数值分析ppt

合集下载

数值分析第一章PPT

数值分析第一章PPT

1.1.2 计算数学与科学计算 现代科学的三个组成部分: 科学理论, 科学实验, 科学计算 科学计算 的核心内容是以现代化的计算机及数学软件 (Matlab, Mathematica, Maple, MathCAD etc. )为工具,以数学 模型为基础进行模拟研究。
一些边缘学科的相继出现:
计算数学,计算物理学,计算力学,计算化学,计算生物学, 计算地质学,计算经济学,等等

取 0 e
1
x2
dx S4 ,
S4
R4
/* Remainder */
1 1 1 1 由留下部分 称为截断误差 /* Truncation Error */ 4! 9 5! 11 /* included terms */ 1 1 这里 R4 引起.005 0 由截去部分 4! 9 /* excluded terms */ 1 1 1 S4 1 1 0 .333 0 .1 0 .024 0 .743 引起 3 10 42 | 舍入误差 /* Roundoff Error */ | 0.0005 2 0.001
数值分析
第1章
数值分析与科学计算引论
§1.1 数值分析的对象、作用与特点
1.1.1 什么是数值分析 数值分析是计算数学的主要部分,计算数学是数学 科学的一个分支,它研究用计算机求解各种数学问题的 数值计算方法及其理论与软件实现.这门课程又称为(数 值)计算方法、科学与工程计算等。

在电子计算机成为数值计算的主要工具的今天, 需要研究适合计算机使用的数值计算方法。使用计 算机解决科学计算问题时大致要经历如下几个过程:
造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。

数值分析课件高斯求积公式

数值分析课件高斯求积公式

1
1
1 f ( x)dx A0 f (
求 A0 , A:1
3 ) A1 f (
) 3
令 f ( x) ,1,代x入公式精确成立,得到: A0 A1 1

1
1
A0 1 l0 ( x)dx 1, A1 1 l1( x)dx 1
两点Gauss-Legendre求积公式
3次代数精度
1
1
1
一、 Gauss积分问题的提法
n
积分公式的一般形式: In ( f ) Ak f ( xk ) k0
➢为了提高代数精度,需要适当选择求积节点:
①当求积节点个数确定后,不管这些求积节点如何选
取,求积公式的代数精度最高能达到多少?2n 1
②具有最高代数精度的求积公式中求积节点如何选取?
n 个1求积节点, n个求1 积系数,共 个2n未知2量,需要
f p max f p axb
则Gauss型求积公式(*)是收敛的。
证明:由Weierstrass定理知 对 0
存在m次多项式 p( x满)足
下证 N , 当 n 时N
f
p 2
b
( x)dx
a
b
n
f ( x)( x)dx
a
Ak f ( xk )
k0
b
n
f ( x)( x)dx
➢ Gauss-Chebyshev求积公式
(x)
1
n
f ( x)( x)dx
1
Ak f ( xk )
k0
1 1 x2
其中求积节点
多项式的零点
xk
n [a, b] 是n+1次Chebyshev
k0

《数值分析教程》课件

《数值分析教程》课件
总结词
一种适用于大规模计算的数值方法
详细描述
谱方法适用于大规模计算,通过将问题分解为较小的子问 题并利用多线程或分布式计算等技术进行并行计算,可以 有效地处理大规模的计算任务。
感谢您的观看
THANKS
具有简单、稳定和可靠的优点。
05
数值积分与微分
牛顿-莱布尼兹公式
要点一
总结词
牛顿-莱布尼兹公式是数值积分中的基本公式,用于计算定 积分。
要点二
详细描述
牛顿-莱布尼兹公式基于定积分的定义,通过选取一系列小 区间上的近似值,将定积分转化为一系列小矩形面积之和 ,从而实现了数值积分。
复化求积公式
总结词
算机实现各种算法,为各个领域的科学研究和技术开发提供了强有力的支持。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程 、经济、金融、生物医学等。
详细描述
数值分析的应用领域非常广泛,几乎涵盖了所有的科学 和工程领域。在科学计算方面,数值分析用于模拟和预 测各种自然现象,如气候变化、生态系统和地球科学等 。在工程领域,数值分析用于解决各种复杂的工程问题 ,如航空航天、机械、土木和电子工程等。在经济和金 融领域,数值分析用于进行统计分析、预测和优化等。 在生物医学领域,数值分析用于图像处理、疾病诊断和 治疗等。总之,数值分析已经成为各个领域中不可或缺 的重要工具。
03
线性方程组的数值解法
高斯消去法
总结词
高斯消去法是一种直接求解线性方程组的方法,通过一系列 行变换将系数矩阵变为上三角矩阵,然后求解上三角方程组 得到解。
详细描述
高斯消去法的基本思想是将系数矩阵通过行变换化为上三角 矩阵,然后通过回带求解得到方程组的解。该方法具有较高 的稳定性和精度,适用于中小规模线性方程组的求解。

