高考数学第一轮复习椭圆
全国高考数学一轮复习-椭圆知识点总结
椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质椭圆:12222=+b y a x )0(>>b a 与 12222=+bx a y )0(>>b a 的简单几何性质标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤b x ≤,a y ≤对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴长长轴长=a 2,短轴长=b 2 长半轴长=a ,短半轴长=b (注意看清题目)离心率)10(<<=e ace c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1;(p 是椭圆上一点)(不等式告诉我们椭圆上一点到焦点距离的范围)注意:①与坐标系无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等;②与坐标系有关的性质,如:顶点坐标、焦点坐标等知识点三:椭圆相关计算1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=2.通径:过焦点且垂直于长轴的弦,其长ab 22焦点弦:椭圆过焦点的弦。
3.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠为最大角。
椭圆及其几何性质课件-高三数学一轮复习
B 分别为 C 的左,右顶点.P 为 C 上一点,且 PF⊥x 轴.过点 A 的直线 l
与线段 PF 交于点 M,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则 C
的离心率为( A )
A.13
B.12
C.23
D.34
[解析] 设点 M(-c,y0),OE 的中点为 N,则直线 AM 的斜率 k=a-y0 c, 从而直线 AM 的方程为 y=a-y0 c(x+a), 令 x=0,得点 E 的纵坐标 yE=aa-y0c.同理,OE 的中点 N 的纵坐标 yN=aa+y0c. 因为 2yN=yE,所以a+2 c=a-1 c,即 2a-2c=a+c,所以 e=ac=13.故选 A.
(2)已知椭圆xa22+by22=1(a>b>0)上有一点 A,它关于原点的对称点为 B,点 F
为椭圆的右焦点,且 AF⊥BF.设∠ABF=α,且 α∈1π2,π6,则该椭圆的离 心率 e 的取值范围为( A )
A.
3-1,
6
3
B.[ 3-1,1)
C.
46,
6
3
D.0,
6
3
[解析] 如图所示,设椭圆的左焦点为 F′,连接 AF′,BF′,则四边形 AFBF′
为矩形,因此|AB|=|FF′|=2c,|AF|+|BF|=2a,|AF|=2csin α,|BF|=2ccos
α,∴2csin α+2ccos α=2a,
∴e=sin
1 α+cos
α=
2sin1α+π4.∵α∈1π2,π6,∴α+π4∈π3,51π2,
∴sinα+π4∈ 23,
2+ 4
6,∴
2sinα+π4∈ 26,1+2
2025年高考数学一轮复习-8.5.1椭圆的定义、方程与性质【课件】
>| C 1 C 2|=8,由椭圆的定义, M 的轨迹是以 C 1, C 2为焦点,
长轴长为16的椭圆.则 a =8, c =4,所以 b 2=82-42=48,动圆的
2
2
圆心 M 的轨迹方程为 + =1.
理、| PF 1|+| PF 2|=2 a ,得到 a , c 的关系.
目录
高中总复习·数学(提升版)
椭圆的标准方程
【例1】
2
2
(1)已知椭圆 C : 2 + 2 =1( a > b >0)的左、右焦点
1
分别为 F 1, F 2,离心率为 ,过 F 2的直线与椭圆 C 交于 A , B 两点,
1
面积 S = ×2
2
1
|2+8-4| AF
2
7
1|,解得| AF 1|= 2 .∴△ AF 1 F 2的
7
2
7
× × = .
2
2
2
目录
高中总复习·数学(提升版)
4.
2
2
设椭圆 + =1的一个焦点为 F ,则对于椭圆上两动点 A , B ,△
16
9
ABF 周长的最大值为 16 .
解析:设 F 1为椭圆的另外一个焦点,则由椭圆的定义可得| AF |
n ).因为椭圆经过 P 1, P 2两点,所以点 P 1, P 2的坐标满足椭圆
1
= ,
6+ = 1,
9
方程,则ቊ
解得൞
所以所求椭圆的方程为
1
3 + 2 = 1,
= .
3
高三第一轮复习椭圆的定义方程几何性质
椭圆的定义、方程及几何性质【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)主干知识归纳 1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数: (1) 若c a >,则集合P 为椭圆; (2) 若c a =,则集合P 为线段; (3) 若c a <,则集合P 为空集.3. 椭圆中常见的结论(1)若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. (2)若000(,)P x y 在椭圆22221x y a b+=外 ,则过0P 作椭圆的两条切线切点为1P 、2P ,则切点弦1P 2P 的直线方程是00221x x y ya b+=. (3)椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PFS b γ∆=.(4)A 、B 是椭圆22221(0)x y a b a b +=>>长轴的端点,M ),(00y x 为椭圆上任意一点,则22MA MB b k k a ⋅=-, 方法规律总结1.求椭圆标准方程的方法(1) 定义法:根据椭圆定义,确定2a 、2b 的值,再结合焦点位置,直接写出椭圆方程.(2) 待定系数法:根据椭圆焦点是在x 轴还是y 轴上,设出相应形式的标准方程,然后根据条件确定关于a 、b 、c 的方程组,解出2a 、2b ,从而写出椭圆的标准方程.2.讨论椭圆的几何性质时,离心率问题是重点,求离心率的常用方法有以下两种:(1)求得a ,c 的值,直接代入公式e =ca求得;(2)列出关于a ,b ,c 的齐次方程(或不等式),然后根据b2=a2-c2,消去b ,转化成关于e 的方程(或不等式)求解.3.椭圆性质的运用一般策略(1)与椭圆双焦点焦点有关的问题,充分考虑椭圆的定义,单焦点的问题可连接另一个焦点。
椭圆及其性质课件-2025届高三数学一轮复习
,
=
+
向量的数量积求解;
= ,再由 =
+ ,借助
思路二:先利用椭圆定义以及在焦点三角形中用余弦定理先求出
,
=
+
和等于四条边的平方和求解.
思路三:利用等面积,即
点的坐标.ຫໍສະໝຸດ = ,再利用平行四边形对角线的平方
2025届高考数学一轮复习讲义
平面解析几何之椭圆及其性质
1.椭圆的定义
条件
结论1
,
①________为椭
平面内与两个定点 , 的距离的和等
于常数(大于 )的点
+ =
>
结论2
点的轨
迹为椭圆
圆的焦点;
②_______为椭圆
求 ⋅ 的值,通过整体代入可求其面积等.
1.(2023·全国甲卷)设 , 为椭圆:
+ = 的两个焦点,点在上,
若 ⋅ = ,则 ⋅ =(
A.1
B.2
√
)
C.4
D.5
解析:选B.方法一:因为 ⋅ = ,所以 ⊥ ,则
的焦距
若= ,则动点的轨迹是线段 ;若< ,
则动点 的轨迹不存在.
2.椭圆的标准方程及几何性质
焦点的位置
焦点在轴上
焦点在轴上
图形
标准方程
范围
顶点
+
= >>
+
2025高考数学一轮复习-41.1-椭圆的概念及基本性质【课件】
椭圆的标准方程
2 (1) 已知椭圆的长轴长是短轴长的3倍,过点A(3,0),且以坐标 轴为对称轴,则椭圆的标准方程为________________________.
【解析】 方法一:若椭圆的焦点在 x 轴上,设方程为ax2ቤተ መጻሕፍቲ ባይዱ+by22=1(a>b>0).由题意得
2a=3×2b, a92+b02=1,
2025高考数学一轮复习-41.1-椭圆的概念及基本性质
激活思维
1.已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点
5,-3 22
,则它的
标准方程是( ) A. x2 + y2 =1
36 100 C.x2+ y2 =1
6 10
B. x2 +y2 =1 100 36
D. x2 +y2=1 10 6
ay22+bx22=1(a>b>0)
顶点坐标
A1(-a,0),A2(a,0) B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)
性
轴
长轴 A1A2 的长为__2_a___;短轴 B1B2 的长为___2_b__
质
焦距
|F1F2|=__2_c___
离心率
(2) 如图,P为圆B:(x+2)2+y2=36上一动点,
1
点A的坐标为(2,0),线段AP的垂直平分线交BP于点 Q,则点Q的轨迹方程为___x9_2+__y5_2=__1____.
【解析】 连接AQ(图略).因为线段AP的垂直平分线交BP于点Q,所以|AQ|=|PQ|,所 以|AQ|+|BQ|=|PQ|+|BQ|=6. 又|AB|=4,所以|AQ|+|BQ|>|AB|,所以点 Q 的轨迹是以 A,B 为焦点的椭圆,且 2a =6,2c=4,所以 a2=9,c2=4,b2=a2-c2=5,故点 Q 的轨迹方程为x92+y52=1.
