福州市长乐市2015-2016学年八年级上期末数学试卷含答案解析
2015-2016人教版八年级数学第一学期期末考试试卷及答案
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
2015-2016学年八年级上学期期末考试数学试题及答案
2015-2016学年八年级上学期期末考试数学试题2016.1.8 一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( ) A.2个 B.3个 C.4个 D.5个3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( )A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( ) A.平均数 B.众数 C.中位数 D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11.在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。
12.一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13.在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为。
(2021年整理)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】
(完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】的全部内容。
2015—2016学年度第一学期末测试一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个. A 。
1 B2 C.3 D.4 2。
与3—2相等的是( )A.91B.91- C.9D.-9 3。
当分式21-x 有意义时,x 的取值范围是( )A.x <2 B 。
x >2 C.x ≠2 D 。
x ≥2 4.下列长度的各种线段,可以组成三角形的是( ) A 。
1,2,3B.1,5,5 C 。
3,3,6 D 。
4,5,6 5.下列式子一定成立的是( )A 。
3232a a a =+B 。
632a a a =• C. ()623a a = D 。
326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B 。
7 C.8 D 。
97。
空气质量检测数据pm2。
5是值环境空气中,直径小于等于2。
5微米的颗粒物,已知1微米=0。
000001米,2。
5微米用科学记数法可表示为( )米。
A 。
2。
5×106B.2.5×105C 。
2.5×10—5D 。
2.5×10-68。
已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。
2015-2016学年第一学期初二数学期末考试综合试卷(1)及答案
2015-2016学年第一学期初二数学期末考试综合试卷(1)一、选择题:1. (2015•呼伦贝尔)25的算术平方根是……………………………………………( ) A .5; B .-5; C .±5;D2. (2015•金华)如图,数轴上的A 、B 、C 、D 四点中,与数( ) A .点A ;B .点B ;C .点C ;D .点D ;3. (2015•绥化)在实数0、π、227无理数的个数有………………( ) A .1个;B .2个 ;C .3个;D .4个;4.(2015•内江)函数11y x =-中自变量x 的取值范围是………………………( ) A .2x ≤; B .2x ≤且1x ≠; C .x <2且1x ≠; D .1x ≠;5. (2014•南通)点P (2,-5)关于x 轴对称的点的坐标为……………………………( ) A .(-2,5) B .(2,5) C .(-2,-5) D .(2,-5)6. 两条直线y=ax+b 与y=bx+a 在同一直角坐标系中的图象位置可能是…………( )7. (2015•济南)如图,一次函数1y x b =+与一次函数24y kx =+的图象交于点P (1,3),则关于x 的不等式x+b >kx+4的解集是……………………………………………………( )A .x >-2B .x >0C .x >1D .x <18. 已知等腰三角形的两边长分別为a 、b ,且a 、b()223130a b +-=,则此等腰三角形的周长为………………………………………………………………( )A .7或8B .6或1OC .6或7D .7或10;9. 如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有……………………………………………………………………………( ) A .2个 ;B .3个; C .4个 ;D .5个;A. B. C. D. 第2题图 第7题第9题10. (2015•泰安)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F .若AB=6,BC= 则FD 的长为……………………………( ) A .2; B .4; C;D.二、填空题:11. 在等腰△ABC 中,AB=AC ,∠A=50°,则∠B= . 12. (2015•泉州)比较大小:).13. 由四舍五入法得到的近似数38.810⨯精确到 位.14. 已知点P (a ,b )在一次函数y=4x+3的图象上,则代数式4a-b-2的值等于 .15. 如图,已知△ABC 中,AB=AC ,点D 、E 在BC 上,要使△ABD ≌ACE ,则只需添加一个适当的条件是 .(只填一个即可)16. 一次函数y=(m+2)x+1,若y 随x 的增大而增大,则m 的取值范围是 . 17. 如图,将Rt △ABO 绕点O 顺时针旋转90°,得到Rt A B O '',已知点A 的坐标为(4,2),则点A ′的坐标为 .18. 如图,已知等边三角形ABC 的边长为10,点P 、Q 分别为边AB 、AC 上的一个动点,点P 从点B 出发以1cm/s 的速度向点A 运动,点Q 从点C 出发以2cm/s 的速度向点A 运动,连接PQ ,以Q 为旋转中心,将线段PQ 按逆时针方向旋转60°得线段QD ,若点P 、Q 同时出发,则当运动_______s 时,点D 恰好落在BC 边上. 三、解答题:(本大题共76分) 19.(本题满分8分)(1)求()2116x +=中的x ; (2);20. (本题满分6分)(2015•温州)如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D .(1)求证:AB=CD .(2)若AB=CF ,∠B=30°,求∠D 的度数.21. (本题满分6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.第10题图第15题第17题第18题图(1)将△ABC 沿x 轴翻折得到111A B C ,作出111A B C ; (2)将111A BC 向右平移4个单位,作出平移后的222A B C .(3)在x 轴上求作一点P ,使12PA PC +的值最小,并写出点P 的坐标: .(不写解答过程,直接写出结果)22. (本题满分6分)已知一个正数的两个平方根分别为a 和29a -. (1)求a 的值,并求这个正数; (2)求2179a -的立方根.23. (本题满分6分)(2015•淄博)在直角坐标系中,一条直线经过A (-1,5),P (-2,a ),B (3,-3)三点. (1)求a 的值;(2)设这条直线与y 轴相交于点D ,求△OPD 的面积.24. (本题满分6分)如图,在△ABC 中,点D 在边AC 上,DB=BC ,E 是CD 的中点,F 是AB 的中点,求证:EF=12AB .25. (本题满分9分)如图,在△ABC 中,AB=AC ,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:△ABD 是等腰三角形; (2)若∠A=40°,求∠DBC 的度数;(3)若AE=6,△CBD 的周长为20,求△ABC 的周长.26. (本题满分7分)(2015•盐城)如图,在平面直角坐标系xOy 中,已知正比例函数34y x =与一次函数7y x =-+的图象交于点A .(1)求点A 的坐标;(2)设x 轴上有一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交34y x =和7y x =-+的图象于点B 、C ,连接OC .若BC=75OA ,求△OBC 的面积.如图,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,3),且()2411023a b a b ++-+=.(1)求a 、b 的值;(2)①在y 轴上的负半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M 的坐标;②在坐标轴的其它位置是否存在点M ,使结论“△COM 的面积=12△ABC 的面积”仍然成立?若存在,请直接写出符合条件的点M 的坐标;若不存在,请说明理由.28. (本题满分7分)(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元. (1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元?(2015•齐齐哈尔)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.2015-2016学年第一学期初二数学期末考试综合试卷(1)参考答案 一、选择题:1.A ;2.B ;3.B ;4.B ;5.B ;6.A ;7.C ;8.A ;9.C ;10.B ; 二、填空题:11.65°;12.>;13.百;14.-5;15.BD=EC (答案不唯一);16. 2m >-;17.(2,-4);18. 103; 三、解答题:19.(1)3或-5;(2)8.5;20.(1)略;(2)75°;21.(1)略;(2)略;(3)8,05⎛⎫ ⎪⎝⎭;22.(1)3a =,这个正数是9;(2)-4; 23. (1)7a =;(2)3;24. 证明:如图,连接BE ,∵在△BCD 中,DB=BC ,E 是CD 的中点, ∴BE ⊥CD ,∵F 是AB 的中点,∴在Rt △ABE 中,EF 是斜边AB 上的中线,∴EF=12AB . 25.(1)略;(2)30°;(3)32; 26.(1)A (4,3);(2)28; 27. (1)2a =-,3b =;(2)①M (0,-7.5);②存在. M (0,7.5),M (2.5,0);M (-2.5,0);28. 解:(1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元. 根据题意得()()1224124212201232a b a b +-=⎧⎪⎨+-=⎪⎩,解得:12.5a b =⎧⎨=⎩. 答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元. (2)∵当0≤x ≤12时,y=x ;当x >12时,y=12+(x-12)×2.5=2.5x-18,∴所求函数关系式为:()()022.51812x x y x x ≤≤⎧⎪=⎨->⎪⎩. (3)∵x=26>12,∴把x=26代入y=2.5x-18,得:y=2.5×26-18=47(元). 答:小黄家三月份应交水费47元.29. 解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷60-1-1)=720÷6=120(千米/小时)∴t=360÷120=3(小时).(2)①当0≤x ≤3时,设1y k x =,把(3,360)代入,可得31k =360, 解得1k =120,∴y=120x (0≤x ≤3). ②当3<x ≤4时,y=360. ③4<x ≤7时,设2y k x b =+, 把(4,360)和(7,0)代入,可得2120840k b =-⎧⎨=⎩,∴y=-120x+840(4<x ≤7).(3)①(480-60-120)÷(120+60)+1=300÷180+1=53+1=83(小时) ②当甲车停留在C 地时,(480-360+120)÷60=240÷6=4(小时) ③两车都朝A 地行驶时,设乙车出发x 小时后两车相距120千米,则60x-[120(x-1)-360]=120,所以480-60x=120,所以60x=360,解得x=6.小时、4小时、6小时后两车相距120千米.综上,可得乙车出发83。
2015-2016学年新课标人教版八年级上期末数学试卷(有答案)
2015-2016学年新课标⼈教版⼋年级上期末数学试卷(有答案)2015-2016学年⼋年级(上)期末数学试卷⼀、选择题(本题共有10⼩题,每⼩题3分,共30分,每⼩题有四个选项,其中有⼏个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三⾓形B.等边三⾓形C.圆D.正⽅形2.下⾯有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在4.下列运算错误的是( )A.x2?x4=x6B.(﹣b)2?(﹣b)4=﹣b6C.x?x3?x5=x9D.(a+1)2(a+1)3=(a+1)55.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°7.到三⾓形三条边的距离都相等的点是这个三⾓形的( )A.三条中线的交点B.三条⾼的交点C.三条边的垂直平分线的交点 D.三条⾓平分线的交点8.若等腰三⾓形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三⾓形共有( )对.A.5对B.4对C.3对D.2对10.如图是屋架设计图的⼀部分,点D是斜梁AB的AB的中点,⽴柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m⼆、填空题(本题共有6⼩题,每⼩题3分,共18分)11.要使分式有意义,那么x必须满⾜__________.12.已知⼀个n边形的内⾓和是其外⾓和的5倍,则n=__________.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于__________度.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于__________度.15.如图,已知BD是∠ABC的⾓平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=__________cm.16.如图,已知射线OC上的任意⼀点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某⼀个即可,请写出所有可能的条件的序号__________.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.三、解答题(本题共有7⼩题,共72分)17.完成下列运算(1)计算:7a2?(﹣2a)2+a?(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.。
2015—2016学年度第一学期初二期末质量检测数学试卷附答案
