值:2x+7+3x-2,其中x=2.17.(2013·河池)先化简,再求值:(x +2)2-(x +1)(x -1),其中x =1.18.(2015·苏州)若a -2b =3,则9-2a +4b 的值为________.19.(2015·东营)分解因式:4+12(x -y)+9(x -y)2=____________.20.(2015·资阳)已知:(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为________.21.(2015·梅州)已知a +b =-2,求代数式(a -1)2+b(2a +b)+2a 的值.参考答案考点解读①乘积 ②字母 ③数字 ④指数的和 ⑤和 ⑥次数最高 ⑦多项式 ⑧相同 ⑨相同 ⑩同类○11系数 ○12不改变 ○13改变 ○14a m +n ○15a mn ○16a n b n ○17a m -n○18系数 ○19指数 ○20相加 ○21ma +mb +mc ○22相加 ○23ma +mb +na +nb ○24指数 ○25相加 ○26a 2-b 2 ○27a 2±2ab +b 2○28乘积 ○29m(a +b +c) ○30(a +b)(a -b) ○31(a±b)2○32提公因式 ○33公式法 各个击破例1 原式=1-x 2+x 2+2x -1=2x. 当x =12时,原式=2×12=1.题组训练 1.B 2.A 3.C 4.a 25.原式=9-x 2+1+2x +x 2=2x +10. 当x =2时,原式=2×2+10=14.例2 2(x +1)2题组训练 1.B 2.D 3.D 4.a(x +y) 5.a(x +2)(x -2) 整合集训1.C 2.C 3.A 4.C 5.C 6.A 7.C 8.5 9.a 2·a 4(答案不唯一,例如还可以是(a 2)3,a 8÷a 2等) 10.2m 10 11.x 2(x -2y) 12.15 13.(x -2)(x +4)(x -4) 14.6n +215.原式=3x 2-x 3+x 3-2x 2=x 2. 16.原式=5x +5.当x =2时,原式=5×2+5=15.17.原式=x 2+4x +4-x 2+1=4x +5. 当x =1时,原式=4×1+5=9. 18.319.(3x -3y +2)220.1221.原式=a 2-2a +1+2ab +b 2+2a=(a+b)2+1. 把a+b=-2代入得:原式=2+1=3.。

2016届中考数学真题模拟集训:专题03+因式分解试题(新人教版含解析)(2年中考1年模拟)

2016届中考数学真题模拟集训:专题03+因式分解试题(新人教版含解析)(2年中考1年模拟)

