数值分析第一章 绪论

合集下载

数值分析第一张,引言

数值分析第一张,引言

模型(móxíng)设计
算法设计
上机计算
问题的解
共四十七页
结束(jiéshù)
其中算法设计是数值(shùzí)分析课程的主要内容.
数值分析课程(kèchéng)研究常见的基本数学问题的数值解法.包含了
数值代数(线性方程组的解法、非线性方程的解法、矩阵求逆、 矩阵特征值计算等)、数值逼近、数值微分与数值积分、常微分方程 及偏微分方程的数值解法等.它的基本理论和研究方法建立在数学 理论基础之上,研究对象是数学问题,因此它是数学的分支之 一.
3! 5! 7!
(2n 1)!
( 1.1)
这是一个无穷级数,我们只能(zhī nénɡ)在适当的地方“截断 ”,使计算量不太大,而精度又能满足要求.
如计算 sin 0.5,取n=3 sin 0.5 0.5 0.53 0.55 0.57 0.479625
3! 5! 7!
共四十七页
结束
据泰勒余项公式(gōngshì),它的误差应 为
• 1998年7月30-31日,美国DOE/FNS 共同联合组织召开了 关于“先进科学计算”的全国会议,会议强调科学模拟的重
要性,希望应用科学模拟来攻克复杂的科学与工程难题。
共四十七页
数值分析是计算数学的一个主要部分,方法解决科学研究或 工程技术问题,一般按如下途径进行:
实际 (shíjì)问

程序设计
R (1)9 9
9!
0,
4
R ( / 4)9 3.13 10 7
362880
( 1.2)
可见结果(jiē guǒ)是相当精确的.实际上结果(jiē guǒ)的六位数字都是 正确的.
2 算法常表现(biǎoxiàn)为一个连续过程的离 散化

数值分析课后习题和解答

数值分析课后习题和解答

课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4.近似数x*=0.0310,是 3 位有数数字。

5.计算取,利用:式计算误差最小。

四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。

线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。

数值分析课件 第一章 绪论

数值分析课件 第一章 绪论

1 e 0 1 x n e 0 d I n x 1 e 0 1 x n e 1 d x e 1 1 ( ) I n n n 1 1
公式一:I n 1 e [ x n e x 1 0 n 0 1 x n 1 e x d x ] 1 n I n 1
I01 e 01exdx11 e0.63212 记为0I5 0* 6 此公式精确成
初始的小扰动 |E 0|0.51 0 8迅速积累,误差呈递增趋势。 造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
公式二: I n 1 n I n 1 I n 1 n 1 ( 1 I n )
方法:先估计一个IN ,再反推要求的In ( n << N )。 注 意在e此理(N 公论1 式上1)与等公价IN 式。一N 1 1
)
0 .0 6 6 8 7 0 2 2 0
I
12
1 (1 13
I
13
)
0 .0 7 1 7 7 9 2 1 4
I
11
1 (1 12
I
12
)
0 .0 7 7 3 5 1 7 3 2
I
10
1 11
(1
I
11
)
0 .0 8 3 8 7 7 1 1 5
I
1
1 2
(1
I
2
)
0 .3 6 7 8 7 9 4 4
0
2! 3! 4!
11/1e111 e1 x 2d1x11 1 3 2! 50 3! 7 4! 9
取 01ex2dxS4 ,
S4
R4 /* Remainder */
则 R 44 1 !1 9 由 留5 1 !下1 部1 分1 称为截断误差 /* Truncation Error */

数值分析教材

数值分析教材

第一章绪论与误差第一节数值分析研究对象及特点一、数值分析课的地位:数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支。

它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。

用计算机解决科学技术和工程问题的步骤:实际问题→建立数学模型→研究计算方法→程序设计→上机计算→求出结果。

例如:⑴ 某一地区的地形图,用空中航测方法,空中连续拍照。

⑵ 为形成三维地形图,建立了一个大型超定线性方程组。

⑶ 采用最小二乘方法求解该方程组的最小二乘解, 然后再整体平滑。

⑷ 编程序,形成一个大型程序,上机进行计算。

二、数值分析课的主要内容:计算机只能进行加减乘除四则运算和一些简单的函数计算(即使是函数也是通过数值分析方法处理,转化为四则运算而形成了的一个小型软件包)。

1.数值代数:求解线性和非线性方程的解法, 分直接方法和间接方法。

2.插值和数值逼近。

3.数值微分和数值积分。

4.常微分方程和偏微分方程数值解法。

三、数值分析具有的特点1. 面向计算机,要根据计算机的特点提供切实可行的有效算法,即算法只能包含加、减、乘、除和逻辑运算,这些运算是计算机能直接处理的运算。

2. 有可靠的理论分析,能任意逼近并达到精度要求,对近似算法要保证收敛性和数值稳定性,还要对误差进行分析。

3. 要有好的计算复杂性。

时间复杂性好是指节省时间,空间复杂性好是指节省存储量,这也是建立算法要研究的问题,它关系到算法能否在计算机上实现。

4. 要有数值试验,即任何一个算法除了从理论上要满足上述三点外还要通过数值试验证明是行之有效的。

四、对算法所要考虑的问题:1. 计算速度1 例如:求解一个20阶线性方程组,用加减消元法需3000次乘法运算,而用克莱姆法则要进行次运算,如用每秒1亿次乘法运算的计算机要30万年。

2. 存储量。

大型问题有必要考虑。

3. 数值稳定性。

在大量计算中,舍入误差是积累还是能控制,这与数值稳定性算法有关。

例一元二次方程其精确解为如用求根公式:以及字长为8位的计算器求解有:则:,那么: 的值与精确解有天壤之别。

数值分析

数值分析
误差:e( x1 x2 ) x1 e( x2 *) x2 e( x1 ) x1 x2 x1 x2 x1 e( x2 *) x2 e( x1 ) e( x1 )e( x2 *) 误差限: ( x x ) x ( x2 *) x2 ( x )
* * 1 2 * 1 * * 1 * * * * * * * * * * *
到x *的第一位非零数字共有 n位,就说x * 有n位有效数字.

x* 10m (a1 a2 101 an 10( n1) ) 1 x x * 10mn1 2
(2.1)
其中a1 0 . 并且 (2.2)
例1
• 按四舍五入写出下述各数具有5位有效数字的近似 数: 187.9325 0.037 855 51 8.000 033 2.718 281 8
加法和减法结果的误差
(x
* 1
x2 ) ( x1 x2 )
* 1
*
(x
x1 ) ( x2 x2 )
*
*
e( x ) e( x2 )
* 1
误差限: (x x ) (x ) (x )
* 1 * 2 * 1 * 2
乘法的结果误差
x x x1 x2 x x ( x x1 x )(x2 x2 x2 ) x1 x2 ( x1 e( x1 ))(x2 e( x2 )) x x x x x e( x2 ) x2 e( x ) e( x )e( x2 ) x e ( x2 ) x2 e ( x ) e ( x ) e ( x 2 )
例2 重力加速度
若以m/s2为单位, g≈9.80m/s2, 1 m n 1 1 * 10 g 9.80 102 , 2 2 * 1 按(2.1), m 0, n 3. 绝对误差限 1 102. 2 若以km/s2为单位, g≈0.00980m/s2, 1 g 0.00980 105 , 2 * 1 按(2.1), m 3, n 3. 绝对误差限 2 105. 2 而相对误差限相同:

数值分析

数值分析

数值分析第一章 绪论 ................................................................................................................................... 1 第二章 函数插值 ............................................................................................................................. 2 第三章 函数逼近 ............................................................................................................................. 5 第四章 数值积分与数值微分 ....................................................................................................... 11 第五章 解线性方程组的直接解法 ............................................................................................... 13 第六章 解线性方程组的迭代解法 ............................................................................................... 17 第七章 非线性方程求根 ............................................................................................................... 20 第九章 常微分方程初值问题的数值解法 .. (22)第一章 绪论1.1的相对误差不超过0.1%,应取几位有效数字?解:14a =。

数值分析第一章绪论习题答案

数值分析第一章绪论习题答案

第一章绪论e In X* =In X * -Inx :丄e*X*进而有;(In X *):2. 设X 的相对误差为2% ,求X n 的相对误差。

解:设f(χZ ,则函数的条件数为Cp=l fX+n _1X nχ I Xn n又;r ((X*) n) C P 7(X *)且 e r (χ*)为 2.7((χ*)n) 0.02 n3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指* * * * *出它们是几位有效数字: X 1 =1.1021, χ2 =0.031, χ3 =385.6, χ4 = 56.430,x 5 = 7".0.. *解:X I -1.1021是五位有效数字;X 2 = 0.031是二位有效数字;X 3 =385.6是四位有效数字;X 4 =56.430是五位有效数字;X 5 =7 1.0.是二位有效数字。

4. 利用公式(2.3)求下列各近似值的误差限: (1) X 1 X 2 X 4,(2) X 1 X 2X 3 ,(3) X 2 /X 4 .其中χl ,x 2,x 3,X 4均为第3题所给的数。

1设X 0, x 的相对误差为 解:近似值X*的相对误差为 、:,求InX 的误差。

e* X* -X而InX 的误差为 又 f '(χ) =nx n 」 C P解:* 1 4;(x 1) 102* 1 3 ;(x 2) 10 2* 1 1;(x 3) 10* 1 3;(x 4) 102* 1 1;(x 5) 102(1) ;(x ; x ; x *)* * *=;(%) ;(x 2) *x 4)1 A 12 1 j310 10 102 2 2 -1.05 10J 3* * *(2) S(X I X 2X 3)* * * * * * ** * =X1X 2 £(X 3)+ X 2X 3 ^(X J + X 1X 3 E (X 2):0.215 ⑶;(x 2/x ;)* Il * * I * X 2 E(X 4) + X 4 &(X 2)全 Γ"2X 41-3 1 30.031 10 56.430 10= ______________________ 256.430X56.430-10 54 3解:球体体积为V R3则何种函数的条件数为1.1021 0.031 11θ' 2 + 0.031X385.6 x 1><10* 2 +∣ 1.1021 X 385.6卜-×1^35计算球体积要使相对误差限为 1 ,问度量半径R 时允许的相对误差限是多少?C P 愕': C P “(R*) 9(R*)又γ(V*) -11故度量半径R 时允许的相对误差限为 ;r (R*) 1 : 0.3331 ____6.设 Y 0 =28,按递推公式 Yn =Ynd- ------- : 783 (n=1,2,…)100计算到Y oo 。

第1章数值分析-绪论

第1章数值分析-绪论

实际运算 Er (a) (x a) / a
r / a
例5 a=3.14是π的近似值。
E(a) 3.14 0.002
Er
(a)
0.002
0.002 3.14
6.36942104
三、有效数字 例如 3.14159265...
取3位,a=3.14,δ≤0.002 取5位,a=3.1416,δ≤0.000008
a 10m 0.a1a2...an
a1是1到9中的一个整数, a2,…,an为0到9中的任
意整数。m为整数,

E(a) x a 1 10mn 2
成立,
ห้องสมุดไป่ตู้
则称a近似 x 有n位有效数字。
【注】 近似数的有效数字不但给出了近似值的大小, 而且还指出了它的绝对误差限。
数值分析——绪论
例6 设 x 0.002567, a 0.00256 102 0.256 则 x a 0.00005 1 104
2
因为m=-2,所以n=2, 即a有2位有效数字。
若 a 0.00257 102 0.257

x a 0.000003 0.000005 1 105 2
因为m=-2,所以n=3, 即a有3位有效数字。
例7 设x =8.00001,则a=8.0000具有5位有效数字。
例如,用毫米刻度的米尺测量一长度 x , 读出和该长度接近的刻度 a, a 是 x
的近似值,它的误差限是0.5mm.如读出的长度 是765mm,则
x 765 0.5 764.5 x 765.5
数值分析——绪论
对于一般情形 x a 即
a x a ,有时记为 x=a
例4 绝对误差的局限性例子。

数值分析原理课件第一章

数值分析原理课件第一章

第一章 绪 论本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题.§1.1 引 言计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。