2015—2016学年度第一学期初二期末质量检测数学试卷2016.1考生须知1.本试卷共6页,共三道大题,30道小题,满分120分.考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.9的算术平方根是 A .3B .-3C .±3D .±312. 若2x -表示二次根式,则x 的取值范围是 A .x ≤2 B. x ≥ 2 C. x <2 D.x >2 3.若分式21+-x x 的值为0,则x 的值是 A .-2 B .-1 C . 0 D .14.剪纸是我国最古老的民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是轴对称图形的为5.在下列二次根式中是最简二次根式的是 A.12B.4C. 3D. 86.下列各式计算正确的是A .235+=B .43331-=C .233363⨯=D .2733÷=7.在一个不透明的箱子里,装有3个黄球、5个白球、2个黑球,它们除了颜色之外没有其他区别. 从箱子里随意摸出1个球,则摸出白球的可能性大小为A.0.2B.0.5C. 0.6D. 0.88.如图,一块三角形玻璃损坏后,只剩下如图所示的残片,对图中的哪些A B C D尺规作图:作一个角等于已知角. 已知:∠AO B.求作:一个角,使它等于∠AO B.数据测量后就可到建材部门割取符合规格的三角形玻璃 A .∠A ,∠B ,∠C B .∠A ,线段AB ,∠BC .∠A ,∠C ,线段ABD .∠B ,∠C ,线段AD9.右图是由线段AB ,CD ,DF ,BF ,CA 组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为 A .62°B .152°C .208°D .236°10.如图,直线L 上有三个正方形a b c ,,,若a c ,的面积分别为1和9,则b 的面积为A .8B .9 C.10 D.11二、填空题(本题共21分,每小题3分) 11.如果分式23x +有意义,那么x 的取值范围是____________. 12.若实数x y ,满足2-2(3)0x y +-=,则代数式+x y 的值是 .13.如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为___________. 14.若a <1,化简2(1)1a --等于____________.15.已知112x y -=,则分式3232x xy yx xy y+---的值等于____________. 16.如图,在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 .17.阅读下面材料:在数学课上,老师提出如下问题:G FEDCB Acb aLDCBA ODCBA(1)作射线O ′A ′;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O ′为圆心,OC 为半径作弧C ′E ′,交O ′A ′于C ′; (4)以C ′为圆心,CD 为半径作弧,交弧C ′E ′于D ′; (5)过点D ′作射线O ′B ′.所以∠A ′O ′B ′就是所求作的角.小强的作法如下:老师说:“小强的作法正确.”请回答:小强用直尺和圆规作图'''A O B AOB ∠=∠,根据三角形全等的判定方法中的_______,得出△'''D O C ≌△DOC ,才能证明'''A O B AOB ∠=∠.三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分)18.计算:03982-3-2-+-().19.计算:18312-2⨯÷.20.计算:(21)(63)+⨯-.21.计算: 11(1)1a a a a+-+⋅+.22.如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求BC 的长.E'O'D'C'B'A'23.解方程:12211x x x +=-+.24.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.25. 先化简:22211a a a a a a --⎛⎫-÷ ⎪+⎝⎭,然后从-1,0,1,2中选一个你认为合适的a 值,代入求值.26.小红家最近新盖了房子,室内装修时,木工师傅让小红爸爸去建材市场买一块长3m ,宽2.2m 的薄木板用来做家居面,到了市场爸爸看到满足这个尺寸的木板有点大,买还是不买爸爸犹豫了,因为他知道他家门框高只有2m,宽只有1m ,他不知道这块木板买回家后能不能完整的通过自家门框.请你替小红爸爸解决一下难题,帮他算一算要买的木板能否通过自家门框进入室内.(备用图可供做题参考,薄木板厚度可以忽略不计)27.列方程解应用题李明和王军相约周末去怀柔图书馆看书,请根据他们的微信聊天内容求李明乘公交、王军骑自行车每小时各行多少公里?FED CBA 备用图HGF EDCBA门框薄木板28.已知:如图,ABC△中,45ABC∠=°,CD AB⊥于D,BE平分ABC∠,且BE AC⊥于E,与CD相交于点F H,是BC边的中点,连结DH与BE相交于点G.(1)判断AC与图中的那条线段相等,并证明你的结论;(2)若CE 的长为3,求BG的长.29.已知:在△ABC中,D为BC边上一点,B,C两点到直线AD的距离相等.(1)如图1,若△ABC是等腰三角形,AB=AC,则点D的位置在;(2)如图2,若△ABC是任意一个锐角三角形,猜想点D的位置是否发生变化,请补全图形并加以证明;(3)如图3,当△ABC是直角三角形,∠A=90°,并且点D满足(2)的位置条件,用等式表示线段AB,AC,AD之间的数量关系并加以证明.CBA图1AB C图2AB C图3HG F EDCBA图3lC ABP A 'D30.请阅读下列材料:问题:如图1,点,A B 在直线l 的同侧,在直线l 上找一点P ,使得AP BP +的值最小.小明的思路是:如图2所示,先做点A 关于直线l 的对称点A ',使点',A B 分别位于直线l 的两侧,再连接A B ',根据“两点之间线段最短”可知A B '与直线l 的交点P 即为所求.A 'P BAll图2图1AB请你参考小明同学的思路,探究并解决下列问题: (1)如图3,在图2的基础上,设AA '与直线l 的交点为C ,过点B 作BD ⊥l ,垂足为D . 若1CP =,1AC =,2PD =,直接写出AP BP +的值; (2)将(1)中的条件“1AC =”去掉,换成“4BD AC =-”,其它条件不变,直接写出此时AP BP +的值;(3)请结合图形,求()()223194m m -++-+的最小值.数学试卷答案及评分参考2016.1一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 题 号 1 2 3 4 5 6 7 8 9 10 答 案 ABDBCDBBCC二、填空题(本题共21分,每小题3分) 题 号11121314151617答 案3x ≠-2+323cm -a 143SSS三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分) 18.解:原式=3-22-1+………………4分 =2………………………………5分19.解:原式=22412-2÷………………3分 =12-22………………………………4分 =122………………………………5分 20.解:原式=12663-+-………………3分=123-……………………………4分 =233-=3………………………………5分21.解:原式=211a a a-+…………………………3分=2a a…………………………4分a =…………………………5分22.解:∵△ABD 是等边三角形,∴∠B =∠BAD =∠AD B =60°, ∵AB =2,∴BD=AD=2.………………………2分∵∠BAC =90°,∴∠DA C =90°﹣60°=30°.………………………3分∵∠AD B =60°,∴∠C =30°.………………………4分 ∴AD =DC=2,∴B C=BD+DC=2+2=4. ∴BC 的长为4.………………………5分23.解:(1)2(1)2(1)(1)x x x x x ++-=+-. ················································· 2分 2212222x x x x ++-=-. ·························································· 3分 3x =. ································································ 4分 经检验3x =是原方程的解. 所以原方程的解是3x =. ····························································· 5分24.证明:∵AB ∥DE ∴∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分∴BC=DE. …………………………………5分25.解:原式=a 2-2a +1a ÷ 1-a 2a 2+a………………………………1分=(a -1)2a ·a (a +1)(1-a ) (a +1) …………………………3分=1-a …………………………………………………4分 当a=2时,原式=1-a=1-2=-1………………………5分26.解:连结HF ,…………..…………………1分 依题意∵FG=1,GH=2,∴在Rt △FGH 中,根据勾股定理:FH=2222=1+2=5FG HG +…………..…………………2分又∵BC=2.2= 4.84,…………..…………………3分 ∴FH >BC ,…………..…………………4分∴小红爸爸要买的木板能通过自家门框进入室内 …………..…………………5分 27.列方程解应用题解:设王军骑自行车的速度为每小时x 千米,则李明乘车的速度为每小时3x 千米. ………..…………………1分 根据题意,得3012032x x+=………..…………………3分解方程,得20x =………..…………………4分经检验,20x =是所列方程的解,并且符合实际问题的意义. 当20x =时,332060.x =⨯=答:王军骑自行车的速度为每小时20千米,李明乘车的速度为每小时60千米. ………..…5分28.(1)证明:CD AB ⊥∵,∴90BDC ∠=°, ∵45ABC ∠=°,BCD ∴△是等腰直角三角形.BD CD =∴.………..…………………2分 ∵BE AC ⊥于E ,∴90BEC ∠=°,FED CBA 薄木板门框ABCDEF GH备用图ABCDEFGH∵BFD EFC ∠=∠,DBF DCA ∠=∠∴. Rt Rt DFB DAC ∴△≌△.BF AC =∴.………..…………………3分(2)解:BE ∵平分ABC ∠,22.5ABE CBE ∠=∠=︒∴. ∵BE AC ⊥于E ,∴90BEA BEC ∠=∠=°, 又∵BE=BE,Rt Rt BEA BEC ∴△≌△. CE AE =∴.………..…………………4分连结CG .BCD ∵△是等腰直角三角形,BD CD =∴. 又H 是BC 边的中点,C ⊥∴DH B DH ∴垂直平分BC ,BG CG =∴. 22.5EBC ∠=︒ ,22.5GCB ∴∠=︒∴45EGC ∠=°,∴Rt CEG △是等腰直角三角形, ∵CE 的长为3,∴EG=3,利用勾股定理得:222CE GE GC +=,∴222(3)(3)GC +=, ∴6GC =,∴BG 的长为6.………..…………………6分 29.解:(1)BC 边的中点. ………..…………………1分 (2)点D 的位置没有发生变化. ………..…………………2分 证明:如图,∵BE AD ⊥于点E ,CF AD ⊥于点F , ∴∠3=∠4=90°.又∵∠1=∠2,BE=CF,BED CFD ∴△≌△.∴BD=DC.即点D 是BC 边的中点 ………..…………………4分.(3)AB ,AC ,AD 之间的数量关系为2224AC AB AD +=..………..…………………5分 证明:延长AD 到点H 使DH=AD ,连接HC. ∵点D 是BC 边的中点,∴BD=DC. 又∵DH=AD ,∠4=∠5,ABD HCD ∴△≌△.∴∠1=∠3,AB=CH.∵∠A=90°,∴∠1+∠2=90°.∴∠2+∠3=90°.∴∠ACH=90°.∴222AC CH AH +=. 又∵DH=AD ,∴222(2)AC AB AD +=.∴2224AC AB AD +=.………..…………………7分4321FED CBA54321HA BCD30.(1)32;(2)5;(3)解:设1AC =,CP=m-3, ∵A A ′⊥L 于点C ,∴AP=()231m -+,设2BD =,DP=9-m, ∵BD ⊥L 于点D ,∴BP=2(9)4m -+,∴()()223194m m -++-+的最小值即为A ′B 的长.即:A ′B=()()223194m m -++-+的最小值.如图,过A ′作A ′E ⊥BD 的延长线于点E. ∵A ′E=CD=CP+PD= m-3+9-m=6, BE=BD+DE=2+1=3, ∴A ′B=()()223194m m -++-+的最小值=22BE A E '+ =936+ =35 ∴()()223194m m -++-+的最小值为35.EA'LPD C BA。
2015——2016学年度第一学期期末教学质量测试八年级数学试卷附答案
2015——2016学年度第一学期期末教学质量测试八年级数学试卷一.选择题(每小题2分,共20分)1.下列各数中,属于无理数的是( )(A )﹣1 (B )3.1415 (C )12(D 2. 若一个有理数的平方根与立方根是相等的,则这个有理数一定是 ( ) (A) 0 (B) 1 (C) 0或1 (D) 0和±1 3.下列命题中,逆命题是真命题的是( )(A )直角三角形的两锐角互余. (B )对顶角相等. (C )若两直线垂直,则两直线有交点. (D )若21,1x x ==则.4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )(A )40°. (B )100°. (C )50°或70°. (D )40°或100°. 5.如图,图中的尺规作图是作( )(A )线段的垂直平分线. (B )一条线段等于已知线段. (C )一个角等于已知角. (D )角平分线.6.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm, △ADC 的周长为17cm,则BC 的长为( )(A )7cm (B )10cm (C )12cm (D )22cm5题图 6题图 7题图7.如图是某手机店今年1—5月份音乐手机销售额统计图。
根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )(A )1月至2月 (B )2月至3月 (C )3月至4月 (D )4月至5月8. 若b 为常数,要使16x 2+bx+1成为完全平方式,那么b 的值是 ( )(A) 4 (B) 8 (C) ±4 (D) ±89题图 10题图9.如图,正方形网格中有△ABC ,若小方格边长为1,则△ABC 是( )(A )直角三角形. (B )锐角三角形. (C )钝角三角形. (D )以上都不对. 10.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )(A )48. (B )60. (C )76. (D )80.二、填空题(每小题2分,共18分)11.计算:25a a ⋅= .12.因式分解:24x y y -=__________________.13. 如图将4个长、宽分别均为a 、b 的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是__________________.13题图 14题图14.将一张长方形的纸片ABCD 按如图所示方式折叠,使C 点落在/C 处,/BC 交AD 于点E ,则△EBD 的形状是__________________.15.某校对1200名女生的身高进行了测量,身高在 1.58m ~1.63m 这一小组的频率为0.25,则该组共有_________人16. 如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA长为半径画弧,与弧AB交于点C,则∠AOC=_________度16题图 17题图17.如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为_________cm18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。
福州市长乐市2015-2016学年八年级上期中数学试卷含答案解析
20.如图,CE 是△ABC 的外角∠ACD 的平分线,且 CE 交 BA 的延长线于点 E,∠B=40°, ∠E=30°,求∠BAC 的度数.
21.一个多边形的内角和比四边形的外角和多 540°,并且这个多边形的各内角都相等.这 个多边形的每一个内角等于多少度?它是正几边形? 22.如图,在△ABC 中,AB=AC,D 为 BC 中点,DE、DF 分别是∠ADB、∠ADC 的平分 线,若 DE=2,求 DF 的长.