高三数学第一轮复习椭圆的定义、性质及标准方程知识精讲
高三数学第一轮复习:椭圆的定义、性质及标准方程【本讲主要内容】椭圆的定义、性质及标准方程椭圆的定义及相关概念、椭圆的标准方程、椭圆的几何性质【知识掌握】 【知识点精析】1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a bx a y 中心在原点,焦点在y 轴上图形范围x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距)0(221>=c c F F)0(221>=c c F F3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PFe d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
椭圆(知识点讲解)高考数学一轮复习(新教材新高考)(解析版)
专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>②若,则集合P 为线段; ③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点a c =a c <x 2222=1(a>b>0)x y ab +y 2222=1(a>b>0)y x a b+x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a bx a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为四.直线与椭圆的位置关系 1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答222122()F F c c a b -==() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1 C 17 D .17-【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解.【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 . (3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.221mx ny +=(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a bλλ2222+=1(a>b>0)x y a b 22222+=1(a>b>0,0)x y b k a k b k+>++【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x a x a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .例8.(2023·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .3D .43【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =, 所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______. 【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AFAF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦【总结提升】1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建2222e?b b c a =2222+=1(a>b>0)x y a b立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案. 【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-,由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆2222:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e = 22 ,1c b e e a a=-=(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程; (2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程.(1)解:()2222222222234332BF b c aa b a a b AB b a b a+===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+,由=OM ON 可得()()222229131m k m k+=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 【规律方法】一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. :E 22221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==(Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C .(1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB ()210210b -=23b =E 221123x y +=(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=.(2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=. 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+,所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121km k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 【总结提升】从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。
2025高考数学一轮复习-3.1.1-椭圆的标准方程【课件】
知识点 2 椭圆的标准方程
焦点在 x 轴上
焦点在 y 轴上
标准方程
___ax_22+__by_22_=__1_(_a_>_b_>_0_)__
ay22+bx22=1(a>b源自0)焦点(-c,0)与(c,0) __(0_,__-__c_)____与__(_0_,__c_)___
a,b,c 的关系
b2=__a_2-__c_2____
∵Q(x0,y0)在椭圆x42+y2=1 上,∴x420+y20=1. 将 x0=2x-1,y0=2y 代入上式, 得(2x-4 1)2+(2y)2=1. 故所求 AQ 的中点 M 的轨迹方程是 x-122+4y2=1.
学习效果·课堂评估夯基础
1.椭圆2x52 +y2=1 上一点 P 到一个焦点的距离为 2,则点 P 到另
可知 a=2,b= 3,
所以 c= a2-b2=1,
从而|F1F2|=2c=2.
在 △PF1F2 中 , 由 余 弦 定 理 得 |PF2|2 = |PF1|2 + |F1F2|2 -
2|PF1||F1F2|cos ∠PF1F2,
即|PF2|2=|PF1|2+4+2|PF1|.
①
由椭圆定义得|PF1|+|PF2|=2a=4.
法二:因为所求椭圆过点(4,3 2),所以1a82+1b62=1. 又 c2=a2-b2=4,可解得 a2=36,b2=32. 所以椭圆的标准方程为3y62 +3x22 =1.
(3)经过两点(2,-
2),-1,
214.
[解] (3)法一:若焦点在 x 轴上,设椭圆的标准方程为ax22+by22=
②
由①②联立可得|PF1|=65.
所以 S△PF1F2=12|PF1||F1F2|sin
2025年高考数学一轮复习-9.5.1-椭圆的定义及标准方程【课件】
预计2025年高考求椭圆的标准方程、直线与椭圆的交汇问题仍会
预测 出题,一般以解答题出现,求椭圆的离心率,考查比较灵活,一般以选择
题、填空题的形式出现.
必备知识·逐点夯实
知识梳理·归纳
1.椭圆的定义
常数
把平面内与两个定点F1,F2的距离的和等于______(大于|F
1F2|)的点的轨迹叫做椭圆.
(3)
源自教材第113页例6.此题给出椭圆的另一种定义方式
[例1](1)如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在
2 2
+y =1
圆上运动时,则线段PD的中点M的轨迹方程为______________.
4
【解析】(1)设点M的坐标为(x,y),点P的坐标为(x0,y0),
(6)焦点三角形的周长为2(a+c).
基础诊断·自测
类型
辨析
改编
易错
高考
题号
1
2
4
3
1.(思考辨析)(正确的打“√”,错误的打“×”)
(1)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于8的点的轨迹是椭圆.
(
×
)
提示:(1)因为2a=|F1F2|=8,动点的轨迹是线段F1F2,不是椭圆;
(2)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于6的点的轨迹是椭圆.
(
×
)
提示:(2)由于2a<|F1F2|,动点不存在,因此轨迹不存在;
(3)平面内到点F1(-4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的
高三数学一轮复习(知识点归纳与总结):椭圆
高三数学一轮复习(知识点归纳与总结):椭圆高三数学一轮复习(知识点归纳与总结):椭圆第五节椭圆[备考方向要明了][归纳知识整合]1.椭圆的定义(1)满足以下条件的点的轨迹是椭圆①在平面内;②与两个定点F1、F2的距离之和等于常数;③常数大于|F1F2|.(2)焦点:两定点.(3)焦距:两焦点间的距离.[探究] 1.在椭圆的定义中,若2a=|F1F2|或2a|F1F2|,则动点的轨迹如何?提示:当2a=|F1F2|时动点的轨迹是线段F1F2;当2a|F1F2|时,动点的轨迹是不存在的.2.椭圆的标准方程和几何性质高三数学一轮复习(知识点归纳与总结):椭圆[探究] 2.椭圆离心率的大小与椭圆的扁平程度有怎样的关系?提示:离心率e =ca 越接近1,a 与c 就越接近,从而b =a 2-c 2就越小,椭圆就越扁平;同理离心率越接近0,椭圆就越接近于圆.[自测牛刀小试]1.椭圆x 216+y 28=1的离心率为( )A.13 B.12 C.33D.22解析:选D ∵a 2=16,b 2=8,∴c 2=8,∴e =c a =2 2.2.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B 中,若有两边之和是10,则第三边的长度为( )A .6B .5C .4D .3高三数学一轮复习(知识点归纳与总结):椭圆解析:选A 根据椭圆定义,知△AF 1B 的周长为4a =16,故所求的第三边的长度为16-10=6.3.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A.14B.12 C .2 D .4解析:选A 由题意知a 2=1m ,b 2=1,且a =2b ,则1m =4,得m =14. 4.若椭圆x 216+y 2m 2=1过点(-2,3),则其焦距为( ) A .2 3B .2 5C .4 3D .4 5解析:选C 把点(-2,3)的坐标代入椭圆方程得m 2=4,所以c 2=16-4=12,所以c =23,故焦距为2c =4 3.5.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为________.解析:由题意知|OM |=12|PF 2|=3,则|PF 2|=6.故|PF 1|=2×5-6=4. 答案:4[例1] (1)已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 是周长是( )A .23B .6C .4 3D .12 (2)(2012山东高考)已知椭圆C :x 2a 2+y 2b 2=1(a b 0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ) 高三数学一轮复习(知识点归纳与总结):椭圆A.x 28+y 22=1 B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1 [自主解答] (1)根据椭圆定义,△ABC 的周长等于椭圆长轴长的2倍,即4 3.