《数值分析》第二讲插值法PPT课件

《数值分析》第二讲插值法PPT课件

1 xn xn2 xnn Vandermonde行列式
即方程组(2)有唯一解 (a0, a1, , an)
所以插值多项式
P (x ) a 0 a 1 x a 2 x 2 a n x n
存在且唯一
第二章:插值
§2.2 Lagrange插值
y
数值分析
1、线性插值
P 即(x)ykx yk k 1 1 x yk k(xxk)
l k ( x k 1 ) 0 ,l k ( x k ) 1 ,l k ( x k 1 ) 0 l k 1 ( x k 1 ) 0 ,l k 1 ( x k ) 0 ,l k 1 ( x k 1 ) 1
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) lk(x)((xx k x xk k 1 1))((x xkxx k k1)1)
第二章:插值
数值分析
3、Lagrange插值多项式
令 L n ( x ) y 0 l 0 ( x ) y 1 l 1 ( x ) y n l n ( x )
其中,基函数
lk (x ) (x ( k x x x 0 ) 0 ) (( x x k x x k k 1 1 ) )x x k ( ( x x k k 1 ) 1 ) (( x x k x n x )n )
因此 P (x ) lk (x )y k lk 1 (x )y k 1

P (x k ) y k P (x k 1 ) y k 1
lk(x), lk1(x) 称为一次插值基函数
数值分析
第二章:插值
2、抛物线插值 令
y (xk , yk )
f (x)
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) p( x) (xk1,yk1)

数值分析PPT--颜庆津-北京航空航天大学出版社-2000

数值分析PPT--颜庆津-北京航空航天大学出版社-2000
* I1 * I0
We just got lucky?
1 * (1 I 2 ) 0 .36787944 2 1 * (1 I 1 ) 0 .63212056 1
考察反推一步的误差:
| E N 1 | 1 1 1 * (1 I N ) (1 I N ) | EN | N N N
0.5 e (b) 0.5 e r (a) 0.16%, e r (b) 2.08%, | a | 312 |b| 24
e (a)
| x a | e (a) 0.5 a 0.5 x a 0.5
311.5 x 312.5,同理
23.5 y 24.5 (mm).
以此类推,对 n < N 有:
1 | En | | EN | . N (N 1) (n 1)
误差逐步递减, 这样的算法称为稳定的算法
(stable algorithm)
在我们今后的讨论中, 误差将不可回避, 算法的
稳定性会是一个非常重要的话题。
1.2.3 误差与有效数字 (Error and Significant Digits )
S4
R4
( Remainder )
例 :近似计算 e
0
1
x2
dx = 0.747… …
取 0
1
e x dx S4 ,
2
1 1 1 1 称为截断误差 ( Truncation Error ). 则 4! 9 5! 11 1 1 这里 R4 0 .005 4! 9 1 1 1 S4 1 1 0 .333 0 .1 0 .024 0 .743 3 10 42 R4

数值分析第一章基础知识优秀课件

数值分析第一章基础知识优秀课件

16 周二 3课时 第八章 常微分方程初值问题数值解法[1] 17 周二 3课时 第八章 常微分方程初值问题数值解法[2] 18 周二 3课时 习题课 19 周二 3课时 总复习
注:数值算法演示主要用Matlab和C语言实现,有时采用
Mathematica
实8/7现6 。课郑后州实大验学题201可4-用20任15何学年一硕种士计研算究生工课具程完成数值。分析 Numerical Analysis
4/76
郑州大学2014-2015学年硕士研究生课程 数值分析 Numerical Analysis
预备知识
➢ 微积分和常微分方程; ➢ 线性代数; ➢ 数值计算程序设计
(C/Matlab和Mathematica)
5/76
郑州大学2014-2015学年硕士研究生课程 数值分析 Numerical Ana.1 教学内容时间安排
周次 2 3 4 5 6 7 8 9 10 11
课次 周二 周二 周二 周二 周二 周二 周二 周二 周二 周二
课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时
教学内容 第一章 基础知识 第二章 代数插值[1] 第二章 代数插值[2] 第三章 数据拟合的最小二乘法[1] 第三章 数据拟合的最小二乘法[2] 第四章 数值微分与数值积分[1] 第四章 数值微分与数值积分[2] 习题课 第五章 解线性代数方程组的直接法[1] 第五章 解线性代数方程组的直接法[2]
参考教材
教材
李庆扬,王能超,易大义.数值分析(第五版).北京:清华大学出版社,2008 李清善,宋士仓. 数值方法. 郑州:郑州大学出版社,2007.
参考资料
1.关治,陈景良. 数值计算方法. 北京:清华大学出版社,1990. 2.周铁,徐树方等. 计算方法. 北京:清华大学出版社,2006. 3.徐翠微,孙绳武. 计算方法引论. 北京:高等教育出版社,2005. 4.John H.Mathews, Kurtis D.Fink. 数值方法(MATLAB版). 北京:电子