2015-2016 学年福建省福州市长乐市每小题 2 分,共 20 分) 1.如果一个三角形有两边长分别是 3 和 5,那么第三边长可能是( ) A.1 B.2 C.4 D.8
2.在一些美术字中,有的汉字是轴对称图形,下面 4 个汉字中,可以看作是轴对称图形的
是(
5.能将三角形面积平分的是三角形的(
)
A.角平分线 B.高 C.中线 D.外角平分线
6.在△ABC 中,∠A:∠B:∠C=3:4:5,则∠C 等于(
)
A.45° B.60° C.75° D.90°
7.如图,甲、乙、丙三个三角形中和△ABC 全等的图形是(
)
A.甲和乙 B.乙和丙 C.只有乙 D.只有丙
(1)求∠OBC 的度数;
(2)如图 2,点 P 从点 A 出发,沿射线 AB 方向运动,同时点 Q 在边 BC 上从点 B 向点 C 运动,在运动过程中: ①若点 P 的速度为每秒 2 个单位长度,点 Q 的速度为每秒 1 个单位长度,运动时间为 t 秒,已知△PQB 是直角三角形,求 t 的值; ②若点 P,Q 的运动路程分别是 a,b,已知△PQB 是等腰三角形时,求 a 与 b 满足的数量
2015-2016学年新课标人教版八年级上期末数学试卷(有答案)
2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)55.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足__________.12.已知一个n边形的内角和是其外角和的5倍,则n=__________.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于__________度.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于__________度.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=__________cm.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号__________.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、有1条对称轴;B、有3条对称轴;C、有无数条对称轴;D、有4条对称轴.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在【考点】分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得,|x|﹣1=0,且x﹣1≠0,解得x=﹣1.故选:B.【点评】本题考查了分式为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)5【考点】同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:A、底数不变指数相加,故A正确;B、底数不变指数相加,故B错误;C、底数不变指数相加,故C正确;D、底数不变指数相加,故D正确;故选:B.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加是解题关键.5.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)【考点】因式分解-十字相乘法等;因式分解-提公因式法.【专题】计算题.【分析】原式各项分解因式得到结果,即可做出判断.【解答】解:A、原式=(x﹣6)(x+1),错误;B、原式=(x﹣2)(x+3),错误;C、原式不能分解,错误;D、原式=ab(ma+mb+1),正确,故选D【点评】此题考查了因式分解﹣十字相乘法与提公因式法,熟练掌握因式分解的方法是解本题的关键.6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=30°∴∠BCD=∠ACB﹣∠ACD=45°.故选A.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【专题】几何图形问题.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17(cm).故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对【考点】全等三角形的判定.【分析】利用全等三角形的判定方法,利用HL、ASA进而判断即可.【解答】解:由题意可得出:△ABE≌△ACF(HL),△ADF≌△ADE(HL),△ABD≌△ACD (SAS),△BFD≌△CED(ASA).故选:B.【点评】本题考查三角形全等的判定方法及等腰三角形的性质;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m【考点】含30度角的直角三角形.【专题】应用题.【分析】由于BC、DE垂直于横梁AC,可得BC∥DE,而D是AB中点,可知AB=BD,利用平行线分线段成比例定理可得AE:CE=AD:BD,从而有AE=CE,即可证DE是△ABC的中位线,可得DE=BC,在Rt△ABC中易求BC,进而可求DE.【解答】解:如右图所示,∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,∵∠ADE=60°,∴∠A=30°,∴BC=AB=6m,∴DE=3m.故选A.【点评】本题考查了平行线分线段成比例定理、三角形中位线定理、直角三角形30°的角所对的边等于斜边的一半.解题的关键是证明DE是△ABC的中位线.二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足x≠2.【考点】分式有意义的条件.【分析】根据分母不等于0列式求解即可.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.【点评】从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.已知一个n边形的内角和是其外角和的5倍,则n=12.【考点】多边形内角与外角.【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的5倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×5,解得n=12.故答案为:12.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于50度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠AEF=65°,然后在△EAC中利用三角形内角和定理即可求出求出∠EAC的度数.【解答】解:∵△ABC≌△AFE,∴∠ACB=∠AEF=65°,∴∠EAC=180°﹣∠ACB﹣∠AEF=50°.故答案为50.【点评】本题考查了全等三角形的性质,三角形内角和定理,熟记性质并准确识图是解题的关键.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于80度.【考点】全等三角形的判定与性质.【分析】根据SSS证△BAD≌△CAD,根据全等得出∠BAD=∠CAD,∠B=∠C=20°,根据三角形的外角性质得出∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,求出∠BDC=∠B+∠C+∠BAC,代入求出即可.【解答】解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是求出∠BDC=∠B+∠C+∠BAC和∠C的度数,难度适中.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=2cm.【考点】角平分线的性质.【分析】过D作DF⊥BC于F,根据角平分线性质求出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB,∴DF=DE,∵S△ABC=10cm2,AB=6cm,BC=4cm,∴×BC×DF+×AB×DE=10,∴×4×DE+×6×DE=10,∴DE=2,故答案为:2.【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号①②④.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.【考点】角平分线的性质;全等三角形的判定与性质.【分析】由射线OC上的任意一点到∠AOB的两边的距离都相等,根据角平分线的判定定理可知OC平分∠AOB.要得到OE=OF,就要让△ODE≌△ODF,①②④都行,只有③ED=FD不行,因为证明三角形全等没有边边角定理.【解答】解:∵射线OC上的任意一点到∠AOB的两边的距离都相等,∴OC平分∠AOB.①若①∠ODE=∠ODF,根据ASA定理可求出△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;②若∠OED=∠OFD,根据AAS定理可得△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;③若ED=FD条件不能得出.错误;④若EF⊥OC,根据ASA定理可求出△OGE≌△OGF,由三角形全等的性质可知OE=OF.正确.故答案为①②④.【点评】本题主要考查了角平分线的判定,三角形全等的判定与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.【考点】整式的混合运算.【分析】(1)先算乘方,再算乘法,最后算加减,合并同类项即可;(2)先用平方差公式计算,再用完全平方公式计算,然后合并同类项即可.【解答】解:(1)原式=7a2•4a2+a•(﹣27a3)=28a4﹣27a4=a4;(2)原式=(a+1)2﹣b2+b2﹣2a=a2+2a+1﹣2a=a2+1.【点评】本题考查了整式的混合运算:先算乘方,再算乘法,最后算加减;注意乘法公式的运用.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.【考点】分式的化简求值;整式的混合运算—化简求值.【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x=1,y=2代入进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x=1,y=3代入进行计算即可.【解答】解:(1)原式=4x2﹣y2﹣4y2+x2=5(x2﹣y2),当x=1,y=2时,原式=5×(1﹣4)=﹣15;(2)原式=﹣•=+===,当x=1,y=3,∴原式=3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.【考点】等腰三角形的性质.【分析】设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°﹣∠B﹣∠BAC=100°.【解答】解:设∠BAD=x.∵AD平分∠BAC,∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.∵AC=BC,∴∠B=∠BAC=2x.∵∠ADC=∠B+∠BAD=60°,∴2x+x=60°,∴x=20°,∴∠B=∠BAC=40°.在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=100°.【点评】本题考查了等腰三角形的性质,角平分线定义,三角形内角和定理,三角形外角的性质,难度适中.设∠BAD=x,利用∠ADC=60°列出关于x的方程是解题的关键.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】利用等腰三角形的性质和全等三角形的判定定理ASA证得△AED≌△AFD,则由该全等三角形的对应边相等得到DE=DF.【解答】证明:∵AB=AC,D是BC边的中点,∴AD⊥BC,∠EAD=∠FAD.又∵DE和DF分别平分∠ADB和∠ADC,∴∠EDA=∠FDA=45°.在△AED与△AFD中,,∴△AED≌△AFD(ASA),∴DE=DF.【点评】本题考查了全等三角形的判定与性质和等腰三角形的性质.此题利用了等腰三角形“三线合一”的性质推知来证明三角形全等的对应角.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.【考点】分式方程的应用.【分析】可设客车的速度是x千米/小时,则货车的速度是千米/小时,以相遇时时间相等作为等量关系,列出方程求解即可.【解答】解:设客车的速度是x千米/小时,则货车的速度是千米/小时,依题意有=,解得x1=90,x2=﹣18(不合题意舍去),经检验,x=90是原方程的解,==60,90×4+60×9=360+540=900(千米).答:客车的速度是90千米/小时,则货车的速度是60千米/小时,甲乙两城间的路程是900千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.注意分式方程要验根.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AB上取一点F,使A F=AC,连结EF,就可以得出△ACE≌△AFE,就有∠C=∠AFE.由平行线的性质就有∠C+∠D=180°,由∠AFE+∠EFB=180°得出∠EFB=∠D,在证明△BEF≌△BED就可以得出BF=BD,进而就可以得出结论.【解答】证明:在AB上取一点F,使AF=AC,连结EF.∵EA、EB分别平分∠CAB和∠DBA,∴∠CAE=∠FAE,∠EBF=∠EBD.∵AC∥BD,∴∠C+∠D=180°.在△ACE和△AFE中,,∴△ACE≌△AFE(SAS),∴∠C=∠AFE.∵∠AFE+∠EFB=180°,∴∠EFB=∠D.在△BEF和△BED中,,∴△BEF≌△BED(AAS),∴BF=BD.∵AB=AF+BF,∴AB=AC+BD.【点评】本题考查了平行线的性质的运用,角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.【考点】全等三角形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.【专题】证明题;探究型.【分析】(1)由PO=PD,利用等边对等角和三角形内角和定理可求得∠POD=67.5°,∠OPB=67.5°,然后利用等角对等边可得出结论;(2)过点O作OC⊥AB于C,首先利用等腰直角三角形的性质可以得到∠COB=∠B=45°,OC=5,然后证得∠POC=∠DPE,进而利用AAS证明△POC≌△DPE,再根据全等三角形的性质可得OC=PE.【解答】(1)证明:∵PO=PD,∠OPD=45°,∴∠POD=∠PDO==67.5°,∵等腰直角三角形AOB中,AO⊥OB,∴∠B=45°,∴∠OPB=180°﹣∠POB﹣∠B=67.5°,∴∠POD=∠OPB,∴BP=BO,即△BOP是等腰三角形;(2)解:PE的值不变,为PE=5,证明如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB=5,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE=5,∴PE的值不变,为5.【点评】本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形等知识,解答(2)的关键是正确作出辅助线,并利用AAS证得△POC≌△DPE.。
福州市初二上学期期末数学试卷含答案
