动力气象学第二章
《动力气象学》课程辅导资料
《动力气象学》课程辅导资料知识点归纳总结第一章绪论1. 研究地球大气运动时的基本假设连续介质假设:研究大气的宏观运动时,不考虑离散分子的结构,把大气视为连续流体。
从而,表征大气运动状态和热力状态的各种物理量,例如大气运动的速度、气压、密度和温度等可认为是空间和时间的连续函数,并且经常假设这些场变量的各阶微商也是空间和事件的连续函数。
是研究大气运动的基本出发点。
理想气体假设:气压、密度、温度之间的关系满足理想气体状态方程。
2. 地球大气的运动学和热力学特性有哪些?大气是重力场中的旋转流体:大气运动一定是准水平的;静力平衡是大气运动的重要性质之一。
科里奥利力的作用:大尺度运动中科里奥利力作用很重要;中纬度大尺度运动中,科里奥利力与水平气压梯度力基本上相平衡——地转平衡;地球旋转角速度随纬度的变化,与每日天气图上的西风带中的波动有关;起稳定性作用——位能、动能的转换——锋面。
大气是层结流体:大气的密度随高度是改变的——层结稳定度;不稳定层结大气中积云对流;稳定层结大气中重力内波。
大气中含有水份:相变潜热——低纬度扰动和台风的发展。
大气的下边界是不均匀的:湍流性;海陆分布和大气环流。
3. 大气运动的多尺度性大气运动无论在时间尺度还是在水平尺度上都具有很宽的尺度谱,不同尺度系统在性质上有很大差异,对天气的影响也不同,不同尺度运动系统之间还存在相互作用。
而根据流体力学和热力学原理建立起来的大气运动方程组,表征了大气运动普遍规律,从物理上讲,它几乎描述了各种尺度运动和它们之间的相互作用,方程组是高度非线性的,难以求解。
因此,在动力气象中,常对各种运动系统进行尺度分类,利用尺度分析法分析各类运动系统的一般性质,建立各类运动系统的物理模型(第三章)。
第二章描写大气运动的基本方程组1. 作用于大气的力,哪些是真实力,哪些是视示力?真实力:气压梯度力、地球引力、摩擦力,既改变气流的运动方向,也改变速度的大小视示力:科里奥利力、惯性离心力,只改变气流的运动方向,不改变速度的大小2. 描述大气运动的基本方程组和各自遵守的物理原理牛顿第二定律——运动方程质量守恒定律——连续方程理想气体实验定律——状态方程能量守恒定律——热力学能量方程水气质量守恒——水汽质量守恒方程3. 分析流体运动的两种基本方法拉格朗日方法:着眼于微团,研究其空间位置及其他物理属性随时间变化的规律,推广到整个流体运动。
动力气象2
1.支配大气运动状态和热力状态的基本物理定律有哪些?大气运动方程组一般有几个方程组成?哪些是预报方程?哪些是诊断方程?答:基本物理定律是牛顿运动定律、质量守恒定律、热力学能量守恒定律、气体实验定律;大气运动方程组一般有六个方程组成(三个运动方程、连续方程、热力学能量方程、状态方程);若是湿空气还要加一个水汽方程。
运动方程、连续方程、热力学能量方程是预报方程,状态方程是诊断方程。
2.研究大气运动变化规律为什么选用旋转坐标系?旋转参考系与惯性参考系中的运动方程有什么不同?答:相对于惯性参考系中的运动方程而言,旋转参考系中的运动方程加入了视示力(科里奥利力、惯性离心力)。
7.惯性离心力与科里奥利力有哪些异同点?答:都是在旋转参考系中的视示力,惯性离心力恒存在,而大气相对于地球有运动时才会产生科里奥利力。
6.试指出空气微团在以下的几种运动中所受的科里奥利力方向:(1)沿赤道向东运动(2)沿赤道向北运动(3)在赤道作铅直向上运动2.什么是运动的尺度?什么是尺度分析法?对大气运动方程组系统进行尺度分析的目的是什么?答:各物理场变量“具有代表意义的量值”称之为物理量场的特征值,即尺度。
尺度分析法是依据表征某类运动系统的运动状态和热力状态的各物理量的特征值,估计大气运动方程中各项量级大小的一种方法。
根据尺度分析的结果,结合物理上的考虑,略去方程中量级较小的项,便可得到简化方程,并可分析运动系统的某些基本性质。
6.为什么根据运动的水平尺度对大气运动进行分类?答:大气运动的特征与水平尺度有密切关系,依据水平对运动进行分类是由科学基础的。
7.根据尺度分析的结果,说明大尺度运动有哪些特征?答:大尺度运动具有准地转、准静力平衡、准水平、准水平无辐散、准定常。
2.什么是平衡流场?各种不同形式的平衡流场有哪些共同特征?答:气流方向无外力分量的定常水平流场称为平衡流场。
平衡流场中等压线即为流线,微团的运动是等速率运动。
3.试说明地转风与正常梯度风这两个概念的异同点?答:地转风为自由大气中,水平气压梯度力与Coriolis力二者相平衡下的空气水平运动。
动力气象学总复习概要
动力气象学总复习第一章绪论掌握动力气象学的性质,研究对象,研究内容以及基本假定动力气象学(性质)是由流体力学中分离出来(分支),是大气科学中一个独立的分支学科。
动力气象学定义:是应用物理学定律研究大气运动的动力过程、热力过程,以及它们之间的相互关系,从理论上探讨大气环流、天气系统演变和其它大气运动过程学科。