数值分析-第一章ppt课件

数值分析-第一章ppt课件
3. 高效性: 它应该具有计算量小、占用存储单元 少、计算过程简单、规律性强等优点.
可编辑课件PPT
4
《数值分析》课程主要介绍几类数学问题的经典 算法. 在学习中既要重视实际应用, 又要重视有关理论, 必须注意理解算法的设计原理和处理技巧, 重视基本 概念和理论——误差分析, 收敛性与稳定性. 认真完成 习题中的理论证明和计算方面的相关问题, 手算与上 机计算相结合, 同时注意培养利用计算机进行科学计 算的能力.
似值 x*的绝对误差限, 简称为误差限. 在工程技术中常记作 x=x*±*。 例如, 电压V=100±2(V), V*=100(V)是V的一个近
似值, 2(V)是V*的一个误差限, 即
| V–V*| 2(V)
可编辑课件PPT
11
二、相对误差与相对误差限
对于两个数值
x1=100±2, x2=10±1
[4] Rainer Kress. Numerical Analysis. New York:
Springer-Verlag, 2003.
可编辑课件PPT
1
实际问题

解释 实际问题

结束
抽象
建立数学模型
简化
类方 型法
结果分析 求解计算
应用于实践
可编辑课件PPT
2
数值分析研究的主要内容:是各类数学问题的近 似解法——数值方法, 是从数学模型(由实际问题产生 的一组解析表达式或原始数据)出发, 寻求在有限步内 可以获得数学问题满足一定精度近似解的运算规则, 这种规则称为算法, 它包括计算公式, 计算方案和整个 计算过程.
值x的比值为近似值x*的相对误差, 并记作er(x*),
可编辑课件PPT
12

数值分析课件-第02章插值法

数值分析课件-第02章插值法
数值分析课件-第02章插值法
目录
• 插值法基本概念与原理 • 拉格朗日插值法 • 牛顿插值法 • 分段插值法 • 样条插值法 • 多元函数插值法简介
01 插值法基本概念与原理
插值法定义及作用
插值法定义
插值法是一种数学方法,用于通过已知的一系列数据点,构造一个新的函数, 使得该函数在已知点上取值与给定数据点相符,并可以用来估计未知点的函数 值。
06 多元函数插值法简介
二元函数插值基本概念和方法
插值定义
通过已知离散数据点构造一个连 续函数,使得该函数在已知点处
取值与给定数据相符。
插值方法分类
根据构造插值函数的方式不同, 可分为多项式插值、分段插值、
样条插值等。
二元函数插值
针对二元函数,在平面上给定一 组离散点,构造一个二元函数通 过这些点,并满足一定的光滑性
差商性质分析
分析差商的性质,如差商 的对称性、差商的差分表 示等,以便更好地理解和 应用差商。
差商与导数关系
探讨差商与原函数导数之 间的关系,以及如何利用 差商近似计算导数。
牛顿插值法优缺点比较
构造简单
牛顿插值多项式构造过程相对简 单,易于理解和实现。
差商可重用
对于新增的插值节点,只需计算 新增节点处的差商,原有差商可 重用,节省了计算量。
要求。
多元函数插值方法举例
多项式插值
分段插值
样条插值
利用多项式作为插值函数,通 过已知点构造多项式,使得多 项式在已知点处取值与给定数 据相符。该方法简单直观,但 高阶多项式可能导致Runge现 象。
将整个定义域划分为若干个子 区间,在每个子区间上分别构 造插值函数。该方法可以避免 高阶多项式插值的Runge现象 ,但可能导致分段点处的不连 续性。