福州市八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂)1.(4分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(4分)下列各式从左到右的变形中,是分解因式的是()A.m(a+b+c)=ma+mb+mc B.x2+5x=x(x+5)C.x2+5x+5=x(x+5)+5D.a2+1=a(a+)3.(4分)下列运算正确的是()A.y3?y2=y6B.(a?b)3=a?b3C.x2+x3=x5D.(﹣m2)4=m8,则∠BCB′的度数为,∠ACB=90°,∠A′CB=20°4.(4分)如图,△ABC≌△A′B′C()A.20°B.40°C.70°D.90°5.(4分)已知四条线段的长分别为13cm,10cm,7cm,5cm,从中任取三条线段为边组成三角形,则这样的三角形共有()A.1个B.2个C.3个D.4个6.(4分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm7.(4分)把分式中的x,y的值都扩大为原来的5倍,则分式的值()A.不变B.扩大为原来的5倍C.扩大为原来的10倍D.缩小为原来的∠AOB,能够说明作图过程中△C′O′D′8.(4分)如图,用直尺和圆规作∠A′O′B′=≌△COD的依据是()A.角角边B.角边角C.边角边D.边边边9.(4分)若4x2+kx+25=(2x+a)2,则k+a的值可以是()A.﹣25B.﹣15C.15D.2010.(4分)若a=,b=,则下列结论正确的是()A.a<b B.a=b C.a>b D.ab=1二、填空题(本大题共6小题,每小题4分,满分24分,请在答题卡的相应位置作答)11.(4分)等腰三角形的一个内角为100°,则它的底角为.12.(4分)当x=时,分式无意义.13.(4分)用科学记数法表示:0.0012=.14.(4分)如图,四边形ABCD为长方形,△BED与△BCD关于直线BD对称,则图中共有对全等三角形.15.(4分)若a+b=,a﹣b=,则ab=.16.(4分)如图,△ABD是边长为3的等边三角形,E,F分别是边AD,AB上的动点,若∠ADC=∠ABC=90°,则△CEF周长的最小值为.三、解答题(本大题共9小题,满分86分,请在答题卡的相应位置作答)17.(8分)分解因式:(Ⅰ)3mx﹣6my;(Ⅱ)y3+6y2+9y.18.(8分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.19.(8分)计算:÷+×﹣.20.(8分)先化简再求值:[(a﹣b)2﹣b(b﹣a)]÷a,其中a=4,b=﹣.21.(8分)化简:(﹣)÷22.(10分)如图,已知∠MAN,点B在射线AM上.(Ⅰ)尺规作图:(i)在AN上取一点C,使BC=BA;(ii)作∠MBC的平分线BD,(保留作图痕迹,不写作法)(Ⅱ)在(Ⅰ)的条件下,求证:BD∥AN.23.(10分)在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式:(Ⅰ)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(Ⅱ)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)24.(12分)请阅读下列材料:我们可以通过以下方法求代数式x2+6x+5的最小值.x2+6x+5=x2+2?x?3+32﹣32+5=(x+3)2﹣4,∵(x+3)2≥0∴当x=﹣3时,x2+6x+5有最小值﹣4.请根据上述方法,解答下列问题:(Ⅰ)x2+4x﹣1=x2+2?x?2+22﹣22﹣1=(x+a)2+b,则ab的值是;(Ⅱ)求证:无论x取何值,代数式x2+2x+7的值都是正数;(Ⅲ)若代数式2x2+kx+7的最小值为2,求k的值.25.(14分)如图,在△ABC中,∠ABC>60°,∠BAC<60°,以AB为边作等边△ABD(点C,D在边AB的同侧),连接CD.(Ⅰ)若∠ABC=90°,∠BAC=30°,求∠BDC的度数;(Ⅱ)当∠BAC=2∠BDC时,请判断△ABC的形状并说明理由;(Ⅲ)当∠BCD等于多少度时,∠BAC=2∠BDC恒成立.福州市八年级(上)期末数学试卷答案一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂)1.(4分)下列图形中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:A.2.(4分)下列各式从左到右的变形中,是分解因式的是()A.m(a+b+c)=ma+mb+mc B.x2+5x=x(x+5)C.x2+5x+5=x(x+5)+5D.a2+1=a(a+)【解答】解:A、m(a+b+c)=ma+mb+mc,不符合题意;B、x2+5x=x(x+5),符合题意;C、x2+5x+5=x(x+5)+5,不符合题意;D、a2+1=a(a+),不符合题意,故选:B.3.(4分)下列运算正确的是()A.y3?y2=y6B.(a?b)3=a?b3C.x2+x3=x5D.(﹣m2)4=m8【解答】解:A、y3?y2=y5,此选项错误;B、(a?b)3=a3?b3,此选项错误;C、x2与x3不是同类项,不能合并,此选项错误;D、(﹣m2)4=m8,此选项正确;故选:D.4.(4分)如图,△ABC≌△A′B′C,则∠BCB′的度数为,∠ACB=90°,∠A′CB=20°()A.20°B.40°C.70°D.90°,【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′.∴∠BCB′=∠A′CB′﹣∠A′CB=70°故选:C.5.(4分)已知四条线段的长分别为13cm,10cm,7cm,5cm,从中任取三条线段为边组成三角形,则这样的三角形共有()A.1个B.2个C.3个D.4个【解答】解:所有的组合为13,10,5;13,10,7;13,5,7;10,5,7.再根据三角形的三边关系,发现其中的13,5,7不符合,则可以画出的三角形有3个.故选:C.6.(4分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm【解答】解:∵△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,∴BD=AD,AB=2AE=6cm,∵△ADC的周长为9cm,∴AC+AD+CD=AC+BD+CD=AC+BC=9cm,∴△ABC的周长为:AB+AC+BC=15cm.故选:C.7.(4分)把分式中的x,y的值都扩大为原来的5倍,则分式的值()A.不变B.扩大为原来的5倍C.扩大为原来的10倍D.缩小为原来的【解答】解:用5x和5y代替式子中的x和y得:==×,则分式的值.故选:D.∠AOB,能够说明作图过程中△C′O′D′8.(4分)如图,用直尺和圆规作∠A′O′B′=≌△COD的依据是()A.角角边B.角边角C.边角边D.边边边,,CD=C′D′′D′=O′C′【解答】解:由题意可知,OD=OC=O中,在△COD和△C′O′D′,(SSS),∴△COD≌△C′O′D′故选:D.9.(4分)若4x2+kx+25=(2x+a)2,则k+a的值可以是()A.﹣25B.﹣15C.15D.20【解答】解:4x2+kx+25=(2x+a)2,当a=5时,k=20,当a=﹣5时,k=﹣20,故k+a的值可以是:﹣25.故选:A.10.(4分)若a=,b=,则下列结论正确的是()A.a<b B.a=b C.a>b D.ab=1【解答】解:∵a===,b=,∴a=b.故选:B.二、填空题(本大题共6小题,每小题4分,满分24分,请在答题卡的相应位置作答)11.(4分)等腰三角形的一个内角为100°,则它的底角为40°.【解答】解:①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.12.(4分)当x=时,分式无意义.【解答】解:∵分式无意义,∴2x﹣7=0,解得:x=.故答案为:.13.(4分)用科学记数法表示:0.0012= 1.2×10﹣3.【解答】解:0.0012=1.2×10﹣3.故答案为:1.2×10﹣3.14.(4分)如图,四边形ABCD为长方形,△BED与△BCD关于直线BD对称,则图中共有4对全等三角形.【解答】解:如图:∵折叠的性质得出△ABD与△CDB,△EDB形状完全相同,即全等,,得出△ABF≌△EDF,所以图中的全等三角形有:△ABD≌△CDB,△ABD≌△EDB,△CDB≌△EDB,△ABF≌△EDF共有4对,故答案为:415.(4分)若a+b=,a﹣b=,则ab=1.【解答】解:将a+b=,a﹣b=两式相加得:2a=+,即a=,将a=5代入a﹣b=中,得:﹣b=,即b=,则ab==1.故答案为:1.16.(4分)如图,△ABD是边长为3的等边三角形,E,F分别是边AD,AB上的动点,若∠ADC=∠ABC=90°,则△CEF周长的最小值为6.【解答】解:如图所示,作点C关于AD的对称点G,作点C关于AB的对称点H,连接GE,HF,DG,BH,则DG=DC,BC=BH,∵AD⊥CD,AB⊥BC,∴AD垂直平分CG,AB垂直平分HC,∴CE=GE,CF=HF,∴△CEF周长=CE+CF+EF=GE+FH+EF,当点G,E,F,H在同一直线上时,GE+FH+EF的最小值等于GH的长,此时,DB是△CGH的中位线,∴GH=2BD=2×3=6,∴△CEF周长的最小值为6,故答案为:6.三、解答题(本大题共9小题,满分86分,请在答题卡的相应位置作答)17.(8分)分解因式:(Ⅰ)3mx﹣6my;(Ⅱ)y3+6y2+9y.【解答】解:(Ⅰ)原式=3m(x﹣2y);(Ⅱ)原式=y(y2+6y+9)=y(y+3)2.18.(8分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠A=∠D.19.(8分)计算:÷+×﹣.【解答】解:原式=+﹣=+2﹣=.20.(8分)先化简再求值:[(a﹣b)2﹣b(b﹣a)]÷a,其中a=4,b=﹣.【解答】解:原式=[a2﹣2ab+b2﹣b2+ab]÷a=[a2﹣ab]÷a=a﹣b,当a=4,b=﹣时,原式=4﹣(﹣)=5.21.(8分)化简:(﹣)÷【解答】解:原式=?=?=22.(10分)如图,已知∠MAN,点B在射线AM上.(Ⅰ)尺规作图:(i)在AN上取一点C,使BC=BA;(ii)作∠MBC的平分线BD,(保留作图痕迹,不写作法)(Ⅱ)在(Ⅰ)的条件下,求证:BD∥AN.【解答】(Ⅰ)解:(i)如图,点C为所作;(ii)如图,BD为所作;(Ⅱ)证明:∵AB=AC,∴∠A=∠BCA,∵BD平分∠MBC,∴∠MBD=∠CBD,∵∠MBC=∠A+∠BCA,即∠MBD+∠CBD=∠A+∠BCA,∴∠MBD=∠A,∴BD∥AN.23.(10分)在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式:(Ⅰ)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(Ⅱ)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)【解答】解:(Ⅰ)设这种篮球的标价为x元.由题意:﹣=5,解得:x=50,经检验:x=50是原方程的解.答:这种篮球的标价为50元.(Ⅱ)购买购买100个篮球,所需的最少费用为3850元.方案:在A超市分两次购买,每次45个,费用共为3450元,在B超市购买10个,费用400元,两超市购买100个篮球,所需的最少费用为3850元.24.(12分)请阅读下列材料:我们可以通过以下方法求代数式x2+6x+5的最小值.x2+6x+5=x2+2?x?3+32﹣32+5=(x+3)2﹣4,∵(x+3)2≥0∴当x=﹣3时,x2+6x+5有最小值﹣4.请根据上述方法,解答下列问题:(Ⅰ)x2+4x﹣1=x2+2?x?2+22﹣22﹣1=(x+a)2+b,则ab的值是﹣10;(Ⅱ)求证:无论x取何值,代数式x2+2x+7的值都是正数;(Ⅲ)若代数式2x2+kx+7的最小值为2,求k的值.【解答】解:(Ⅰ)∵x2+4x﹣1=x2+2?x?2+22﹣22﹣1=(x+2)2﹣5=(x+a)2+b,∴a=2,b=﹣5,∴ab=2×(﹣5)=﹣10.故答案是:﹣10;(Ⅱ)证明:x2+2x+7=x2+2x+()2﹣()2+7=(x+)2+1.∵(x+)2≥0,∴x2+2x+7的最小值是1,∴无论x取何值,代数式x2+2x+7的值都是正数;(Ⅲ)2x2+kx+7=(x)+2?x?+(k)2﹣(k)2+7=(x+k)2﹣k2+7.∵(x+k)2≥0,∴(x+k)2﹣k2+7的最小值是﹣k2+7,∴﹣k2+7=2,解得k=±2.25.(14分)如图,在△ABC中,∠ABC>60°,∠BAC<60°,以AB为边作等边△ABD(点C,D在边AB的同侧),连接CD.(Ⅰ)若∠ABC=90°,∠BAC=30°,求∠BDC的度数;(Ⅱ)当∠BAC=2∠BDC时,请判断△ABC的形状并说明理由;(Ⅲ)当∠BCD等于多少度时,∠BAC=2∠BDC恒成立.【解答】解:(I)∵△ABD为等边三角形,∴∠BAD=∠ABD=60°,AB=AD.又∵∠BAC=30°,∴AC平分∠BAD,∴AC垂直平分BD,∴CD=CB.∴∠BDC=∠DBC=∠ABC﹣∠ABD=90°﹣60°=30°.(II)△ABC是等腰三角形.理由:设∠BDC=x,则∠BAC=2x,∠CAD=60°﹣2x,∠ADC=60°+x.∴∠CAD=180°﹣∠CAD﹣∠ADC=60°+x,∴∠ACD=∠ADC,∴AC=AD.∵AB=AD,∴AB=AC,即△ABC是等腰三角形.(III)当∠BCD=150°时,∠BAC=2∠BDC恒成立.如图:作等边△BCE,连接DE,则BC=EC,∠BCE=60°.∵∠BCD=150°,∴∠ECD=360°﹣∠BCD﹣∠BCE=150°,∴∠DCE=∠DCB.又∵CD=CD,∴△BCD≌△ECD,∴∠BDC=∠EDC,即∠BDE=2∠BDC.又∵△ABD为等边三角形,∴AB=BD,∠ABD=∠CBE=60°,∴∠ABC=∠DBE=60°+∠DBC.又∵BC=BE,∴△BDE≌△BAC,∴∠BAC=∠BDE,∴∠BAC=2∠BDC.度百度百度百度百度百百度百度百度百度百度百度等边三角形条件:△OAB,△OCD均为等边三角形结论:①△OAC≌△OBD;②∠AEB=60°;③OE平分∠AED(易忘)等腰RT△条件:△OAB,△OCD均为等腰直角三角形结论:①△OAC≌△OBD;②∠AEB=90°;③OE平分∠AED(易忘)导角核心图形任意等腰三角形条件:△OAB,△OCD均为等腰三角形,且∠AOB=∠COD结论:①△OAC≌△OBD;②∠AEB=∠AOB;③OE平分∠AED(易忘)模型总结:核心图形如右图,核心条件如下:①OA=OB ,OC=OD ;②∠AOB =∠COD模型二:手拉手模型—相似条件:CD ∥AB ,将△OCD 旋转至右图位置结论:右图△OCD ∽△OAB △OAC ∽△OBD ;且延长AC 交BD 于点E 必有∠BEC=∠BOA非常重要的结论:必须会熟练证明手拉手相似(特殊情况)当∠AOB=90°时,除△OCD ∽△OAB△OAC ∽△OBD 之外还会隐藏OCD OA OB OC OD ACBDtan ,满足BD ⊥AC ,若连接AD 、BC ,则必有2222CD AB BC AD ;BD AC S ABCD 21(对角线互相垂直四边形)。
2015~2016学年度上学期期末考试试卷八年级数学附答案
2015~2016学年度上学期期末考试试卷八年级数学一、选择题(每空3分,共30分)1、要使分式1x 有意义,则x 应满足的条件是( ) A .x ≠1B .x ≠﹣1C .x ≠0D .x >12、下列计算正确的是( ) A . 6a 3•6a 4=6a 7B .(2+a )2=4+2a + a 2C .(3a 3)2=6a 6D .(π﹣3.14)0=13、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得OA=15米,OB =10米,A 、B 间的距离不可能是( ) A .5米B .10米C .15米D .20米4、一张长方形按如图所示的方式折叠,若∠AEB ′=30°,则∠B ′EF=( ) A .60°B .65°C .75°D .95°5、如图,已知△ABC 中,AB=AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),第3题EADCBFC ’B ’第4题AB C EF P第5题第9题第10题给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③2S 四边形AEPF =S △ABC ;④BE +CF =EF .上述结论中始终正确的有( ) A .4个 B .3个C .2个D .1个6、如果2925x kx ++是一个完全平方式,那么k 的值是 ( ) A 、30B 、±30C 、15D 、±157、计算:()20162014133⎛⎫-⨯-= ⎪⎝⎭( )A .13B .13- C .﹣3D .198、点M (1,2)关于x 轴对称的点的坐标为( )A.(—1,2)B.(-1,-2)C.(1,-2)D.(2,-1)9、如图,两个正方形的边长分别为a 和b ,如果10a b +=,20ab =,那么阴影部分的面积是( ) A.20B .30C.40D .1010、如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A .10 B .7 C .5 D .4二、填空题(每小题3分, 共18分)11、有四条线段,长分别是为3cm 、5cm 、7cm 、9cm,如果用这些线段组成三角形,可以组成 个三角形 。
2015-2016学年八年级上学期期末数学试卷