(2)由离心率为32得,a 2=4b 2,排除选项B ,双曲线的渐近线方程为y =±x ,与椭圆的四交点组成的四边形的面积为16可得在第一象限的交点坐标为(2,2),代入选项A 、C 、D ,知选项D 正确.[答案] (1)C (2)D―――――――――――――――――――用待定系数法求椭圆方程的一般步骤(1)作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;(2)设方程:根据上述判断设方程x 2a 2+y 2b 2=1(a b 0)或x 2b 2+y 2a2=1(a b 0);(3)找关系:根据已知条件,建立关于a 、b 、c 或m 、n 的方程组;(4)得方程:解方程组,将解代入所设方程,即为所求.注意:用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为mx 2+ny 2=1(m 0,n 0).1.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且椭圆上一点到椭圆的两个焦点的距离之和为12,则椭圆G 的方程为______________.解析:设椭圆方程为x 2a 2+y 2b 2=1(a b 0),根据椭圆定义2a =12,即a =6,又c a =32,得c =33,故b 2=a 2-c 2=36-27=9,故所求椭圆方程为x 236+y 29=1. 答案:x 236+y 29=1 2.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a b 0)的左、右焦点,P 为椭圆C 上一点,且PF 1⊥PF 2.若△PF 1F 2的面积为9,则b =________.解析:设椭圆的焦点坐标为(±c,0)根据椭圆定义和△PF 1F 2是一个面积等于9的直角三角形,高三数学一轮复习(知识点归纳与总结):椭圆有????? |PF 1|+|PF 2|=2a ,①|PF 1||PF 2|=18,②|PF 1|2+|PF 2|2=4c 2. ③①式两端平方并把②、③两式代入可得4c 2+36=4a 2,即a 2-c 2=9,即b 2=9,故b =3.答案:3[例2] (2012安徽高考)如图,F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a b 0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.[自主解答] (1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12. (2)法一:a 2=4c 2,b 2=3c 2,直线AB 的方程可为y =-3(x -c ).将其代入椭圆方程3x 2+4y 2=12c 2,得B ????85c ,-335c . 所以|AB |=1+3????85c -0=165c . 由S △AF 1B =12|AF 1||AB |sin ∠F 1AB =12a 165c 32=235a 2=403,解得a =10,b =5 3. 法二:设|AB |=t .因为|AF 2|=a ,所以|BF 2|=t -a .由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t . 再由余弦定理(3a -t )2=a 2+t 2-2at cos 60°可得,t =85a . 由S △AF 1B =12a 85a 32=235a 2=403知,a =10,b =5 3.高三数学一轮复习(知识点归纳与总结):椭圆―――――――――――――――――――椭圆离心率的求法求椭圆的离心率(或范围)时,一般是依据题设得出一个关于a ,b ,c 的等式(或不等式),利用a 2=b 2+c 2消去b ,即可求得离心率或离心率的范围.3.椭圆x 2a 2+y 2b 2=1(a b 0)的两顶点为A (a,0),B (0,b ),且左焦点为F ,△F AB 是以角B 为直角的直角三角形,则椭圆的离心率e 为( ) A.3-12 B.5-12 C.1+54D.3+14 解析:选B 根据已知a 2+b 2+a 2=(a +c )2,即c 2+ac -a 2=0,即e 2+e -1=0,解得e =-1±52,故所求的椭圆的离心率为5-12. 4.椭圆x 2a 2+y 25=1(a 为定值,且a 5)的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,△F AB 的周长的最大值是12,则该椭圆的离心率是________.解析:设椭圆右焦点为F ′,由图及椭圆定义知,|AF |+|AF ′|=|BF |+|BF ′|=2a .又△F AB 的周长为|AF |+|BF |+|AB |≤|AF |+|BF |+|AF ′|+|BF ′|=4a ,当且仅当AB过右焦点F ′时等号成立,此时4a =12,则a =3,故椭圆方程为x 29+y 25=1, 所以c =2,所以e =c a =23. 答案:23[例3] 如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段高三数学一轮复习(知识点归纳与总结):椭圆AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得????? (2+c )2+1=10,c a =12,解得????? c =1,a =2.所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由????? y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0,①则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,????? x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点M ????-4km 3+4k 2,3m 3+4k 2.因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km 3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则Δ=3(12-m 2)>0,????? x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2|x 1-x 2|=39612-m 2.设点P 到直线AB 距离为d ,则d =|8-2m |32+22=2|m -4|13.高三数学一轮复习(知识点归纳与总结):椭圆设△ABP 的面积为S ,则S =12|AB |d =36(m -4)2(12-m 2). 其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,2 3 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7).所以当且仅当m =1-7时,u (m )取到最大值.故当且仅当m =1-7时,S 取到最大值.综上,所求直线l 方程为3x +2y +27-2=0.高三数学一轮复习(知识点归纳与总结):椭圆――――――――――――――――――― 直线与椭圆相交时的常见问题的处理方法5.(2013洛阳模拟)已知椭圆x 2a 2+y 2b 2=1(a b 0)的离心率为22,短轴的一个端点为M (0,1),直线l :y =kx -13与椭圆相交于不同的两点A ,B . (1)若|AB |=4269,求k 的值;(2)求证:不论k 取何值,以AB 为直径的圆恒过点M .解:(1)∵由题意知c a =22,b =1. 由a 2=b 2+c 2可得c =b =1,a =2,∴椭圆的方程为x 22+y 2=1. 由??? y =kx -13,x 22+y 2=1,得(2k 2+1)x 2-43kx -169=0. Δ=169k 2-4(2k 2+1)×???-169=16k 2+6490恒成立.设A (x 1,y 1),B (x 2,x 2),则x 1+x 2=4k 3(2k 2+1),x 1x 2=-169(2k 2+1),∴|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=4(1+k 2)(9k 2+4)3(2k 2+1)=4269,化简得23k 4-13k 2-10=0,即(k 2-1)(23k 2+10)=0,解得k =±1.(2)证明:∵MA =(x 1,y 1-1),MB =(x 2,y 2-1),∴MAMB =x 1x 2+(y 1-1)(y 2-1) =(1+k 2)x 1x 2-43k (x 1+x 2)+169高三数学一轮复习(知识点归纳与总结):椭圆=-16(1+k 2)9(2k 2+1)-16k 29(2k 2+1)+169=0.∴不论k 取何值,以AB 为直径的圆恒过点M .1个规律――椭圆焦点位置与x 2、y 2系数之间的关系给出椭圆方程x 2m +y 2n=1时,椭圆的焦点在x 轴上?m n 0;椭圆的焦点在y 轴上?0m n .1种思想――数形结合思想在椭圆几何性质中的运用求解与椭圆几何性质有关的问题时要结合图形进行分析,即使不画出图形,思考时也要联想到图形.当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.2种方法――求椭圆标准方程的方法(1)定义法:根据椭圆定义,确定a 2,b 2的值,再结合焦点位置,直接写出椭圆方程.(2)待定系数法:根据椭圆焦点是在x 轴还是y 轴上,设出相应形式的标准方程,然后根据条件确定关于a 、b 、c 的方程组,解出a 2、b 2,从而写出椭圆的标准方程.3种技巧――与椭圆性质、方程相关的三种技巧(1)椭圆上任意一点M 到焦点F 的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a +c ,最小距离为a -c .(2)求椭圆离心率e 时,只要求出a ,b ,c 的一个齐次方程,再结合b 2=a 2-c 2就可求得e (0e 1).(3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴.答题模板――直线与圆锥曲线的位置关系[典例] (2012北京高考满分14分)已知曲线C :(5-m )x 2+(m -2)y 2=8(m ∈R ).高三数学一轮复习(知识点归纳与总结):椭圆(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y =1与直线BM交于点G.求证:A,G,N三点共线.高三数学一轮复习(知识点归纳与总结):椭圆[快速规范审题]第(1)问1.审条件,挖解题信息观察条件:方程的曲线是焦点在x 轴上的椭圆*****DD→椭圆的标准方程x 2a 2+y 2b 2=1(a >b >0).2.审结论,明确解题方向观察所求结论:求m 的范围D→需建立关于m 的不等式.3.建联系,找解题突破口由椭圆的标准方程D→DDDDDD→确定a 2,b 2a 2=85-m ,b 2=8m -2*****→建立关于m 的不等式5-m >0,m -2>0,85-m >8m -2解不等式组,得m 的取值范围.第(2)问1.审条件,挖解题信息观察条件:m =4;曲线C 与y 轴交于A ,B 与直线y =kx +4交于M ,N ;直线y =1与直线BM 交于G *****DDDD→把m =4代入曲线C 的方程并令x =0,得A 、B 的坐标曲线C 的方程x 2+2y 2=8,A (0,2),B (0,-2).2.审结论,明确解题方向观察所证结论:证明A ,G ,N 三点共线*****→利用斜率转化证明k AN =k AG . 3.建联系,找解题突破口联立方程y =kx +4与x 2+2y 2=8,消元DDDDDD→利用根与系数的关系确定M ,N 的坐标满足的条件*****DD→写出BM 的方程并令y =1写出G 的坐标*****DDD→写出k AN ,k AG 的表达式证明k AN -k AG =0. [准确规范答题](1)曲线C 是焦点在x 轴上的椭圆,当且仅当????? 5-m >0,m -2>0,85-m >8m -2,?(3分) 解得72<m <5,所以m 的取值范围是????72,5.?(4分) (2)当m =4时,曲线C 的方程为x 2+2y 2=8,点A ,B 的坐标分别为(0,2),(0,-2).?(5分)高三数学一轮复习(知识点归纳与总结):椭圆由?????y =kx +4,x 2+2y 2=8,得(1+2k 2)x 2+16kx +24=0.?