动力气象学研究对象:发生在旋转地球上并且密度随高度递减的空气流体运动的特殊规律。
动力气象学研究内容:根据地球大气的特点研究地球大气中各种运动的基本原理以及主要热力学和动力学过程。
主要研究内容有大气运动的基本方程、风场、气压坐标、环流与涡度、风与气压场的关系、大气中的波动、大气边界层、大气不稳定等等。
一、基本假设:大气视为“连续流体”,表征大气运动状态和热力状态的各种物理量(U, V, P, T, et al.) 看成是随时间和空间变化的连续函数;大气宏观运动时,可视为“理想气体”,气压、密度和温度之间满足理想其他的状态方程,大气是可“压缩流体”,动力过程和热力过程相互影响和相互制约;二、地球大气的动力学和热力学特性大气是“旋转流体”:90%的大气质量集中在10km以下的对流层;水平U, V远大于w(满足静力平衡);Ω =7.29⨯10-5rad/s,中纬度大尺度满足地转平衡(科氏力与水平气压梯度力相当)。
大气是“层结流体”:大气密度随高度变化,阿基米德净力使不稳定层结大气中积云对流发展;阿基米德净力使稳定层结大气中产生重力内波。
大气中含有水份:水份的相变过程使大气得到(失去)热量。
大气下垫面的不均匀性:海陆分布和大地形的影响。
大气运动的多尺度性:(见尺度分析)第二章大气运动方程组控制大气运动的基本规律有质量守恒、动量守恒、能量守恒等等。
支配其运动状态和热力学状态的基本定律有:牛顿第二定律、质量守恒定律、热力学第一定律和状态方程等等。
本章要点:旋转坐标系;惯性离心力和科氏力;全导数和局地导数;预报和诊断方程;运动方程、连续方程;状态方程、热力学方程及其讨论;局地直角坐标系。
高等动力气象学第二章
D t
f 0
2
这样,原来的方程组就化为:
, D,
fD 0 ( 4 ) t D 2 f 0 (5) t 2 C 0 D 0 (6 ) t
D 0,
u g x u x
v g y v y
1 df f ad v y
1 f x vg a
v g
cos a sin
(
u x
)
ctg
这样,方程变为
u u u v fv u x y t v v v v fu u x y t v v g 2 u u v c0 ( ctg ) 0 t x y x y a
简化后的方程(适应过程)
u fv x t v fu y t v 2 u C0 ( )0 x y t V 1 E ~ 10 1 5 V 10 10 s 演变过程: V 1 Eg ~ 10 Vg
上式中,
1 f 0 , R0 V f0 L ,E V V , Eg V Vg ,L
2 0
gH 0 f0
2
( L0
C0 f0
__ Rossby 变形半径), B0
L a
对大尺度大气运动,
R0 ~ V f0 L 10 , L ~ L0 , B0 ~ 10
E V V Eg V Vg ~ 10
把(4),(6)消去D,得到: 位涡守恒
t
(
f C0
2
) 0
初态(非地转)位涡=终态(准地转)位涡
《动力气象学》问题讲解汇编
“动力气象学”问题讲解汇编徐文金(南京信息工程大学大气科学学院)本讲稿根据南京信息工程大学“动力气象学”学位考试大纲(以下简称为大纲)要求的内容,以问答形式编写,以便学习者能更好地掌握“动力气象学”中的重要问题和答案。
主要参考书为:动力气象学教程,吕美仲、候志明、周毅编著,气象出版社,2004年。
本讲稿的章节与公式编号与此参考书一致(除第五章外)。
第二章(大纲第一章) 描写大气运动的基本方程组问题2.1 大气运动遵守那些定律?并由这些定律推导出那些基本方程?大气运动遵守流体力学定律。
它包含有牛顿力学定律,质量守恒定律,气体实验定律,能量守恒定律,水汽守恒定律等。
由牛顿力学定律推导出运动方程(有三个分量方程)、由质量守恒定律推导出连续方程、由气体实验定律得到状态方程、由能量守恒定律推导出热力学能量方程、由水汽守恒定律推导出水汽方程。
这些方程基本上都是偏微分方程。
问题2.2何谓个别变化?何谓局地变化?何谓平流变化?及其它们之间的关系? 表达个别物体或系统的变化称为个别变化,其数学符号为dtd ,也称为全导数。
表达某一固定地点某一物理量变化称为局地变化,其数学符号为t ∂∂,也称为偏导数。
表达由空气的水平运动(输送)所引起的局地某物理量的变化称为平流变化,它的数学符号为∇⋅-V ρ。
例如,用dt dT 表示个别空气微团温度的变化,用tT ∂∂表示局地空气微团温度的变化。
可以证明它们之间有如下的关系z T w T V dt dT t T ∂∂-∇⋅-=∂∂ρ (2.4) 式中V ρ为水平风矢量,W 为垂直速度。
(2.4)式等号右边第二项称为温度的平流变化(率),第三项称为温度的对流变化(率)或称为垂直输送项。
问题2.3何谓绝对坐标系?何谓相对坐标系?何谓绝对加速度?何谓相对加速度?何谓牵连速度?绝对坐标系也称为惯性坐标系,可以想象成是绝对静止的坐标系。
而相对坐标系则是非惯性坐标系,例如,在地球上人们是以跟随地球一起旋转的坐标系来观测大气运动的,这种旋转的坐标系就是相对坐标系。