由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括(1)非线性方程的近似求解方法;(2)线性代数方程组的求解方法;(3)函数的插值近似和数据的拟合近似;(4)积分和微分的近似计算方法;(5)常微分方程初值问题的数值解法;(6)优化问题的近似解法;等等从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关.计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差.我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断,从而产生截断误差. 如的计算是无穷过程,当用作为的 +++=!21!111e !1!21!111n e n ++++= e 近似时,则需要进行有限过程的计算,但产生了截断误差.e e n - 当用计算机计算时,因为舍入误差的存在,我们也只能得到的近似值,也就是n e n e *e 说最终用近似,该近似值既包含有舍入误差,也包含有截断误差.*e e 当参与计算的原始数据是从仪器中观测得来时,也不可避免得有观测误差.由于这些误差的大量存在,我们得到的只能是近似结果,进而对这些结果的“可靠性”进行分析就是必须的,它成为计算方法的第二个显著特点. 可靠性分析包括原问题的适定性和算法的收敛性、稳定性.所谓适定性问题是指解存在、惟一,且解对原始数据具有连续依赖性的问题. 对于非适定问题的求解,通常需要作特殊的预处理,然后才能做数值计算. 在这里,如无特殊说明,都是对适定的问题进行求解.对于给定的算法,若有限步内得不到精确解,则需研究其收敛性. 收敛性是研究当允许计算时间越来越长时,是否能够得到越来越可靠的结果,也就是研究截断误差是否能够趋于零.对于给定的算法,稳定性分析是指随着计算过程的逐步向前推进,研究观测误差、舍入对于同一类模型问题的求解算法可能不止一种,常希望从中选出高效可靠的求解算法. 如我国南宋时期著名的数学家秦九韶就提出求n 次多项式值0111a x a x a x a n n nn ++++-- 的如下快速算法;n a s =; k n a t -=t sx s +=),,2,1(n k =它通过n 次乘法和n 次加法就计算出了任意n 次多项式的值. 再如幂函数可以通过如下64x 快速算法计算出其值;x s =;循环6次s s s ⋅=如上算法仅用了6次乘法运算,就得到运算结果.算法最终需要在计算机上运行相应程序,才能得到结果,这样就要关注算法的时间复杂度(计算机运行程序所需时间的度量)、空间复杂度(程序、数据对存储空间需求的度量)和逻辑复杂度(关联程序的开发周期、可维护性以及可扩展性). 事实上,每一种算法都有自己的局限性和优点,仅仅理论分析是很不够的,大量的实际计算也非常重要,结合理论分析以及相当的数值算例结果才有可能选择出适合自己关心问题的有效求解算法. 也正因如此,只有理论分析结合实际计算才能真正把握准算法.§1.2 误差的度量与传播一、误差的度量误差的度量方式有绝对误差、相对误差和有效数字.定义1.1 用作为量的近似,则称为近似值的绝对误差.*x x )(:**x e x x =-*x 由于量x 的真值通常未知,所以绝对误差不能依据定义求得,但根据测量工具或计算情况,可以估计出绝对误差绝对值的一个较小上界,即有ε (1.1)ε≤-=x x x e **)(称正数为近似值的绝对误差限,简称误差. 这样得到不等式ε*x εε+≤≤-**x x x 工程中常用ε±=*x x 表示近似值的精度或真值x 所在的范围.*x 误差是有量纲的,所以仅误差数值的大小不足以刻划近似的准确程度. 如量 (1.2)m m cm s μ50001230000005.023.15.0123±=±=±=为此,我们需要引入相对误差定义1.2 用作为量的近似,称为近似值的相对误差. 当0*≠x x )(:**x e xxx r =-*x 是x 的较好近似时,也可以用如下公式计算相对误差*x (1.3)***)(xx x x e r -= 显然,相对误差是一个无量纲量,它不随使用单位变化. 如式(1.2)中的量s 的近似,无论使用何种单位,它的相对误差都是同一个值.同样地,因为量x 的真值未知,我们需要引入近似值的相对误差限,它是相*x )(*x r ε对误差绝对值的较小上界. 结合式(1.1)和(1.3),相对误差限可通过绝对误差限除以近似*x 值的绝对值得到,即(1.4)***)()(xx x r εε=为给出近似数的一种表示法,使之既能表示其大小,又能体现其精确程度,需引入有效数字以及有效数的概念.定义1.3 设量的近似值有如下标准形式x *x p n ma a a a x 21*.010⨯±= (1.5)()pm p n m n m m a a a a ----⨯++⨯++⨯+⨯±101010102211 =其中且,m 为近似值的量级. 如果使不等式}9,,1,0{}{1 ⊂=pi i a 01≠a (1.6)n m x x -⨯≤-1021*成立的最大整数为n ,则称近似值具有n 位有效数字,它们分别是、、… 和 . *x 1a 2a n a 特别地,如果有,即最后一位数字也是有效数字,则称是有效数.p n =*x 从定义可以看出,近似数是有效数的充分必要条件是末位数字所在位置的单位一半是绝对误差限. 利用该定义也可以证明,对真值进行“四舍五入”得到的是有效数. 对于有效数,有效数字的位数等于从第一位非零数字开始算起,该近似数具有的位数. 注意,不能给有效数的末位之后随意添加零,否则就改变了它的精度.例1.1 设量,其近似值,,. 试回答这三个近π=x 141.3*1=x 142.3*2=x 722*3=x 似值分别有几位有效数字,它们是有效数吗?解 这三个近似值的量级,因为有1=m 312*110211021005.000059.0--⨯=⨯=≤=- x x 413*2102110210005.00004.0--⨯=⨯=≤=- x x571428571428.3*3=x 312*310211021005.0001.0--⨯=⨯=≤=- x x 所以和都有3位有效数字,但不是有效数. 具有4位有效数字,是有效数.*1x *3x *2x 二、误差的传播这里仅介绍初值误差传播,即假设自变量带有误差,函数值的计算不引入新的误差. 对于函数有近似值,利用在点处),,,(21n x x x f y =),,,(**2*1*n x x x f y =),,,(**2*1n x x x 的泰勒公式(Taylor Formula),可以得到 )(),,,()(*1**2*1**i i ni n i x x x x xf y y y e -≈-=∑=(1.7))(),,,(*1**2*1i ni n i x e x x xf ∑== 其中,是的近似值,是的绝对误差. 式(1.7)表明函ii x f f ∂∂=:*i x i x )(*i x e *i x ),,2,1(n i =数值的绝对误差近似等于自变量绝对误差的线性组合,组合系数为相应的偏导数值. 从式(1.7)也可以推得如下函数值的相对误差传播近似计算公式 (1.8))(),,,()(***1**2*1*i r i ni ni r x e yx x x x f y e ∑=≈对于一元函数,从式(1.7)和(1.8)可得到如下初值误差传播近似计算公式)(x f y = (1.9))()()(***x e x f y e '≈ (1.10))()()(*****x e yx x f y e r r '≈式(1.9)表明,当导数值的绝对值很大时,即使自变量的绝对误差比较小,函数值的绝对误差也可能很大.例1.2 试建立函数的绝对误差(限)、相对误差n n x x x x x x f y +++== 2121),,,(的近似传播公式,以及时的相对误差限传播公式.{}ni i x 1*0=> 解 由公式(1.7)和(1.8)可分别推得和的绝对误差、相对误差传播公式如下(1.11)∑∑==≈ni i ini nix e x e x x xf y e 1**1**2*1*)()(),,,()(= (1.12)∑∑==≈ni i r i i r i ni ni r x e yx x e y x x x x f y e 1******1**2*1*)()(),,,()(= 进而有∑∑∑===≤≤≈ni i n i ini ix x e xe y e 1*1*1**)()()()(ε于是有和的绝对误差限近似传播公式 ∑=≈ni ixy 1**)()(εε当时,由式(1.3)推得相对误差限的近似传播公式{}ni i x 1*=>)(max )(max )(max )()()(*11***11***11****1**i r ni ni i ir n i ni i i r n i ni i r i ni ir x yx x yx x x y x yxy εεεεεε≤≤=≤≤=≤≤====≤=≈∑∑∑∑ 例1.3使用足够长且最小刻度为1mm 的尺子,量得某桌面长的近似值3.1304*=a mm ,宽的近似值mm (数据的最后一位均为估计值). 试求桌子面积近似值的绝8.704*=b 对误差限和相对误差限.解 长和宽的近似值的最后一位都是估计位,尺子的最小刻度是毫米,故有误差限 mm ,mm 5.0)(*=a ε5.0)(*=b ε面积,由式(1.7)得到近似值的绝对误差近似为ab S =***b a S = )()()(*****b e a a e b S e +≈进而有绝对误差限 mm 255.10045.03.13045.08.704)()()(*****=⨯+⨯=+≈b a a b S εεε相对误差限 %11.00011.08.7043.130455.1004)()(***=≈⨯=≈S S S r εε§1.3 数值实验与算法性能比较本节通过几个简单算例说明解决同一个问题可以有不同的算法,但算法的性能并不完全相同,他们各自有自己的适用范围,并进而指出算法设计时应该注意的事项. 算例1.1 表达式,在计算过程中保留7位有效数字,研究对不同)1(1111+=+-x x x x 的x ,两种计算公式的计算精度的差异.说明1:Matlab 软件采用IEEE 规定的双精度浮点系统,即64位浮点系统,其中尾数占52位,阶码占10位,尾数以及阶码的符号各占1位. 