(6分) 因为直线与曲线C 交于不同的两点,所以Δ=(16k )2-4(1+2k 2)×24>0,即k 2>32.?(7分)设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=kx 1+4,y 2=kx 2+4,x 1+x 2=-16k 1+2k 2,x 1x 2=24 1+2k 2.?(8分) 直线BM 的方程为y +2=y 1+2x 1x ,点G 的坐标为????3x 1y 1+2,1.?(9分)因为直线AN 和直线AG 的斜率分别为k AN =y 2-2x 2,k AG =-y 1+23x 1,?(11分) 所以k AN -k AG =y 2-2x 2+y 1+23x 1=kx 2+2x 2+kx 1+63x 1=43k +2(x 1+x 2)x 1x 2=43k +2×1+2k 2241+2k 2=0. 即k AN =k AG .?(13分)故A ,G ,N 三点共线.?(14分)[答题模板速成]解直线与圆锥曲线位置关系的一般步骤:?高三数学一轮复习(知识点归纳与总结):椭圆一、选择题(本大题共6小题,每小题5分,共30分) 1.(2012上海高考)对于常数m ,n ,“mn 0”是“方程mx 2+ny 2=1的曲线是椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B 因为当m 0,n 0时,方程mx 2+ny 2=1表示的曲线不是椭圆,但当方程mx 2+ny 2=1表示的曲线是椭圆时,m 0,n 0,mn 0.2.已知椭圆:x 210-m +y 2m -2=1的焦距为4,则m 等于( ) A .4C .4或8D .以上均不对解析:选C 由?????10-m 0,m -20,得2m 10,由题意知(10-m )-(m -2)=4或(m -2)-(10-m )=4,解得m =4或m =8.3.矩形ABCD 中,|AB |=4,|BC |=3,则以A ,B 为焦点,且过C ,D 两点的椭圆的短轴的长为( )A .2 3B .2 6C .4 2D .4 3解析:选D 依题意得|AC |=5,所以椭圆的焦距为2c =|AB |=4,长轴长2a =|AC |+高三数学一轮复习(知识点归纳与总结):椭圆|BC |=8,所以短轴长为2b =2a 2-c 2=216-4=4 3.4.(2013汕尾模拟)已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5C .13D .15解析:选B 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7.5.以椭圆上任意一点与焦点所连接的线段为直径的圆与以长轴为直径的圆的位置关系是( )A .内切B .相交C .相离D .无法确定解析:选A 如图,设线段是PF 1,O 1是线段PF 1的中点,连接O 1O ,PF 2,其中O 是椭圆的中心,F 2是椭圆的另一个焦点,则在△PF 1F 2中,由三角形中位线定理可知,两圆的连心线的长是|OO 1|=12|PF 2|=12(2a -|PF 1|)=a -12|PF 1|=R -r . 6.(2012新课标全国卷)设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a b 0)的左、右焦点,P 为直线x =3a 2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A.12B.23C.34D.45解析:选C 根据题意直线PF 2的倾斜角是π3,所以32a -c =12|PF 2|=12|F 1F 2|=12×2c ,解得e =34. 二、填空题(本大题共3小题,每小题5分,共15分)7.若椭圆x 2a 2+y 2b 2=1(a b 0)与曲线x 2+y 2=a 2-b 2恒有公共点,则椭圆的离心率e 的取值范围是__________.解析:由题意知,以半焦距c 为半径的圆与椭圆有公共点,故b ≤c ,所以b 2≤c 2,即a 2≤2c 2,高三数学一轮复习(知识点归纳与总结):椭圆所以22≤c a .又c a 1,所以22≤e 1. 答案:????22,1 8.(2012江西高考)椭圆x 2a 2+y 2b2=1(a b 0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为________.解析:依题意得|F 1F 2|2=|AF 1||BF 1|,即4c 2=(a -c )(a +c )=a 2-c 2,整理得5c 2=a 2,得e =c a =55 . 答案:559.已知椭圆C :x 2a 2+y 2b 2=1(a b 0)的离心率为32 .过右焦点F 且斜率为k (k 0)的直线与椭圆C 相交于A ,B 两点.若AF =3FB ,则k =________.解析:根据已知c a =32,可得a 2=43c 2,则b 2=13c 2,故椭圆方程为3x 24c 2+3y 2c2=1,即3x 2+12y 2-4c 2=0.设直线的方程为x =my +c ,代入椭圆方程得(3m 2+12)y 2+6mcy -c 2=0.设A (x 1,y 1),B (x 2,y 2),则根据AF =3FB ,得(c -x 1,-y 1)=3(x 2-c ,y 2),由此得-y 1=3y 2,根据韦达定理y 1+y 2=-2cm m 2+4,y 1y 2=-c 23(m 2+4),把-y 1=3y 2代入得,y 2=cm m 2+4,-3y 22=-c 23(m 2+4),故9m 2=m 2+4,故m 2=12,从而k 2=2,k =±2. 又k 0,故k =2.答案:2三、解答题(本大题共3小题,每小题12分,共36分)10.已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为453和253,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.解:设两焦点为F 1,F 2,且|PF 1|=453,|PF 2|=253. 由椭圆定义知2a =|PF 1|+|PF 2|=25,即a =5.由|PF 1||PF 2|知,|PF 2|垂直焦点所在的对称轴,所以在Rt △PF 2F 1中,sin ∠PF 1F 2=|PF 2||PF 1|=12. 可求出∠PF 1F 2=π6,2c =|PF 1|cos π6=253,高三数学一轮复习(知识点归纳与总结):椭圆从而b 2=a 2-c 2=103. 所以所求椭圆方程为x 25+3y 210=1或3x 210+y 25=1. 11.已知椭圆G :x 2a 2+y 2b 2=1(a b 0)的离心率为63,右焦点为(22,0).斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程;(2)求△P AB 的面积.解:(1)由已知得c =22,c a =63,解得a =23,又b 2=a 2-c 2=4.所以椭圆G 的方程为x 212+y 24=1. (2)设直线l 的方程为y =x +m .由????? y =x +m ,x 212+y 24=1,得4x 2+6mx +3m 2-12=0.① 设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1x 2),AB 中点为E (x 0,y 0),则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m 4. 因为AB 是等腰△P AB 的底边,所以PE ⊥AB .所以PE 的斜率k =2-m 4-3+3m 4=-1.解得m =2. 此时方程①为4x 2+12x =0.解得x 1=-3,x 2=0.所以y 1=-1,y 2=2.所以|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322,所以△P AB 的面积S =12|AB |d =92. 12.(2012重庆高考)如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.高三数学一轮复习(知识点归纳与总结):椭圆(1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.解:(1)如图,设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a b 0),右焦点为F 2(c,0).因△AB 1B 2是直角三角形,又|AB 1|=|AB 2|,故∠B 1AB 2为直角,因此|OA |=|OB 2|,得b =c 2. 结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =255. 在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12|B 1B 2||OA |=|OB 2||OA |=c 2b =b 2. 由题设条件S △AB 1B 2=4,得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为x 220+y 24=1. (2)由(1)知B 1(-2,0),B 2(2,0).由题意知直线l 的倾斜角不为0,故可设直线l 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0.设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根,因此y 1+y 2=4m m 2+5,y 1y 2=-16m 2+5,又2B P=(x 1-2,y 1),2B Q =(x 2-2,y 2),所以2B P 2B Q =(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16=-16(m 2+1)m 2+5-16m 2m 2+5+16高三数学一轮复习(知识点归纳与总结):椭圆=-16m 2-64m 2+5,由PB 2⊥QB 2,得2B P 2B Q =0,即16m 2-64=0,解得m =±2.所以满足条件的直线有两条,其方程分别为x +2y +2=0和x -2y +2=0.1.设e 1,e 2分别为具有公共焦点F 1与F 2的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足PF 1PF 2=0,则e 21+e 22(e 1e 2)2的值为________.解析:设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,|F 1F 2|=2c ,由题意得|PF 1|+|PF 2|=2a 1,||PF 1|-|PF 2||=2a 2,∴|PF 1|2+|PF 2|2=2a 21+2a 22.又∵PF 1PF 2=0,∴PF 1⊥PF 2. ∴|PF 1|2+|PF 2|2=|F 1F 2|2,即2a 21+2a 22=4c 2.∴???a 1c 2+????a 2c 2=2,即1e 21+1e 22=2,即e 21+e 22(e 1e 2)2=2. 答案:22.已知F 1,F 2为椭圆x 2100+y 2b 2=1(0b 10)的左、右焦点,P 是椭圆上一点.(1)求|PF 1||PF 2|的最大值;(2)若∠F 1PF 2=60°且△F 1PF 2的面积为6433,求b 的值.解析:(1)由题意得|PF 1|+|PF 2|=20,则|PF 1||PF 2|≤????|PF 1|+|PF 2|22=100,当且仅当|PF 1|=|PF 2|时,等号成立,故(|PF 1||PF 2|)max =100.(2)因为S △F 1PF 2=12|PF 1||PF 2|sin 60°=6433,所以|PF 1||PF 2|=2563.① 又?????|PF 1|2+|PF 2|2+2|PF 1||PF 2|=4a 2=400,|PF 1|2+|PF 2|2-4c 2=2|PF 1||PF 2|cos 60°,所以3|PF 1||PF 2|=400-4c 2.②由①②得c =6,则b =a 2-c 2=8. 3.已知平面内曲线C 上的动点到定点(2,0)和定直线x =22的比等于22. (1)求该曲线C 的方程;。
2023年新高考数学一轮复习9-3 椭圆(真题测试)含详解