专题03 因式分解☞2年中考【2015年题组】 1.(2015北海)下列因式分解正确的是( )A .24(4)(4)x x x -=+-B .221(2)1x x x x ++=++C .363(6)mx my m x y -=-D .242(2)x x +=+ 【答案】D .考点:1.因式分解-运用公式法;2.因式分解-提公因式法.2.(2015贺州)把多项式22344x y xy x --分解因式的结果是( )A .34()xy x y x --B .2(2)x x y --C .22(44)x xy y x -- D .22(44)x xy y x --++ 【答案】B . 【解析】试题分析:原式=22(44)x x xy y --+=2(2)x x y --,故选B .考点:提公因式法与公式法的综合运用.3.(2015宜宾)把代数式3231212x x x -+分解因式,结果正确的是( )A .23(44)x x x -+B .23(4)x x -C .3(2)(2)x x x +-D .23(2)x x -【答案】D . 【解析】试题分析:原式=23(44)x x x -+=23(2)x x -,故选D . 考点:提公因式法与公式法的综合运用. 4.(2015毕节)下列因式分解正确的是( ) A .4322269(69)a b a b a b a b a a -+=-+ B .2211()42x x x -+=-C .2224(2)x x x -+=- D . 224(4)(4)x y x y x y -=+- 【答案】B .【解析】试题分析:A .4322269(69)a b a b a b a b a a -+=-+=22(3)a b a -,错误;B .2211()42x x x -+=-,正确;C .224x x -+不能分解,错误;D .224(2)(2)x y x y x y -=+-,错误; 故选B .考点:1.因式分解-运用公式法;2.因式分解-提公因式法.5.(2015临沂)多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x- D .()21x -【答案】A .考点:公因式.6.(2015枣庄)如图,边长为a ,b 的矩形的周长为14,面积为10,则22a b ab +的值为( )A .140B .70C .35D .24 【答案】B . 【解析】试题分析:根据题意得:a+b=14÷2=7,ab=10,∴22a b ab +=ab (a+b )=10×7=70;故选B . 考点:因式分解的应用. 7.(2015烟台)下列等式不一定成立的是( )A 0)b =≠B .3521a a a -∙= C .224(2)(2)a b a b a b -=+- D .326(2)4a a -= 【答案】A .考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.因式分解-运用公式法;4.负整数指数幂. 8.(2015杭州)下列各式的变形中,正确的是( )A .22()()x y x y x y ---+=- B .11x x xx --= C .2243(2)1x x x -+=-+ D .21()1x x x x ÷+=+【答案】A .【解析】试题分析:A .22()()x y x y x y ---+=-,正确;B .211x x x x --=,错误; C .2243(2)1x x x -+=--,错误; D .21()1x x x x ÷+=+,错误;故选A .考点:1.平方差公式;2.整式的除法;3.因式分解-十字相乘法等;4.分式的加减法. 9.(2015南京)分解因式()(4)a b a b ab --+的结果是 .【答案】2(2)a b -.【解析】试题分析:()(4)a b a b ab --+=2254a ab b ab -++=2244a ab b -+=2(2)a b -.故答案为:2(2)a b -.考点:因式分解-运用公式法.10.(2015巴中)分解因式:2242a a -+= .【答案】22(1)a -.【解析】试题分析:原式=22(21)a a -+=22(1)a -.故答案为:22(1)a -.考点:提公因式法与公式法的综合运用.11.(2015绵阳)在实数范围内因式分解:23x y y -= . 【答案】)3)(3(-+x x y . 【解析】试题分析:原式=2(3)y x -=)3)(3(-+x x y ,故答案为:)3)(3(-+x x y .考点:实数范围内分解因式.12.(2015内江)已知实数a ,b 满足:211a a +=,211b b +=,则2015a b -|= .【答案】1.考点:1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题. 13.(2015北京市)分解因式:325105x x x -+= .【答案】25(1)x x -.【解析】试题分析:原式=25(21)x x x -+=25(1)x x -.故答案为:25(1)x x -. 考点:提公因式法与公式法的综合运用.14.(2015甘南州)已知210a a --=,则322015a a a --+= . 【答案】2015.【解析】 试题分析:∵210a a --=,∴21a a -=,∴322015a a a --+=2()+2015a a a a --=2015a a -+=2015,故答案为:2015.考点:1.因式分解的应用;2.条件求值;3.代数式求值;4.综合题.15.(2015株洲)因式分解:2(2)16(2)x x x ---= .【答案】(2)(4)(4)x x x -+-. 【解析】试题分析:原式=2(2)(16)x x --=(2)(4)(4)x x x -+-.故答案为:(2)(4)(4)x x x -+-.考点:提公因式法与公式法的综合运用.16.(2015东营)分解因式:2412()9()x y x y +-+-= .【答案】2(332)x y -+.考点:因式分解-运用公式法.17.(2015菏泽)若2(3)()x x m x x n++=-+对x恒成立,则n= .【答案】4.【解析】试题分析:∵2(3)()x x m x x n++=-+,∴22(3)3x x m x n x n++=+--,故31n-=,解得:n=4.故答案为:4.考点:因式分解-十字相乘法等.18.(2015重庆市)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.【答案】(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一),能;(2)y=2x(1≤x≤4,x为自然数).考点:1.因式分解的应用;2.规律型:数字的变化类;3.新定义.【2014年题组】1.(2014年常德中考)下面分解因式正确的是()A.x2+2x+1=x(x+2)+1 B. (x2﹣4)x=x3﹣4xC. ax+bx=(a+b)xD. m2﹣2mn+n2=(m+n)2【答案】C.【解析】试题分析:A、x2+2x+1=x(x+2)+1,不是因式分解,故错误;B、(x2﹣4)x=x3﹣4x,不是因式分解,故错误;C、ax+bx=(a+b)x,是因式分解,故正确;D、m2﹣2mn+n2=(m ﹣n)2,故错误.故选C.考点:1.因式分解-运用公式法;2.因式分解-提公因式法.2.(2014年海南中考)下列式子从左到右变形是因式分解的是()A.()2a4a21a a421+-=+-B.()()2a4a21a3a7+-=-+C.()()2a3a7a4a21-+=+-D.()22a4a21a225+-=+-【答案】B.考点:因式分解的意义.3.(2014年无锡中考)分解因式:x3﹣4x= .【答案】()() x x2x2+-.【解析】试题分析:()()() 32x4x x x4x x2x2 -=-=+-.考点:提公因式法和应用公式法因式分解.4.(2014年株洲中考)分解因式:x2+3x(x﹣3)﹣9=【答案】(x﹣3)(4x+3).【解析】试题分析:x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).考点:因式分解.5.(2014年徐州中考)若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.【答案】﹣2.【解析】试题分析:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.考点:1.求代数式的值;2.提公因式法因式分解;3.整体思想的应用.6.(2014年眉山中考)分解因式:225xy x-=__________________.【答案】x(y+5)(y﹣5).【解析】试题分析:原式=x(y2﹣25)=x(y+5)(y﹣5).考点:提公因式法与公式法的综合运用.7.(2014年绍兴中考)分解因式:2a a-= .【答案】() a a1-.【解析】试题分析:() 2a a a a1-=-.考点:提公因式法因式分解.8.(2014年台州中考)因式分解3a 4a -的结果是 .【答案】()()a a 2a 2+-.考点:提公因式法和应用公式法因式分解.9.(2014年泸州中考)分解因式:23a 6a 3++= .【答案】()23a 1+.【解析】 试题分析:()()2223a 6a 33a 2a 13a 1++=++=+.考点:提公因式法和应用公式法因式分解.10.(2014年北海中考)因式分解:x2y ﹣2xy2= . 【答案】()xy x 2y -.【解析】 试题分析:()22x y 2xy xy x 2y -=-.考点:提公因式法因式分解. ☞考点归纳归纳 1:因式分解的有关概念 基础知识归纳:因式分解:把一个多项式化成几个整式的积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 注意问题归纳:符合因式分解的等式左边是多项式,右边是整式积的形式. 2.因式分解与整式乘法是互逆运算.【例1】下列式子从左到右变形是因式分解的是( )()2a 4a 21a a 421+-=+- B .()()2a 4a 21a 3a 7+-=-+ C .()()2a 3a 7a 4a 21-+=+- D .()22a 4a 21a 225+-=+-【答案】B .考点:因式分解的有关概念.归纳2:提取公因式法分解因式基础知识归纳:将多项式各项中的公因式提出来这个方法是提公因式法,公因式系数是各项系数的最大公约数,相同字母取最低次幂.提取公因式法:ma+mb-mc=m(a+b-c)注意问题归纳:提公因式要注意系数;要注意查找相同字母,要提净.【例2】若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.【答案】﹣2.考点:因式分解-提公因式法.【例3】因式分解:2a3ab+=.【答案】() a a3+.【解析】() 2a3ab a a3+=+.考点:因式分解-提公因式法.归纳3:运用公式法分解因式基础知识归纳:运用平方差公式:a2-b2=(a+b)(a-b);运用完全平方公式:a2±2ab+b2=(a±b)2.注意问题归纳:首先要看是否有公因式,有公因式必须要先提公因式,然后才能运用公式,注意公式的特点,要选项择合适的方法进行因式分解.【例4】3x2y-27y= ;【答案】3y(x+3)(x-3).【解析】原式=3y(x2-9)=3y(x+3)(x-3).考点:提公因式法与公式法的综合运用.【例5】将多项式m2n-2mn+n因式分解的结果是.【答案】n(m-1)2.【解析】m2n-2mn+n,=n(m2-2m+1),=n(m-1)2.考点:提公因式法与公式法的综合运用.归纳4:综合运用多种方法分解因式基础知识归纳:因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.注意问题归纳:可以提取公因式的要先提取公因式,注意一定要分解彻底.【例6】分解因式:x2+3x(x﹣3)﹣9=【答案】(x﹣3)(4x+3).考点:因式分解-分组分解法.【例】7分解因式:x3-5x2+6x=【答案】x(x-3)(x-2).【解析】x3-5x2+6x=x(x2-5x+6)=x(x-3)(x-2).考点:因式分解-十字相乘法.☞1年模拟1.(2015届四川省成都市外国语学校中考直升模拟)若多项式x4+mx3+nx-16含有因式(x-2)和(x-1),则mn的值是()A.100 B.0 C.-100 D.50【答案】C.【解析】试题分析:设x4+mx3+nx-16=(x-1)(x-2)(x2+ax+b),则x4+mx3+nx-16=x4+(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b.比较系数得:a-3=m,b-3a+2=0,2a-3b=n,2b=-16,解得:a=-2,b=-8,m=-5,n=20,所以mn=-5×20=-100.故选C.考点:因式分解的意义.2.(2015届广东省佛山市初中毕业班综合测试)因式分解2x2-8的结果是()A.(2x+4)(x-4)B.(x+2)(x-2)C.2 (x+2)(x-2)D.2(x+4)(x-4)【答案】C.【解析】试题分析:2x2-8=2(x2-4)2(x+2)(x-2).故选C.考点:提公因式法与公式法的综合运用.3.(2015届河北省中考模拟二)现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016 B.1.1111111×1027 C.1.111111×1056 D.1.1111111×1017【答案】D.考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数.4.(2014-2015学年山东省潍坊市诸城市实验中学中考三模)分解因式:2x2﹣12x+32= .【答案】2(x﹣8)(x+2).【解析】试题分析:原式提取2,再利用十字相乘法分解,原式=2(x2﹣6x+16)=2(x ﹣8)(x+2).故答案为:2(x ﹣8)(x+2).考点:提公因式法与公式法的综合运用.5.(2015届北京市平谷区中考二模)把a ﹣4ab2分解因式的结果是 .【答案】a (1+2b )(1﹣2b ).【解析】试题分析:先提取公因式,再利用平方差公式法,进而分解因式得出即可.考点:提公因式法与公式法的综合运用.6.(2015届北京市门头沟区中考二模)分解因式:29ax a -= . 【答案】(3)(3)a x x -+.【解析】试题分析:29ax a - =2(9)a x -=(3)(3)a x x -+.故答案为:(3)(3)a x x -+. 考点:提公因式法与公式法的综合运用.7.(2015届四川省成都市外国语学校中考直升模拟)若a2-3a+1=0,则3a3-8a2+a+231a += .【答案】2.考点:1.因式分解的应用;2.条件求值.8.(2015届安徽省安庆市中考二模)因式分解:﹣3x2+3x ﹣= .【答案】﹣3(x ﹣21)2.【解析】试题分析:原式=﹣3(x2﹣x+41)=﹣3(x ﹣21)2.故答案为:﹣3(x ﹣21)2. 考点:提公因式法与公式法的综合运用.9.(2015届山东省威海市乳山市中考一模)分解因式:a3b-2a2b2+ab3= .【答案】ab (a-b )2.【解析】试题解析:a3b-2a2b2+ab3=ab (a2-2ab+b2)=ab (a-b )2.故答案为:ab (a-b )2.考点:提公因式法与公式法的综合运用.10.(2015届山东省济南市平阴县中考二模)分解因式:3ax2-3ay2= .【答案】3a(x+y)(x-y).【解析】试题分析:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).故答案为:3a(x+y)(x-y).考点:提公因式法与公式法的综合运用.11.(2015届山东省聊城市中考模拟)因式分解:4a3-12a2+9a= .【答案】a(2a-3)2.【解析】试题分析:4a3-12a2+9a=a(4a2-12a+9)=a(2a-3)2.故答案为:a(2a-3)2.考点:提公因式法与公式法的综合运用.12.(2015届山东省潍坊市昌乐县中考一模)把3x3-6x2y+3xy2分解因式的结果是.【答案】3x(x-y)2.考点:提公因式法和公式法的综合运用.13.(2015届广东省广州市中考模拟)分解因式:x2+xy= .【答案】x(x+y).【解析】试题分析:x2+xy=x(x+y).故答案为:x(x+y).考点:因式分解-提公因式法.14.(2015届广东省深圳市龙华新区中考二模)因式分解:2a3-8a= .【答案】2a(a+2)(a-2).【解析】试题分析:2a3-8a=2a(a2-4)=2a(a+2)(a-2).故答案为:2a(a+2)(a-2).考点:提公因式法与公式法的综合运用.15.(2015届江苏省南京市建邺区中考一模)若a-b=3,ab=2,则a2b-ab2= .【答案】6.【解析】试题分析:∵a-b=3,ab=2,∴a2b-ab2=ab(a-b)=2×3=6.故答案为:6.考点:因式分解-提公因式法.16.(2015届河北省中考模拟二)若M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,则M+N-2O的值为.【答案】4.【解析】试题分析:∵M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,∴M+N-2O=(2015-1985)2-2(2015-1985)×(2014-1986)+(2014-1986)2=[(2015-1985)-(2014-1986)]2=4.故答案为:4.考点:因式分解-运用公式法.17.(2015届浙江省宁波市江东区4月中考模拟)分解因式:a3﹣9a= .【答案】a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.18.(2015届湖北省黄石市6月中考模拟)分解因式:xy2﹣2xy+x=__________.【答案】x(y-1)2.【解析】试题分析:先提公因式x,再对剩余项利用完全平方公式分解因式.即xy2-2xy+x=x(y2-2y+1)=x(y-1)2.故答案为:x(y-1)2.考点:提公因式法与公式法的综合运用.19.(2015届浙江省宁波市江东区4月中考模拟)如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)这个几何体模型的名称是.(2)如图2是根据a,b,h的取值画出的几何体的主视图和俯视图(图中实线表示的长方形),请在网格中画出该几何体的左视图.(3)若h=a+b,且a,b满足14a2+b2﹣a﹣6b+10=0,求该几何体的表面积.【答案】(1)长方体或底面为长方形的直棱柱;(2)图形略;(3)62.考点:1.因式分解的应用;2.由三视图判断几何体;3.作图-三视图.。