机器数的相对误差限(机器精度)eps=2-52≈2.220446×10-16,能够表示的数的绝对值在区间(2.2250739×10-308,1.797693×10308)内,该区间内的数能够近似表达,但有舍入误差,能够保留至少15位有效数字. 其原理可参阅参考文献[2, 4].分析算法1: 和算法2: 的误差时,精确解用双精111)(1+-=x x x y )1(1)(2+=x x x y 度的计算结果代替. 我们选取点集中的点作为x ,比较两种方法误差的差异.301}{=i i π 从图1.1可以看出,当x 不是很大时,两种算法的精度相当,但当x 很大时算法2的精度明显高于算法1. 这是因为,当x 很大时,和是相近数,用算法1进行计算时出x 111+x 现相近数相减,相同的有效数字相减后变成零,于是有效数字位数急剧减少,自然相对误差增大. 这一事实也可以从误差传播公式(1.12)分析出. 鉴于此,算法设计时,应该避免相近数相减.在图1.2中我们给出了当x 接近时,两种算法的精度比较,其中变量x 依次取为1-. 从图中可以看出两种方法的相对误差基本上都为,因而二者的精度相当.{}3011=--i iπ710-图1.1 算例1.1中两种算法的相对误差图()+∞→x图1.2 算例1.1中两种算法的精度比较)1(-→x 算例1.2 试用不同位数的浮点数系统求解如下线性方程组⎩⎨⎧=+=+2321200001.02121x x x x 说明2:浮点数系统中的加减法在运算时,首先按较大的阶对齐,其次对尾数实施相应的加减法运算,最后规范化存入计算机.算法1 首先用第一个方程乘以适当的系数加至第二个方程,使得第二个方程的的系1x 数为零,这时可解出;其次将带入第一个方程,进而求得(在第三章中称该方法为高2x 2x 1x 斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法1a 和算法1b . 算法 2 首先交换两个方程的位置,其次按算法1计算未知数 (第三章中称其为选主元的高斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法2a 和算法2b .方程组的精确解为, ,用不同的算法计算出的...25000187.01=x ...49999874.02=x 结果见表1.1.表1.1 对算例1.2用不同算法的计算结果比较算例1.2*1x )(*1x r ε*2x )(*2x r ε算法1a 0.00000.10×1010.50000.25×10-7算法2a 0.25000.75×10-70.50000.25×10-7算法1b 0.26000000.40×10-10.49999870.10×10-6算法2b0.25000200.50×10-80.50000000.25×10-7对于算例1.2,表中的数据表明,当用4位尾数计算时,算法1给出错误的结果,算法2则给出解很好的近似. 这是因为在实现算法1时,需要给第一个方程乘以加00001.0/2-至第二个方程,从而削去第二个方程中的系数,但在计算的系数时需做如下运算1x 2x(1.13)661610000003.0104.0103.0104.03200001.02⨯⨯⨯⨯=+⨯+=-+--对上式用4位尾数进行计算,其结果为. 因为舍入误差,给相对较大的数加以6104.0⨯-相对较小的数时,出现大数“吃掉”小数的现象. 计算右端项时,需做如下运算(1.14)661610000002.0102.0102.0102.02100001.02⨯⨯⨯⨯=+⨯+=-+--同样出现了大数吃小数现象,其结果为. 这样,得到的变形方程组6102.0⨯-⎩⎨⎧⨯-=⨯-⨯=⨯+⨯62612114102.0104.0101.0102.0101.0x x x 中没有原方程组中第二个方程的信息,因而其解远偏离于原方程组的解. 该算法中之所以出现较大数的原因是因为运算,因而算法设计中尽可能避免用绝对值较大的数00001.0/2-除以绝对值较小的数. 其实当分子的量级远远大于分母的量级时,除法运算还会导致溢出,计算机终止运行.虽从单纯的一步计算来看,大数吃掉小数,只是精度有所损失,但多次的大数吃小数,累计起来可能带来巨大的误差,甚至导致错误. 例如在算法1a 中出现了两次大数吃小数现象,带来严重的后果. 因而尽可能避免大数吃小数的出现在算法设计中也是非常必要的. 当用较多的尾数位数进行计算,舍入误差减小,算法1和2的结果都有所改善,算法1的改进幅度更大些.算例1.3 计算积分有递推公式,已知⎰+=1055dx x x I n ),2,1(511 =-=-n I nI n n . 采用IEEE 双精度浮点数,分别用如下两种算法计算的近似值.56ln 0=I 30I算法1 取的近似值为,按递推公式计算0I 6793950.18232155*0=I *1*51--=n n I nI *30I 算法2 因为,取的近似值为)139(5156)139(611039103939+⨯=<<=+⨯⎰⎰dx x I dx x 39I ,按递推公式计算3333330.004583332001240121*39≈⎪⎭⎫ ⎝⎛+=I ⎪⎭⎫ ⎝⎛-=-**1151n n I n I *30I 算法1和算法2 的计算结果见表1.2. 误差绝对值的对数图见图1.3.表1.2 算例1.3的计算结果算法1算法2n *nI n n I I -*n *nI nn I I -*18.8392e-002 1.9429e-01639 4.5833e-0033.9959e-0042 5.8039e-0029.8532e-016384.2115e-0037.9919e-0053 4.3139e-002 4.9197e-01537 4.4209e-003 1.5984e-0054 3.4306e-002 2.4605e-01436 4.5212e-003 3.1967e-0065 2.8468e-002 1.2304e-01335 4.6513e-003 6.3935e-0076 2.4325e-002 6.1520e-01334 4.7840e-003 1.2787e-007………33 4.9255e-003 2.5574e-00825 1.1740e+001 1.1734e+00132 5.0755e-003 5.1148e-00926-5.8664e+001 5.8670e+00131 5.2349e-003 1.0230e-00927 2.9336e+002 2.9335e+002 305.4046e-003 2.0459e-01028-1.4667e+003 1.4668e+003 297.3338e+0037.3338e+003 30-3.6669e+004 3.6669e+004图1.3 算例1.3用不同算法计算结果的误差绝对值的对数图从表1.2中的计算结果可以看出,算法1随着计算过程的推进,绝对误差几乎不断地以5的倍数增长,即有0*02*221*1*555I I I I I I I I n n n n n n n -≈≈-≈-≈----- 成立. 对于逐步向前推进的算法,若随着过程的进行,相对误差在不断增长,导致产生不可靠的结果,这种算法称之为数值不稳定的算法. 对于算法1绝对误差按5的幂次增长,但真值的绝对值却在不断变小且小于1,相对误差增长的速度快于5的幂次,导致产生错误的结果,因而算法1数值不稳定,不能使用. 而算法2随着计算过程的推进,绝对误差几乎不断地缩小为上一步的1/5,即有m m n m n n n n n n n I I I I I I I I 5/5/5/*22*21*1*++++++-≈≈-≈-≈- 成立. 绝对误差不断变小,真值的绝对值随着过程向前推进却在变大,这样相对误差也越来越小,这样的方法称之为数值稳定的算法. 算法1和算法2的误差对数示意图见图1.3. 这个算例告诉我们应该选用数值稳定的算法.知识结构图⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧算法设计要点数值方法的稳定性数值方法的收敛性算法多元函数一元函数传播有效数字相对误差(限)绝对误差(限)度量截断误差舍入误差误差的产生误差误差与算法习题一1 已知有效数,,. 试给出各个近似值的绝对误105.3*1-=x 4*210125.0⨯=x 010.0*3=x 差限和相对误差限,并指出它们各有几位有效数字.2 证明当近似值是x 的较好近似时,计算相对误差的计算公式和相差一个*x x x x -***xxx -和同阶的无穷小量.2*⎪⎪⎭⎫⎝⎛-x x x 3 设x 的近似值具有如式(1.5)的表示形式,试证明*x 1)若具有n 位有效数字,则相对误差;*x n r a x e -⨯≤11*1021)(2)若相对误差,则至少具有n 位有效数字.n r a x e -⨯+≤11*10)1(21)(*x 4 试建立二元算术运算的绝对误差限传播近似计算公式.5 试建立如下表达式的相对误差限近似传播公式,并针对第1题中数据,求下列各近似值的相对误差限.1) ; 2) ; 3) *3*2*1*1x x x y +=3*2*2x y =*3*2*3/x x y =6若例题1.3中使用的尺子长度是80mm ,最小刻度为1mm ,量得某桌面长的近似值mm ,宽的近似值mm . 试估计桌子长度、宽度的绝对误差限,并3.1304*=a 8.704*=b 求用该近似数据计算出的桌子面积的绝对误差限和相对误差限.7 改变如下计算公式,使其计算结果更为精确.1) 且0,cos 1≠-x xx1<<x 2)1,1ln )1ln()1(ln 1>>--++=⎰+N N N N N xdx N N3) 1,133>>-+x x x 8 (数值试验)试通过分析和数值试验两种手段,比较如下三种计算近似值算法的可靠性.1-e 算法1 ;∑=--≈mn nn e 01!)1( 算法2 ;101!1-=-⎪⎭⎫ ⎝⎛≈∑m n n e算法3 ;101)!(1-=-⎪⎪⎭⎫ ⎝⎛-≈∑m n n m e9 (数值试验)设某应用问题归结为如下递推计算公式 ,,72.280=y 251-=-n n y y,2,1=n 在计算时取为具有5位有效数字的有效数. 试分析近似计算公式的2*c **1*5c y y n n -=-绝对误差传播以及相对误差传播情况,并通过数值实验验证 (准确值可以用IEEE 双精度浮点运算结果代替),该算法可靠可用吗?。