专题9.3 椭圆(真题测试)一、单选题1.(2023·全国·高三专题练习(文))已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .2D .32.(2017·浙江·高考真题)椭圆22194x y +=的离心率是( )A B C .23D .593.(全国·高考真题(文))已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=4.(2020·山东·高考真题)已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( ) A .3B .6C .8D .125.(2019·北京·高考真题(理))已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b6.(2018·全国·高考真题(文))已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A .1B .2CD 17.(2018·全国·高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b ab+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12 C .13 D .148.(2021·全国·高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦二、多选题9.(2023·全国·高三专题练习)设圆锥曲线C 的两个焦点分别为12,F F ,若曲线C 上存在点P 满足1122::4:3:2PF F F PF =,则曲线C 的离心率可以是( ) A .12B .23C .32D .210.(2022·广东·高三开学考试)已知椭圆C :2212516x y +=,1F 、2F 是椭圆C 的两个焦点,M 、N 是椭圆C 上两点,且M 、N 分别在x 轴两侧,则( ) A .若直线MN 经过原点,则四边形12MF NF 为矩形 B .四边形12MF NF 的周长为20 C .12MF F △的面积的最大值为12D .若直线MN 经过2F ,则1F 到直线MN 的最大距离为811.(2022·江苏南通·模拟预测)在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆22:142x y C +=的左,右焦点,点A ,B 是椭圆C 上异于长轴端点的两点,且满足11AF F B λ=,则( ) A .△ABF 2的周长为定值 B .AB 的长度最小值为1 C .若AB ⊥AF 2,则λ=3D .λ的取值范围是[1,5]12.(2022·山东·济南市历城第二中学模拟预测)设1F ,F 为椭圆221204x y +=的左、右焦点,P 为椭圆上的动点,且椭圆上至少有17个不同的点(1,2,3)i P i =,1FP ,2FP ,3FP ,…组成公差为d 的递增等差数列,则( )A .FP 的最大值为4B .1F PF △的面积最大时,14tan 3F PF ∠=-C .d 的取值范围为10,2⎛⎤⎥⎝⎦D .椭圆上存在点P ,使134F PF π∠= 三、填空题13.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.14.(2022·全国·南宁二中高三期末(文))椭圆C :22221x y a b +=(a >b >0)的焦距为2c ,O 为坐标原点,A 为椭圆的右顶点,以OA 为直径的圆与圆222x y c +=交于P ,Q 两点,若|PQ |=|OA |,则椭圆C 的离心率为______.15.(2019·全国·高考真题(理))设12F F ,为椭圆22:+13620x yC =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.16.(2022·全国·高考真题)已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE 的周长是________________. 四、解答题17. (2022·全国·高三专题练习)已知椭圆()222210x y a b a b +=>>,过椭圆的左焦点F l与椭圆交于A 、B 两点(A 点在B 点的上方),若有2AF FB =,求椭圆的离心率.18.(陕西·高考真题(理))已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c .(Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程. 19.(2019·天津·高考真题(理))设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.20.(2019·江苏·高考真题)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b +=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.21.(2021·天津·高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.22.(2018·天津·高考真题(文))设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM△的面积是BPQ 面积的2倍,求k 的值.专题9.3 椭圆(真题测试)一、单选题1.(2023·全国·高三专题练习(文))已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .2D .32.(2017·浙江·高考真题)椭圆22194x y +=的离心率是( )A B C .23D .593.(全国·高考真题(文))已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1,F 2F 2的直线l 交C 与A,B 两点,若△AF 1B 的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y +=c e a ==22b ∴=,所以方程为4.(2020·山东·高考真题)已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于( ) A .3 B .6 C .8 D .12【答案】B【分析】根据椭圆中,,a b c 的关系即可求解. 【详解】椭圆的长轴长为10,焦距为8, 所以210a =,28c =,可得5a =,4c =, 所以22225169b a c =-=-=,可得3b =, 所以该椭圆的短轴长26b =, 故选:B.5.(2019·北京·高考真题(理))已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b6.(2018·全国·高考真题(文))已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A .1B .2CD 1290,PF ∠1,||PF =故选D.7.(2018·全国·高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P在过A12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为()A.23B.12C.13D.148.(2021·全国·高考真题(理))设B是椭圆2222:1(0)x yC a ba b+=>>的上顶点,若C上的任意一点P都满足||2PB b≤,则C的离心率的取值范围是()A.⎫⎪⎪⎣⎭B.1,12⎡⎫⎪⎢⎣⎭C.⎛⎝⎦D.10,2⎛⎤⎥⎝⎦二、多选题9.(2023·全国·高三专题练习)设圆锥曲线C 的两个焦点分别为12,F F ,若曲线C 上存在点P 满足1122::4:3:2PF F F PF =,则曲线C 的离心率可以是( )A .12 B .23C .32D .210.(2022·广东·高三开学考试)已知椭圆C :2212516x y +=,1F 、2F 是椭圆C 的两个焦点,M 、N 是椭圆C 上两点,且M 、N 分别在x 轴两侧,则( ) A .若直线MN 经过原点,则四边形12MF NF 为矩形 B .四边形12MF NF 的周长为20 C .12MF F △的面积的最大值为12D .若直线MN 经过2F ,则1F 到直线MN 的最大距离为811.(2022·江苏南通·模拟预测)在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆22:142x y C +=的左,右焦点,点A ,B 是椭圆C 上异于长轴端点的两点,且满足11AF F B λ=,则( )A .△ABF 2的周长为定值B .AB 的长度最小值为1C .若AB ⊥AF 2,则λ=3D .λ的取值范围是[1,5]【详解】因为11AF F B λ=,则A 三点共线,2ABF 周长21=≠,B 错.,则12AF AF ⊥,A 在上、下顶点处,不妨设A解得0x =⎧⎪⎨或,422,-12.(2022·山东·济南市历城第二中学模拟预测)设1F ,F 为椭圆221204x y +=的左、右焦点,P 为椭圆上的动点,且椭圆上至少有17个不同的点(1,2,3)i P i =,1FP ,2FP ,3FP ,…组成公差为d 的递增等差数列,则( )A .FP 的最大值为4B .1F PF △的面积最大时,14tan 3F PF ∠=-C .d 的取值范围为10,2⎛⎤ ⎥⎝⎦D .椭圆上存在点P ,使134F PF π∠=三、填空题13.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m+--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解 【详解】由于22670x my m +--=是圆,1m ∴= 即:圆22670x y x +--= 其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:14.(2022·全国·南宁二中高三期末(文))椭圆C :22221x y a b +=(a >b >0)的焦距为2c ,O 为坐标原点,A 为椭圆的右顶点,以OA 为直径的圆与圆222x y c +=交于P ,Q 两点,若|PQ |=|OA |,则椭圆C 的离心率为______.15.(2019·全国·高考真题(理))设12F F ,为椭圆22:+13620x yC =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.16.(2022·全国·高考真题)已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE 的周长是________________. 称性将ADE 的周长转化为【详解】∵椭圆的离心率为2213y c =,即2a OF c =,两点,DE 为线段∴ADE 的周长等于24a a a +=四、解答题17. (2022·全国·高三专题练习)已知椭圆()222210x y a b a b +=>>,过椭圆的左焦点F l与椭圆交于A 、B 两点(A 点在B 点的上方),若有2AF FB =,求椭圆的离心率.【答案】23由2AF FB =可得x 的坐标代入椭圆方程中化简可求出离心率 【详解】因为2AF FB =,设A 4⋅⋅⋅⋅⋅⋅①②①-②得:,1220y y +=,18.(陕西·高考真题(理))已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c .(Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程. 【答案】(Ⅰ)32;(Ⅱ)221123x y +=.19.(2019·天津·高考真题(理))设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4 (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.5520.(2019·江苏·高考真题)如图,在平面直角坐标系xOy中,椭圆C:22221(0)x ya ba b+=>>的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:222(1)4x y a-+=交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=52.(1)求椭圆C的标准方程;(2)求点E的坐标.43因为BF2=2a,EF1+EF2=2a,所以EF1=EB,21.(2021·天津·高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B ,且BF =(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.22.(2018·天津·高考真题(文))设椭圆22221(0)x y a b a b +=>>的右顶点为A ,上顶点为B .已知椭圆的离心AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM△的面积是BPQ 面积的2倍,求k 的值.的面积是BPQ 面积的23,x y y kx +=⎧⎨=⎩所以,k 的值为12-.。