2015-2016学年八年级上学期期末数学试卷一、选择题(每题3分,共45分) 1.下列各式中计算正确的是( ) A .B .C .D .2.(3分)如图中点P 的坐标可能是( ) A . (﹣5,3) B . (4,3) C . (5,﹣3) D .(﹣5,﹣3)3.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是( ) A . 0 B . 1 C . 2 D .3 4.在﹣2,0,3,这四个数中,最大的数是() A . ﹣2 B . 0 C . 3 D . 5.如图,直线a ∥b ,AC ⊥AB ,AC 交直线b 于点C ,∠1=60°, 则∠2的度数是( ) A . 50° B . 45° C . 35° D .30° 6.(3分)一次函数y=﹣2x+1的图象不经过下列哪个象限( ) A . 第一象限 B . 第二象限 C . 第三象限 D .第四象限 7.若方程mx+ny=6的两个解是,,则m ,n 的值为( )A . 4,2B . 2,4C . ﹣4,﹣2D .﹣2,﹣4 8.(3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果: 居民(户) 1 3 2 4 月用电量(度/户) 40 50 55 60那么关于这10户居民月用电量(单位:度),下列说法错误的是() A . 中位数是55 B . 众数是60 C . 方差是29 D .平均数是54 9.(3分)下列四组线段中,可以构成直角三角形的是() A . 4,5,6 B . 1.5,2,2.5 C . 2,3,4 D .1,,3 10.(3分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是() A . 体育场离张强家2.5千米 B . 张强在体育场锻炼了15分钟 C . 体育场离早餐店4千米 D . 张强从早餐店回家的平均速度是3千米/小时11.下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。
2015-2016学年度第一学期期末八年级数学试题(含答案)
2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:32(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
福州市长乐市2015-2016学年八年级上期中数学试卷含答案解析
2015-2016学年福建省福州市长乐市八年级(上)期中数学试卷一、选择题(每小题2分,共20分)1.如果一个三角形有两边长分别是3和5,那么第三边长可能是( )A.1 B.2 C.4 D.82.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是( )A.B.C.D.3.等腰三角形的一个底角是50°,则它的顶角是( )A.50°B.50°或65°C.65°D.80°4.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是( )A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC5.能将三角形面积平分的是三角形的( )A.角平分线 B.高C.中线 D.外角平分线6.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于( )A.45°B.60°C.75°D.90°7.如图,甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A.180°B.220°C.240°D.300°9.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是( )A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形10.AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论不一定正确的是( )A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF二、填空题(每小题3分,共18分)11.一个等边三角形的对称轴有__________条.12.如图是一个活动的衣帽架,它应用了四边形的__________性.13.如图,若△ABC≌△ADE,且∠B=60°,∠C=30°,则∠DAE=__________.14.若点M(﹣3,b)与点N(a,2)关于x轴对称,则a+b=__________.15.如图,分别以五边形的各个顶点为圆心,1cm长为半径作圆,则图中阴影部分的面积为__________cm2.16.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为__________.三、解答题(62分)17.完成下列证明过程:如图,∠CAE是△ABC的一个外角,∠1=∠2,AD∥BC,求证:AB=AC.证明:∵AD∥BC(已知)∴∠1=∠__________(两直线平行,同位角相等)∠2=∠__________(__________)又∵∠1=∠2(已知)∴__________=__________(等量代换)∴AB=AC (__________).18.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.19.如图,AC=AE,AB=AD,∠1=∠2,求证:∠B=∠D.20.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=40°,∠E=30°,求∠BAC的度数.21.一个多边形的内角和比四边形的外角和多540°,并且这个多边形的各内角都相等.这个多边形的每一个内角等于多少度?它是正几边形?22.如图,在△ABC中,AB=AC,D为BC中点,DE、DF分别是∠ADB、∠ADC的平分线,若DE=2,求DF的长.23.如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACF;(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.24.如图1,在平面直角坐标系xOy中,A(﹣3,0),B(2,0),C为y轴正半轴上一点,且BC=4.(1)求∠OBC的度数;(2)如图2,点P从点A出发,沿射线AB方向运动,同时点Q在边BC上从点B向点C 运动,在运动过程中:①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,已知△PQB是直角三角形,求t的值;②若点P,Q的运动路程分别是a,b,已知△PQB是等腰三角形时,求a与b满足的数量关系.2015-2016学年福建省福州市长乐市八年级(上)期中数学试卷一、选择题(每小题2分,共20分)1.如果一个三角形有两边长分别是3和5,那么第三边长可能是( )A.1 B.2 C.4 D.8【考点】三角形三边关系.【分析】根据三角形的三边关系可得5﹣3<x<5+3,解不等式,确定x的取值范围,然后可得答案.【解答】解:设第三边长为x,由题意得:5﹣3<x<5+3,即2<x<8,故选:C.【点评】此题主要考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,三角形的两边差小于第三边.2.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选A.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.等腰三角形的一个底角是50°,则它的顶角是( )A.50°B.50°或65°C.65°D.80°【考点】等腰三角形的性质.【分析】由等腰三角形的性质可知两底角相等,再根据三角形内角和为180°,即可求出顶角的度数.【解答】解:∵等腰三角形的一个底角是50°,∴它的顶角=180°﹣50°﹣50°=80°,故选D.【点评】本题考查了等腰三角形的性质以及三角形内角和定理的运用,解题的关键是熟记等腰三角形的各种性质并且能够灵活运用.4.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是( )A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【考点】直角三角形全等的判定.【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选D.【点评】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.5.能将三角形面积平分的是三角形的( )A.角平分线 B.高C.中线 D.外角平分线【考点】三角形的面积.【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.6.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于( )A.45°B.60°C.75°D.90°【考点】三角形内角和定理.【分析】首先根据∠A:∠B:∠C=3:4:5,求出∠C的度数占三角形的内角和的几分之几;然后根据分数乘法的意义,用180°乘以∠C的度数占三角形的内角和的分率,求出∠C等于多少度即可.【解答】解:180°×==75°即∠C等于75°.故选:C.【点评】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.7.如图,甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙【考点】全等三角形的判定.【分析】根据全等三角形的判定定理作出判断与选择.【解答】解:在△ABC中,∠B=50°.甲:只有一个对应边与一个对应角相等,故甲不符合条件;乙:由两个对应边与这两个边的夹角相等,符合两个三角形全等的定理SAS;丙:由两个对应角与一条边对应相等,符合两个三角形全等的定理AAS.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A.180°B.220°C.240°D.300°【考点】等边三角形的性质;多边形内角与外角.【专题】探究型.【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题9.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是( )A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【考点】等边三角形的判定;轴对称的性质.【专题】应用题.【分析】根据轴对称的性质可知:OP1=OP2=OP,∠P1OP2=60°,即可判断△P1OP2是等边三角形.【解答】解:根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故选:D.【点评】主要考查了等边三角形的判定和轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.10.AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论不一定正确的是( )A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF【考点】角平分线的性质.【分析】根据角平分线的性质,可证△AFD≌△AED,找到图中相等的关系即可.【解答】解:∵AD是∠BAC的平分线,∴DE=DF,DE⊥AB,DF⊥AC,∴△AFD≌△AED(HL),∴DE=DF,AE=AF,∠ADE=∠ADF.故选B.【点评】本题主要考查角平分线的性质,由已知能够注意到△AFD≌△AED,是解决的关键.二、填空题(每小题3分,共18分)11.一个等边三角形的对称轴有3条.【考点】轴对称的性质.【分析】根据对称轴:如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.对称轴绝对是一条点化线,可得答案.【解答】解:如图:一个等边三角形的对称轴有3条,故答案为:3.【点评】本题考查了轴对称的性质,如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.对称轴绝对是一条点化线.12.如图是一个活动的衣帽架,它应用了四边形的不稳定性.【考点】多边形;三角形的稳定性.【分析】根据四边形具有不稳定性解答.【解答】解:一个活动的衣帽架,它应用了四边形的不稳定性,故答案为:不稳定.【点评】本题考查三角形的稳定性和四边形的不稳定性在实际生活中的应用问题,解决本题的关键是熟记四边形的不稳定性.13.如图,若△ABC≌△ADE,且∠B=60°,∠C=30°,则∠DAE=90°.【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠BAC,根据全等三角形的性质求出∠DAE=∠BAC,求出即可.【解答】解:∵在△ABC中,∠B=60°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=90°,∵△ABC≌△ADE,∴∠DAE=∠BAC=90°,故答案为:90°.【点评】本题考查了全等三角形的性质和三角形内角和定理的应用,注意:全等三角形的对应边相等,对应角相等.14.若点M(﹣3,b)与点N(a,2)关于x轴对称,则a+b=﹣5.【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于x轴对称点的性质,得出a,b的值即可.【解答】解:∵点M(﹣3,b)与点N(a,2)关于x轴对称,∴a=﹣3,b=﹣2,则a+b=﹣3﹣2=﹣5.故答案为:﹣5.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.15.如图,分别以五边形的各个顶点为圆心,1cm长为半径作圆,则图中阴影部分的面积为πcm2.【考点】多边形内角与外角.【分析】根据多边形的外角和为360°可得阴影部分的面积为半径为1的圆的面积,再利用圆的面积计算公式可得答案.【解答】解:图中阴影部分的面积为π×12=π.故答案为:π.【点评】此题主要考查了多边形的外角,关键是掌握多边形的外角和为360°.16.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为2∠α+∠A=180°.【考点】全等三角形的判定与性质.【分析】根据SAS证明△BED与△CDF全等,再利用全等三角形的性质解答即可.【解答】解:∵AB=AC,∴∠C=∠B,在△BED与△CDF中,,∴△BED≌△CDF(SAS),∴∠BED=∠FDC,∵∠α+∠FDC=∠B+∠BED,∴∠α=∠B,∵∠A+∠B+∠C=180°,∴2∠α+∠A=180°.故答案为:2∠α+∠A=180°.【点评】本题考查了全等三角形的判定和性质,三角形外角的性质和三角形内角和定理,熟练掌握性质定理是解题的关键.三、解答题(62分)17.完成下列证明过程:如图,∠CAE是△ABC的一个外角,∠1=∠2,AD∥BC,求证:AB=AC.证明:∵AD∥BC(已知)∴∠1=∠B(两直线平行,同位角相等)∠2=∠C(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠B=∠C(等量代换)∴AB=AC (等角对等边).【考点】平行线的性质.【专题】推理填空题.【分析】根据平行线的性质和等角对等边的性质填空.【解答】证明:∵AD∥BC(已知)∴∠1=∠B(两直线平行,同位角相等)∠2=∠C(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠B=∠C(等量代换)∴AB=AC(等角对等边).【点评】本题主要利用平行线的性质和等角对等边的性质,书写证明过程是本题练习的重点.18.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.【考点】利用轴对称设计图案.【分析】本题要求思维严密,根据对称图形关于某直线对称,找出不同的对称轴,画出不同的图形,对称轴可以随意确定,因为只要根据你确定的对称轴去画另一半对称图形,那这两个图形一定是轴对称图形.【解答】解:如图所示;【点评】本题主要考查的是利用轴对称设计图案,掌握轴对称图形的性质是解题的解题的关键.19.如图,AC=AE,AB=AD,∠1=∠2,求证:∠B=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由SAS证明△BAC≌△DAE,得出对应角相等即可.【解答】证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴∠B=∠D.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.20.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=40°,∠E=30°,求∠BAC的度数.【考点】三角形的外角性质.【分析】根据三角形外角性质求出∠ECD,根据角平分线定义求出∠ACD,根据三角形外角性质求出即可.【解答】解:∵∠B=40°,∠E=30°,∴∠ECD=∠B+∠E=70°,∵CE是△ABC的外角∠ACD的平分线,∴∠ACD=2∠ECD=140°,∴∠BAC=∠ACD﹣∠B=140°﹣40°=100°.【点评】本题考查了三角形外角性质,角平分线定义的应用,能灵活运用定理进行推理是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.21.