数值分析第1章绪论

数值分析第1章绪论

THANKS
感谢您的观看
算法创新
在数值分析中,创新算法的提出是推 动学科发展的重要动力。新的算法可 以解决传统算法难以处理的问题,提 高计算效率和精度。
Part
05
Байду номын сангаас
数值分析的展望与启示
数值分析与其他学科的交叉研究
数值分析与物理学的交叉
数值分析在解决物理问题中扮演着重要角色,如流体动力学、电磁学和量子力学等领域。 通过数值模拟和计算,可以更深入地理解物理现象和预测新现象。
Part
04
数值分析的挑战与未来发展
数值稳定性的挑战
数值稳定性问题
在数值分析中,算法的数值稳定性是一个重要的问题。不稳定的算法可能会导致计算结果的误差累积,从而影响 结果的精度。
解决方法
为了提高数值稳定性,可以采用多种方法,如改进算法、增加迭代次数、使用稳定的数据类型等。
高性能计算的需求
高性能计算的重要性
或最小化线性目标函数问 题,如单纯形法等。
微分法
数值微分
利用已知函数值估计函数在某点 的导数值。
偏微分方程数值解
通过有限差分法、有限元法等求 解偏微分方程的数值解。
数值积分
利用已知函数值计算函数在某个 区间的积分值。
常微分方程数值解
通过离散化方法求解常微分方程 的数值解,如欧拉法、龙格-库塔 法等。
逼近法
最佳平方逼近
利用已知的离散数据点构造一个多项式,使得该 多项式在最小二乘意义下逼近目标函数。
傅里叶逼近
利用傅里叶级数的性质进行逼近,适用于周期函 数的逼近。
ABCD
切比雪夫逼近
利用切比雪夫多项式的性质进行逼近,具有最佳 逼近和一致逼近的特点。

数值分析01绪论

数值分析01绪论

1 , 的 似 , ε ε 例5:已知 x *= .41 是 2 近 值 问 (x*), r (x*) :
的近似值的相对误差限不超过0.1%, %,则它的 例6:要使 20 的近似值的相对误差限不超过 %,则它的 : 近似值至少应该取几位有效数字? 近似值至少应该取几位有效数字? 解: 20 0.4L×101 = 设至少应取n位有效数字, 设至少应取 位有效数字,则其相对误差限应该满足 位有效数字
x − x* er = x*
为近似值的绝对误差; 为近似值的绝对误差; 称
为近似值的相对误差。 为近似值的相对误差。
若存在正数 ε , εr 分别满足
e = x − x* ≤ ε
则分别称
ε , εr
x − x* er = ≤ εr x*
为近似值的绝对误差限与相对误差限。 为近似值的绝对误差限与相对误差限。
若 ε (x*) ≤
1 ×10m−l 则 2
x*有 l 位有效数字。 位有效数字。(L<n)
例:已知 π = 3.14159265L分别用 x1 = 3.14 x2 = 3.141 x3 = 3.142 作为它的近似值,则各误差限分别满足: 作为它的近似值,则各误差限分别满足: 1 1 1 ε (x1) ≤ ×10−2 ,ε (x2 ) ≤ ×10−2 ,ε (x3 ) ≤ ×10−3 2 2 2 因此它们分别具有3 因此它们分别具有3位、3位、4位有效数字。 位有效数字。 结论:凡是由四舍五入方法得到的近似数,都是有效数字。 结论:凡是由四舍五入方法得到的近似数,都是有效数字。
其中
lim R2n+1(x) = 0
n→∞
从而, 较大时, 从而,当n较大时,可以用 较大时
P n+1(x) ≈ sin x 2

数值分析第一章绪论习题答案

数值分析第一章绪论习题答案

第一章绪论1设x 0, x的相对误差为「.,求In x的误差。

* * e* x * _x解:近似值x*的相对误差为:.=e*x* x*1 而In x 的误差为e In x* =lnx*「lnx e*x*进而有;(ln x*)::.2•设x的相对误差为2%求x n的相对误差。

解:设f(x—,则函数的条件数为Cp^胡1n A.x nx .又7 f '(x)= nx n」C p|=nn又;;r((x*) n) : C p ;,x*)且e r (x*)为2.;r((x*)n) 0.02 n3 •下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:X; h.1021 , x;=0.031 , x3 =385.6 x;=56.430, x5 =7 1.0.解:x;=1.1021是五位有效数字;X2 =0.031是二位有效数字;X3 =385.6是四位有效数字;x4 = 56.430是五位有效数字;x5 -7 1.0.是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:⑴ 为+X2+X4,(2) x-i x2x3,(3) x2/ x4.* * * *其中X1,X2,X3,x4均为第3题所给的数。