【6章】2016年中考数学基础复习配套检测题及答案

【6章】2016年中考数学基础复习配套检测题及答案

【6章】2016年中考数学基础复习配套检测题及答案目录第一章数与式 (2)第1讲实数 (2)第2讲代数式 (4)第3讲整式与分式 (7)第4讲二次根式 (12)第一章基础题强化提高测试 (20)第二章方程与不等式 (20)第1讲方程与方程组 (20)第2讲不等式与不等式组 (28)第二章基础题强化提高测试 (37)第三章函数 (38)第1讲函数与平面直角坐标系 (38)第2讲一次函数 (42)第3讲反比例函数 (45)第4讲二次函数 (48)第三章基础题强化提高测试 (60)第四章图形的认识 (61)第1讲角、相交线和平行线 (61)第2讲三角形 (65)第3讲四边形与多边形 (71)第4讲圆 (78)第5讲尺规作图 (86)第四章基础题强化提高测试 (110)第五章图形与变换 (111)第1讲图形的轴对称、平移与旋转 (111)第2讲图形的相似 (114)第3讲解直角三角形 (118)第4讲视图与投影 (120)第五章基础题强化提高测试 (131)第六章统计与概率 (133)第1讲抽样与数据分析 (133)第2讲事件的概率 (137)第六章基础题强化提高测试 (145)第一章 数与式第1讲 实数A 级 基础题1.(2015年广东梅州)12的相反数是( )A .2B .-2 C.12 D .-122.(2015年广东佛山)-3的倒数是( )A .-13 B.13C .3D .-33.(2015年广东广州)四个数-3.14,0,1,2中为负数的是( ) A .-3.14 B .0 C .1 D .24.(2015年内蒙古呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .-3 ℃B .15 ℃C .-10 ℃D .-1 ℃5.(2015年广东汕尾)今年五月份香港举办“保普选反暴力”大联盟大型签名行动,9天共收集超121万个签名,将121万用科学记数法表示为( )A .1.21×106B .12.1×105C .0.121×107D .1.21×1056.(2015年湖南永州)在数轴上表示数-1和2014的两点分别为A 和B ,则A ,B 两点间的距离为( )A .2013B .2014C .2015D .20167.(2015年黑龙江绥化)在实数0,π,227, 2 ,-9中,无理数的个数有( )A .1个B .2个C .3个D .4个 8.(2015年山东威海)已知实数a ,b 在数轴上的位置如图1-1-2,下列结论错误的是( )图1-1-2A.||a <1<||b B .1 <-a <b C .1 < ||a <b D .-b <a <-1 9.(2015年湖北武汉)计算:-10+(+6)=________.10.(2015年吉林长春)比较大小:2__________1.(填“>”“=”或“<”) 11.(2015年江苏镇江)已知一个数的绝对值是4,则这个数是__________. 12.计算:(1)(2015年广东梅州)计算:8+|2 2-3|-⎝⎛⎭⎫13-1-(2015+2)°. (2)(2015年广东佛山)计算:9+20150+(-2)3+2 3×sin60°.B 级 中等题13.(2015年山东青岛)某种计算机完成一次基本运算的时间约为0.000 000 001 s ,将0.000 000 001 s 用科学记数法表示为( )A .0.1×10-8 sB .0.1×10-9 sC .1×10-8 sD .1×10-9 s 14.(2015年山东菏泽)如图1-1-3,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )图1-1-3A .点MB .点NC .点PD .点Q 15.(2015年重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成.在图1-1-4中,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是( )图1-1-4A .32B .29C .28D .2616.(2015年贵州遵义)按一定规律排列的一列数依次为:45,48,411,414,…,按此规律,这列数中的第10个数与第16个数的积是__________.C 级 拔尖题17.(2015年湖南娄底)下列数据是按一定规律排列的(如图1-1-5),则第7行的第一个数为__________.图1-1-5第2讲 代数式A 级 基础题1.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.122.(2015年吉林)购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需要钱数为( )A .(a +b )元B .3(a +b )元C .(3a +b )元D .(a +3b )元3.(2015年四川自贡)为庆祝抗战胜利70周年,我市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为( )A .a -10%元/米2B .a ·10%元/米2C .a (1-10%)元/米2D .a (1+10%)元/米24.(2015年福建厦门)某商店举办促销活动,促销的方法是将原价x 元的衣服以⎝⎛⎭⎫45x -10元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.(2015年海南)某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元 6.(2015年重庆)如图1-2-4所示的图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第④个图形中小圆圈的个数为( )图1-2-4A .21个B .24个C .27个D .30个7.(2015年湖南株洲)如果手机通话每分钟收费m 元,那么通话a 分钟,收费________元.8.(2014年江苏苏州)若a -2b =3,则9-2a +4b 的值为________. 9.(2015年湖南益阳)如图1-2-5是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有________根小棒.图1-2-510.(2015年四川内江)如图1-2-6是由火柴棒搭成的几何图案,则第n 个图案中有________根火柴棒.(用含n 的代数式表示)图1-2-611.已知a =3,b =|-2|,c =12,求代数式a 2+b -4c 的值.12.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,求||a +b 2m 2+1+4m -3cd 的值.B 级 中等题13.按如图1-2-7所示的程序计算,若开始输入n 的值为1,则最后输出的结果是( )图1-2-7A .3B .15C .42D .63 14.(2015年黑龙江绥化)如图1-2-8,填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a +b +c =________.图1-2-815.(2015年江苏淮安)将连续正整数按如下规律排列(如图1-2-9):图1-2-9若正整数565位于第a 行,第b 列,则a +b =________. 16.(2014年四川达州)《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图1-2-10.图1-2-10由图易得:12+122+123+…+12n =________.C 级 拔尖题17.(2014年安徽)观察下列关于自然数的等式: 32-4×12=5;① 52-4×22=9;② 72-4×32=13;③ ……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.(列代数式)第3讲 整式与分式 第1课时 整式A 级 基础题1.(2015年浙江台州)单项式2a 的系数是( ) A .2 B .2a C .1 D .a2.(2015年广东珠海)计算-3a 2×a 3的结果为( ) A .-3a 5 B .3a 6 C .-3a 6 D .3a 53.(2015年四川巴中)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1 4.(2015年湖南邵阳)已知a +b =3,ab =2,则a 2+b 2的值为( ) A .3 B .4 C .5 D .65.(2015年广东佛山)若(x +2)(x -1)=x 4+mx +n ,则m +n =( ) A .1 B .-2 C .-1 D .26.(2015年广东深圳)下列说法错误的是( )A .a ·a =a 2B .2a +a =3aC .(a 3)2=a 5D .a 3÷a -1=a 47.(2015年浙江金华)已知a +b =3,a -b =5,则代数式a 2-b 2=________. 8.(2015年广东珠海)填空:x 2+10x +________=(x +________)2. 9.(2015年四川绵阳)计算:a (a 2÷a )-a 2=________.10.(2015年山东菏泽)若x 2+x +m =(x -3)(x +n )对x 恒成立,则n =__________. 11.(2015年广东梅州)已知a +b =-2,求代数式(a -1)2+b (2a +b )+2a 的值.12.(2015年北京)已知2a 2+3a -6=0.求代数式3a ()2a +1-()2a +1()2a -1的值.B 级 中等题13.(2015年山东临沂)观察下列关于x 的单项式,探究其规律: x,3x 2,5x 3,7x 4,9x 5,11x 6,…,按照上述规律,第2015个单项式是( ) A .2015x 2015 B .4029x 2014 C .4029x 2015 D .4031x 201514.(2015年安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是____________.15.(2014年浙江宁波)一个大正方形和四个全等的小正方形按图1-3-2(1)(2)两种方式摆放,则图(2)的大正方形中未被小正方形覆盖部分的面积是________.(用a,b的代数式表示)图1-3-216.(2015年河北)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1(1)求所捂住的二次三项式;(2)若x=6+1,求所捂住的二次三项式的值.C级拔尖题17.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问:用这三种方案调价的结果是否一样,最后是不是都恢复了原价?第2课时 因式分解A 级 基础题1.(2014年海南)下列式子从左到右变形是因式分解的是( ) A .a 2+4a -21=a (a +4)-21 B .a 2+4a -21=(a -3)(a +7) C .(a -3)(a +7)=a 2+4a -21 D .a 2+4a -21=(a +2)2-25 2.(2015年湖北武汉)把a 2-2a 分解因式,正确的是( ) A .a (a -2) B .a (a +2) C .a (a 2-2) D .a (2-a ) 3.(2014年辽宁葫芦岛)计算:552-152=( ) A .40 B .1600 C .2400 D .28004.(2015年浙江台州)把多项式2x 2-8分解因式,结果正确的是( )A .2()x 2-8 B .2()x -22C .2()x +2()x -2D .2x ⎝⎛⎭⎫x -4x 5.(2015年贵州毕节)下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9)B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2 D .4x 2-y 2=(4x +y )(4x -y )6.(2015年广西贺州)把多项式4x 2y -4xy 2-x 3分解因式的结果是( ) A .4xy (x -y )-x 3 B .-x (x -2y )2C .x (4xy -4y 2-x 2)D .-x (-4xy +4y 2+x 2) 7.(2015年山东枣庄)如图1-3-3,边长为a ,b 的矩形的周长为14,面积为10,则a 2b+ab 2的值为( )图1-3-3A .140B .70C .35D .248.(2015年广东梅州)分解因式:m 3-m =________. 9.(2015年广东广州)分解因式:2mx -6my =________. 10.(2015年广东深圳)分解因式:3a 2-3b 2________.11.(2015年山东东营)分解因式:4+12(x -y )+9(x -y )2=________. 12.已知ab =-3,a +b =2.求代数式a 3b +ab 3的值.B 级 中等题13.(2015年湖南衡阳)已知a +b =3,a -b =-1,则a 2-b 2的值为________. 14.(2015年湖北孝感)分解因式:(a -b )2-4b 2__________. 15.(2015年甘肃平凉)分解因式:x 3y -2x 2y +xy =________.16.(2015年湖南株洲)分解因式:x 2()x -2-16()x -2=____________________.C 级 拔尖题17.分解因式:x 2-y 2-3x -3y .第3课时 分式A 级 基础题1.(2015年浙江丽水)分式-11-x可变形为( )A .-1x -1 B.11+x C .-11+x D.1x -12.(2015年浙江金华)要使分式xx +4有意义,则x 的取值应满足( )A .x =-4B .x ≠4C .x >-4D .x ≠-43.(2015年湖南)若分式3-xx +1的值为0,则x 的值为( )A .3或-1B .0C .3D .-14.(2014年内蒙古赤峰)化简a 2b -ab 2b -a的结果正确的是( )A .abB .-abC .a 2-b 2D .b 2-a 25.(2015年山东济南)化简 m 2m -3-9m -3 的结果是( )A .m +3B .m -3 C.m -3m +3 D.m +3m -36.(2015年湖南益阳)下列等式成立的是( ) A.1a +2b =3a +b B.22a +b =1a +b C.ab ab -b 2=a a -b D.a -a +b =-a a +b7.(2015年广东珠海)若分式3x -5有意义,则x 应满足________.8.(2015年江苏镇江)当x =__________时,分式x +1x -2的值为0.9.(2015年吉林)计算:x x -y ·x 2-y2x=________.10.(2015年贵州六盘水)已知c 4=b 5=a6≠0,则b +c a 的值为________.11.(2015年广东佛山)计算:2x -2-8x 2-4.12.(2015年广东广州)已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.B 级 中等题 13.(2015年山东临沂)计算:a a +2-4a 2+2a = ______________.14.(2015年湖南邵阳)先化简⎝⎛⎭⎫1x -2-2x ·x 2-2x 2,再从0,1,2中选取一个合适的x 的值代入求值.15.