一个多边形的内角和比四边形的外角和多540°,并且这个多边形的各内角都相等.这个多边形的每一个内角等于多少度?它是正几边形?【考点】多边形内角与外角.【分析】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题可用整式方程求解.【解答】解:设边数为n,根据题意,得(n﹣2)×180°=360°+540°(n﹣2)×180°=900°n﹣2=5∴n=7.900÷7=.答:这个多边形的每一个内角等于度、它是正七边形.【点评】此题较难,考查比较新颖,涉及到整式方程.22.如图,在△ABC中,AB=AC,D为BC中点,DE、DF分别是∠ADB、∠ADC的平分线,若DE=2,求DF的长.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】证明△ADE≌△ADF即可,然后可得DF=DE=2.【解答】解:如图,∵AB=AC,D为BC中点,∴∠ADB=∠ADC=90°,∠1=∠2,∵DE、DF分别是∠ADB,∠ADC的平分线,∴∠ADE=∠ADB=45°,∠ADF=∠AD C=45°,∴∠ADE=∠ADF,在△ADE和△ADF中,,∴△ADE≌△ADF(ASA),∴DF=DE=2.【点评】本题考查了等腰三角形三线合一的性质、全等三角形的判定与性质,比较基础.对于全等三角形的证明,差什么条件就去寻找什么条件,如果条件不是明显的,则先通过推导得出所需要的条件.23.如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACF;(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)由于AB=AC,AD=AE,所以只需证∠BAD=∠CAE即可得结论;(2)证明∠ACE和∠ECF都等于60°即可;(3)将四边形ADCE的周长用AD表示,AD最小时就是四边形ADCE的周长最小,根据垂线段最短原理,当AD⊥BC时,AD最小,此时BD就是BC的一半.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠DAE=60°,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE.(2)证明:∵△ABC是等边三角形,∴∠B=∠BCA=60°,∵△ABD≌△ACE,∴∠ACE=∠B=60°,∵△ABD≌△ACE,∴∠ACE=∠B=60°,∴∠ECF=180﹣∠ACE﹣∠BCA=60°,∴∠ACE=∠ECF,∴CE平分∠ACF.(3)解:∵△ABD≌△ACE,∴CE=BD,∵△ABC是等边三角形,∴AB=BC=AC=2,∴四边形ADCE的周长=CE+DC+AD+AE=BD+DC+2AD=2+AD,根据垂线段最短,当AD⊥BC时,AD值最小,四边形ADCE的周长取最小值,∵AB=AC,∴BD===1.【点评】此题主要考查了全等三角形的判定和性质定理以及垂线段最短原理,关键是找出能使三角形全等的条件,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.24.如图1,在平面直角坐标系xOy中,A(﹣3,0),B(2,0),C为y轴正半轴上一点,且BC=4.(1)求∠OBC的度数;(2)如图2,点P从点A出发,沿射线AB方向运动,同时点Q在边BC上从点B向点C 运动,在运动过程中:①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,已知△PQB是直角三角形,求t的值;②若点P,Q的运动路程分别是a,b,已知△PQB是等腰三角形时,求a与b满足的数量关系.【考点】一次函数综合题.【分析】(1)在OA上取一点D,根据等边三角形的性质进行解答即可;(2)①分∠PQB=90°时和∠QPB=90°时两种情况进行解答即可;②分a<5和a>5两种情况,利用等腰三角形和等边三角形的性质进行解答即可.【解答】解:(1)如图1:在OA上取一点D,使得OD=OB,连接CD,则BD=2OB=4,∵CO⊥BD,∴CD=CB=4,∴CD=CB=BD,∴△DBC是等边三角形,∴∠OBC=60°;(2)①由题意,得AP=2t,BQ=t,∵A(﹣3,0),B(2,0),∴AB=5,∴PB=5﹣2t,∵∠OBC=60°≠90°,∴下面分两种情况进行讨论,Ⅰ)如图2:当∠PQB=90°时,∵∠OBC=60°,∴∠BPQ=30°,∴BQ=,∴,解得:t=;Ⅱ)当∠QPB=90°时,如图3:∵∠OBC=60°,∴∠BQP=30°,∴PB=,∴,解得:t=2;②如图4:当a<5时,∵AP=a,BQ=b,∴BP=5﹣a,∵△PQB是等腰三角形,∠OBC=60°,∴△PQB是等边三角形,∴b=5﹣a,即a+b=5,如图5:当a>5时,∵AP=a,BQ=b,∴BP=a﹣5,∵△PQB是等腰三角形,∠QBP=120°,∴BP=BQ,∴a﹣5=b,即a﹣b=5.【点评】本题是一次函数的综合题,考查了一次函数图象上点的坐标特征,等边三角形的判定和性质,等腰三角形的应用等,根据题意作出图形是解题的关键.。
2015-2016学年福建省福州市长乐市
2015-2016学年福建省福州市长乐市八年级(上)期末数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)点P(﹣2,3)关于y轴对称的点的坐标是()A.(2,3) B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)2.(2分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.3.(2分)下列根式中,属于最简二次根式的是()A. B. C.D.4.(2分)下列运算正确的是()A.x4+x4=x8B.x6÷x2=x3C.x•x4=x5D.(x2)3=x85.(2分)若分式有意义,则x的取值范围是()A.x=3 B.x<3 C.x≠0 D.x≠36.(2分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.x2﹣1=(x+1)(x﹣1)C.x2﹣x+2=x(x﹣1)+2 D.x2+2x﹣1=(x﹣1)27.(2分)对式子a﹣b+c进行添括号,正确的是()A.a﹣(b+c)B.a﹣(b﹣c)C.a+(b﹣c)D.a+(b+c)8.(2分)计算2.7×10﹣8﹣2.6×10﹣8,结果用科学记数法表示为()A.0.1×10﹣8B.0.1×10﹣7C.1×10﹣8D.1×10﹣99.(2分)如图,∠ACB=90°,CD⊥AB,则图中互余的角有()A.2对 B.3对 C.4对 D.5对10.(2分)如图,长度分别为3,4,5,7的四条线段首尾相接,相邻两线段的夹角可调整,则任意两端点的距离最大值为()A.7 B.9 C.10 D.12二、填空题(共6小题,每小题3分,满分18分)11.(3分)把分式与通分,其最简公分母为.12.(3分)如图,△ABC≌△ADC,若∠B=80°,∠BAC=35°,则∠BCD的度数为度.13.(3分)若x2+ax+4是完全平方式,则a=.14.(3分)已知是整数,则正整数n的最小值为.15.(3分)两个全等的正十二边形按如图所示的方式摆放,其中两顶点重合,则∠α=度.16.(3分)顶角是36°的等腰三角形称为黄金三角形,设黄金三角形的底边与腰之比为m.如图,在黄金△ABC中,AB=AC=1,BD平分底角ABC,得到第二个黄金△BCD,CE平分底角BCD,得到第三个黄金△CDE,以此类推,则第2016个黄金三角形的周长为(用含m的式子表示).三、解答题(共8小题,满分62分)17.(8分)计算:(1)(﹣)﹣1﹣(﹣)2015×(1.5)2016+20160(2).18.(8分)化简:(1)(2x+1)(x﹣3)(2)(a+b)2﹣(a+b)(a﹣b)+b(b﹣2a)19.(6分)先化简,再求值:(),其中x=+1.20.(6分)如图,在△ABC中,AD=BD,AD⊥BC于点D,∠C=55°,求∠BAC的度数.21.(7分)如图,C是AB的中点,∠A=∠B,∠BCD=∠ACE,求证:AD=BE.22.(8分)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?23.(9分)如图1,△ABC中,∠BAC=60°,O是△ABC内一点,△ABO≌△ACD,连接OD.(1)求证:△AOD为等边三角形;(2)如图2,连接OC,若∠BOC=130°,∠AOB=∠α.①求∠OCD的度数;②当△OCD是等腰三角形时,求∠α的度数.24.(10分)如图,在平面直角坐标系中,A(a,0),B(0,b),其中b>a>0,点C在第一象限,BA⊥BC,BA=BC,点F在线段OB上,OA=OF,AF的延长线与CB的延长线交于点D,AB与CF交于点E.(1)直接写出点C的坐标:(用含a,b的式子表示);(2)求证:∠BAF=∠BCE;(3)设点C关于直线AB的对称点为M,点C关于直线AF的对称点为N.求证:M,N关于x轴对称.2015-2016学年福建省福州市长乐市八年级(上)期末数学试卷答案一、选择题(共10小题,每小题2分,满分20分)1.【解答】解:点P(﹣2,3)关于y轴对称的点的坐标是:(2,3).故选:A.2.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.4.【解答】解:A、合并同类项,系数相加字母和字母的指数不变,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C正确;D、幂的乘方,底数不变指数相乘,故选:C.5.【解答】解:∵分式有意义,∴3﹣x≠0.∴x≠3.故选:D.6.【解答】解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),故本选项错误;B、x2﹣1=(x+1)(x﹣1),故本选项正确;C、x2﹣x+2=x(x﹣1)+2右边不是整式积的形式,故本选项错误;D、应为x2﹣2x+1=(x﹣1)2,故本选项错误.故选B.7.解答】解:a﹣b+c=a﹣(b﹣c).故选:B.8.【解答】解:2.7×10﹣8﹣2.6×10﹣8=(2.7﹣2.6)×10﹣8=0.1×10﹣8=1×10﹣9,故选:D.9.【解答】解:∵∠ACB=90°,∴∠A与∠B互余,∠ACD与∠DCB互余.∵CD⊥AB,∴∠ADC=90°,∠CDB=90°.∴∠A与∠ACD互余,∠B与∠DCB互余.故选:C.10.【解答】解:已知4条木棍的四边长为3、4、5、7;①选3+4、5、6作为三角形,则三边长7、5、7;7﹣5<7<7+5,能构成三角形,此时两个螺丝间的最长距离为7;②选3、4+5、7作为三角形,则三边长为3、9、7;7﹣3<9<7+3,能构成三角形,此时两个螺丝间的最大距离为9.故选:B.二、填空题(共6小题,每小题3分,满分18分)11.【解答】解:分式与最简公分母是6x2y2,故答案为:6x2y2.12.【解答】解:∵∠B=80°,∠BAC=35°,∴∠BCA=180°﹣∠B﹣∠BAC=65°,∵△ABC≌△ADC,∴∠DCA=∠BCA=65°,∴∠BCD=∠BCA+∠DCA=130°,故答案为:130.13.【解答】解:中间一项为加上或减去a和2积的2倍,故a=±4,故答案为:±4.14【解答】解:∵==,且是整数;∴是整数,即21n是完全平方数;∴n的最小正整数值为21.故答案为:2115.【解答】解:正十二边形内角为=150°,六边形的内角和180°×(6﹣2)=720°,则∠α=×(720°﹣150°×4)=60°.故答案为:60.16.【解答】解:∵黄金三角形的底边与腰之比为m,AB=AC=1,∴BC=m,∴△ABC的周长为:2+m,∵△BCD与△ABC都是黄金三角形,∴△BCD∽△ABC,又=m,∴△BCD与△ABC的周长比为m,∴第二个黄金△BCD的周长为m(2+m),同理,第三个黄金△CDE的周长为m2(2+m),…∴第2016个黄金三角形的周长为m2015(2+m).故答案为:m2015(2+m).三、解答题(共8小题,满分62分)17.【解答】解:(1)原式=﹣2﹣[(﹣)×1.5]2015×1.5+1=﹣2++1=;(2)原式=﹣﹣(﹣1)=﹣﹣+1=4﹣3﹣+1=1.18.【解答】解:(1)原式=2x2﹣6x+x﹣3=2x2﹣5x﹣3;(2)原式=a2+2ab+b2﹣a2+b2+b2﹣2ab=3b2.19.【解答】解:()=(+)=×=x﹣1当x=+1时,原式=+1﹣1=.20.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠C=55°,∴∠CAD=90°﹣∠C=90°﹣55°=35°,∵AD=BD,∴∠BAD=∠B=45°,∴∠BAC=∠BAD+∠DAC=45°+35°=80°.21.【解答】证明:∵C是线段AB的中点,∴AC=BC.∵∠ACE=∠BCD,∴∠ACD=∠BCE,在△ADC和△BEC中,,∴△ADC ≌△BEC (ASA ).∴AD=BE .22.【解答】解:(1)设第一次购进x 件文具,则第二次就购进2x 件文具,由题意得:=﹣2.5解之得x=100,经检验,x=100是原方程的解,2x=2×100=200答:第二次购进200件文具.(2)(100+200)×15﹣1000﹣2500=1000(元).答:盈利1000元.23.【解答】解:(1)∵△ABO ≌△ACD ,∴AO=AD ,∠BAO=∠CAD ,∵∠BAC=60°,∴∠OAD=60°,∴△AOD 为等边三角形;(2)①∵△AOD 为等边三角形,∴∠AOD=∠ADO=60°,∵∠BOC=130°,∠AOB=∠α,∴∠DOC=360°﹣α﹣130°﹣60°=170°﹣α,∵△ABO ≌△ACD ,∴∠ADC=∠AOB=α,∴∠ODC=α﹣60°,∴∠OCD=180°﹣∠DOC ﹣∠ODC=70°;②当△OCD 是等腰三角形时,(Ⅰ)当OD=OC ,∵∠DOC=170°﹣α,∴∠OCD=∠ODC==,∴60°+=α,解得:α=130°(Ⅱ)当OD=CD,∴∠OCD=∠COD=170°﹣α;∴∠ODC=180°﹣2×170°+2α=2α﹣160°,∴60°+2α﹣160°=α,解得:α=100°;(Ⅲ)当OC=CD,∴∠ODC=∠COD=170°﹣α,∴170°﹣α+60°=α,解得:α=115°.综上所述:当△OCD是等腰三角形时,∠α的度数为:130°,100°,115°.24.【解答】(1)解:如图1,过C点作CP⊥y轴于点P,∵CP⊥y轴,∴∠BPC=90°,∴∠BPC=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠ABO+∠CBP=90°,∵∠ABO+∠BAO=90°,∴∠CBP=∠BAO,在△AOB与△BEC中,,∴△AOB≌△BPC(AAS),∴CE=OB=b,BE=OA=a,∴OP=OB+BP=a+b,∴点C的坐标为(b,a+b),故答案为:(b,a+b);(2)证明:∵△AOB≌△BPC,∴BP=OA=OF,CP=BO,∴FP=OB=CP,∴∠PFC=45°,∠AFC=90°,∴∠BAF=∠BCE;(3)证明:如图2,∵点C关于直线AB的对称点为M,点C关于直线AF的对称点为N,∴AM=AC,AN=AC,∴AM=AN,∵∠1=∠5,∠1=∠6,∴∠5=∠6,在△MAH与△NAH中,∴,∴△MAH≌△NAH(SAS),∴MH=NH,∴M,N关于x轴对称.。
福州市初二上学期期末数学试卷含答案