动力气象学知到章节答案智慧树2023年南京大学
动力气象学知到章节测试答案智慧树2023年最新南京大学绪论单元测试1.不同于普通流体,地球大气有哪些基本特征?参考答案:受到重力场作用;旋转流体;具有上下边界 ;密度随高度变化2.中纬度大尺度大气运动的特点包括参考答案:准水平无辐散;准地转 ;准静力 ; 准水平3.以下哪种波动的发现及其深入研究,极大地推动了天气预报理论和数值天气预报的发展?参考答案:Rossby波4.动力气象学的发展与数学、物理学及观测技术的发展密不可分。
参考答案:对5.大气运动之所以复杂,其中一个原因是其运动具有尺度特征,不同尺度的运动控制因子不同。
参考答案:对第一章测试1.以下关于惯性坐标系,错误的说法是参考答案:惯性坐标系下测得的风速是地球大气相对于旋转地球的相对速度2.关于科里奥利力,以下错误的说法是参考答案:在全球大气的运动中,科里奥利力均使得大气运动方向右偏3.物理量S(x,y,z,t)能够替代z作为垂直坐标需要满足哪些条件参考答案:需要满足一定的数学基础和物理基础;S与z有一一对应关系;要求S在大气中有物理意义4.通过Boussinesq近似方法简化大气运动方程组,可得如下哪些结论参考答案:垂直运动方程中与重力相联系的项要考虑密度扰动作用;连续方程中可不考虑扰动密度的影响,与不可压流体的连续方程形式相同;大气密度的扰动变化,对垂直运动有较大影响5.Rossby数的物理意义包括参考答案:Rossby数的大小可用于划分运动的尺度;表征地球旋转的影响程度;判别相对涡度和牵连涡度的相对重要性第二章测试1.下面哪些变量可以描述大气旋转性特征参考答案:螺旋度;环流;涡度2.在什么情况下,绝对环流是守恒的参考答案:正压无摩擦大气;绝热无摩擦大气3.对于中纬度大气的平均状况而言,从对流层低层向上到平流层,位势涡度会发生怎样的变化参考答案:位涡在对流层顶附近会迅速增加4.对大尺度运动,引起绝对涡度变化的量级最大的项为参考答案:散度项5.通常在大气中,非绝热加热在热源上方和下方分别会产生哪种位涡异常参考答案:负,正第三章测试1.地转偏差随纬度和季节变化的特征有参考答案:夏季比冬季大;在低纬度地区相对较大;在大气低层相对较大2.下列关于地转偏差的表述正确的是参考答案:在北半球与加速度方向垂直;与加速度项成正比3.下面哪项不是地转偏差的组成项参考答案:气压梯度项4.下面关于地转适应和地转演变的说法错误的是参考答案:地转演变可以看成线性过程5.以下正确的说法是参考答案:流场和气压场相互调整,使得大气恢复准地转平衡的过程称作地转适应;纯地转运动是定常运动第四章测试1.浪花云是由两种不同云层的切变不稳定导致,以下说法正确的是参考答案:快速移动且密度较低的云层在速度较慢且密度更高的云层上方2.小扰动法的基本气流一般取为沿纬圈平均的速度场,若考虑斜压切变气流,这一速度场应取为参考答案:y和z的函数3.以下哪些条件可以滤去重力内波参考答案:水平无辐散;中性层结大气;f平面上地转近似4.关于Rossby波的频散强度,以下正确的有参考答案:大槽大脊频散强;低纬频散强5.由一维线性涡度方程∂ζ⁄∂t+βv=0讨论Rossby波的形成,对初始只有v=Vcos(kx)的南北风谐波状扰动,以下不正确的是参考答案:x=0处的运动状态将被其左侧的运动状态代替第五章测试1.如果扰动随时间增长,那我们称这个扰动为参考答案:发展2.斜压不稳定中,扰动发展的能量来自参考答案:有效位能的释放;基本气流的动能3.若采用标准模方法分析稳定性,设扰动方程单波解为,以下哪个参数影响波在x方向上的传播速度。
南京大学动力气象Chap2-1
= ∫∫ 2Ω ⋅ n δσ = 2Ω ⋅ ∫∫ n δσ = 2Ω ⋅ A = 2ΩA sin φ = 2ΩΣ
σ σ
σ
Σ
Ω Ω
n
90 − ϕ
ϕ
A
Γa = Γ + 2Ω sin φA = Γ + 2ΩΣ
ϕ
Σ
第二节 环流定理
环流:流体某一个有限面积旋转的总趋势
环流
涡度
在流体中任取一闭合曲线,流体速度在此曲线上的切 向分量的线积分
δr α
k
V
Γ = V ⋅ δ r = V cos αδ r
∫
s
∫
s
s
r +δ r
r
标量
Γ = V ⋅ δ r = udx + vdy + wdz
∫
s
∫
s
j i
S: 物质线 有正负:沿s做逆时针运动为正 δ r : 相邻两点的矢径差 α : δ r 与V的夹角
C = −2Ωπr (sin
2
π
2 因而在半径r=100千米处的平均切线速度为:
− sin 0)
C V= = −Ωr ≈ −7 m / s 2πr
表明到达北极时,气团将以7m/s的速度做顺时针运动
小结:
导致环流强弱变化的物理因子: (1)摩擦力总是使得环流减弱 (2)大气的斜压性 (3)水平辐合、辐散 (4)气团的南北运动
Ω为常矢量
• 引起绝对环流变化的原因: 大气的斜压性 摩擦耗散 • 正压无摩擦大气,绝对环流守恒
Γ + 2Ω ∑ = const.