(2015年湖北襄阳)先化简,再求值:⎝ ⎛⎭⎪⎫5x +3yx 2-y 2+2x y 2-x 2÷1x 2y -xy 2,其中x =3+2,y =3- 2.16.(2015年贵州黔东南州)先化简,再求值:m -33m 2-6m ÷⎝⎛⎭⎫m +2-5m -2,其中m 是方程x 2+2x -3=0的根.C 级 拔尖题 17.(2015年广东梅州)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a=______,b =______;计算:m =11×3+13×5+15×7+…+119×21=________.第4讲 二次根式A 级 基础题1.(2015年重庆)计算3 2-2的值是( ) A .2 B .3 C. 2 D .2 22.(2015年安徽)计算8×2的结果是( ) A.10 B .4 C. 6 D .23.(2015年江苏无锡)函数y =x -4中自变量x 的取值范围是( ) A .x >4 B .x ≥4 C .x ≤4 D .x ≠44.(2015年四川凉山州)下列根式中,不能与3合并的是( )A.13B.33C.23D.125.(2015年江苏淮安)下列式子为最简二次根式的是( )A. 3B. 4C.8D.126.(2015年湖北潜江)下列各式计算正确的是( ) A.2+3= 5 B .4 3-3 3=1 C .2 3×3 3=6 3 D.27÷3=37.(2015年湖南衡阳)计算8-2=________.8.(2015年江苏南京)计算5×153的结果是________.9.(2015年江苏泰州)计算:18-2 12等于________.10.(2015年湖北荆门)当1<a <2时,代数式()a -22+||1-a 的值是________.11.(2014年广东佛山)计算:8÷2-1+327×[2+(-2)3].12.(2014年湖北荆门)计算:24×13-4×18×(1-2)0.B 级 中等题13.(2014年安徽)设n 为正整数,且n <65<n +1,则n 的值为( ) A .5 B .6 C .7 D .814.(2014年山东济宁)如果ab>0,a+b<0,那么下面各式:①ab=ab;②ab·ba=1;③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③15.(2015年四川攀枝花)若y=x-3+3-x+2,则x y=________.16.(2014年山东德州)若y=x-4+4-x2-2,则(x+y)y=________.C级拔尖题17.(2015年山西)阅读与计算:阅读以下材料,并完成相应的任务.斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰好是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用:斐波那契数列中的第n个数可以用15⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.第一章基础题强化提高测试时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分) 1.-15的相反数是( )A .15B .-15 C.115 D .-1152.用科学记数法表示316 000 000为( )A .3.16×107B .3.16×108C .31.6×107D .31.6×106 3.下列二次根式中的最简二次根式是( )A.30B.12C.8D.124.下列运算正确的是( )A .a 2+a 3=a 5 B.()-a 32=a 6 C .ab 2·3a 2b =3a 2b 2 D .-2a 6÷a 2=-2a 3 5.下列计算正确的是( ) A .ab ·ab =2ab B .(2a )3=2a 3C .3 a -a =3(a ≥0) D.a ·b =ab (a ≥0,b ≥0) 6.下列运算正确的是( )A.2+3= 5 B .3x 2y -x 2y =3 C.a +b 2a +b=a +b D.()a 2b 3=a 6b 3 二、填空题(本大题共4小题,每小题5分,共20分)7.若分式1x -5有意义,则实数x 的取值范围是________.8.81的平方根是________.9.若a 2-3b =5,则6b -2a 2+2015=________. 10.化简:2(8-2)=________.三、解答题(本大题共5小题,每小题10分,共50分) 11.分解因式:m 3n -4mn .12.化简:1x +3+6x 2-9.13.先化简,再求值:(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =-2,b =1.14.计算:|-3|+2sin45°+tan60°-⎝⎛⎭⎫-13-1-12+(π-3)0.15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab ,其中a ,b 满足a +1+|b -3|=0.第一部分 中考基础复习第一章 数与式 第1讲 实数【演练·巩固提升】1.D 2.A 3.A 4.C 5.A 6.C 7.B 8.A 9.-4 10.> 11.±412.解:(1)原式=2 2+3-2 2-3-1=-1.(2)原式=3+1-8+2 3×32=-4+3=-1.13.D 14.C 15.B 16.110017.22 解析:由排列的规律可得,第n -1行结束的时候排了1+2+3+…+n -1=12n (n -1)个数.所以第n 行的第1个数为12n (n -1)+1.所以n =7时,第7行的第1个数为22.第2讲 代数式【演练·巩固提升】1.B 2.D 3.C 4.B 5.A6.B 7.am 8.3 9.5n +1 10.2n (n +1)11.解:当a =3,b =|-2|=2,c =12时,a 2+b -4c =3+2-2=3.12.解:根据题意,可知:a +b =0,① cd =1,②|m |=2,即m =±2.③把①②代入原式,可得原式=0+4m -3×1=4m -3. 当m =2时,4m -3=2×4-3=5;当m =-2时,4m -3=-2×4-3=-11. 所以,原式的值是5或-11.13.C 解析:把n =1代入,得n (n +1)=2<15,把n =2代入,得n (n +1)=6<15,把n =6代入,得n (n +1)=42>15,则最后输出的结果为42.14.110 解析:根据左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积加上1的和,可得6+4=a,6+3=c ,ac +1=b ,可得a =10,c =9,b =91,所以a +b +c =10+9+91=110.15.147 解析:∵565÷4=141……1,∴正整数565位于第142行,即a =142.∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,∴正整数565位于第五列,即b =5.∴a +b =142+5=147.16.2n -12n 解析:取n 天后剩下12n ,所以n 天共取走1-12n ,即12+122+123+…+12n =1-12n=2n-12n .17.解:(1)4 17(2)第n 个等式为(2n +1)2-4n 2=4n +1. 证明如下:左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1=右边. ∴(2n +1)2-4n 2=4n +1.第3讲 整式与分式第1课时 整式【演练·巩固提升】1.A 2.A 3.A 4.C 5.C 6.C 7.15 8.25 5 9.0 10.411.解:原式=a 2-2a +1+2ab +b 2+2a =()a +b 2+1, 当a +b =-2时,()a +b 2+1=()-22+1=3. 12.解:原式=6a 2+3a -(4a 2-1) =6a 2-4a 2+3a +1 =2a 2+3a +1.因为2a 2+3a -6=0,所以2a 2+3a =6,所以原式=7.13.C 解析:先看x 的指数,第一个指数是1,第二个指数是2,第2015个单项式的指数是2015;再看系数,系数是连续的奇数,所以第2015个奇数为4029,所以第2015个单项式为4029x 2015.14.xy =z 解析:∵a m a n =a m +n ,21×22=23,22×23=25,23×25=28,25×28=213,故答案为xy =z .15.ab 解析:设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得⎩⎪⎨⎪⎧x 1+2x 2=a ,x 1-2x 2=b ,解得⎩⎨⎧x 1=a +b 2,x 2=a -b 4.图②的大正方形中未被小正方形覆盖部分的面积=⎝⎛⎭⎫a +b 22-4×⎝⎛⎭⎫a -b 42=ab . 16.解:(1)设所捂的二次三项式为A ,则A =x 2-5x +1+3x =x 2-2x +1.(2)若x =6+1,则A =()x -12=()6+1-12=6.17.解:方案(1)的调价结果为(1+10%)(1-10%)a =0.99a ; 方案(2)的调价结果为(1-10%)(1+10%)a =0.99a ; 方案(3)的调价结果为(1+20%)(1-20%)a =0.96a .由此可以得到方案(1)(2)的调价结果是一样的,方案(3)的调价结果与(1)(2)不一样.最后都没有恢复原价.第2课时 因式分解【演练·巩固提升】1.B 2.A 3.D 4.C 5.B 6.B 7.B 8.m ()m +1()m -1 9.2m ()x -3y 10.3()a +b ()a -b 11.(3x -3y +2)212.解:∵a +b =2,∴(a +b )2=4.∴a 2+2ab +b 2=4. 又∵ab =-3,a 2+2ab +b 2=4,∴a 2+b 2=10. ∴a 3b +ab 3=ab (a 2+b 2)=-30.13.-3 14.(a +b )(a -3b ) 15.xy (x -1)2 16.(x -2)(x -4)(x +4)17.解:原式=(x +y )(x -y )-3(x +y ) =(x +y )(x -y -3)第3课时 分式【演练·巩固提升】1.D 2.D 3.C 4.B 5.A 6.C 7.x ≠5 8.-1 9.x +y10.32 解析:由题意,可设a =6k ,b =5k ,c =4k ,则b +c a =5k +4k 6k =32. 11.解:原式=2()x +2-8()x +2()x -2=2()x -2()x +2()x -2=2x +2.12.解:(1)A =x 2+2x +1x 2-1-x x -1=()x +12()x +1()x -1-x x -1=x +1x -1-x x -1=1x -1.(2)解x -1≥0,得x ≥1.解x -3<0,得x <3.∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x <3. ∵x 为整数,∴x =1,2.当x =1时,分式无意义;当x =2时,A =12-1=1.13.a -2a 解析:原式=a a +2-4a (a +2)=a 2a (a +2)-4a (a +2)=a 2-4a (a +2)=(a +2)(a -2)a (a +2)=a -2a. 14.解:原式=⎣⎢⎡⎦⎥⎤x x (x -2)-2(x -2)x (x -2)·x (x -2)2=x -2(x -2)x (x -2)·x (x -2)2=x -2x +42=-x +42,由于x ≠0,且x ≠2,因此只能取x =1.所以当x =1时,原式的值为-x +42=-1+42=32.15.解:原式=⎝ ⎛⎭⎪⎫5x +3yx 2-y 2-2x x 2-y 2÷1xy (x -y )=3(x +y )(x +y )(x -y )·xy (x -y ) =3xy .把x =3+2,y =3-2代入,可得: 原式=3(3+2)(3-2)=3.16.解:原式=m -33m (m -2)÷⎝ ⎛⎭⎪⎫m 2-4m -2-5m -2=m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3).∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1. 当m =-3时,原式无意义;当m =1时,原式=13m (m +3)=13×1×(1+3)=112.17.12 -12 1021. 解析:∵1()2n -1()2n +1=12()2n -1-12()2n +1=a 2n -1+b 2n +1, ∴a =12,b =-12.∴m =11×3+13×5+15×7+…+119×21=⎝⎛⎫12-16+⎝⎛⎫16-110+…+⎝⎛⎫138-142=1021. 第4讲 二次根式【演练·巩固提升】1.D 2.B 3.B 4.C 5.A 6.D 7.2 8.5 9.2 2 10.1 解析:原式=||a -2+||1-a =2-a +a -1=1.11.解:原式=2 2÷12+3×(2-2 2)=4 2+6-6 2=6-2 2.12.解:(1)原式=24×13-4×24×1=2 2-2= 2.13.D 14.B15.9 解析:由题意,得x -3≥0,且3-x ≥0,得x =3,故y =2.∴x y =9. 16.14解析:由题意,得x -4≥0,且4-x ≥0. 解得x ≥4,且x ≤4.所以x =4.所以y =-2.所以(x +y )y =(4-2)-2=14.17.解:第1个数:当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤1+52-1-52=15×5=1.第2个数:当n =2时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52-1-52⎝ ⎛⎭⎪⎫1+52+1-52 =15×5×1=1.第一章基础题强化提高测试1.A 2.B 3.A 4.B 5.D 6.D 7.x ≠5 8.±3 9.2005 10.211.解:原式=mn ()m 2-4= mn (m +2)(m -2).12.解:原式=x -3(x +3)(x -3)+6(x +3)(x -3)=x -3+6(x +3)(x -3)=x +3(x +3)(x -3)=1x -3. 13.解:原式=4a 2-b 2+b 2-2ab =2a (2a -b ). 当a =-2,b =1时,原式=2×(-2)×[2×(-2)-1]=20.14.解:原式=3+2×22+3-(-3)-2 3+1=3+1+3+3-2 3+1=5.15.解:原式=⎣⎢⎡⎦⎥⎤(a +b )(a -b )(a -b )2-a a -b ·a (a -b )b 2 =⎝ ⎛⎭⎪⎫a +b a -b -a a -b ·a (a -b )b2=b a -b ·a (a -b )b 2=a b . ∵a +1+|b -3|=0,∴a +1=0,b -3=0.解得a =-1,b = 3.∴原式=-13=-33.第二章 方程与不等式第1讲 方程与方程组第1课时 一元一次方程和二元一次方程组A 级 基础题 1.(2015年山东济南)若代数式4x -5与2x -12的值相等,则x 的值是( )A .1 B.32 C.23D .22.