福州市八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂)1.(4分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(4分)下列各式从左到右的变形中,是分解因式的是()A.m(a+b+c)=ma+mb+mc B.x2+5x=x(x+5)C.x2+5x+5=x(x+5)+5D.a2+1=a(a+)3.(4分)下列运算正确的是()A.y3?y2=y6B.(a?b)3=a?b3C.x2+x3=x5D.(﹣m2)4=m8,则∠BCB′的度数为,∠ACB=90°,∠A′CB=20°4.(4分)如图,△ABC≌△A′B′C()A.20°B.40°C.70°D.90°5.(4分)已知四条线段的长分别为13cm,10cm,7cm,5cm,从中任取三条线段为边组成三角形,则这样的三角形共有()A.1个B.2个C.3个D.4个6.(4分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm7.(4分)把分式中的x,y的值都扩大为原来的5倍,则分式的值()A.不变B.扩大为原来的5倍C.扩大为原来的10倍D.缩小为原来的∠AOB,能够说明作图过程中△C′O′D′8.(4分)如图,用直尺和圆规作∠A′O′B′=≌△COD的依据是()A.角角边B.角边角C.边角边D.边边边9.(4分)若4x2+kx+25=(2x+a)2,则k+a的值可以是()A.﹣25B.﹣15C.15D.2010.(4分)若a=,b=,则下列结论正确的是()A.a<b B.a=b C.a>b D.ab=1二、填空题(本大题共6小题,每小题4分,满分24分,请在答题卡的相应位置作答)11.(4分)等腰三角形的一个内角为100°,则它的底角为.12.(4分)当x=时,分式无意义.13.(4分)用科学记数法表示:0.0012=.14.(4分)如图,四边形ABCD为长方形,△BED与△BCD关于直线BD对称,则图中共有对全等三角形.15.(4分)若a+b=,a﹣b=,则ab=.16.(4分)如图,△ABD是边长为3的等边三角形,E,F分别是边AD,AB上的动点,若∠ADC=∠ABC=90°,则△CEF周长的最小值为.三、解答题(本大题共9小题,满分86分,请在答题卡的相应位置作答)17.(8分)分解因式:(Ⅰ)3mx﹣6my;(Ⅱ)y3+6y2+9y.18.(8分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.19.(8分)计算:÷+×﹣.20.(8分)先化简再求值:[(a﹣b)2﹣b(b﹣a)]÷a,其中a=4,b=﹣.21.(8分)化简:(﹣)÷22.(10分)如图,已知∠MAN,点B在射线AM上.(Ⅰ)尺规作图:(i)在AN上取一点C,使BC=BA;(ii)作∠MBC的平分线BD,(保留作图痕迹,不写作法)(Ⅱ)在(Ⅰ)的条件下,求证:BD∥AN.23.(10分)在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式:(Ⅰ)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(Ⅱ)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)24.(12分)请阅读下列材料:我们可以通过以下方法求代数式x2+6x+5的最小值.x2+6x+5=x2+2?x?3+32﹣32+5=(x+3)2﹣4,∵(x+3)2≥0∴当x=﹣3时,x2+6x+5有最小值﹣4.请根据上述方法,解答下列问题:(Ⅰ)x2+4x﹣1=x2+2?x?2+22﹣22﹣1=(x+a)2+b,则ab的值是;(Ⅱ)求证:无论x取何值,代数式x2+2x+7的值都是正数;(Ⅲ)若代数式2x2+kx+7的最小值为2,求k的值.25.(14分)如图,在△ABC中,∠ABC>60°,∠BAC<60°,以AB为边作等边△ABD(点C,D在边AB的同侧),连接CD.(Ⅰ)若∠ABC=90°,∠BAC=30°,求∠BDC的度数;(Ⅱ)当∠BAC=2∠BDC时,请判断△ABC的形状并说明理由;(Ⅲ)当∠BCD等于多少度时,∠BAC=2∠BDC恒成立.福州市八年级(上)期末数学试卷答案一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂)1.(4分)下列图形中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:A.2.(4分)下列各式从左到右的变形中,是分解因式的是()A.m(a+b+c)=ma+mb+mc B.x2+5x=x(x+5)C.x2+5x+5=x(x+5)+5D.a2+1=a(a+)【解答】解:A、m(a+b+c)=ma+mb+mc,不符合题意;B、x2+5x=x(x+5),符合题意;C、x2+5x+5=x(x+5)+5,不符合题意;D、a2+1=a(a+),不符合题意,故选:B.3.(4分)下列运算正确的是()A.y3?y2=y6B.(a?b)3=a?b3C.x2+x3=x5D.(﹣m2)4=m8【解答】解:A、y3?y2=y5,此选项错误;B、(a?b)3=a3?b3,此选项错误;C、x2与x3不是同类项,不能合并,此选项错误;D、(﹣m2)4=m8,此选项正确;故选:D.4.(4分)如图,△ABC≌△A′B′C,则∠BCB′的度数为,∠ACB=90°,∠A′CB=20°()A.20°B.40°C.70°D.90°,【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′.∴∠BCB′=∠A′CB′﹣∠A′CB=70°故选:C.5.(4分)已知四条线段的长分别为13cm,10cm,7cm,5cm,从中任取三条线段为边组成三角形,则这样的三角形共有()A.1个B.2个C.3个D.4个【解答】解:所有的组合为13,10,5;13,10,7;13,5,7;10,5,7.再根据三角形的三边关系,发现其中的13,5,7不符合,则可以画出的三角形有3个.故选:C.6.(4分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm【解答】解:∵△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,∴BD=AD,AB=2AE=6cm,∵△ADC的周长为9cm,∴AC+AD+CD=AC+BD+CD=AC+BC=9cm,∴△ABC的周长为:AB+AC+BC=15cm.故选:C.7.(4分)把分式中的x,y的值都扩大为原来的5倍,则分式的值()A.不变B.扩大为原来的5倍C.扩大为原来的10倍D.缩小为原来的【解答】解:用5x和5y代替式子中的x和y得:==×,则分式的值.故选:D.∠AOB,能够说明作图过程中△C′O′D′8.(4分)如图,用直尺和圆规作∠A′O′B′=≌△COD的依据是()A.角角边B.角边角C.边角边D.边边边,,CD=C′D′′D′=O′C′【解答】解:由题意可知,OD=OC=O中,在△COD和△C′O′D′,(SSS),∴△COD≌△C′O′D′故选:D.9.(4分)若4x2+kx+25=(2x+a)2,则k+a的值可以是()A.﹣25B.﹣15C.15D.20【解答】解:4x2+kx+25=(2x+a)2,当a=5时,k=20,当a=﹣5时,k=﹣20,故k+a的值可以是:﹣25.故选:A.10.(4分)若a=,b=,则下列结论正确的是()A.a<b B.a=b C.a>b D.ab=1【解答】解:∵a===,b=,∴a=b.故选:B.二、填空题(本大题共6小题,每小题4分,满分24分,请在答题卡的相应位置作答)11.(4分)等腰三角形的一个内角为100°,则它的底角为40°.【解答】解:①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.12.(4分)当x=时,分式无意义.【解答】解:∵分式无意义,∴2x﹣7=0,解得:x=.故答案为:.13.(4分)用科学记数法表示:0.0012= 1.2×10﹣3.【解答】解:0.0012=1.2×10﹣3.故答案为:1.2×10﹣3.14.(4分)如图,四边形ABCD为长方形,△BED与△BCD关于直线BD对称,则图中共有4对全等三角形.【解答】解:如图:∵折叠的性质得出△ABD与△CDB,△EDB形状完全相同,即全等,,得出△ABF≌△EDF,所以图中的全等三角形有:△ABD≌△CDB,△ABD≌△EDB,△CDB≌△EDB,△ABF≌△EDF共有4对,故答案为:415.(4分)若a+b=,a﹣b=,则ab=1.【解答】解:将a+b=,a﹣b=两式相加得:2a=+,即a=,将a=5代入a﹣b=中,得:﹣b=,即b=,则ab==1.故答案为:1.16.(4分)如图,△ABD是边长为3的等边三角形,E,F分别是边AD,AB上的动点,若∠ADC=∠ABC=90°,则△CEF周长的最小值为6.【解答】解:如图所示,作点C关于AD的对称点G,作点C关于AB的对称点H,连接GE,HF,DG,BH,则DG=DC,BC=BH,∵AD⊥CD,AB⊥BC,∴AD垂直平分CG,AB垂直平分HC,∴CE=GE,CF=HF,∴△CEF周长=CE+CF+EF=GE+FH+EF,当点G,E,F,H在同一直线上时,GE+FH+EF的最小值等于GH的长,此时,DB是△CGH的中位线,∴GH=2BD=2×3=6,∴△CEF周长的最小值为6,故答案为:6.三、解答题(本大题共9小题,满分86分,请在答题卡的相应位置作答)17.(8分)分解因式:(Ⅰ)3mx﹣6my;(Ⅱ)y3+6y2+9y.【解答】解:(Ⅰ)原式=3m(x﹣2y);(Ⅱ)原式=y(y2+6y+9)=y(y+3)2.18.(8分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠A=∠D.19.(8分)计算:÷+×﹣.【解答】解:原式=+﹣=+2﹣=.20.(8分)先化简再求值:[(a﹣b)2﹣b(b﹣a)]÷a,其中a=4,b=﹣.【解答】解:原式=[a2﹣2ab+b2﹣b2+ab]÷a=[a2﹣ab]÷a=a﹣b,当a=4,b=﹣时,原式=4﹣(﹣)=5.21.(8分)化简:(﹣)÷【解答】解:原式=?=?=22.(10分)如图,已知∠MAN,点B在射线AM上.(Ⅰ)尺规作图:(i)在AN上取一点C,使BC=BA;(ii)作∠MBC的平分线BD,(保留作图痕迹,不写作法)(Ⅱ)在(Ⅰ)的条件下,求证:BD∥AN.【解答】(Ⅰ)解:(i)如图,点C为所作;(ii)如图,BD为所作;(Ⅱ)证明:∵AB=AC,∴∠A=∠BCA,∵BD平分∠MBC,∴∠MBD=∠CBD,∵∠MBC=∠A+∠BCA,即∠MBD+∠CBD=∠A+∠BCA,∴∠MBD=∠A,∴BD∥AN.23.(10分)在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式:(Ⅰ)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(Ⅱ)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)【解答】解:(Ⅰ)设这种篮球的标价为x元.由题意:﹣=5,解得:x=50,经检验:x=50是原方程的解.答:这种篮球的标价为50元.(Ⅱ)购买购买100个篮球,所需的最少费用为3850元.方案:在A超市分两次购买,每次45个,费用共为3450元,在B超市购买10个,费用400元,两超市购买100个篮球,所需的最少费用为3850元.24.(12分)请阅读下列材料:我们可以通过以下方法求代数式x2+6x+5的最小值.x2+6x+5=x2+2?x?3+32﹣32+5=(x+3)2﹣4,∵(x+3)2≥0∴当x=﹣3时,x2+6x+5有最小值﹣4.请根据上述方法,解答下列问题:(Ⅰ)x2+4x﹣1=x2+2?x?2+22﹣22﹣1=(x+a)2+b,则ab的值是﹣10;(Ⅱ)求证:无论x取何值,代数式x2+2x+7的值都是正数;(Ⅲ)若代数式2x2+kx+7的最小值为2,求k的值.【解答】解:(Ⅰ)∵x2+4x﹣1=x2+2?x?2+22﹣22﹣1=(x+2)2﹣5=(x+a)2+b,∴a=2,b=﹣5,∴ab=2×(﹣5)=﹣10.故答案是:﹣10;(Ⅱ)证明:x2+2x+7=x2+2x+()2﹣()2+7=(x+)2+1.∵(x+)2≥0,∴x2+2x+7的最小值是1,∴无论x取何值,代数式x2+2x+7的值都是正数;(Ⅲ)2x2+kx+7=(x)+2?x?+(k)2﹣(k)2+7=(x+k)2﹣k2+7.∵(x+k)2≥0,∴(x+k)2﹣k2+7的最小值是﹣k2+7,∴﹣k2+7=2,解得k=±2.25.(14分)如图,在△ABC中,∠ABC>60°,∠BAC<60°,以AB为边作等边△ABD(点C,D在边AB的同侧),连接CD.(Ⅰ)若∠ABC=90°,∠BAC=30°,求∠BDC的度数;(Ⅱ)当∠BAC=2∠BDC时,请判断△ABC的形状并说明理由;(Ⅲ)当∠BCD等于多少度时,∠BAC=2∠BDC恒成立.【解答】解:(I)∵△ABD为等边三角形,∴∠BAD=∠ABD=60°,AB=AD.又∵∠BAC=30°,∴AC平分∠BAD,∴AC垂直平分BD,∴CD=CB.∴∠BDC=∠DBC=∠ABC﹣∠ABD=90°﹣60°=30°.(II)△ABC是等腰三角形.理由:设∠BDC=x,则∠BAC=2x,∠CAD=60°﹣2x,∠ADC=60°+x.∴∠CAD=180°﹣∠CAD﹣∠ADC=60°+x,∴∠ACD=∠ADC,∴AC=AD.∵AB=AD,∴AB=AC,即△ABC是等腰三角形.(III)当∠BCD=150°时,∠BAC=2∠BDC恒成立.如图:作等边△BCE,连接DE,则BC=EC,∠BCE=60°.∵∠BCD=150°,∴∠ECD=360°﹣∠BCD﹣∠BCE=150°,∴∠DCE=∠DCB.又∵CD=CD,∴△BCD≌△ECD,∴∠BDC=∠EDC,即∠BDE=2∠BDC.又∵△ABD为等边三角形,∴AB=BD,∠ABD=∠CBE=60°,∴∠ABC=∠DBE=60°+∠DBC.又∵BC=BE,∴△BDE≌△BAC,∴∠BAC=∠BDE,∴∠BAC=2∠BDC.度百度百度百度百度百百度百度百度百度百度百度等边三角形条件:△OAB,△OCD均为等边三角形结论:①△OAC≌△OBD;②∠AEB=60°;③OE平分∠AED(易忘)等腰RT△条件:△OAB,△OCD均为等腰直角三角形结论:①△OAC≌△OBD;②∠AEB=90°;③OE平分∠AED(易忘)导角核心图形任意等腰三角形条件:△OAB,△OCD均为等腰三角形,且∠AOB=∠COD结论:①△OAC≌△OBD;②∠AEB=∠AOB;③OE平分∠AED(易忘)模型总结:核心图形如右图,核心条件如下:①OA=OB ,OC=OD ;②∠AOB =∠COD模型二:手拉手模型—相似条件:CD ∥AB ,将△OCD 旋转至右图位置结论:右图△OCD ∽△OAB △OAC ∽△OBD ;且延长AC 交BD 于点E 必有∠BEC=∠BOA非常重要的结论:必须会熟练证明手拉手相似(特殊情况)当∠AOB=90°时,除△OCD ∽△OAB△OAC ∽△OBD 之外还会隐藏OCD OA OB OC OD ACBDtan ,满足BD ⊥AC ,若连接AD 、BC ,则必有2222CD AB BC AD ;BD AC S ABCD 21(对角线互相垂直四边形)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年福建省福州市长乐市八年级(上)期末数学试卷一、选择题(共10小题,每小题2分,满分20分) 1.点P (﹣2,3)关于y 轴对称的点的坐标是( ) A .(2,3) B .(﹣2,3) C .(2,﹣3)D .(﹣2,﹣3)2.下列四个腾讯软件图标中,属于轴对称图形的是( )A .B .C .D .3.下列根式中,属于最简二次根式的是( )A .B .C .D .4.下列运算正确的是( )A .x 4+x 4=x 8B .x 6÷x 2=x 3C .xx 4=x 5D .(x 2)3=x 85.若分式有意义,则x 的取值范围是( )A .x=3B .x <3C .x ≠0D .x ≠36.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)27.对式子a ﹣b+c 进行添括号,正确的是( )A .a ﹣(b+c )B .a ﹣(b ﹣c )C .a+(b ﹣c )D .a+(b+c )8.计算2.7×10﹣8﹣2.6×10﹣8,结果用科学记数法表示为( )A .0.1×10﹣8B .0.1×10﹣7C .1×10﹣8D .1×10﹣99.如图,∠ACB=90°,CD⊥AB,则图中互余的角有()A.2对B.3对C.4对D.5对10.如图,长度分别为3,4,5,7的四条线段首尾相接,相邻两线段的夹角可调整,则任意两端点的距离最大值为()A.7 B.9 C.10 D.12二、填空题(共6小题,每小题3分,满分18分)11.把分式与通分,其最简公分母为.12.如图,△ABC≌△ADC,若∠B=80°,∠BAC=35°,则∠BCD的度数为度.13.若x2+ax+4是完全平方式,则a=.14.已知是整数,则正整数n的最小值为.15.两个全等的正十二边形按如图所示的方式摆放,其中两顶点重合,则∠α=度.16.顶角是36°的等腰三角形称为黄金三角形,设黄金三角形的底边与腰之比为m.如图,在黄金△ABC中,AB=AC=1,BD平分底角ABC,得到第二个黄金△BCD,CE平分底角BCD,得到第三个黄金△CDE,以此类推,则第2016个黄金三角形的周长为(用含m的式子表示).三、解答题(共8小题,满分62分)17.计算:(1)(﹣)﹣1﹣(﹣)2015×(1.5)2016+20160(2).18.化简:(1)(2x+1)(x﹣3)(2)(a+b)2﹣(a+b)(a﹣b)+b(b﹣2a)19.先化简,再求值:(),其中x=+1.20.如图,在△ABC中,AD=BD,AD⊥BC于点D,∠C=55°,求∠BAC的度数.21.如图,C是AB的中点,∠A=∠B,∠BCD=∠ACE,求证:AD=BE.22.某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?23.如图1,△ABC中,∠BAC=60°,O是△ABC内一点,△ABO≌△ACD,连接OD.(1)求证:△AOD为等边三角形;(2)如图2,连接OC,若∠BOC=130°,∠AOB=∠α.①求∠OCD的度数;②当△OCD是等腰三角形时,求∠α的度数.24.如图,在平面直角坐标系中,A(a,0),B(0,b),其中b>a>0,点C在第一象限,BA⊥BC,BA=BC,点F在线段OB上,OA=OF,AF的延长线与CB的延长线交于点D,AB与CF交于点E.