Kelvin绝对环流守恒定理
F04动力气象学
南京信息工程大学2012年硕士研究生招生入学考试《动力气象学》考试大纲科目代码:F04科目名称:动力气象学第一部分目标与基本要求一、目标:应用物理学定律研究大气运动的动力过程、热力过程,从理论上探讨大气环流、天气系统演变的过程、规律和机理。
二、基本要求:要求学生掌握有关内容的基本概念、基本理论和基本方法,理解天气系统演变的基本规律和机理,提高分析问题、解决问题的能力,能理论联系实际并提高自己吸收新知识的能力。
第二部分内容与考核目标第一章、描写大气运动的基本方程组1、理解描写大气运动的基本物理过程。
2、掌握旋转参照系、科氏力、压力梯度力的概念。
3、了解球坐标系中的基本方程组。
掌握局地直角坐标系中的基本方程组。
4、了解求解大气运动闭合方程组的定解问题。
第二章、尺度分析与自由大气中的风场1、掌握尺度分析的基本概念和方法2、掌握R o数的定义,理解其重要性。
3、掌握静力平衡的概念与p-坐标系的物理基础。
4、掌握地转运动、地转偏差的概念。
5、掌握斜压大气、正压大气、热成风的概念。
第三章、大气涡旋动力学1、掌握环流定理与涡度方程。
2、掌握大气中涡旋系统演变的主要物理机制。
3、理解位涡的概念,了解位涡方程的推导,会初步应用位涡守恒定律解释实际过程。
第四章、大气行星边界层1、掌握湍流运动的特性,理解湍流运动的一般处理方法,了解平均运动方程的推导。
2、掌握边界层的特点及大气分层。
3、理解混合长理论,掌握湍流输送通量与湍流粘性力的概念。
4、掌握近地面层中风随高度分布的特点及求解方法。
5、掌握Ekman层中风随高度分布的特点,了解其求解过程。
6、掌握Ekman抽吸、二级环流的概念,掌握大气旋转减弱的物理机制。
第五章、大气能量学1、掌握大气能量的基本形态,掌握大气位能与内能关系及全位能的概念。
2、会推导质点动能方程,掌握闭合系统动能与全位能转换的条件与机制。
3、掌握有效位能的概念,了解有效位能的计算过程。
4、掌握纬向平均运动与涡旋运动的概念,了解纬向平均运动动能和有效位能方程、涡旋运动动能和有效位能方程的推导过程。
《动力气象学》课程笔记
《动力气象学》课程笔记绪论1. 动力气象学发展史1.1 重大理论发现动力气象学的早期发展主要基于对大气运动的观测和理论推测。
19世纪,科学家们开始系统地研究大气运动,并逐渐揭示了影响大气运动的一些关键因素。
这些因素包括:- 科里奥利力:由法国物理学家加斯帕尔·科里奥利首次提出,它解释了地球自转导致的风的偏转现象。
- 地转偏向力:由于地球自转,大气中的气流会相对于地面产生偏转,这个力就是地转偏向力。
- 大气压力和密度变化:大气压力和密度的变化会影响大气运动,这些变化与温度、湿度等因素有关。
1.2 数值天气预报20世纪中叶,随着计算机技术的发展,动力气象学进入了一个新的时代。
科学家们开始利用计算机来求解大气运动方程组,这种方法被称为数值天气预报。
数值天气预报的出现极大地提高了天气预报的准确性,使得气象学成为了一门更加精确的科学。
1.3 动力气象学发展新阶段近年来,动力气象学在气候变化研究中的应用变得越来越重要。
科学家们通过研究大气运动、能量转换和波动等现象,揭示了气候变化的原因和规律。
此外,动力气象学在防灾减灾、水资源管理等领域也发挥着重要作用。
2. 动力气象学的基本概念2.1 大气运动方程组大气运动方程组是描述大气运动的物理方程,包括连续性方程、动量方程和能量方程。
这些方程组基于质量守恒、牛顿第二定律和能量守恒等物理定律,为我们提供了研究大气运动的基本工具。
2.2 涡旋运动大气中的涡旋运动是天气系统和气候变化的重要因素。
涡旋运动包括环流、涡度和螺旋度等概念。
了解涡旋运动有助于我们预测天气变化和气候趋势。
2.3 准地转运动准地转运动是指大气中接近地转平衡状态的运动。
在这种状态下,大气运动主要受到地转偏向力和压力梯度力的作用。
准地转运动为我们提供了一个简化的大气运动模型,便于研究和预测天气。
2.4 大气波动大气波动是大气运动中的周期性变化,包括重力波、惯性重力波和Rossby 波等。
这些波动在天气系统和气候变化中起着关键作用,了解它们有助于我们预测天气和气候。
《动力气象学》课程辅导资料
《动⼒⽓象学》课程辅导资料《动⼒⽓象学》课程辅导资料知识点归纳总结第⼀章绪论1. 研究地球⼤⽓运动时的基本假设连续介质假设:研究⼤⽓的宏观运动时,不考虑离散分⼦的结构,把⼤⽓视为连续流体。