(2015年广东深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为( ) A .140元 B .120元 C .160元 D .100元3.(2015年广东广州)已知a ,b 满足方程组⎩⎪⎨⎪⎧a +5b =12,3a -b =4,则a +b 的值为( )A .-4B .4C .-2D .24.(2015年浙江杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改为林地,则可列方程( )A .54-x =20%×108B .54-x =20%(108+x )C .54+x =20%×162D .108-x =20%(54+x )5.(2015年湖南长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A .562.5元B .875元C .550元D .750元 6.(2015年山东泰安)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为( )A.⎩⎪⎨⎪⎧ 4x +6y =28,x =y +2B.⎩⎪⎨⎪⎧ 4y +6x =28,x =y +2C.⎩⎪⎨⎪⎧ 4x +6y =28,x =y -2D.⎩⎪⎨⎪⎧4y +6x =28,x =y -2 7.(2015年江苏常州)已知x =2是关于x 的方程a (x +1)=12a +x 的解,则a 的值是________.8.(2015年四川甘孜州)已知关于x 的方程3a -x =x2+3的解为2,则代数式a 2-2a +1的值是________.9.如果某日杜鹃园售出门票100张,成人票50元,儿童票30元,门票收入共4000元,那么当日售出成人票________张.10.(2015年黑龙江牡丹江)某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为________元.11.解方程:(1)(2015年广东广州)解方程:5x =3(x -4).(2)(2015年湖北荆州)解方程组:⎩⎪⎨⎪⎧3x -2y =-1, ①x +3y =7. ②12.(2014年江西)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支中性笔和2盒笔芯,用了56元;小丽买了2支中性笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.B 级 中等题13.(2015年四川南充)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +3y =k ,x +2y =-1的解互为相反数,则k 的值是________.14.(2015年浙江嘉兴)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为________.图2-1-215.(2015年北京)如图2-1-2所示的《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊值金多少两?”设每头牛值金x ,每只羊各值金y 两,可列方程组为____________.16.(2015年湖南张家界)如图2-1-3,小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60 m ,下坡路每分钟走80 m ,上坡路每分钟走40 m ,则他从家里到学校需10 min ,从学校到家里需15 min.问:从小华家到学校的平路和下坡路各有多远?图2-1-3C 级 拔尖题17.(2015年广东珠海)阅读材料:善于思考的小军在解方程组⎩⎪⎨⎪⎧2x +5y =3, ①4x +11y =5 ②时,采用了一种“整体代换”的解法.解:将方程②变形: 即2(2x +5y )+y =5.③ 把方程①代入③,得2×3+y =5.∴y =-1.把y =-1代入,①得x =4.∴方程组的解为⎩⎪⎨⎪⎧x =4,y =-1.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组⎩⎪⎨⎪⎧3x -2y =5, ①9x -4y =19; ②(2)已知x ,y 满足方程组⎩⎪⎨⎪⎧3x 2-2xy +12y 2=47, ③2x 2+xy +8y 2=36. ④ ⅰ)求x 2+4y 2的值;ⅱ)求1x +12y的值.第2课时 分式方程A 级 基础题1.(2015年贵州遵义)若x =3是分式方程a -2x -1x -2=0的根,则a 的值是( )A .5B .-5C .3D .-32.(2015年湖南常德)分式方程2x -2+3x2-x=1的解为( )A .1B .2 C.13D .03.(2015年湖北荆州)若关于x 的分式方程m -1x -1=2的解为非负数,则m 的取值范围是( )A .m >-1B .m ≥1C .m >-1,且m ≠1D .m ≥-1,且m ≠14.(2015年黑龙江齐齐哈尔)关于x 的分式方程5x =ax -2有解,则字母a 的取值范围是( )A .a =5或a =0B .a ≠0C .a ≠5D .a ≠5,且a ≠05.(2015年湖南岳阳)岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( )A.200x =350x -3B.200x =350x +3C.200x +3=350xD.200x -3=350x 6.(2015年四川遂宁)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克.为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克.种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均亩产量为1.5x 万千克.根据题意列方程为( )A.36x -36+91.5x =20B.36x -361.5x =20C.36+91.5x -36x =20D.36x +36+91.5x=20 7.若分式x 2-1x -1的值为0,则x =________.8.(2015年广东佛山)分式方程1x -2=3x 的解是________.9.(2015年山东东营)若分式方程x -ax +1=a 无解,则a 的值为________.10.(2015年辽宁锦州)制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x 个零件,则可列方程为________.11.解方程:(1)(2015年江苏镇江)解方程:3+x 4-x =12;(2)(2015年广东深圳)解方程:x 2x -3+53x -2=4.12.(2015年四川雅安)某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?B 级 中等题13.若关于x 的方程ax x -2=4x -2+1无解,则a 的值是________.14.(2015年湖北襄阳)分式方程1x -5-10x 2-10x +25=0 的解是________.15.(2015年广西贺州)解分式方程:x +14x 2-1=32x +1-44x -2.16.(2015年浙江宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共 6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40 棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?C 级 拔尖题17.(2015年浙江湖州)某工厂计划在规定时间内生产24 000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.第3课时 一元二次方程A 级 基础题1.一元二次方程x 2+2x =0的根是( ) A .x 1=0,x 2=-2 B .x 1=1,x 2=2 C .x 1=1,x 2=-2 D .x 1=0,x 2=22.用配方法解一元二次方程x 2-6x -6=0,下列变形正确的是( ) A .(x -6)2=-6+36 B .(x -6)2=6+36 C .(x -3)2=-6+9 D .(x -3)2=6+93.(2015年山西)我们解一元二次方程3x 2-6x =0时,可以运用因式分解法,将此方程化为3x (x -2)=0,从而得到两个一元一次方程:3x =0或x -2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是( )A .转化思想B .函数思想C .数形结合思想D .公理化思想4.(2015年广东珠海)一元二次方程x 2+x +14=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定根的情况5.(2015年湖南益阳)沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x ,根据题意可列方程为()A.20(1+2x)=80 B.2×20(1+x)=80C.20(1+x2)=80 D.20(1+x)2=806.(2015年广东佛山)如图2-1-5,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m,另一边减少了3 m,剩余一块面积为20 m2的矩形空地,则原正方形空地的边长是()图2-1-5A.7 m B.8 m C.9 m D.10 m7.(2015年广西柳州)若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.8.(2015年辽宁盘锦)方程(x+2)(x-3)=x+2的解是____________.9.(2015年广西邵阳)关于x的方程x2+2x-m=0有两个相等的实数根,则m=________.10.(2015年甘肃酒泉)关于x的方程kx2-4x-23=0有实数根,则k的取值范围是________.11.(2015年广东梅州)已知关于x的方程x2+2x+a-2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.12.(2015年广东广州)某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.13.(2015年广东珠海)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012年至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?B级中等题14.(2015年广东广州)已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为() A.10 B.14 C.10或14 D.8或1015.(2015年内蒙古呼和浩特)若实数a,b满足(4a+4b)(4a+4b-2)-8=0,则a+b=________.16.(2015年湖北)如图2-1-6,一农户要建一个矩形猪舍,猪舍的一边利用长为12 m的住房墙,另外三边用25 m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80 m2?图2-1-6C级拔尖题17.(2015年山东东营)2013年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)第2讲 不等式与不等式组A 级 基础题1.(2015年四川乐山)下列说法不一定成立的是( )A .若a >b ,则a +c >b +cB .若a +c >b +c ,则a >bC .若a >b ,则ac 2>bc 2D .若ac 2>bc 2,则a >b2.(2015年广东汕尾)使不等式x -1≥2与3x -7<8同时成立的x 的整数值是( ) A .3,4 B .4,5 C .3,4,5 D .不存在3.(2015年广东深圳)解不等式2x ≥x -1,并把解集在数轴上表示( ) A. B.C.D.4.(2015年广东佛山)不等式组⎩⎪⎨⎪⎧x +1<3,2x -1>x的解集是( )A .x >1B .x <2C .1≤x ≤2D .1<x <25.(2015年湖北恩施州)关于x 的不等式组⎩⎪⎨⎪⎧3x -1>4()x -1,x <m 的解集为x <3,那么m的取值范围为( )A .m =3B .m >3C .m <3D .m ≥36.(2015年山东东营)东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是( )A .11B .8C .7D .57.(2015年浙江衢州)写出一个解集为x >1的一元一次不等式:________. 8.(2015年贵州铜仁)不等式5x -3<3x +5的最大整数解是________.9.(2015年江苏宿迁)关于x 的不等式组⎩⎪⎨⎪⎧2x +1>3,a -x >1的解集为1<x <3,则a 的值为________.10.(2015年四川达州)对于任意实数m ,n ,定义一种运算m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是________.11.解不等式:(1)(2015年江苏南京)解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来(如图2-2-3).图2-2-3(2)(2015年北京)解不等式组⎩⎪⎨⎪⎧4(x +1)≤7x +10,x -5<x -83,并写出它的所有非负整数解.12.(2015年宁夏)某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价为50元/个,女款书包的单价为70元/个.(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果至少购买两种款式的书包共80个,那么女款书包最多能买多少个?B 级 中等题13.(2015年江苏南通)关于x 的不等式x -b >0恰有两个负整数解,则b 的取值范围是( )A .-3<b <-2B .-3<b ≤-2C .-3≤b ≤-2D .-3≤b <-214.(2015年贵州毕节)已知不等式组⎩⎪⎨⎪⎧x >2,x <a 的解集中共有5个整数,则a 的取值范围为( )A .7<a ≤8B .6<a ≤7C .7≤a <8D .7≤a ≤815.(2015年甘肃武威)定义新运算:对于任意实数a ,b 都有:a ⊕b =a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2-5)+1=2×(-3)+1=-5,那么不等式3⊕x <13的解集为________.16.(2014年广东珠海)阅读下列材料:解答“已知x -y =2,且x >1,y <0,试确定x +y 的取值范围”有如下解法: 解:∵x -y =2,∴x =y +2. 又∵x >1,∴y +2>1. ∴y >-1.又∵y <0,∴-1<y <0. ① 同理,得1<x <2. ②由①+②,得-1+1<y +x <0+2. ∴x +y 的取值范围是0<x +y <2. 请按照上述方法,完成下列问题:(1)已知x -y =3,且x >2,y <1,则x +y 的取值范围是________;(2)已知y >1,x <-1,若x -y =a 成立,求x +y 的取值范围.(结果用含a 的式子表示)。