解:*1 4;(x-| ) 102* 1 3;(x 2) 102* 1 1;(x 3) 10 * 1 3;(x 4) 102* 1 1;(x 5) 102 (1);(为 X 2 X 4)=;(为)亠:(x 2)亠:(x 4)=1 10 4 110 J 丄 10^2 2 2= 1.05 10”* * * (2)(X 1X 2X 3)* * * ** * ** *X 1X 2 8(X 3) + X 2X 3 g(xj + X 1X 3 名(X 2)1 1 0.031 汉 385.6 汉?汉10鼻 + 1.1021 域 385.6 汉?汉10(3) XX 2/X 4)X 40.031 110” 56.430 丄 10’2 256.430 56.430=10°5计算球体积要使相对误差限为 1,问度量半径R 时允许的相对误差限是多少? 43解:球体体积为V R 3则何种函数的条件数为=1.1021汉 0.031 汉 * 汉10」+0.215RV' R 4 - R2Ik -3;r(V*) : C pL;r(R*) =3;r(R*)1故度量半径R时允许的相对误差限为;r(R*) 1 :0.3336•设Y0=28,按递推公式丄J783 (n=1,2,…)100计算到Y oo。

数值分析-第一章ppt课件

数值分析-第一章ppt课件
3. 高效性: 它应该具有计算量小、占用存储单元 少、计算过程简单、规律性强等优点.
可编辑课件PPT
4
《数值分析》课程主要介绍几类数学问题的经典 算法. 在学习中既要重视实际应用, 又要重视有关理论, 必须注意理解算法的设计原理和处理技巧, 重视基本 概念和理论——误差分析, 收敛性与稳定性. 认真完成 习题中的理论证明和计算方面的相关问题, 手算与上 机计算相结合, 同时注意培养利用计算机进行科学计 算的能力.
似值 x*的绝对误差限, 简称为误差限. 在工程技术中常记作 x=x*±*。 例如, 电压V=100±2(V), V*=100(V)是V的一个近
似值, 2(V)是V*的一个误差限, 即
| V–V*| 2(V)
可编辑课件PPT
11
二、相对误差与相对误差限
对于两个数值
x1=100±2, x2=10±1
[4] Rainer Kress. Numerical Analysis. New York:
Springer-Verlag, 2003.
可编辑课件PPT
1
实际问题

解释 实际问题

结束
抽象
建立数学模型
简化
类方 型法
结果分析 求解计算
应用于实践
可编辑课件PPT
2
数值分析研究的主要内容:是各类数学问题的近 似解法——数值方法, 是从数学模型(由实际问题产生 的一组解析表达式或原始数据)出发, 寻求在有限步内 可以获得数学问题满足一定精度近似解的运算规则, 这种规则称为算法, 它包括计算公式, 计算方案和整个 计算过程.
值x的比值为近似值x*的相对误差, 并记作er(x*),
可编辑课件PPT
12

数值分析 第1章

数值分析   第1章
13 14
3.计算复杂性尽可能小 从实际需要出发,我们还需要考虑计算量的大小, 即所谓计算复杂性问题。它由以下两个因素决定的: 使用中央处理器 CPU)的时间,主要由四则运算 使用中央处理器( 的时间 主要由四则运算 的次数决定; 占用内存储器的空间,主要由使用的数据量来决 定。
4.要有数值化结果 数值计算的许多方法是建立在离散化的基础上进 行的, 其解决问题的最终结果不是解析解而是数值近似 解。对于给定的数学模型,采用不同的离散手段可以导 致不同的数值方法,应该通过计算机进行数值试验,进 行分析、比较来选定算法。 对新提出的算法,有的在理论上虽然还未证明其 收敛性,但可以从具体试验中发现其规律,为理论证明 提供线索。
x2 =
−b − b 2 − 4ac 2c = 2a −b + b 2 − 4ac
9
来严重影响 应尽量避免 来严重影响,应尽量避免。 例3

在 4 位浮点十进制数下,用消去法解线性方程
⎧0.00003 x1 − 3 x 2 = 0.6 ⎨ x1 + 2 x 2 = 1 . ⎩

2 ×10 =1 . 109 + 109
§1.1
预备知识
一、集合
把一些确定的彼此不相同的事物汇集在一起成为一 个整体,称为集合。 表示方法:描述法;列举法。 分类:有限集;无限集(可列集,不可列集) 。
9
10
可列集(可数集) : 设 A 是无限集,若 A 中的一切元素可以用自然数 编号(即 A 与自然数集 N 一一对应) ,使 A 写成 A={ A { a1 , a2 , a3 ,L an ,L },则称 A 为可列集 (或可数集) 。 否则,称为不可列集。 如:有理数集是可列集,数列构成的集合是可列 集;无理数集、[0,1]中的全体实数构成的集合是不 可列集。

数值分析(李庆杨第四版)Cht1 绪论

数值分析(李庆杨第四版)Cht1 绪论
xy
一、病态问题与条件数
考虑计算函数值问题,
f (x*) f (x) f (x)
x x
xf ( x) f (x)
Cp,
C p称为计算函数值问题的条件数. 例如f (x) x10,C p 10, f (1) 1, f (1.02) 1.24,自变量相对 误差为2%,函数值相对误差为24%.
1、面向计算机
x x2 x3 , 23
ln1 x 1 x
1 (x x3 ), 23
2、可靠的理论分析,保证收敛性、稳定性
3、良好的计算复杂性
4、数值实验
四、如何学好数值分析
1、注意掌握基本原理、处理技巧,误差分析 2、注重实际问题,练习、作业 3、积极动手上机实践
§2 数值计算的误差
一、误差来源、分类
一般Cp 10认为是病态. 其他计算问题也要考虑条件数, 考虑是否病态.
二、算法的数值稳定性
考虑初始数据误差在计算中的传播问题.
例5 计算In e101 xnexdx, n 0,1,, 并估计误差.
In 1 nIn1, n 1,2,, I0 1 e1.
( A)II0n
0.6321, 1 nIn1,
(2.2)
2
例1 42.195, 0.0375551, 8.00033, 2.71828,按四舍五
入写出上述各数具有四位有效数字的近似数.
例2 考察三位有效数字重力加速度g,
若以m/s2为单位, g≈9.80m/s2,
按(2.1),m
g 9.80 0, n
3.
1 102, 2
绝对误差限1*
(x1* x2* ) (x1*) (x2* ),
(x1*x2* ) | x1* | (x2* ) | x2* | (x1*),

数值分析第五版-李庆扬--课后习题答案

数值分析第五版-李庆扬--课后习题答案

数值分析第五版-李庆扬--课后习题答案第一章绪论1.设某0,某的相对误差为,求ln某的误差。

e某某某某某解:近似值某某的相对误差为=er某某某某1e某而ln 某的误差为eln某某ln某某ln某某某进而有(ln某某)2.设某的相对误差为2%,求某n的相对误差。

解:设f(某)某n,则函数的条件数为Cp|某n某n1|n,Cp|n某f'(某)|f(某)又f'(某)n某n1又r((某某)n)Cpr(某某)且er(某某)为2r((某某)n)0.02n3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个某某某单位,试指出它们是几位有效数字:某11.1021,某20.031,某3385.6,某某某456.430,某571.0.某解:某11.1021是五位有效数字;某某20.031是二位有效数字;某某3385.6是四位有效数字;某某456.430是五位有效数字;某某571.0.是二位有效数字。