从⽽,表征⼤⽓运动状态和热⼒状态的各种物理量,例如⼤⽓运动的速度、⽓压、密度和温度等可认为是空间和时间的连续函数,并且经常假设这些场变量的各阶微商也是空间和事件的连续函数。
是研究⼤⽓运动的基本出发点。
理想⽓体假设:⽓压、密度、温度之间的关系满⾜理想⽓体状态⽅程。
2. 地球⼤⽓的运动学和热⼒学特性有哪些?⼤⽓是重⼒场中的旋转流体:⼤⽓运动⼀定是准⽔平的;静⼒平衡是⼤⽓运动的重要性质之⼀。
科⾥奥利⼒的作⽤:⼤尺度运动中科⾥奥利⼒作⽤很重要;中纬度⼤尺度运动中,科⾥奥利⼒与⽔平⽓压梯度⼒基本上相平衡——地转平衡;地球旋转⾓速度随纬度的变化,与每⽇天⽓图上的西风带中的波动有关;起稳定性作⽤——位能、动能的转换——锋⾯。
⼤⽓是层结流体:⼤⽓的密度随⾼度是改变的——层结稳定度;不稳定层结⼤⽓中积云对流;稳定层结⼤⽓中重⼒内波。
⼤⽓中含有⽔份:相变潜热——低纬度扰动和台风的发展。
⼤⽓的下边界是不均匀的:湍流性;海陆分布和⼤⽓环流。
3. ⼤⽓运动的多尺度性⼤⽓运动⽆论在时间尺度还是在⽔平尺度上都具有很宽的尺度谱,不同尺度系统在性质上有很⼤差异,对天⽓的影响也不同,不同尺度运动系统之间还存在相互作⽤。
⽽根据流体⼒学和热⼒学原理建⽴起来的⼤⽓运动⽅程组,表征了⼤⽓运动普遍规律,从物理上讲,它⼏乎描述了各种尺度运动和它们之间的相互作⽤,⽅程组是⾼度⾮线性的,难以求解。
因此,在动⼒⽓象中,常对各种运动系统进⾏尺度分类,利⽤尺度分析法分析各类运动系统的⼀般性质,建⽴各类运动系统的物理模型(第三章)。
第⼆章描写⼤⽓运动的基本⽅程组1. 作⽤于⼤⽓的⼒,哪些是真实⼒,哪些是视⽰⼒?真实⼒:⽓压梯度⼒、地球引⼒、摩擦⼒,既改变⽓流的运动⽅向,也改变速度的⼤⼩视⽰⼒:科⾥奥利⼒、惯性离⼼⼒,只改变⽓流的运动⽅向,不改变速度的⼤⼩2. 描述⼤⽓运动的基本⽅程组和各⾃遵守的物理原理⽜顿第⼆定律——运动⽅程质量守恒定律——连续⽅程理想⽓体实验定律——状态⽅程能量守恒定律——热⼒学能量⽅程⽔⽓质量守恒——⽔汽质量守恒⽅程3. 分析流体运动的两种基本⽅法拉格朗⽇⽅法:着眼于微团,研究其空间位置及其他物理属性随时间变化的规律,推⼴到整个流体运动。
动力气象-第二章
摩擦力在摩擦层中起作用,而对自由
大气中的空气运动也不予考虑。
地转偏向力、惯性离心力和摩擦力
虽然不能使空气由静止状态转变为运动状 态,但却能影响运动的方向和速度。气压 梯度力和重力既可改变空气运动状态,又 可使空气由静止状态转变为运动状态。
非惯性坐标系(旋转坐标 系):其 z 轴为地轴, x 轴 和y轴固定在地球赤道平面
1 d 1 d d u v w ( ) 0 ( ) 0 dt dt dt x y z
连续方程
d u v w ( ) 0 dt x y z
连续方程
欧拉方法
固定空间体积的质量流入率和密度的关系
沿x方向流入固定空间体积的大气质量
三、状态方程
p RT
p RT
(
1
)
p RTv
q:比湿 Tv:虚温
R:干空气比气体常数取为: 287J· K-1· kg-1
Tv (1 0.608q)T
Cp为干空气定压比热,Cv为干空气 定容比热, Cp=Cv+R。 Cp=1004J· K-1· kg-1 ; Cv=717J· K-1· kg-1 R=287J· K-1· kg-1 ; =Cp/Cv=1.4
旋转。
在地球上观测大气运动,是“相对运动”,观
测者与地球一起旋转,感觉不到地球自转。
坐标系
为了确定物体位置和描述物体运动,应采用适 当的坐标系。 根据观测方式的不同,坐标系分为:
惯性坐标系:原点位于地球中心,坐标轴方向
相对于太阳是固定的坐标系。 旋转坐标系:原点位于地球中心,坐标轴固定 在地球上的坐标系。
• 太阳参考系是惯性参考系
• 地球是非惯性参考系,它是旋转的
动力气象学教材笔记
动力气象学教材笔记第一章引言1.1 研究背景与目的动力气象学,作为气象科学领域的一个重要分支,专注于探索大气运动的基本规律以及这些规律如何与天气和气候变化相互联系。
在全球气候变化日益严峻的背景下,动力气象学的研究不仅具有深远的科学意义,更对实际应用领域,如天气预报和气候预测,具有不可替代的指导价值。
随着全球气候变暖趋势的加剧,极端天气事件频繁发生,给人类社会和经济发展带来了巨大挑战。
这些极端天气事件背后的大气动力过程复杂多变,亟需通过深入的动力气象学研究来揭示其内在机制。