数值分析第三章线性方程组的迭代法课件

数值分析第三章线性方程组的迭代法课件

§ 3.3.2 Gauss—Seidel 迭代法的矩阵表示
将A分裂成A =D+L+U,则Ax b 等价于
(D+L+U )x = b
于是,则高斯—塞德尔迭代过程
Dx(k1) Lx(k1) Ux(k) b
因为 D 0 ,所以 D L D 0

(D L)x(k1) Ux(k) b
x(k1) (D L)1Ux(k) (D L)1b
e(k) x(k) x* Gx(k1) d (Gx* d) G(x(k1) x* ) Ge(k1)
于是 e(k) Ge(k1) G 2e(k2) Gk e(0)
由于 e (0)可以是任意向量,故 e(k) 收敛于0当且仅
故 (D L)x(k1) (1)D U x(k) b
显然对任何一个ω值,(D+ωL)非奇异, (因为假设 aii 0,i 1,2,, n )于是超松弛迭代公式为
x(k1) (D L)1 (1)D U x(k) (D L)1b
令 L (D L)1 (1)D U
f (D L)1b
则超松弛迭代 公式可写成
称为雅可比迭代公式, B称为雅可比迭代矩阵
雅可比迭代矩阵表示法,主要是用来讨论其收敛 性,实际计算中,要用雅可比迭代法公式的分量 形式。即
x1(k 1)
1 a11
(a12 x2(k )
a13 x3(k )
a1n xn(k )
b1 )
x2(k 1)
1 a 22
(a21 x1(k )
a23 x3(k )
§ 3.4.2超松弛迭代法的矩阵表示 设线性方程组 Ax=b 的系数矩阵A非奇异,且主对角
元素 aii 0(i 1,2,, n) , 则将A分裂成

《数值分析》ppt课件

《数值分析》ppt课件

7.
er

a b


er
(a)

er
(b)
30
例4
ε(p)
设有三个近似数
p ≈ 6.6332
≈0.02585
a=2.31,b=1.93,c=2.24
它们都有三位有效数字,试计算p=a+bc,e ( p)和e r ( p) 并问:p的计算结果能有几位有效数字?
2位
例5
设f (x, y) cos y , x 1.30 0.005, y 0.871 0.0005. x
er