某某某某某某某某4.利用公式(2.3)求下列各近似值的误差限:(1)某1,(2)某1.某2某4某2某3,(3)某2/某4某某某某其中某1均为第3题所给的数。

,某2,某3,某4解:121某(某2)10321某(某3)10121某(某4)10321某(某5)1012(某1某)104某某某(1)(某1某2某4)某某某(某1)(某2)(某4)1114331010102221.05103某某某(2)(某1某2某3)某某某某某某某某某某1某2(某3)某2某3(某1)某1某3(某2)1111.10210.0311010.031385.61041.1021385.61032220.215某某(3)(某2/某4)某某某某某2(某4)某4(某2)某某24110.03110356.4301032256.43056.4301055计算球体积要使相对误差限为1,问度量半径R时允许的相对误差限是多少?4解:球体体积为VR33则何种函数的条件数为RV'R4R2Cp34VR33r(V某)Cpr(R某)3r(R某)又r(V某)121故度量半径R时允许的相对误差限为r(R某)10.3331783(n=1,2,…)6.设Y028,按递推公式YnYn1100计算到Y100。

计算方法_第一章_绪论

计算方法_第一章_绪论

第一章绪论1.1 "数值分析"研究对象与特点"数值分析"是计算数学的一个主要部分.而计算数学是数学科学的一个分支,它研究用计算机求解数学问题的数值计算方法及其软件实现.计算数学几乎与数学科学的一切分支有联系,它利用数学领域的成果发展了新的更有效的算法及其理论,反过来很多数学分支都需要探讨和研究适用于计算机的数值方法.因此,"数值分析"内容十分广泛.但本书作为"数值分析"基础,只介绍科学与工程计算中最常用的基本数值方法,包括线性方程组与非线性方程求根、插值与最小二乘拟合、数值积分与常微分方程数值解法等.这些都是计算数学中最基础的内容.近几十年来由于计算机的发展及其在各技术科学领域的应用推广与深化,新的计算性学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算经济学等等,不论其背景与含义如何,要用计算机进行科学计算都必须建立相应的数学模型,并研究其适合于计算机编程的计算方法.因此,计算数学是各种计算性科学的联系纽带和共性基础,是一门兼有基础性、应用性和边缘性的数学学科.计算数学作为数学科学的一个分支,当然具有数学科学的抽象性与严密科学性的特点,但它又具有广泛的应用性和边缘性特点.现代科学发展依赖于理论研究、科学实验与科学计算三种主要手段,它们相辅相成,互相独立,可以互相补充又都不可缺少,作为三种科学研究手段之一的科学计算是一门工具性、方法性、边缘性的新学科,发展迅速,它的物质基础是计算机(包括其软硬件系统),其理论基础主要是计算数学.计算数学与计算工具发展密切相关,在计算机出现以前,数值计算方法只能计算规模小的问题,并且也没形成单独的学科,只有在计算机出现以后,数值计算才得以迅速发展并成为数学科学中一个独立学科--计算数学.当代计算能力的大幅度提高既来自计算机的进步,也来自计算方法的进步,计算机与计算方法的发展是相辅相成、互相促进的.计算方法的发展启发了新的计算机体系结构,而计算机的更新换代也对计算方法提出了新的标准和要求.例如为在计算机上求解大规模的计算问题、提高计算效率,诞生并发展了并行计算机.自计算机诞生以来,经典的计算方法业已经历了一个重新评价、筛选、改造和创新的过程,与此同时,涌现了许多新概念、新课题和能充分发挥计算机潜力、有更大解题能力的新方法,这就构成了现代意义下的计算数学.这也是数值分析的研究对象与特点.概括地说,数值分析是研究适合于在计算机上使用的实际可行、理论可靠、计算复杂性好的数值计算方法.具体说就是:第一,面向计算机,要根据计算机特点提供实际可行的算法,即算法只能由计算机可执行的加减乘除四则运算和各种逻辑运算组成.第二,要有可靠的理论分析,数值分析中的算法理论主要是连续系统的离散化及离散型方程数值求解.有关基本概念包括误差、稳定性、收敛性、计算量、存储量等,这些概念是刻画计算方法的可靠性、准确性、效率以及使用的方便性.第三,要有良好的复杂性及数值试验,计算复杂性是算法好坏的标志,它包括时间复杂性(指计算时间多少)和空间复杂性(指占用存储单元多少).对很多数值问题使用不同算法,其计算复杂性将会大不一样,例如对20阶的线性方程组若用代数中的Cramer法则作为算法求解,其乘除法运算次数需要,若用每秒运算1亿次的计算机计算也要30万年,这是无法实现的,而用"数值分析"中介绍的Gauss消去法求解,其乘除法运算次数只需3 060次,这说明选择算法的重要性.当然有很多数值方法不可能事先知道其计算量,故对所有数值方法除理论分析外,还必须通过数值试验检验其计算复杂性.本课程虽然只着重介绍数值方法及其理论,一般不涉及具体的算法设计及编程技巧,但作为基本要求仍希望读者能适当做一些计算机上的数值试验,它对加深算法的理解是很有好处的.讲解:(1)计算数学是研究用计算机求解数学问题的数值计算方法及其软件实现,"数值分析"是计算数学的主要部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其中m是整数,ai是0到9中的一个数字,a1≠0 x作为x*的近似值,具有n位(n≤k)有效数字当且仅当
x*
x
1 2
10
mn
由此可见,近似值的有效数字越多,其绝对误差越小。
例3 为了使x*= 2 的近似值的绝对误差小于10-5,
问应取几位有效数字?
解 由于 2 =1.4…,则近似值x可写为
x=±0.a1a2…ak×10 ,a1=1≠0
x3 1]
=(减少运算次数)
42 20 6
课间休息
3.截断误差 求解数学模型所用的数值方法通常是一 种近似方法,这种因方法产生的误差称为截断误差或方法 误差。例如,利用ln(x+1)的Taylor公式:
ln( x
1)
x
1 2
x2
1 3
x3
1 4
x4
...
(1) n1
1 n
xn
...
实际计算时只能截取有限项代数和计算,如取前5项有:
ln
2
1
1 2
解 所以
由已知可得: 1.235≤x*<1.245 =0.005, r= 0.005÷1.24≈0.4%
一般地,凡是由精确值经过四舍五入得到的近似值,其 绝对误差限等于该近似值末位的半个单位。
定义1 设数x是数x*的近似值,如果x的绝对误差限 是它的某一数位的半个单位,并且从x左起第一个非零数 字到该数位共有n位,则称这n个数字为x的有效数字,也 称用x近似x*时具有n位有效数字。
取I0具有四位有效数字的近似值I0≈0.6321,递推可得:
I0 0.6321 I2 0.2642 I4 0.1704 I6 0.1120 I8 -0.7280
I1 0.3679 I3 0.2074 I5 0.1480 I7 0.2160 I9 7.5520
对任何n都应有In>0,但计算结果显示I8<0,可见,虽然I0的 近似误差不超过0.5×10-4,但随着计算步数的增加,误差
x*=10, x=1 ,y*=10000, y=5
虽然y是x的5倍,但在10000内差5显然比10内差1好。