高考数学一轮复习--椭圆知识点与题型复习
椭圆知识点与题型复习一、基础知识 1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数2a (2a >|F 1F 2|)的动点P 的轨迹叫做椭圆,这两个定点F 1,F 2叫做椭圆的焦点. 2.椭圆的标准方程(1)中心在坐标原点,焦点在x 轴上的椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).(2)中心在坐标原点,焦点在y 轴上的椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0).3.椭圆的几何性质注:长轴与短轴的交点叫做椭圆的中心.离心率表示椭圆的扁平程度.当e 越接近于1时,c 越接近于a ,从而b =a 2-c 2越小,因此椭圆越扁.二、常用结论(1)过椭圆焦点垂直于长轴的弦是最短的弦,长为2b 2a ,过焦点最长弦为长轴.(2)过原点最长弦为长轴长2a ,最短弦为短轴长2b .(3)与椭圆x 2a 2+y 2b 2=1(a >b >0)有共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(λ>-b 2).(4)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2,即点P 为短轴端点时,θ最大;②S =12|PF 1||PF 2|sin θ=c |y 0|,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).三、考点解析考点一 椭圆的标准方程例、(1)已知椭圆的中心在原点,焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的标准方程为( )A.x 26+y 24=1B.x 216+y 236=1C.x 236+y 216=1D.x 249+y 29=1 (2)已知中心在坐标原点的椭圆过点A (-3,0),且离心率e =53,则椭圆的标准方程为________. 跟踪训练1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A.x 236+y 232=1B.x 29+y 28=1C.x 29+y 25=1D.x 216+y 212=1 2.椭圆C 的中心在原点,焦点在x 轴上,若椭圆C 的离心率等于12,且它的一个顶点恰好是抛物线x 2=83y 的焦点,则椭圆C 的标准方程为______________.3.已知椭圆中心在原点,且经过A (3,-2)和B (-23,1)两点,则椭圆的标准方程为________.考点二 椭圆的定义及其应用例、(1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为23,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为12,则椭圆C 的标准方程为( )A.x 23+y 2=1B.x 23+y 22=1C.x 29+y 24=1D.x 29+y 25=1 (2)已知点P (x ,y )在椭圆x 236+y 2100=1上,F 1,F 2是椭圆的两个焦点,若△PF 1F 2的面积为18,则∠F 1PF 2的余弦值为________.变式练习1.已知椭圆x 225+y 216=1上一点P 到椭圆一个焦点F 1的距离为3,则P 到另一个焦点F 2的距离为( )A .2B .3C .5D .7 2.(变结论)若本例(2)条件不变,则△PF 1F 2的内切圆的面积为________. 考点三 椭圆的几何性质考法(一) 求椭圆离心率的值(或范围)例、(1)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( ) A .1-32 B .2-3 C.3-12D.3-1 (2)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.]23,0( B.]43,0( C )1,23[. D.)1,43[ [解题技法]求椭圆离心率的方法:(1)定义法:根据条件求出a ,c ,直接利用公式e =ca求解.(2)方程法:根据条件得到关于a ,b ,c 的齐次等式(不等式),结合b 2=a 2-c 2转化为关于a ,c 的齐次等式(不等式),然后将该齐次等式(不等式)两边同时除以a 或a 2转化为关于e 或e 2的方程(不等式),解方程(不等式)即可得e (e 的取值范围).考法(二) 与椭圆性质有关的最值问题例、已知点F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,点M 是该椭圆上的一个动点,那么|MF 1―→+MF 2―→|的最小值是( )A .4B .6C .8D .10[解题技法]椭圆几何性质的应用技巧(1)与椭圆的几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形. (2)椭圆相关量的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b,0<e <1,三角形两边之和大于第三边,在求椭圆相关量的范围或最值时,要注意应用这些不等关系. 跟踪训练1.P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,A 为左顶点,F 为右焦点,PF ⊥x 轴,若tan ∠P AF =12,则椭圆的离心率e 为( ) A.23 B.22 C.33 D.122.已知P 在椭圆x 24+y 2=1上,A (0,4),则|P A |的最大值为( )A.2183 B.763C .5D .25 3.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 的离心率的取值范围是( ) A.)1,32[ B.]22,31[ C.)1,31[ D.]31,0( 课后作业1.椭圆以x 轴和y 轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的标准方程为( ) A.x 24+y 2=1 B.y 216+x 24=1 C.x 24+y 2=1或y 216+x 24=1 D.x 24+y 2=1或y 24+x 2=1 2.已知方程x 2|m |-1+y 22-m=1表示焦点在y 轴上的椭圆,则m 的取值范围为( )A.⎪⎭⎫ ⎝⎛∞-23, B .(1,2 ) C .(-∞,0)∪(1,2) D .(-∞,-1)∪⎪⎭⎫ ⎝⎛23,1 3.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为( ) A.13 B.33 C.22 D.124.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上的点A 满足AF 2⊥F 1F 2,若点P 是椭圆C 上的动点,则F 1P ―→·F 2A ―→的最大值为( ) A.32 B.332 C.94 D.1545.以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( ) A .1 B.2 C .2 D .226.设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.59C.49D.5137.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是圆x 2+y 2-6x +8=0的圆心,且短轴长为8,则椭圆的左顶点为________.8.过点A (3,-2)且与椭圆x 29+y 24=1有相同焦点的椭圆方程为________.9.已知△ABC 的顶点A (-3,0)和顶点B (3,0),顶点C 在椭圆x 225+y 216=1上,则5sin Csin A +sin B =________.10.点P 是椭圆上任意一点,F 1,F 2分别是椭圆的左、右焦点,∠F 1PF 2的最大值是60°,则椭圆的离心率e =________.11.已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0). (1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积.12.已知焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的左焦点和右顶点,P 是椭圆上任意一点,求PF ―→·P A ―→的最大值和最小值.提高练习1.P 为椭圆x 225+y 29=1上一点,F 1,F 2分别是椭圆的左、右焦点,过P 点作PH ⊥F 1F 2于点H ,若PF 1⊥PF 2,则|PH |=( )A.254B.83 C .8 D.94 2.已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.。
高三数学一轮复习 椭圆知识点总结
高三数学一轮复习椭圆部分知识点总结一、定义平面内到两定点1F 、2F 的距离之和等于常数2a (122a F F >)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距()122F F c =.(1)()222210x y a b a b+=>>中,a x a b y b -≤≤-≤≤.(2)()222210y x a b a b+=>>中,b x b a y a -≤≤-≤≤.2.对称性()222210x y a b a b +=>>和()222210y x a b a b+=>>都关于x 轴对称、y 轴对称、原点对称.其中原点也成为椭圆的对称中心.3.顶点椭圆()222210x y a b a b+=>>中,顶点为长轴的左右端点()1,0A a -、()2,0A a 和短轴的两个端点()10,B b -和()20,B b .其中12A A 叫做椭圆的长轴、12B B 叫做椭圆的短轴.椭圆的长轴长为2a ,短轴长为2b .4.离心率椭圆的离心率c e a=,01e <<.并且0e →时椭圆越圆,1e →时椭圆越扁.圆的离心率0e =.(3)椭圆焦点三角形中,利用椭圆定义和余弦定理求12PF PF ⋅,进而求焦点三角形的面积.六、.椭圆第二定义(课外知识补充)平面内到定点距离与定直线距离比值等于常数()01e e <<的点的轨迹为椭圆.其中定点为椭圆的一个焦点,定直线为椭圆的一条准线,常数e 为椭圆的离心率.由椭圆第二定义可推出以下结论:(1)椭圆上的点到焦点的距离的最大值为a c +,最小值为a c -(在长轴端点处取得).(2)椭圆上的点到原点距离的最大值为a ,最小值为b (在长轴与短轴端点处取得).(3)椭圆短轴的一个端点与长轴的两端点所成角,是椭圆上所有点与长轴两端点所成角中的最大角.(4)椭圆短轴的一个端点与椭圆两焦点所成角,是椭圆上所有点与两焦点所成角中的最大角.七、.直线与椭圆位置关系的常规解决方法联立直线与椭圆方程构成的方程组,消元化简,然后利用韦达定理解决相关问题.八、弦长公式.1212线有两焦点,否则此等式无意义.2.联立方程组法通过联立直线与椭圆(双曲线)的方程组得到一元二次方程后,利用韦达定理(即根与系数关系)求解。
高考总复习一轮数学精品课件 第9章 平面解析几何 第5节 第1课时 椭圆的定义、方程与性质
由①②得|PF1|·
|PF2|= .
3
(2)(2024·广东梅州模拟)已知椭圆
2
C:
9
+
y2
=1
5
的左、右焦点分别为 F1,F2,过点
F2 的直线 l 与椭圆 C 的一个交点为 A.若|AF2|=4,则△AF1F2 的面积为
( D )
A.2 3
解析 在椭圆
B. 13
2
C: 9
2
+ 5 =1
第5节 椭圆
课标解读
1.通过圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界
和解决实际问题中的作用.
2.经历从具体情境中抽象出椭圆的过程,掌握椭圆的定义、
标准方程及简单几何性质.
3.能够把研究直线与椭圆位置关系的问题转化为研究方程解
的问题,会根据根与系数的关系及判别式解决问题.
目录索引
1
2
强基础
∠F1PF2=θ.
(1)当P为短轴端点时,θ最大.
1
(2) S=2|PF1||PF2|sin
θ=b
θ
tan2=c|y0|
2
值,最大值为bc.
(3)焦点三角形的周长为2(a+c).
(4)|PF1|max=a+c,|PF1|min=a-c.