e x

x x x
.
由于精确值 x 未知, 实际上总把
e x
作为x*的
相对误差,并且仍记为er , 即
er

e x
.
❖定义 近似值 x* 的相对误差上限(界) (relative accuracy)
εr

|
ε x
|.
注:相对误差一般用百分比表示.
17
例1 用最小刻度为毫米的卡尺测量直杆甲和直杆
注:理论上讲,e 是唯一确定的, 可能取正, 也可能取负.
e > 0 不唯一,当然 e 越小越具有参考价值。
15
提问:绝对误差限的大小能否完全地 表示近似值的好坏? 例如:有两个量
x 10 1 , y 1000 5
思考
问:谁的近似程度要好一些?
16
❖定义 近似值 x* 的相对误差 (relative error)
a 2.18
e r(b) e (b) 0.00005 0.0024%
b 2.1200
19
➢有效数字 ( significant digits)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 绪 论
主要内容: 主要内容: 一些概念; 一些概念; 数值计算中的误差 数值算法的复杂度与稳定性; 数值算法的复杂度与稳定性; 数值算法设计的若干原则; 数值算法设计的若干原则;
1.计算方法中一些概念 1.计算方法中一些概念
数值问题 数值解 算法
数值问题、 数值问题、数值解 、算法
由一组已知数据(输入数据),求出一组结果 由一组已知数据(输入数据),求出一组结果 ), 数据(输出数据), ),使得这两组数据之间满足 数据(输出数据),使得这两组数据之间满足 预先制定的某种关系的问题,称为数值问题。 预先制定的某种关系的问题,称为数值问题。 数值问题 经过计算机的计算求出的解, 经过计算机的计算求出的解,或由数值计算公 数值解。 式得出的解称为数值解 一般数值解是近似值。 式得出的解称为数值解。一般数值解是近似值。 由给定的已知量, 由给定的已知量,经过有限次的四则运算及规 定的运算顺序,求出所关心的未知量的数值解, 定的运算顺序,求出所关心的未知量的数值解, 这样所构成的整个计算步骤,称为数值算法 这样所构成的整个计算步骤,称为数值算法 简称算法 算法)。 (简称算法)。
2. 数值计算中的误差
用计算机进行实际问题的数值计算时, 用计算机进行实际问题的数值计算时, 往往求得是问题的近似解,都存在误差。 往往求得是问题的近似解,都存在误差。 误差是不可避免的,即要允许误差, 误差是不可避免的,即要允许误差,又 要控制误差。 要控制误差。
3. 数值计算中的误差
模型误差、参数误差、 来源及种类 --- 模型误差、参数误差、 截断误差、舍入误差 截断误差、舍入误差。 1. 模型误差(描述误差) Modeling Error 模型误差(描述误差) 模型误差是在建立数学模型时, 模型误差是在建立数学模型时,由于忽略了一些 次要因素而产生的误差。 次要因素而产生的误差。 参数误差( 2. 参数误差(观测误差) Measurement Error 通过测量或实验而得到模型中参数的值而产生 的误差
∂f ( x* , y * ) ∂f ( x* , y * ) e( f ( x, y )) ≈ e( x ) + e( y ) ∂x ∂y x ∂f ( x* , y * ) y ∂f ( x* , y * ) er ( f ) ≈ er ( x) + er ( y ) f f ∂x ∂y
基本的误差估计
数值计算中的误差
有效数字 significant digits 准确到小数点后第 --- 用 x * 表示 x 时准确到小数点后第 m 位: 则该位直到第一位非零的数总共n 则该位直到第一位非零的数总共n位, n为有效 数字。 数字。 ---用科学记数法 用科学记数法, ---用科学记数法,记 x* = ±0.a1a2 a3 ⋅ ⋅ ⋅ an × 10 k , (a1 ≠ 0) 如果 x − x* ≤ 1 ×10k − n
--- 相对误差为
1 Er ( x) ≤ × 10− ( n −1),且 x1 ≠ 0(最左一位) 2( x1 + 1)
的近似数 x
*
位有效数字。 至少具有 n 位有效数字
例:要使 20 的近似值相对误差限小 要取几位有效数字? 于0.1%, 则 20 要取几位有效数字?
假设取 n位有效数字。 位有效数字。
4. 数值计算中应注意的几个问题
1.避免两个相近的数相减; 避免两个相近的数相减;
er ( x ± y ) ≤ x er ( x) + y er ( y ) x± y
放大相对误差限, 放大相对误差限,导致计算结果有较大误 差。
(p12) p12)
4. 数值计算中应注意的几个问题
2.防止大数“吃掉”小数(p13) 防止大数“吃掉”小数(p13) 防止大数 求和时从小到大相加,可使和的误差减小。 注:求和时从小到大相加,可使和的误差减小。 3.避免绝对值很小的数做分母 3.避免绝对值很小的数做分母
∵ x* = 0.358764 ×10 4 , (k = 4, n = 6) 1 1 * 4−6 ∴ e( x) = x − x ≤ ×10 = ×10 − 2 2 2
数值计算中的误差
有效数字与相对误差的关系( ) 有效数字与相对误差的关系(P4)
--- n 位有效数字的近似数 x * 其相对误差: 其相对误差: 1 Er ( x) ≤ ×10− ( n −1),且 x1 ≠ 0(最左一位) 2 x1
舍入误差(计算误差) 4. 舍入误差(计算误差) Roundoff Error
舍入误差是由于计算机只能表示有限位数字, 舍入误差是由于计算机只能表示有限位数字,因而只能取 有限位数进行计算所得的误差。 有限位数进行计算所得的误差。 (举例: π = 3.141592653⋯ )

模型误差, 模型误差, 观测误差不是数值分 析讨论的内容, 析讨论的内容, 计算方法主要研究 截断误差, 截断误差, 舍入误差在计算过程中 传播和对计算结果的影响( 传播和对计算结果的影响(误差分 析), 以提高计算的精度. 以提高计算的精度.