【9份】2016中考数学(广西专版)复习题型专项集训

【9份】2016中考数学(广西专版)复习题型专项集训
题型专项(十一)圆的证明与计算44
题型专项
二次函数中的多结论选填题是二次函数中综合性比较强的题目,解决此类题目不仅要掌握二次函数的图象与性质、抛物线位置与字母系数的关系、二次函数与方程、不等式的关系等知识,还要学会代入特殊值的方法并结合二次函数的图象去验证一些不等式的正误;几何中的多结论选填题则结合了三角形、四边形、圆的有关性质和判定,是几何中综合性很强的题目,掌握三角形、四边形、圆的有关性质并能熟练的运用才能解决此类问题.
A.5个
B.4个
C.3个
D.2个
【思路点拨】①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正确;②由AE=AD=BC,又AD∥BC,所以==,故②正确;③过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;④而CD与AD的大小不知道,于是tan∠CAD的值无法判断,故④错误;⑤根据△AEF∽△CBF得到==,求出S△AEF=S△ABF,S△ABF=S矩形ABCD,S四边形CDEF=S△ACD-S△AEF=S矩形ABCD-S矩形ABCD=S矩形ABCD,即可得到S四边形CDEF=S△ABF,故⑤正确.故选B.
其中正确的有()
A.①②③B.①③④
C.②④D.①③
3.(2015·岳阳)如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是()
A.①②B.①③C.②④ D.③④
3.(2013·贺州)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a-b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是________(填正确015·贵港)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF=S△ABF,其中正确的结论有()