,当|y0|=b时,即点P为短轴端点时,S取最大
2.椭圆的焦点弦(过焦点的弦)中通径(垂直于长轴的焦点弦)最短,弦长 lmin=
故2
2
+ 2 =1,则 =2.结合 a2=b2+c2,a+c=4+2
[对点训练 1](1)(2024·安徽芜湖模拟)设 P
2
为椭圆
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆椭圆定义的应用一.定义定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。
定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0<e<1),则P 点的轨迹是椭圆。
二.定义的运用(一) 直接运用定义例1. 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若 △F 1PF 2为等腰直角三角形则椭圆的离心率是( ) (A )2(B )12(C )2 (D —1 x分析:椭圆定义、性质的直接应用是高考的常考点,求解时,应掌握椭圆第一、第二定义,参数a ,b ,c ,e ,2a c的几何意义及其相互关系。
解:如图1,设|PF 2|=m ,则由题设得|PF 1,2c =|F 1F 2|=m. 由椭圆第一定义,得2a =|PF 1|+|PF 21)m ∴e=1c a ==.故选D 。
(二) 交错运用定义例3:P 为椭圆1162522=+y x 上的一点,它到右焦点的距离为522,求P 到左准线距离。
,4.4|2=PF 由第一定义知6.5||1=PF再由椭圆的第二定义P 到左焦点的距离1|PF |与P 到左准线的距离之比为离心率e ,即536.5=d , 得328=d 。
例题可以看出,我们在解决圆锥曲线的问题时,从定义的角度考虑出发是一种很好的解题思路。
下面看下有关定义的应用问题。
(三) 运用定义求最值例4.已知点A(1,2)在椭圆1121622=+y x 内,F 的坐标为(2,0),在椭圆上求一点P 使||2||PF PA +最小。
x xB A L P B /解:2,4,12,16222==∴==c c b aF ∴为椭圆的右焦点,并且离心率为2142=,设 P 到右准线的距离是d ,则d PF 21||=,||2PF d =,d PA PF PA +=+∴||||2||,由几何性质可知,当P 点纵坐标(横坐标为大于零)与A 点的纵坐标相同时,d PA +||最小,把2=y 代入1121622=+y x 得364=x (负舍之),即)2,364(P 为所求。
例5.已知椭圆C 的方程为1121622=+y x ,F 1、F 2是它的左右两个焦点,点A的坐标为(3,1),试在椭圆上求一点P ,(1)使得|PA|+|PF 2|最小;(2)使得|PA|+2|PF 2|最小,并求出相应的最小值。
(亦可把椭圆改为双曲线或抛物线,同样有类似的问题)类似于这样的问题,初学者往往很难作答,即使在老师的讲解和点拨下也不易掌握。
基础好的同学还可以理解,一般的同学下次再遇到类似的问题时仍然难以做对,还会出现很多不应有的错误。
这里笔者想能过一个实例,给出这种问题的一般解题策略和具体处理方法。
关于|PA|+|PF 2|最小值的问题,同学们不应该感到陌生。
在初中我们曾求过这样的问题:如图,已知A 、B 两点在直线L 的同侧,试在L 上求作一点P ,使得|PA|+|PB|最小。
(相对应的还有一个应用题:A 、B 两个小村庄,L 是一条河,今要在河上架设一座大桥,使从A 、B 两村庄铺设到大桥的公路总长最短,应该如何选址?)我们知道两点之间的连线中,线段最短,所以|PA|+|PB|≥|AB| 显然等号不成立,因为A 、B 在直线L 的同侧,如果A 、B 两点 在L 的异侧就好了,因为A 、B 若在L 异侧,线段AB 就与L 相交,交点即为所求作的P 点。
所以能不能在L 的另一侧找到一点B /,使得|PB /|总是等于|PB|呢?求作点B (或者A )关于直线L 的对称点B /即可。
转化思想就是我们解决问题的基本策略。
我们只要将同侧的两点转化为异侧的两点,问题就得以解决。
比如:请在L 上再找一点Q ,使得|QA|-|QB|最大?同样道理,|QA|-|QB|总是小于|AB|,如能等于|AB|就行。
我们还是转化, 异侧两点同侧化,当Q 为AB /的延长线与L 的交点Q /时, |QA|-|QB|=|QA|-|QB /|≤|AB /|。
(这里B 关于L 的对称点B/与 A 的连线要与L 相交才行,否则Q /点不存在)我们总结得到:同侧和最小异侧化,异侧差最大同侧化。
根据以上分析,我们可以用类比的方法解决圆锥曲线中的类似问题。
能不能将椭圆C 内部(同侧)的两点A 或者F 2转化为一内一外呢?显然无法作出点A(或者F 2)关于曲线(椭圆)的对称点(没听说过)|。
B / A LQ B Q²如图,|PA|+|PF 2|总是大于|AF 2|,但|PA|-|PF 2|还是能够 等于|AF 2|,作直线AF 2,与椭圆交于M 、N 两点,当P 运动到图中的N 点时,|PA|-|PF 2|=|AF 2|, 当P 运动到图中的M 点时,|PA|-|PF 2|= -|AF 2| 能不能将|PA|+|PF 2|转化为|PA|-|PF 2|呢?所以我们给出解决圆锥曲线问题的另一解题策略:回归定义。
椭圆的第一定义是:平面内到两定点F 1、F 2的距离之和等于常数2a(2a>|F 1F 2|)的点的轨迹。
我们不能将点A (或点F 2)转移到椭圆外,但我们可以将P 到F 2的距离转化为点P 到另一焦点F 1的距离。
因为|PF 1|+|PF 2|=2a ,于是|PA|+|PF 2|=|PA|+(2a-|PF 1|)=(|PA|-|PF 1|)+2a要求|PA|+|PF 2|的最值,就等价于求|PA|-|PF 1| 如图作直线AF 1交椭圆于R 、S 两点, 则 -|AF 1|≤|PA|-|PF 1|≤|AF 1|所以2a-|AF 1|≤|PA|+|PF 2|≤2a+|AF 1|将具体数据代入即可求得本文开始时提出的(1)的解答。
那么对于(2)又如何解答呢?与(1)相比,就是在|PF 2|前 多了个系数2,也只能是2(否则无解),我们可以用圆锥曲线的统一定义,将同侧(内部)问题转化为异侧问题来求解。
椭圆的第二定义是:平面内到一定点F 2的距离与到一定直线l 的距离之比为小于1的常数的点的轨迹就叫做椭圆。
准线,小于1的常数就是椭圆的离心率e 。
如图,PM ⊥l 于M ,则e PM PF ||||2,所以|PM|=e1|PF 2|本题中,椭圆的离心率e=21,所以|PM|=2|PF 2|所以|PA|+2|PF 2|=|PA|+|PM|,于是我们将问题转化为从定点A 到准线l 的“折线段”PA 与PM 的长的和的问题,也就是说将同侧(内部)两点的距离和问题转化成了异侧一点一线距离和的问题。
显然当A 、P 、M 三点共线且垂直于直线l 时,|PA|+|PM 最小,即直接过A 作准线l 的垂直交椭圆于P 点,则P 即为所求作。
这种转化看来只适用于形如|PA|+e1|PF 2|的最小值的问题。
以上我们给出了解决圆锥曲线中这两种最值的解题策略和具体做法,即利用圆锥曲线的定义实现了问题的转化,即同异互化,回归定义。
本文例5的问题具体解答如下:(1) 由已知椭圆方程得:a=4,b=23,所以c=2,所以F 1(-2,0),F 2(2,0) 因为P 在椭圆上,所以|PF 1|+|PF 2所以|PA|+|PF 2|=|PA|+8-|PF 1|=|PA|-|PF 1|+8过A 、F 1作直线RS 交椭圆于R 、S 两点, 因为||PA|-|PF 1||≤|AF 1|=26, 所以8-26≤|PA|+|PF 2|≤8+26当P 为S 点时,|PA|+|PF 2|的最小值为8-26 当P 为R 点时,|PA|+|PF 2|的最大值为8+26(2)易求得椭圆的离心率为e=21,右准线l 方程为x=8过P 作l 的垂线交l 于M 点,则|PM|=e1|PF 2|=2|PF 2|,所以|PA|+2|PF 2|=|PA|+|PM|,当A 、P 、M 三点共线且垂直于l 时,|PA|+|PM|最小,且最小值就是点A 到直线l 的距离。
易求得A 到直线的距离为5,所以|PA|+2|PF 2|的最小值为5,此时点P的纵坐标为1,将y=1代入椭圆方程得x=3332,所以点P 的坐标为(3332,1).(四)巧用定义求轨迹例6.F 1、F 2为椭圆两个焦点,Q 为椭圆上任一点,以任一焦点作∠F 1QF 2的外角平分线的垂线,垂足为P ,则P 点轨迹为( ).A 、圆B 、椭圆C 、双曲线D 、抛物线分析:延长F 2P 交F 1Q 的延长线为M ,由椭圆定义及角平分线,∵ ⎩⎨⎧==+||||2||||221MQ Q F hQ F Q F ∴ |F 1Q|+|MQ|=|F 1M|=2a,则点M(x 0,y 0)的轨迹方程为22204)(a y c x =++......① 设P 点坐标(x, y), ∵ P 为F 2M 中点, ∴ ⎩⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧+=+=y y c x x y y x c x 222020000,代入①,得 (2x-c+c)2+(2y)2=4a 2, ∴ x 2+y 2=a 2, 选A.例7.某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图:本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力.知识依托:圆锥曲线的定义,求两曲线的交点. 错解分析:正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键.技巧与方法:研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程.解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ①同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm.(五)巧用定义求相关量的范围例8.椭圆14922=+y x 的焦点为21F F 、。
点P 为其上的动点,当21PF F ∠ 为钝角时。