(1)直接写出点C的坐标:(用含a,b的式子表示);(2)求证:∠BAF=∠BCE;(3)设点C关于直线AB的对称点为M,点C关于直线AF的对称点为N.求证:M,N 关于x轴对称.2015-2016学年福建省福州市长乐市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.点P(﹣2,3)关于y轴对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】利用关于y轴对称点的性质得出答案即可.【解答】解:点P(﹣2,3)关于y轴对称的点的坐标是:(2,3).故选:A.【点评】此题主要考查了关于y轴对称点的性质,正确把握横纵坐标的关系是解题关键.2.下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.下列根式中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.下列运算正确的是()A.x4+x4=x8B.x6÷x2=x3C.xx4=x5D.(x2)3=x8【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、合并同类项,系数相加字母和字母的指数不变,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C正确;D、幂的乘方,底数不变指数相乘,故选:C.【点评】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.5.若分式有意义,则x的取值范围是()A.x=3 B.x<3 C.x≠0 D.x≠3【考点】分式有意义的条件.【分析】由分式有意义的条件可知:3﹣x≠0,从而可求得x的范围.【解答】解:∵分式有意义,∴3﹣x≠0.∴x≠3.故选:D.【点评】本题主要考查的是分式有意义的条件,明确分式的分母不为0是解题的关键.6.下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.x2﹣1=(x+1)(x﹣1)C.x2﹣x+2=x(x﹣1)+2 D.x2+2x﹣1=(x﹣1)2【考点】提公因式法与公式法的综合运用.【分析】根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.【解答】解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),故本选项错误;B、x2﹣1=(x+1)(x﹣1),故本选项正确;C、x2﹣x+2=x(x﹣1)+2右边不是整式积的形式,故本选项错误;D、应为x2﹣2x+1=(x﹣1)2,故本选项错误.故选B.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.7.对式子a﹣b+c进行添括号,正确的是()A.a﹣(b+c)B.a﹣(b﹣c)C.a+(b﹣c)D.a+(b+c)【考点】去括号与添括号.【分析】依据添括号法则进行判断即可.【解答】解:a﹣b+c=a﹣(b﹣c).故选:B.【点评】本题主要考查的是添括号法则,掌握添括号法则是解题的关键.8.计算2.7×10﹣8﹣2.6×10﹣8,结果用科学记数法表示为()A.0.1×10﹣8B.0.1×10﹣7C.1×10﹣8D.1×10﹣9【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:2.7×10﹣8﹣2.6×10﹣8=(2.7﹣2.6)×10﹣8=0.1×10﹣8=1×10﹣9,故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.如图,∠ACB=90°,CD⊥AB,则图中互余的角有()A.2对B.3对C.4对D.5对【考点】余角和补角.【分析】根据余角的定义以及直角三角形两锐角互余的性质解答即可.【解答】解:∵∠ACB=90°,∴∠A与∠B互余,∠ACD与∠DCB互余.∵CD⊥AB,∴∠ADC=90°,∠CDB=90°.∴∠A与∠ACD互余,∠B与∠DCB互余.故选:C.【点评】本题主要考查的是余角的定义,掌握余角的定义是解题的关键.10.如图,长度分别为3,4,5,7的四条线段首尾相接,相邻两线段的夹角可调整,则任意两端点的距离最大值为()A.7 B.9 C.10 D.12【考点】三角形三边关系.【分析】若两个螺丝的距离最大,则此时这个木框的形状为三角形,可根据三条木棍的长来判断有几种三角形的组合,然后分别找出这些三角形的最长边即可.【解答】解:已知4条木棍的四边长为3、4、5、7;①选3+4、5、6作为三角形,则三边长7、5、7;7﹣5<7<7+5,能构成三角形,此时两个螺丝间的最长距离为7;②选3、4+5、7作为三角形,则三边长为3、9、7;7﹣3<9<7+3,能构成三角形,此时两个螺丝间的最大距离为9.故选:B.【点评】此题主要考查的是三角形的三边关系定理,能够正确的判断出调整角度后三角形木框的组合方法是解答的关键.二、填空题(共6小题,每小题3分,满分18分)11.把分式与通分,其最简公分母为6x2y2.【考点】最简公分母.【分析】根据确定最简公分母的步骤找出最简公分母即可.【解答】解:分式与最简公分母是6x2y2,故答案为:6x2y2.【点评】此题考查了最简公分母,确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.12.如图,△ABC≌△ADC,若∠B=80°,∠BAC=35°,则∠BCD的度数为130度.【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠BCA,根据全等的性质得出∠DCA=∠BCA=65°,即可求出答案.【解答】解:∵∠B=80°,∠BAC=35°,∴∠BCA=180°﹣∠B﹣∠BAC=65°,∵△ABC≌△ADC,∴∠DCA=∠BCA=65°,∴∠BCD=∠BCA+∠DCA=130°,故答案为:130.【点评】本题考查了全等三角形的性质,三角形内角和定理的应用,能根据全等三角形的性质求出∠BCA=∠DCA是解此题的关键.13.若x2+ax+4是完全平方式,则a=±4.【考点】完全平方式.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去a和2积的2倍,故a=±4.【解答】解:中间一项为加上或减去a和2积的2倍,故a=±4,故答案为:±4.【点评】本题考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.14.已知是整数,则正整数n的最小值为21.【考点】二次根式的定义.【分析】因为是整数,且==,则21n是完全平方数,满足条件的最小正整数n为21.【解答】解:∵==,且是整数;∴是整数,即21n是完全平方数;∴n的最小正整数值为21.故答案为:21【点评】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.15.两个全等的正十二边形按如图所示的方式摆放,其中两顶点重合,则∠α=60度.【考点】多边形内角与外角.【分析】由图可知:重合的部分是一个六边形,首先求正十二边形每一个内角的度数和六边形的内角和,进一步求得2∠α,再进一步得出答案即可.【解答】解:正十二边形内角为=150°,六边形的内角和180°×(6﹣2)=720°,则∠α=×(720°﹣150°×4)=60°.故答案为:60.【点评】此题考查多边形的内角和,掌握多边形内角和的求法是解决问题的关键.16.顶角是36°的等腰三角形称为黄金三角形,设黄金三角形的底边与腰之比为m.如图,在黄金△ABC中,AB=AC=1,BD平分底角ABC,得到第二个黄金△BCD,CE平分底角BCD,得到第三个黄金△CDE,以此类推,则第2016个黄金三角形的周长为m2015(2+m)(用含m的式子表示).【考点】黄金分割.【专题】规律型.【分析】根据三角形相似的判定定理得到△BCD∽△ABC,根据题意求出△BCD与△ABC 的周长比,总结规律得到答案.【解答】解:∵黄金三角形的底边与腰之比为m,AB=AC=1,∴BC=m,∴△ABC的周长为:2+m,∵△BCD与△ABC都是黄金三角形,∴△BCD∽△ABC,又=m,∴△BCD与△ABC的周长比为m,∴第二个黄金△BCD的周长为m(2+m),同理,第三个黄金△CDE的周长为m2(2+m),…∴第2016个黄金三角形的周长为m2015(2+m).故答案为:m2015(2+m).【点评】本题考查的是化简三角形的概念、相似三角形的性质,掌握相似三角形的周长比等于相似比是解题的关键.三、解答题(共8小题,满分62分)17.计算:(1)(﹣)﹣1﹣(﹣)2015×(1.5)2016+20160(2).【考点】实数的运算;零指数幂;负整数指数幂.【分析】(1)分别根据0指数幂及负整数指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先去绝对值符号,再把各根式化为最减二次根式,由实数混合运算的法则进行计算即可.【解答】解:(1)原式=﹣2﹣[(﹣)×1.5]2015×1.5+1=﹣2++1=;(2)原式=﹣﹣(﹣1)=﹣﹣+1=4﹣3﹣+1=1.【点评】本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则是解答此题的关键.18.化简:(1)(2x+1)(x﹣3)(2)(a+b)2﹣(a+b)(a﹣b)+b(b﹣2a)【考点】整式的混合运算.【专题】计算题;整式.【分析】(1)原式利用多项式乘以多项式法则计算即可得到结果;(2)原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=2x2﹣6x+x﹣3=2x2﹣5x﹣3;(2)原式=a2+2ab+b2﹣a2+b2+b2﹣2ab=3b2.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.19.先化简,再求值:(),其中x=+1.【考点】分式的化简求值.【专题】计算题;分式.【分析】首先根据分式化简的方法,把()化简;然后把x=+1代入化简后的算式,求出算式的值是多少即可.【解答】解:()=(+)=×=x﹣1当x=+1时,原式=+1﹣1=.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,解答此题的关键是要明确:分式的化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.20.如图,在△ABC中,AD=BD,AD⊥BC于点D,∠C=55°,求∠BAC的度数.【考点】直角三角形的性质.【分析】根据垂直的定义可得∠ADB=∠ADC=90°,再根据直角三角形两锐角互余求出∠CAD,然后求出∠BAD,再求解即可.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠C=55°,∴∠CAD=90°﹣∠C=90°﹣55°=35°,∵AD=BD,∴∠BAD=∠B=45°,∴∠BAC=∠BAD+∠DAC=45°+35°=80°.【点评】本题考查了直角三角形两锐角互余的性质,等腰直角三角形的性质,是基础题,熟记性质并准确识图是解题的关键.21.如图,C是AB的中点,∠A=∠B,∠BCD=∠ACE,求证:AD=BE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据题意得出∠ACD=∠BCE,AC=BC,进而得出△ADC≌△BEC即可得出答案.【解答】证明:∵C是线段AB的中点,∴AC=BC.∵∠ACE=∠BCD,∴∠ACD=∠BCE,在△ADC和△BEC中,,∴△ADC≌△BEC(ASA).∴AD=BE.【点评】本题考查三角形全等的性质和判定方法以及等边三角形的性质.判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板在这两笔生意中共盈利多少元?【考点】分式方程的应用.【分析】(1)设第一次购进x件文具,则第二次就购进2x件,根据第二次购进时发现每件文具进价比第一次上涨了2.5元,所购进文具的数量是第一次购进数量的2倍,可列方程求解.(2)利润=售价﹣进价,根据(1)算出件数,然后算出总售价减去成本即为所求.【解答】解:(1)设第一次购进x件文具,则第二次就购进2x件文具,由题意得:=﹣2.5解之得x=100,经检验,x=100是原方程的解,2x=2×100=200答:第二次购进200件文具.(2)(100+200)×15﹣1000﹣2500=1000(元).答:盈利1000元.【点评】本题考查理解题意的能力,关键是设出数量,以价格做为等量关系列方程求解,然后根据利润=售价﹣进价,求出利润即可.23.如图1,△ABC中,∠BAC=60°,O是△ABC内一点,△ABO≌△ACD,连接OD.(1)求证:△AOD为等边三角形;(2)如图2,连接OC,若∠BOC=130°,∠AOB=∠α.①求∠OCD的度数;②当△OCD是等腰三角形时,求∠α的度数.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据全等三角形得到AO=AD,∠BAO=∠CAD,由∠BAC=60°,求得∠OAD=60°,即可得到结论;(2)①根据△AOD为等边三角形,求得∠AOD=∠ADO=60°,求得∠DOC=360°﹣α﹣130°﹣60°=170°﹣α,根据全等三角形的性质得到∠ADC=∠AOB=α,于是得到∠OCD=180°﹣∠DOC﹣∠ODC=70°;②当△OCD是等腰三角形时,(Ⅰ)当OD=OC,由∠DOC=170°﹣α,得到∠OCD=∠ODC==,列方程得到α=130°(Ⅱ)当OD=CD,于是得到∠OCD=∠COD=170°﹣α;求得∠ODC=180°﹣2×170°+2α=2α﹣160°,列方程即可得到α=100°;(Ⅲ)当OC=CD,于是得到∠ODC=∠COD=170°﹣α,列方程即可得到α=115°.【解答】解:(1)∵△ABO≌△ACD,∴AO=AD,∠BAO=∠CAD,∵∠BAC=60°,∴∠OAD=60°,∴△AOD为等边三角形;(2)①∵△AOD为等边三角形,∴∠AOD=∠ADO=60°,∵∠BOC=130°,∠AOB=∠α,∴∠DOC=360°﹣α﹣130°﹣60°=170°﹣α,∵△ABO≌△ACD,∴∠ADC=∠AOB=α,∴∠ODC=α﹣60°,∴∠OCD=180°﹣∠DOC﹣∠ODC=70°;②当△OCD是等腰三角形时,(Ⅰ)当OD=OC,∵∠DOC=170°﹣α,∴∠OCD=∠ODC==,∴60°+=α,解得:α=130°(Ⅱ)当OD=CD,∴∠OCD=∠COD=170°﹣α;∴∠ODC=180°﹣2×170°+2α=2α﹣160°,∴60°+2α﹣160°=α,解得:α=100°;(Ⅲ)当OC=CD,∴∠ODC=∠COD=170°﹣α,∴170°﹣α+60°=α,解得:α=115°.综上所述:当△OCD是等腰三角形时,∠α的度数为:130°,100°,115°.【点评】本题考查了全等三角形的性质,等边三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的性质定理是解题的关键.24.如图,在平面直角坐标系中,A(a,0),B(0,b),其中b>a>0,点C在第一象限,BA⊥BC,BA=BC,点F在线段OB上,OA=OF,AF的延长线与CB的延长线交于点D,AB与CF交于点E.(1)直接写出点C的坐标:(b,a+b)(用含a,b的式子表示);(2)求证:∠BAF=∠BCE;(3)设点C关于直线AB的对称点为M,点C关于直线AF的对称点为N.求证:M,N 关于x轴对称.【考点】全等三角形的判定与性质;坐标与图形性质;轴对称的性质.【分析】(1)过C点作CP⊥y轴于点P,根据AAS证明△AOB≌△BPC,根据全等三角形的性质即可得到点C的坐标;(2)根据全等三角形的性质的性质和等量代换即可得到结论;(3)根据SAS证明△DAH≌△GAH,根据全等三角形的性质即可求解.【解答】(1)解:如图1,过C点作CP⊥y轴于点P,∵CP⊥y轴,∴∠BPC=90°,∴∠BPC=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠ABO+∠CBP=90°,∵∠ABO+∠BAO=90°,∴∠CBP=∠BAO,在△AOB与△BEC中,,∴△AOB≌△BPC(AAS),∴CE=OB=b,BE=OA=a,∴OP=OB+BP=a+b,∴点C的坐标为(b,a+b),故答案为:(b,a+b);(2)证明:∵△AOB≌△BPC,∴BP=OA=OF,CP=BO,∴FP=OB=CP,∴∠PFC=45°,∠AFC=90°,∴∠BAF=∠BCE;(3)证明:如图2,∵点C关于直线AB的对称点为M,点C关于直线AF的对称点为N,∴AM=AC,AN=AC,∴AM=AN,∵∠1=∠5,∠1=∠6,∴∠5=∠6,在△MAH与△NAH中,∴,∴△MAH≌△NAH(SAS),∴MH=NH,∴M,N关于x轴对称.【点评】本题考查了全等三角形的判定和性质,关于直线对称的性质.关键是AAS证明△AOB≌△BEC,SAS证明△DAH≌△GAH.。