er
e x*
x* x x*
称er为近似值x的相对误差。 由于x*未知,实际使用时总是将x的相对误差取为
er
e x
x* x
x
r =/|x|称为近似值x的相对误差限。|er|≤r.
例1 设x=1.24是由精确值x*经过四舍五入得到的近似 值,求x的绝对误差限和相对误差限。
可见,在求和或差的过程中应采用由小到大的运算过程。 3.绝对值太小的数不宜作除数
由于除数很小,将导致商很大,有可能出现“溢出”现 象另外. ,设x* ,y* 的近似值分别为x,y,则z=x÷y是z*=x*÷y*
的近似值.此时,z的绝对误差满足估计式
e(z) z* z (x* x) y x( y y* ) y e(x) x e( y)
如何评价不同算法的好坏呢? 一个好的算法应具有如下点:
一个好的算法应具有如下特点:
(1)结构简单,易于计算机实现; (2)理论上要保证方法的收敛性和数值稳定性; (3)计算效率高:计算速度快,节省存储量; (4)经过数值实验检验,证明行之有效。
我们在学习的过程中,要注意掌握数值方法 的基本原理和思想,要注意方法处理的技巧及其 与计算机的结合,要重视误差分析、收敛性和稳 定性的基本理论。 随着计算机的飞速发展,数值分析方法已深入到计算 物理、计算力学、计算化学、计算生物学、计算经济学等 各个领域。本课仅限介绍最常用的数学模型的最基本的数 值分析方法。
3! 5! 7!
x-sinx=
x3 3!
x5 5!
x7 7!
...,
该级数为交错级数,可以根据精确要求确 定项数。以3项为例给出计算公式,则有: x sin x x3 x5 x7 =(产生截断误差)
3! 5! 7!
x4 [
x2
1 ]x3
=(避免大数吃小数)
7! 5! 3!
x2 [(
x2 1)
则只需n次乘法和n次加法运算。 5.选用数值稳定性好的算法 一种数值算法,如果其计算舍入误差积累是可控制的,
则称其为数值稳定的,反之称为数值不稳定的。
例如积分 I n 01 x ne x1dx
利用分部积分法可得计算In的递推公式 In=1-nIn-1,n=1,2,…
由于,n=0时
I0 01 e x1dx 1 e1 0.632120558 ......
课堂练习
2. 下列近似值的绝对误差限都是0.005, x=1.38, y=-0.0312, z=0.86 104,问各个近 似值有几位有效数字?
解:x有3位有效数字,y有1位有效数字, z没有有效数字。
课堂练习
3.要使 17 的相对误差限不超过0.1%,应取 几位有效数字?
解: 17的首位数字a1=4,设x有n位有效
明显增大。这说明这里的递推公式是数值不稳定的。
事实上,由于
In=1-nIn-1,和I*n=1-nI*n-1 ,n=1,2,…
可得 In-I*n=-n(In-1-I*n-1)=…=(-1)nn!(I0-I*0)
可见,随着计算步数的增加,误差迅速放大,使结果失真。
若将计算公式改写为
I n1
1 n
(1
In),

2
x
1 2
101n
105
故取n=6,即取6位有效数字。此时x=1.41421。
注:精确值的有效数字可认为有无限多位。
有效数字与相对误差限的关系
若x有n位有效数字,则其相对误差限为
r
1 2a1
10 n1
r
,反之,若x的相对误差限
1
10 n1
2(a1 1)
则x至少有n位有效数字。
§4 数值计算中的若干原则
因此,计算量越小越好。例如计算n次多项式:
pn (x) an x n an1x n1 ... a1x a0
若直接逐项计算,大约需要乘法运算次数为

n (n 1) ... 2 1 n(n 1) 次 2
若将多项式改写为:
pn (x) (...((an x an1)x an2 )x ...) x a0
§2 误差的来源和分类
误 1.差模是型描误述差数值数计学算模之型中通近常似是值由的实精际确问程题度抽,象在得数到值的, 计一般算带中有十误分差重,要这,种误误差差按称来为源模可型分误为差模。型误差、观测误差、 截断误2.差观和测舍误入差误差数四学种模。型中包含的一些物理参数通常是 通过观测和实验得到的,难免带有误差,这种误差称为观 测误差。
,递推得:
I9 0.0684 I7 0.1121 I5 0.1455 I3 0.2073 I1 0.3679
I8 0.1035 I6 0.1268 I4 0.1709 I2 0.2642 I0 0.6321
可见,I0已精确到小数点后四位。
第一章练习题 习题1(第10页) 1-1,1-2,1-3,1-4
需要计算(n-1)n!次乘法,则Cramer法则至少需要(n2-1)n!
次乘法,当n=20时,有(202-1)20!9.7×1020次乘法运算。
如果用每秒钟计算亿次乘除运算的计算机,约需要:
9.7×1020÷108 ÷60 ÷60 ÷24 ÷365≈30万年
其次,即使是可行算法,则计算量越大积累的误差也越大,
1 3
1 4
1 5
ln
2
1
1 2
1 3
1 4
1 5
这里产生误差(记作R5)
R5
1 6
1 7
1 8
1 9
1 10
...
4.舍入误差 由于计算机只能对有限位数进行运算,
在运算中象 e、
2
、1 等都要按舍入原则保留有限位,这 3
时产生的误差称为舍入误差或计算误差。
在数值分析中,我们总假定数学模型是准确的,因而 不考虑模型误差和观测误差,主要研究截断误差和舍入误 差对计算结果的影响。
在数值计算中,如果遇到两个相近的数相减运算,可
考虑改变一下算法以避免两数相减。例如:
当x1
x2时,有 log
x1
log
x2
log
x1 x2
当x 0时,有1cosx 2sin 2 x 2
当x 1时,有
x 1
x
1 x 1
x
例4 求方程x2-64x+1=0的两个根,使它们至少具有四
位有效数字。( 1023 31.984 ) 解 由求根公式有 x1 32 1023 63.984
课堂练习
1.设x=-2.18和y =2.1200分别是由精确值
x* 和 y* 经过四舍五入得到的近似值,问 (x), (y), r (x), r ( y) 各是多少?
解: (x)=0.005, (y)=0.00005,
r (x) =0.005/2.18 0.23%
r ( y) =0.00005/2.1200 0.0024%
数字,由相对误差限与有效数字的关系
可知:
r
1 10 n1 2a1
1 10 n1 8
令 1 10n1 0.1% ,解得 n 3.097 ,即n=4
8
课堂练习
4.下面公式如何变形才能使数值计算得到 比较精确的结果?
x-sinx (x<<1) 解:将sinx在x=0处Taylor展开,有
sinx= x x3 x5 x7 ..., 故有
例2 已知下列近似值的绝对误差限都是0.005,问它们 具有几位有效数字? a=12.175,b=-0.10,c=0.1,d=0.0032
解 由于0.005是小数点后第2数位的半个单位,所以 a有4位有效数字1、2、1、7,b有2位有效数字1、0,c有1位 有效数字1,d没有有效数字。
相关文档
最新文档