此外,提高天气预报和气候预测的准确性也离不开对动力气象学基本理论的深入理解和应用。
因此,本文旨在系统梳理和总结动力气象学的核心理论,以期为更好地理解和预测大气运动提供坚实的理论基础。
在动力气象学的研究中,大气运动的基本规律是核心内容。
这些规律包括了大气中的能量守恒、动量守恒、质量守恒等基本物理定律,以及由此衍生出的一系列重要理论,如大气动力学方程、大气稳定性理论等。
这些理论和规律为我们理解和解释大气中的各种现象提供了有力的工具。
例如,通过对大气动力学方程的研究,我们可以了解大气中能量的转换和传递过程,从而揭示出风暴、气旋等天气系统的发展演变机制。
动力气象学还关注大气运动与天气、气候变化的内在联系。
天气和气候是大气运动在不同时间和空间尺度上的表现,二者之间存在着密切的相互作用和反馈机制。
动力气象学通过研究这些相互作用和反馈机制,不仅有助于我们更全面地认识大气系统的复杂性,还能为改进天气预报和气候预测模型提供科学依据。
例如,近年来发展起来的基于动力气象学原理的数值天气预报模型,已经在实际应用中取得了显著的成效,大大提高了天气预报的准确性和时效性。
动力气象学的研究还涉及大气与地球其他圈层(如水圈、生物圈、岩石圈)的相互作用。
这些相互作用对全球气候系统的稳定和发展具有重要影响。
例如,海洋与大气之间的热量和水分交换是影响全球气候的重要因素之一;而地表植被的变化则可能通过改变地表的反射率和粗糙度来影响大气的温度和风速等。
成信工动力气象学讲义02大气能量学
大气的运动需要外界提供能量,因此,从能量学的观点来揭示和了解大气环流运动的规律无疑有重要意义。
§1大气能量的主要形式§2铅直气柱中各种能量的比较§3能量方程与能量守恒§4大气中的能量转换事实§5大尺度大气运动的能量循环过程重点:大气中能量的主要形式,动能方程,能量转换事实与能量循环。
§1大气中能量的主要形式设E 表示单位质量空气的某种能量,则任意体积空气的能量E *=(取质量积分)。
Ed τρτ⎰1基本(独立)形式1)内能:I=(2.1)v C T(2.1)’*v I C Td τρτ=⎰2)(重力)位能:(单位质量空气)(2.2)gz Φ=(2.3)*gzd τρτΦ=⎰3)动能:(2.4)()22221122K V u v w ==++ (2.5)2*12K V d τρτ=⎰ 以后的动能多指水平动能:(2.6)()2221122h h K V u v ==+4)潜热能:(q :比湿,L :相变潜热)(2.7)H L q=⋅5)压(力)能:(2.8)/ρ==J p RT2常见的组合形式1)全位能:(2.9)v P I C T gz=+Φ=+2)显热能(感热能,焓):(2.10)v p h C T RT C T =+=3)温湿能(湿焓):(2.11)h p E C T Lq=+4)静力能:(2.12)p E C T gz Lqσ=++干静力能:(2.13)d p E C T gz =+5)总能量:(2.14)221122t v p p E C T gz V Lq C T gz Lq V ρ=++++=+++干空气总能量:(2.15)212td p E C T gz V =++图2.1地球-大气系统的能量收支与平衡3有效位能(APE,Available Potential Energy)大气能量的诊断计算表明维持大气运动所需的动能来源为:太阳辐射能全位能有效(可用)位能动能→→→大气通过吸收太阳辐射而使其全位能增加,再由全位能转变成动能。
动力气象-第二章教材
从以上讨论可见:
物理上:压力梯度力是驱动大气运动的主要因
子,而压力的变化与热力与动力过程相关联,
因此描写大气过程必须考虑热力过程。
数学上:运动方程:1个(矢量)
3个(分量)
未知量:温度、气压、密度
必须寻找描写气压、密度变化的方程——方程
才能闭合。
名词解释
1、真实力;2、视示力(虚拟力);3、 气压梯度力;4、重力;5、惯性离心力;
• 太阳参考系是惯性参考系
• 地球是非惯性参考系,它是旋转的
• 参考系如何选择,原则上是任意的。
在气象研究中通常都选地球作为参考系。
气象上最常用的坐标系:
球坐标,局地直角坐标
自然坐标系
p坐标系,σ坐标系,θ坐标系等。
旋转坐标系
视示力(虚拟力)
由旋转坐标系的加速作用而假 想的非真实的力(惯性离心力、 地转偏向力)
2 向心力: R
因此,对于非惯性坐标系(圆盘),小球