2016年中考数学真题及答案解析

2016年中考数学真题及答案解析

2016年中考数学真题及答案解析一. 选择题1. 如果a 与3互为倒数,那么a 是( ) A. 3- B. 3 C. 13-D. 132. 下列单项式中,与2a b 是同类项的是( )A. 22a bB. 22a b C. 2ab D. 3ab3. 如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A. 2(1)2y x =-+ B. 2(1)2y x =++ C. 21y x =+ D. 23y x =+ 4. 某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男 生该周参加篮球运动次数的平均数是( )A. 3次B. 3.5次C. 4次D. 4.5次5. 已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =,AD b =, 那么向量AC 用向量a 、b 表示为( ) A.12a b + B. 12a b - C. 12a b -+ D. 12a b -- 6. 如图,在Rt ABC ∆中,90C ∠=︒,4AC =,7BC =,点D 在边BC 上,3CD =,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外, 那么⊙D 的半径长r 的取值范围是( )A. 14r <<B. 24r <<C. 18r <<D. 28r <<二. 填空题7. 计算:3a a ÷= 8. 函数32y x =-的定义域是9. 2=的解是10. 如果12a =,3b =-,那么代数式2a b +的值为 11. 不等式组2510x x <⎧⎨-<⎩的解集是12. 如果关于x 的方程230x x k -+=有两个相等的实数根,那么实数k 的值是13. 已知反比例函数ky x=(0k ≠),如果在这个函数图像所在的每一个象限内,y 的值 随着x 的值增大而减小,那么k 的取值范围是14. 有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、⋅⋅⋅、6点的标记,掷 一次骰子,向上的一面出现的点数是3的倍数的概率是15. 在ABC ∆中,点D 、E 分别是AB 、AC 的中点,那么ADE ∆的面积与ABC ∆的面积的比是16. 今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是17. 如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C 的俯角为 60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 约为米(精确到1 1.73≈)18. 如图,矩形ABCD 中,2BC =,将矩形ABCD 绕点D 顺时针旋转90°,点A 、C 分 别落在点A '、C '处,如果点A '、C '、B 在同一条直线上,那么tan ABA '∠的值为三. 解答题19. 计算:12211|4()3---;20. 解方程:214124x x -=--;21. 如图,在Rt ABC ∆中,90ACB ∠=︒,3AC BC ==,点D 在边AC 上,且2AD CD =, DE AB ⊥,垂足为点E ,联结CE ,求:(1)线段BE 的长;(2)ECB ∠的余切值;22. 某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续 搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运,如 图,线段OG 表示A 种机器人的搬运量A y (千克)与时间x (时)的函数图像,线段EF 表 示B 种机器人的搬运量B y (千克)与时间x (时)的函数图像,根据图像提供的信息,解 答下列问题:(1)求B y 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时, 那么B 种机器人比A 种机器人多搬运了多少千克?23. 已知,如图,⊙O 是ABC ∆的外接圆,AB AC =,点D 在边BC 上,AE ∥BC ,AE BD =;(1)求证:AD CE =;(2)如果点G 在线段DC 上(不与点D 重合),且AG AD =,求证:四边形AGCE 是平行四边形;24. 如图,抛物线25y ax bx =+-(0a ≠)经过点(4,5)A -,与x 轴的负半轴交于点B , 与y 轴交于点C ,且5OC OB =,抛物线的顶点为D ; (1)求这条抛物线的表达式;(2)联结AB 、BC 、CD 、DA ,求四边形ABCD 的面积;(3)如果点E 在y 轴的正半轴上,且BEO ABC ∠=∠,求点E 的坐标;25. 如图所示,梯形ABCD 中,AB ∥DC ,90B ∠=︒,15AD =,16AB =,12BC =, 点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且AGE DAB ∠=∠;(1)求线段CD 的长;(2)如果AEG ∆是以EG 为腰的等腰三角形,求线段AE 的长;(3)如果点F 在边CD 上(不与点C 、D 重合),设AE x =,DF y =,求y 关于x 的函 数解析式,并写出x 的取值范围;参考答案一. 选择题1. D2. A3. C4. C5. A6. B二. 填空题7. 2a 8. 2x ≠ 9. 5x = 10. 2- 11. 1x < 12.94 13. 0k > 14. 13 15. 1416. 600017. 208 18. 12三. 解答题19. 解:原式1296=--= 20. 解:去分母,得2244x x +-=-; 移项、整理得220x x --=;经检验:12x =是增根,舍去;21x =-是原方程的根; 所以,原方程的根是1x =-;21. 解(1)∵2AD CD =,3AC = ∴2AD = 在Rt ABC ∆中,90ACB ∠=︒,3AC BC ==,∴45A ∠=︒,AB =;∵DE AB ⊥ ∴90AED ∠=︒,45ADE A ∠=∠=︒,∴cos 45AE AD =⋅︒=∴BE AB AE =-=BE 的长是 (2)过点E 作EH BC ⊥,垂足为点H ; 在Rt BEH ∆中,90EHB ∠=︒,45B ∠=︒,∴cos452EH BH EB ==⋅︒=,又3BC =, ∴1CH =; 在Rt ECH ∆中,1cot 2CH ECB EH ∠==,即ECB ∠的余切值是12; 22. 解:(1)设B y 关于x 的函数解析式为1B y k x b =+(10k ≠),由线段EF 过点(1,0)E 和点(3,180)P ,得1103180k b k b +=⎧⎨+=⎩,解得19090k b =⎧⎨=-⎩,所以B y 关于x 的函数解析式为9090B y x =-(16x ≤≤); (2)设A y 关于x 的函数解析式为2A y k x =(20k ≠), 由题意,得21803k =,即260k = ∴60A y x =; 当5x =时,560300A y =⨯=(千克), 当6x =时,90690450B y =⨯-=(千克), 450300150-=(千克);答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克23. 证明:(1)在⊙O 中,∵AB AC = ∴AB AC = ∴B ACB ∠=∠; ∵AE ∥BC ∴EAC ACB ∠=∠ ∴B EAC ∠=∠; 又∵BD AE = ∴ABD ∆≌CAE ∆ ∴AD CE =; (2)联结AO 并延长,交边BC 于点H ,∵AB AC =,OA 是半径 ∴AH BC ⊥ ∴BH CH =;∵AD AG = ∴DH HG = ∴BH DH CH GH -=-,即BD CG =; ∵BD AE = ∴CG AE =;又∵CG ∥AE ∴四边形AGCE 是平行四边形;24. 解:(1)∵抛物线25y ax bx =+-与y 轴交于点C ∴(0,5)C - ∴5OC =; ∵5OC OB = ∴1OB =;又点B 在x 轴的负半轴上 ∴(1,0)B -; ∵抛物线经过点(4,5)A -和点(1,0)B -, ∴1645550a b a b +-=-⎧⎨--=⎩,解得14a b =⎧⎨=-⎩;∴这条抛物线的表达式为245y x x =--;(2)由245y x x =--,得顶点D 的坐标是(2,9)-; 联结AC ,∵点A 的坐标是(4,5)-,点C 的坐标是(0,5)-,又145102ABC S ∆=⨯⨯=,14482ACD S ∆=⨯⨯=; ∴18ABC ACD ABCD S S S ∆∆=+=四边形;(3)过点C 作CH AB ⊥,垂足为点H ;∵1102ABC S AB CH ∆=⨯⨯=,AB = ∴CH =;在Rt BCH ∆中,90BHC ∠=︒,BC =BH ==∴2tan 3CH CBH BH ∠==;在Rt BOE ∆中,90BOE ∠=︒,tan BOBEO EO∠=; ∵BEO ABC ∠=∠ ∴23BO EO =,得32EO = ∴点E 的坐标为3(0,)2;25. 解:(1)过点D 作DH AB ⊥,垂足为点H ;在Rt DAH ∆中,90AHD ∠=︒,15AD =,12DH =;∴9AH ==;又∵16AB = ∴7CD BH AB AH ==-=;(2)∵AEG DEA ∠=∠,又AGE DAE ∠=∠ ∴AEG ∆∽DEA ∆; 由AEG ∆是以EG 为腰的等腰三角形,可得DEA ∆是以AE 为腰的等腰三角形; ① 若AE AD =,∵15AD = ∴15AE =;② 若AE DE =,过点E 作EQ AD ⊥,垂足为Q ∴11522AQ AD == 在Rt DAH ∆中,90AHD ∠=︒,3cos 5AH DAH AD ∠==; 在Rt AEQ ∆中,90AQE ∠=︒,3cos 5AQ QAE AE ∠== ∴252AE =; 综上所述:当AEG ∆是以EG 为腰的等腰三角形时,线段AE 的长为15或252;(3)在Rt DHE ∆中,90DHE ∠=︒,DE ==∵AEG ∆∽DEA ∆ ∴AE EGDE AE =∴2EG =∴2DG =∵DF ∥AE ∴DF DG AE EG =,222212(9)y x x xx +--=; ∴22518x y x -=,x 的取值范围为2592x <<;。

成都市2016年中考数学试题及全解析(精编word版,一题多解)

成都市2016年中考数学试题及全解析(精编word版,一题多解)
l1 l2 2 1 3
l1 l2 2 3
1
l1 3 l2 2
1
解析: (法 1,左图) ,由对顶角性质,∠3=∠1=56° , 由������1 ∥ ������2 得∠2 + ∠3 = 180° ,故∠1=180°− 56°= 124° 。 (法 2,中图) ,由������1 ∥ ������2 得∠3 = ∠1 = 56° ;由补角概念,∠2+∠3=180° , 故∠2=180°− 56°= 124° 。 (法 3,右图) ,由补角概念,∠1+∠3=180° ,故∠3=180°− 56°= 124° 。 由������1 ∥ ������2 得∠2 = ∠3 = 124° ; 答案:C 6.考点:平面直角坐标系,点的坐标,轴对称。 解析:关于 x 轴对称,横坐标不变,纵坐标变为相反数,P(−2,3) → P′(−2, −3)。 答案:A 7.考点:解分式方程。 解析:方程两边乘以(x − 3),变为2x = x − 3,移项,合并同类项得x = −3。 答案:B 8.考点:平均数、方差,好坏比较与稳定性估计。 解析:用平均数判断成绩好坏,因为乙和丙的平均数相同且比甲和丁大,先选乙或丙; 用方差估计稳定性,因为甲和丙的方差相同且比乙和丁小,应选乙和丙; 综合两者选丙。 答案:C 9.考点:二次函数基本概念、图像和性质。 解析:由y = 2x 2 − 3知,二次项系数为 2,开口向上,A 错; 当 x=2 时,y=5,B 错;
学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组
的平时成绩的平均数x (单位:分)及方差s 2 如下表所示: 甲 x s2 7 1 乙 8 1.2 丙 8 1 丁 7 1.8
如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是() (A)甲 (B)乙 (C)丙 (D)丁

2016年中考数学试题(含答案解析) (29)

2016年中考数学试题(含答案解析) (29)