点P 横坐标的取值范围为多少? (2000年全国高考试题)分析:方法一,由余弦定理:||||2||||||c o s 21221222121<⋅-+=∠PF PF F F PF PF PF F 由椭圆的定义62||||21==+a PF PF 得,||||21PF PF ⋅>8, 由椭圆的第二定义得,598)59()59(2<⇒>+⋅-x x e x e 5353<<-⇒x 方法二先考虑21PF PF ⊥时,2221||||PF PF +=20,又由椭圆定义6||||21=+PF PF8||||21=⋅⇒PF PF 54||82||=⇒=⋅⇒p p y e y 53||=⇒p x 5353<<-⇒x●点击双基1.已知F 1、F 2是椭圆162x +92y =1的两个焦点,过F 1的直线与椭圆交于M 、N两点,则△MNF 2的周长为A.8B.16C.25D.32 解析:利用椭圆的定义易知B 正确. 答案:Bx2.已知椭圆162x +92y =1的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为A.59B.3C.779 D.49 解析:由余弦定理判断∠P <90°,只能∠PF 1F 2或∠PF 2F 1为直角.由a =4,b =3得c =7,∴|y P |=49. 答案:Dx =4+5cos ϕ, y =3sin ϕA.(0,0),(0,-8)B.(0,0),(-8,0)C.(0,0),(0,8)D.(0,0),(8,0)解析:消参数ϕ得椭圆25)4(2-x +92y =1,∴c =4.易得焦点(0,0),(8,0). 答案:D4.如果方程x 2+ky 2=2表示焦点在y 轴的椭圆,那么实数k 的取值范围是____________.解析:椭圆方程化为22x +ky 22=1.焦点在y 轴上,则k2>2,即k <1.又k >0,∴0<k <1. 答案:0<k <15.点P 在椭圆252x +92y =1上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标是____________.解析:利用第二定义.答案:1225 ●典例剖析【例1】 已知F 1为椭圆的左焦点,A 、B 分别为椭圆的右顶点和上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,求椭圆的离心率.剖析:求椭圆的离心率,即求ac,只需求a 、c 的值或a 、c 用同一个量表示.本题没有具体数值,因此只需把a 、c 用同一量表示,由PF 1⊥F 1A ,PO ∥AB 易得b =c ,a =2b .3.(2003年春季北京)椭圆 (ϕ为参数)的焦点坐标解:设椭圆方程为22a x +22b y =1(a >b >0),F 1(-c ,0),c 2=a 2-b 2,则P (-c ,b 221ac -),即P (-c ,a b 2).∵AB ∥PO ,∴k AB =k OP ,即-ab =ac b 2-.∴b =c .又∵a =22c b +=2b , ∴e =a c =bb 2=22.评述:由题意准确画出图形,利用椭圆方程及直线平行与垂直的性质是解决本题的关键.【例2】 若椭圆ax 2+by 2=1与直线x +y =1交于A 、B 两点,M 为AB 的中点,直线OM (O 为原点)的斜率为22,且OA ⊥OB ,求椭圆的方程. 剖析:欲求椭圆方程,需求a 、b ,为此需要得到关于a 、b 的两个方程,由OM 的斜率为22.OA ⊥OB ,易得a 、b 的两个方程. 解:设A (x 1,y 1),B (x 2,y 2),M (221x x +,221y y +).x +y =1, ax 2+by 2=1,∴221x x +=b a b +,221y y +=1-221x x +=ba a+. ∴M (b a b +,b a a+).∵k OM =22,∴b =2a .①∵OA ⊥OB ,∴11x y ²22x y =-1. ∴x 1x 2+y 1y 2=0. ∵x 1x 2=ba b +-1,y 1y 2=(1-x 1)(1-x 2), ∴y 1y 2=1-(x 1+x 2)+x 1x 2 =1-b a b +2+b a b +-1=ba a +-1. 由 ∴(a +b )x 2-2bx +b -1=0.∴b a b +-1+ba a +-1=0. ∴a +b =2.②由①②得a =2(2-1),b =22(2-1). ∴所求方程为2(2-1)x 2+22(2-1)y 2=1.评述:直线与椭圆相交的问题,通常采取设而不求,即设出A (x 1,y 1),B (x 2,y 2),但不是真的求出x 1、y 1、x 2、y 2,而是借助于一元二次方程根与系数的关系来解决问题.由OA ⊥OB 得x 1x 2+y 1y 2=0是解决本题的关键.夯实基础1.椭圆42x +y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|2PF |等于A.23B. 3C.27D.4 解法一:(如下图)设椭圆的右焦点为F 1,左焦点为F 2,过F 1垂直于x 轴的直线与椭圆在第一象限的交点为P .∵42x +y 2=1,∴a =2,b =1,c =3. ∴F 1(3,0).设P (3,y P )代入42x +y 2=1,得y P =21,∴P (3,21),|PF 1|=21.又∵|PF 2|+|PF 1|=2a =4, ∴|PF 2|=4-|PF 1|=4-21=27.解法二:椭圆的左准线方程为x =-c a 2=-334.∵|)334(3|||2--PF =e =23,∴|PF 2|=27. 解法三:由解法一得P (3,21), 又F 2(-3,0),∴|PF 2|=22)021()]3(3[-+--=27.答案:C2.设F 1、F 2为椭圆的两个焦点,以F 2为圆心作圆F 2,已知圆F 2经过椭圆的中心,且与椭圆相交于M 点,若直线MF 1恰与圆F 2相切,则该椭圆的离心率e 为A. 3-1B.2-3C.22 D.23 解析:易知圆F 2的半径为c ,(2a -c )2+c 2=4c 2,(a c )2+2(a c )-2=0,ac =3-1.答案:A3.椭圆252x +92y =1的离心率是____________,准线方程是____________.解析:由椭圆方程可得a =5,b =3,c =4,e =54,准线方程为x =±452=±425.答案:54 x =±4254.已知P 是椭圆22a x +22by =1(a >b >0)上任意一点,P 与两焦点连线互相垂直,且P 到两准线距离分别为6、12,则椭圆方程为____________.解析:利用椭圆的两个定义结合勾股定理来求.答案:452x +202y =15.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,求这个椭圆方程.解:由题设条件可知a =2c ,b =3c ,又a -c =3,解得a 2=12,b 2=9.∴所求椭圆的方程是122x +92y =1或92x +122y =1.6.直线l 过点M (1,1),与椭圆42x +32y =1相交于A 、B 两点,若AB 的中点为M ,试求直线l 的方程.解:设A (x 1,y 1)、B (x 2,y 2),则421x +321y =1,①422x +322y =1.②①-②,得4))((2121x x x x +-+3))((2121y y y y +-=0. ∴2121x x y y --=-43²2121y y x x ++. 又∵M 为AB 中点,∴x 1+x 2=2,y 1+y 2=2.∴直线l 的斜率为-43.∴直线l 的方程为y -1=-43(x -1),即3x +4y -7=0.7.已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆相交于点P 和点Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程. 解:设椭圆方程为mx 2+ny 2=1(m >0,n >0),设P (x 1,y 1),Q (x 2,y 2),解方程组y =x +1,mx 2+ny 2=1.消去y ,整理得(m +n )x 2+2nx +n -1=0.Δ=4n 2-4(m +n )(n -1)>0,即m +n -mn >0,OP ⊥OQ ⇒x 1x 2+y 1y 2=0, 即x 1x 2+(x 1+1)(x 2+1)=0,2x 1x 2+(x 1+x 2)+1=0,∴n m n +-)1(2-n m n -2+1=0. ∴m +n =2. ①由弦长公式得2²2)()(4n m mn n m +-+=(210)2,将m +n =2代入,得m ²n =43. ②m =21, m =23,n =23 n =21. ∴椭圆方程为22x +23y 2=1或23x 2+22y =1. 8.设x 、y ∈R ,i 、j 为直角坐标平面内x 、y 轴正方向上的单位向量,若向量a =x i +(y +2)j ,b =x i +(y -2)j ,且|a |+|b |=8.(1)求点M (x ,y )的轨迹C 的方程.(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设=+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,试说明理由.(1)解法一:∵a =x i +(y +2)j ,b =x i +(y -2)j ,且|a |+|b |=8,解①②得 或∴点M (x ,y )到两个定点F 1(0,-2),F 2(0,2)的距离之和为8.∴轨迹C 为以F 1、F 2为焦点的椭圆,方程为122x +162y =1. 解法二:由题知,22)2(++y x +22)2(-+y x =8, 移项,得22)2(++y x =8-22)2(-+y x ,两边平方,得x 2+(y +2)2=x 2+(y -2)2-1622)2(-+y x +64,整理,得222)2(-+y x =8-y ,两边平方,得4[x 2+(y -2)2]=(8-y )2, 展开,整理得122x +162y =1. (2)∵l 过y 轴上的点(0,3),若直线l 是y 轴,则A 、B 两点是椭圆的顶点. ∵OP =OA +OB =0,∴P 与O 重合,与四边形OAPB 是矩形矛盾. ∴直线l 的斜率存在.设l 方程为y =kx +3,A (x 1,y 1),B (x 2,y 2), y =kx +3,122x +162y =1, (-21)>0恒成立,且x 1+x 2=-23418k k +,x 1x 2=-23421k +.∵=+,∴四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA ⊥OB ,即OA ²OB =0.∵OA =(x 1,y 1),OB =(x 2,y 2),∴OA ²OB =x 1x 2+y 1y 2=0,即(1+k 2)x 1x 2+3k (x 1+x 2)+9=0,即(1+k 2)²(-23421k +)+3k ²(-23418k k +)+9=0,即k 2=165,得k =±45. ∴存在直线l :y =±45x +3,使得四边形OAPB 是矩形.由消y 得(4+3k 2)x 2+18kx -21=0.此时,Δ=(18k 2)-4(4+3k 2)。