受向心力,但又是静止的,这是矛盾的, 不满足牛顿运动定律。
引入惯性离心力,大小与向心力相等,方
向相反。
2 C R
1个恒星日=23小时 56分4秒=86164s
地心引力( )指向球心,惯
性离心力( )垂直于地轴
向外,因而除了在极地和赤道
外,重力( )并不指向球心 (见图)。
正是由于存在惯性离心力,使得地球成为椭球体, 赤道半径比极地半径长约21km(但这个差值比
起地球平均半径显得微不足道),重力垂直于椭
球体表面(上图虚线)。
地转偏向力
t=0
t=1
t=2
t=3
计划做匀速直线运动的兔子,在非惯性坐
标系下的运动轨迹却是曲线,且偏向于运 动方向的右侧。
动力气象学第二章习题答案
动力气象学第二章习题答案动力气象学第二章习题答案动力气象学是研究大气运动的科学,它探讨了大气中的力学过程和气象现象之间的相互关系。
在学习动力气象学的过程中,习题是检验我们对知识理解和应用的重要方式。
下面是对动力气象学第二章习题的详细解答。
问题1:什么是大气的垂直平衡?答:大气的垂直平衡是指在垂直方向上,大气中的各种力量之间达到平衡状态。
这种平衡是由重力、压强梯度力、离心力和科里奥利力等因素共同作用所形成的。
当这些力量之间的平衡达到一定状态时,大气就呈现出稳定或不稳定的状态。
问题2:什么是静力平衡?答:静力平衡是指在水平方向上,大气中的压强梯度力与离心力之间达到平衡状态。
在静力平衡下,气体分子受到重力的作用而向下运动,同时受到压强梯度力的作用而向上运动,最终形成一个平衡状态。
问题3:为什么大气的垂直平衡是稳定的?答:大气的垂直平衡是稳定的,因为当大气中出现扰动时,系统会自动调整以恢复平衡状态。
例如,当大气中某一区域的压强较高时,周围的气体会受到压强梯度力的作用而向该区域流动,从而减小压强差。
这种调整过程会持续进行,直到压强差减小到一定程度,大气再次达到平衡状态。
问题4:什么是大气的不稳定?答:大气的不稳定是指当大气中出现扰动时,系统无法自动调整以恢复平衡状态。
在不稳定的情况下,扰动会导致气体产生剧烈的运动,从而形成对流现象和气象灾害。
例如,当大气中某一区域的温度较高时,周围的气体会受到浮力的作用而向上升腾,形成对流运动。
问题5:什么是绝热过程?答:绝热过程是指在没有热量交换的情况下,气体的温度和压强发生变化。
在绝热过程中,气体的内部能量发生改变,但没有热量的输入或输出。
绝热过程可以用来描述大气中的垂直运动和气象现象,例如对流运动和气旋的形成。
问题6:什么是绝热抬升?答:绝热抬升是指当气体上升时,由于没有热量的输入或输出,气体的温度和压强发生变化。
在绝热抬升过程中,气体上升时受到外界压强的减小而膨胀,从而导致温度的降低。
南京信息工程大学2023考研大纲:F04动力气象学(含数值预报)2
南京信息工程大学2023考研大纲:F04动力气象学(含数值预报)1500字南京信息工程大学2023考研大纲:F04动力气象学(含数值预报)动力气象学是气象学的重要分支之一,主要研究大气运动的基本规律以及大气运动对气象现象的影响。
本课程主要包括动力气象学基本概念、大气平衡及运动的基本方程、大气边界层、大气波动等内容。
同时,还会包含数值预报的相关知识,将动力气象学理论与实际应用相结合。
以下是该课程的详细内容。
一、动力气象学基本概念1. 动力气象学的概念和发展历程2. 大气的基本性质和运动规律3. 动力气象学的研究方法和技术手段二、大气平衡及运动的基本方程1. 大气的水平平衡方程2. 大气的垂直平衡方程3. 大气的热力平衡方程4. 物质守恒方程和能量守恒方程三、大气边界层1. 大气边界层的概念和特征2. 大气边界层的发展和结构3. 大气边界层的运动和湍流4. 大气边界层的边界条件和变化规律四、大气波动1. 大气波动的基本类型和特征2. 大气波动的发生机制和扩散规律3. 大气波动的传播和变化规律4. 大气波动对气象现象的影响五、数值预报1. 数值预报的基本原理和方法2. 数值预报的模式和参数化方案3. 数值预报的数据来源和处理方法4. 数值预报的评估和检验方法以上是南京信息工程大学2023考研《动力气象学(含数值预报)》的大纲内容,总共约1500字。
本课程的学习将使学生掌握动力气象学的基本理论和数值预报的基本技术,能够理解大气运动的基本规律和模拟未来天气变化,为气象预报、气候变化等相关领域的研究提供基础支撑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单位质量气团外界加热率 =内能变化率+气团膨胀反抗压力作功率 内能变化率+ 内能变化率