江苏省宿迁市2016年初中毕业暨升学考试数 学一、选择题1.-2的绝对值是A .-2B .21-C .21 D .22.下列四个几何体中,左视图为圆的几何体是A .B .C .D .3.地球与月球的平均距离为384 000 km ,将384 000这个数用科学计数法表示为A .31084.3⨯B .41084.3⨯C .51084.3⨯D .61084.3⨯4.下列计算正确的是A .532a a a=+ B .632a a a =⋅ C .532a (a =) D .325a aa =÷5.如图,已知直线a 、b 被直线c 所截.若a ∥b ,∠1=120°,则∠2的度数为 A .50° B .60° C .120° D .130°cba 21NMFE D CBA(第5题图) (第7题图) 6.一组数据5,4,2,5,6的中位数是 A .5 B .4 C .2 D .67.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE .若AB 的长为2,则FM 的长为A .2B .3C .2D .18.若二次函数c 2ax ax y 2+-=的图像经过点(-1,0),则方程0c 2ax ax 2=+-的解为A .1,3-=-=21x xB .3,1==21x xC .3,1=-=21x xD .1,3=-=21x x二、填空题9.因式分解:=-822a ▲ .10.计算:=---1x x1x x 2 ▲ . 11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是 ▲ . 12.若一元二次方程0k 2x x2=+-有两个不相等的实数根,则k 的取值范围是 ▲ .13.某种油菜籽在相同条件下发芽试验的结果如下表: 每批粒数n 100 300 400 600 1000 2000 3000 发芽的频数m 96284 380 571 948 1902 2848 发芽的频率错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津南开区2016年中考数学考前集训50题1.下列命题中,真命题是()A.菱形的对角线互相平分且相等B.矩形的对角线互相垂直平分C.对角线相等且垂直的四边形是正方形D.对角线互相平分的四边形是平行四边形2.估计32 的值()11A.在2到3之间B.在3到4之间C.在4到5之间D.在5到6之间3.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是()A. B. C. D.4.如图,已知在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A.1B.1或3C.1或7D.3或75.如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连结BC.若∠P=360,则∠BC0等于( )A.27°B.30°C.36°D.54第5题图第6题图第7题图6.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=580,则∠BCD等于()A.116°B.32°C.58°D.64°7.如图,已知□ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA/E/,连接DA/.若∠ADC=600,∠ADA/=500,则∠DA/E/的大小为()A.130°B.150°C.160°D.170°8.如图,已知A (,y 1),B (2,y 2)为反比例函数y=图象上的两点,动点P (x,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A.(,0)B.(1,0)C.(,0)D.(,0)9.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=-x+6于A 、B 两点,若反比例函数y=(x>0)的图象与△ABC 有公共点,则k 的取值范围是( )A.2≤k ≤9B.2≤k ≤8C.2≤k ≤5D.5≤k ≤8 10.在同一平面直角坐标系中,函数y=kx +b 与y=bx 2+kx 的图象可能是( )11.如图,在等腰直角三角形ABC 中,∠C=900,AC=6,D 是AC 上一点,若tan ∠DBA=,则AD 长是( )A. B.2 C.1 D.212.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC →CB 运动,到点B 停止.过点P 作PD ⊥AB 于点D,PD 的长y(cm)与点P 的运动时间x(秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( ) A.1.2cmB.1.5cmC.1.8cmD.2cmCABD13.在一条笔直的公路旁依次有A 、B 、C 三个村庄,甲、乙两人同时分别从A 、B 两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C 村,最终到达C 村.甲、乙两人到C 村的距离y 1,y 2(km )与行驶时间x (h )之间的函数关系如图所示,以下分析错误的是:A.A 、C 两村间的距离为120 kmB.点P 的坐标为(1,60)C.点P 的意义表示经过1小时甲与乙相遇且距C 村60 kmD.乙在行驶过程中,仅有一次机会距甲10 km14.如图,∠ABC=800,O 为射线BC 上一点,以点O 为圆心,21BO 为半径作⊙O.要使射线BA 与⊙O 相切,应将射线BA 绕点B 按顺时针方向旋转( )A.40°或80°B.50°或100°C.50°或110°D.60°或120°15.如图,在正方形ABCD 外侧作直线DE,点C 关于直线DE 的对称点为M,连接CM,AM,其中AM 交直线DE 于点N.若450<∠CDE<900,当MN=3,AN=4时,正方形ABCD 的边长为( )A .7B .5C .5 2D .52216.如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于C,抛物线顶点为D,下列四个命题:①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6.其中真命题的序号是()A.①B.②C.③D.④17.如图,∠1=700,直线a平移后得到直线b,则∠2-∠3= .18.已知在Rt△ABC中,∠C=900,点P、Q分别在边AB、AC上,AC=4,BC=AQ=3,如果△APQ与△ABC相似,那么AP的长等于.19.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m= .20.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是.21.如图,菱形纸片ABCD,∠A=600,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于度.22.如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为 cm2.23.把球放在长方体纸盒内,球的一部分露在盒外,其截面如图.已知EF=CD=80cm,则截面圆的半径为 cm.24.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB,调整为坡度i=1:的新传送带AC(如图所示).已知原传送带AB的长是4米.那么新传送带AC的长是米.25.如图,在平行四边形ADBO中,圆O经过点A、D、B,如果圆O的半径OA=4,那么弦AB= .26.如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度约为m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)27.已知a,b满足+|b﹣|=0.则分式()÷= .28.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.29.已知A(3,2)是平面直角坐标中的一点,点B是x轴负半轴上一动点,联结AB,并以AB为边在x轴上方作矩形ABCD,且满足BC:AB=1:2,设点C的横坐标是a,如果用含a的代数式表示D 点的坐标,那么D点的坐标是.30.已知△ABC中,AB=AC=5,BC=6(如图所示),将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A、B、C分别与D、E、F对应.若以点A、D、E为顶点的三角形是等腰三角形,且AE为腰,则m的值是.31.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.32.关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是.33.如图,Rt△ABC,∠ACB=900,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC 沿CF翻折,使点B落在CD的延长线上的点B/处,两条折痕与斜边AB分别交于点E、F,则线段B/F的长为.34.如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.35.在矩形ABCD中,AD=15,点E在边DC上,联结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为点G,如图,如果AD=3GD,那么DE= .36.如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2.37.如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为﹣1.其中正确的说法是.(把你认为正确的说法的序号都填上)38.如图,利用热气球探测器测量大楼AB的高度.从热气球P处测得大楼顶部B的俯角为370,大楼底部A的俯角为600,此时热气球P离地面的高度为120 m.试求大楼AB的高度(精确到0.1 m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3≈1.73)39.如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P.点C在OP上,且BC=PC.(1)求证:直线BC是⊙O的切线;(2)若OA=3,AB=2,求BP的长.40.如图,已知在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.(1)求证:∠BCP=∠BAN;(2)求证: =.41.某校八年级学生小明、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小明:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.[利润=(销售价﹣进价)×销售量](1)请你根据以上对话信息,求出y(千克)与x(元)(x>0)的函数关系式;(2)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?42.如图,轮船从B处以每小时60海里的速度沿南偏东200方向匀速航行,在B处观测灯塔A位于南偏东500方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,求C处与灯塔A 的距离.43.如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=600,过点D作⊙O的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.44.如图,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是300,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是480,若坡角∠FAE=300,求大树的高度(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)45.如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)求证:AC2=CO﹒CP;(3)若3PD,求⊙O的直径.46.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:(1)求y(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?47.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?48.如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0),与y轴交于点C.直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.(1)求该抛物线所对应的函数关系式;(2)连接BE. 求h为何值时,△BDE的面积最大;(3)已知定点M(-2,0),请问是否存在这样的直线y=h,使△OFM是等腰三角形?若存在,求出h 的值和点G的坐标;若不存在,说明理由.49.抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.50.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0)、点B(0,﹣8),直线AC与y轴交于点C(0,﹣4).P是抛物线上A、B两点之间的一点(P不与点A、B重合),过点P作PD∥y轴交直线AC于点D,过点P作PE⊥AC于点E.(l)求抛物线所对应的函数表达式.(2)若四边形PBCD为平行四边形,求点P的坐标.(3)求点E横坐标的最大值.答案详解1.【解答】解:A、菱形的对角线互相平分且垂直,所以A选项错误;B、矩形的对角线互相平分且相等,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、对角线互相平分的四边形为平行四边形,所以D选项正确.故选D.2.【解答】解:∵731123<-<<4;故选B.=<,故3<411446<23.【解答】解:a>0,b>0时,抛物线开口向上,对称轴x=﹣<0,在y轴左边,与y轴正半轴相交,a<0,b<0时,抛物线开口向下,对称轴x=﹣<0,在y轴左边,与y轴正半轴坐标轴相交,D符合. 故选D.4.【解答】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选C.5.A6.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=90°﹣∠ABD=32°,∴∠BCD=∠A=32°.故选B.7.【解答】解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.故选:C.8.【解答】解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=﹣1,b=,∴直线AB的解析式是y=﹣x+,当y=0时,x=,即P(,0),故选:D.9.【解答】解:∵点C(1,2),BC∥y轴,AC∥x轴,∴当x=1时,y=﹣1+6=5,当y=2时,﹣x+6=2,解得x=4,∴点A、B的坐标分别为A(4,2),B(1,5),根据反比例函数系数的几何意义,当反比例函数与点C相交时,k=1×2=2最小,设反比例函数与线段AB相交于点(x,﹣x+6)时k值最大,则k=x(﹣x+6)=﹣x2+6x=﹣(x﹣3)2+9,∵1≤x≤4,∴当x=3时,k值最大,此时交点坐标为(3,3),因此,k的取值范围是2≤k≤9.故选:A.10.C11.【解答】解:作DE⊥AB于E点.∵tan∠DBA==,∴BE=5DE,∵△ABC为等腰直角三角形,∴∠A=45°,∴AE=DE.∴BE=5AE,又∵AC=6,∴AB=6.∴AE+BE=5AE+AE=6,∴AE=,∴在等腰直角△ADE中,由勾股定理,得AD=AE=2.故选B.12.略。

相关文档
最新文档