• 初步掌握一种科学计算软件包 (如Matlab)的使用方法。
课程主要内容
线性代数方程组数值求解的直接法; 线性代数方程组数值求解的直接法; 线性代数方程组数值求解的迭代法; 线性代数方程组数值求解的迭代法; 数值代数 非线性方程与方程组数值求解; 非线性方程与方程组数值求解; 代数插值法; 代数插值法; 曲线拟合与函数逼近; 数值逼近 曲线拟合与函数逼近; 数值积分与数值微分; 数值积分与数值微分; 常微分方程数值求解。 常微分方程数值求解。 Matlab 简介
e ( x ± y ) ≤ e( x ) + e( y ) er ( x ± y ) ≤ x er ( x) + y er ( y ) x± y
e( xy ) ≤ y e( x) + x e( y ) er ( xy ) ≤ er ( x) + er ( y )
e( x) x x e( ) ≤ + 2 e( y) y y y x er ( ) ≤ er ( x) + er ( y) y
∵ 20 = 4.4 ⋅ ⋅⋅,∴ x1 = 4 1 − n +1 ∴ er ≤ ×10 ≤ 0.1% 2× 4 ⇒n≥4
基本的误差估计(P6)
函数计算的误差估计 * * * e( f ( x )) ≈ f ' ( x )e( x ) 1. * x er ( f ) ≈ f ' ( x ) er ( x) f 2.
数值分析研究的对象
数值分析又叫数值计算方法、计算方法、数 又叫数值计算方法、计算方法、
值方法等, 研究对象是各种数学问题的数值方 值方法等,其研究对象是各种数学问题的数值方 法的设计、 法的设计、分析及其有关的数学理论和具体实现 的一门学科,它是一个数学分支 的一门学科,它是一个数学分支, 是科学与工程 计算(科学计算) 计算(科学计算)的理论支持。 。
数值计算中的误差
3.截断误差(方法误差) 3.截断误差(方法误差) Truncation Error 截断误差
截断误差是对参与计算的数学公式做简化可行处理后所产 生的误差( 生的误差(用有限过程代替无限过程或用容易计算的方法代 替不容易计算的方法)(举例: 替不容易计算的方法)(举例:P4 )(举例 sinx = … )
数值分析研究的对象
科学计算的过程, 科学计算的过程,是从数学模型的提出到上机 计算得出结果的完整过程。( 。(下图表明了其中的 计算得出结果的完整过程。(下图表明了其中的 主要步骤和 主要步骤和相互关系 ) 数 实 编 构 输 上 机 学 制 造 出 际 模 算 结 问 程 运 序 型 法 行 题 果
e( x ) x x e( ) ≤ + 2 e( y ) y y y

x >> y 时,
舍入误差会扩大。 舍入误差会扩大。
4. 数值计算中应注意的几个问题
4.尽量简化计算步骤,减少乘除运算的次数( 4.尽量简化计算步骤,减少乘除运算的次数(计 尽量简化计算步骤 算量) 算量) 计算量: 计算量:一个算法所需要的乘法和除法总次数称为
数值计算中的误差
• 相对误差 relative error --- 近似数 x * 关于准确数 x 的相对误差: 的相对误差: x − x* x − x* e er ( x) = 或er ( x) = x x*
--- 近似数
x
*
关于准确数 x 的相对误差限: 相对误差限
*
x−x ≤ εr er ( x) = * x
4. 数值计算中应注意的几个问题
5. 选用数值稳定性好的算法,以控制舍入 选用数值稳定性好的算法, 误差传播
在计算过程中产生的舍入误差能被控制在一定 的范围内, 的范围内,且对最后的结果影响不大的算法称 为数值稳定算法。不是数值稳定的算法称为数 数值稳定算法。不是数值稳定的算法称为数 。(P9 值不稳定算法。(P9) 值不稳定算法。(P9) 因初始数据的微小变化, 因初始数据的微小变化,导致计算结果的剧烈 病态问题。 变化问题称为病态问题 变化问题称为病态问题。病态问题也称为坏问 这类问题通常是问题本身固有的。(P8) 。(P8 题,这类问题通常是问题本身固有的。(P8)
2
1 x − x ≤ ×10 − m 2
*
则x *有n有效数字
数值计算中的误差
由准确数字通过“四舍五入” 由准确数字通过“四舍五入”得到的近似值都 为有效数字。 为有效数字。 可以通过有效数字的位数来确定误差限。 可以通过有效数字的位数来确定误差限。 例如: x*=3587.64是 例如:若 x*=3587.64是x的具有六位有效数 字的近似值,它的绝对误差限是多少? 字的近似值,它的绝对误差限是多少?
数值分析研究的对象
数值分析是数学, 数值分析是数学,计算机科学与其他学科 交叉的产物。 交叉的产物 本门课程将着重介绍进行科学计算所 本门课程将着重介绍进行科学计算所 科学计算 必须掌握的一些最基本、 必须掌握的一些最基本、最常用的数值方 数值算法),并作相关分析。 ),并作相关分析 法(数值算法),并作相关分析
相关文档
最新文档