另外一种常用表达: 另外一种常用表达: →
A: 热功当量
--闭合 --闭合
五、局地直角坐标系: 局地直角坐标系:
常用坐标系: 球坐标系 柱坐标系 局地直角平面坐标系
又称:z—坐标系 o:地面区域中心 z:垂直地面向上 (天顶方向) y:与经圈相切向北 x:与纬圈相切指向东 忽略地球的曲面性。 忽略地球的曲面性。
垂直地面向下
--压力梯度力 --压力梯度力
--科氏力 (地转偏向力) :分子粘性力
重力: 重力:
保守力
科氏力:不做功,只改变运动方向 科氏力:不做功, (运动形式) 运动形式) 分子粘性力: 分子粘性力:耗散 驱动大气运动的主要动力: 驱动大气运动的主要动力:压力梯度力
从以上讨论可见: 从以上讨论可见: 物理上-- --压力梯度力是驱动大气运动 物理上--压力梯度力是驱动大气运动 的主要因子, 的主要因子,而压力的变化与热力与动 力过程相关联, 力过程相关联,因此描写大气过程必须 考虑热力过程。 考虑热力过程。 数学上:运动方程:1个(矢量) 数学上:运动方程: 个 矢量) 3个(分量) 个 分量) 未知量:速度、气压、 未知量:速度、气压、密度 必须寻找描写气压、 必须寻找描写气压、密度变化的方程 --方程才能闭合 --方程才能闭合
∂u ∂u ∂u 1 ∂p ~ ∂u γ ∂t + u ∂x + v ∂y + w ∂z = − ρ ∂x − fw+ fv + Fx 1 ∂p ∂v ∂v ∂v ∂v γ ∂t + u ∂x + v ∂y + w ∂z = − ρ ∂y − fu + Fy ∂w ∂w ∂w 1 ∂p ~ ∂w +v +w = − + fu − g + Fz +u γ ∂x ∂y ∂z ρ ∂z ∂t ∂ρ ∂ρ ∂ρ ∂ρ ∂u ∂v ∂w +u + v + w + ρ( + + ) = 0 ∂x ∂y ∂z ∂x ∂y ∂z ∂t P = ρRT dT RT dP dQ CP dt − P dt = dt
二、连续方程
两种形式: ① L—观点: :气团密度随体变化率 :气团体积的相对变化率
质量守恒: 质量守恒:
②欧拉观点 :
:固定空间密度的局地变化率 --单位时间单位空间体积(固 定)内的质量变化 :单位时间单位空间理想气体:
四、热力学第一定律(热流量方程) 热力学第一定律(热流量方程)
绝对加速度 =相对加速度 +牵连加速度
牵连加速度 =向心加速度+科氏加速度 向心加速度+
∑F
i
i
→ :单位质量空气质点受到的真实力
→ 广义牛顿粘性假设, 广义牛顿粘性假设,有
→ 左边:加速度项; 右边:引起大气运动变化的原因 用 近似表示,a是地球半径 --万有引力
--惯性离心力项 万有引力+惯性离心力= 万有引力+惯性离心力=重力
u、v、w、ρ、p、T --六个未知量,六个方程; --闭合方程 --描述各种尺度的大气运动
第二章 描写大气运动的基本方程组
一、运动方程: 运动方程: 牛顿第二定律:(单位质量的气团) 牛顿第二定律:(单位质量的气团) :(单位质量的气团
成立条件:绝对(惯性) 成立条件:绝对(惯性)坐标系
风速 --相对于地球的相对速度, --相对于地球的相对速度, 相对于地球的相对速度 --取地球作为参照系更为方便; 取地球作为参照系更为方便 --取地球作为参照系更为方便; --地球是旋转的 地球是旋转的, --地球是旋转的,具有加速度 --非惯性坐标系 --非惯性坐标系 --牛顿第二定律不能直接应用 牛顿第二定律不能直接应用。 --牛顿第二定律不能直接应用。
V = ui + vj + wk Ω = Ωcos Φj + Ωsin Φk i j k − 2Ω∧V = −2 0 Ωcos Φ Ωsin Φ u v w Ωcos Φ Ωsin Φ 0 Ωsin Φ 0 Ωcos Φ = −2(i −j +k ) u v v w u w = i (−2Ωcos Φw+ 2Ωsin Φv) + j (−2Ωsin Φu) + k (+2Ωcos Φu) ~ ~ = i (− fw+ fv) + j (− fu) + k (+ fu) ~ 其 : f = 2Ωcos Φ, f = 2Ωsin Φ; Ω = 7.292×10−5 中 s 10−4 f~ s