数值分析:第一章 绪论
数值分析课程第五版课后习题答案
![数值分析课程第五版课后习题答案](https://img.taocdn.com/s3/m/455597667e21af45b307a824.png)
*
[解] = (0.031 × 385.6) 1 × 10 − 4 + (1.1021 × 385.6) 1 × 10 −3 + (1.1021 × 0.031) 1 × 10 −3 ; 2 2 2 −3 −3 −3 = 0.59768 × 10 + 212.48488 × 10 + 0.01708255 × 10 = 213.09964255 × 10 −3 = 0.21309964255
ε * (R* ) 1 1 1 从而 ε * ( R * ) = 1% × R * ,故 ε r* ( R * ) = 。 = 1% × = * 3 300 3 R
6 、设 Y0 = 28 ,按递推公式 Yn = Yn −1 − 1 783 (n = 1,2, ) 计算到 Y100 ,若取 100
783 ≈ 27.982 (五位有效数字, )试问计算 Y100 将有多大误差? [解]令 Yn 表示 Yn 的近似值, e * (Yn ) = Yn − Yn ,则 e * (Y0 ) = 0 ,并且由 1 1 × 27.982 , Yn = Yn −1 − × 783 可知, 100 100 1 × (27.982 − 783 ) ,即 Yn − Yn = Yn −1 − Yn −1 − 100 1 2 从 e * (Yn ) = e * (Yn −1 ) − × (27.982 − 783 ) = e * (Yn − 2 ) − × (27.982 − 783 ) = , 100 100 Yn = Yn −1 − 而 e * (Y100 ) = e * (Y0 ) − (27.982 − 783 ) = 783 − 27.982 ,
而 783 − 27.982 ≤
1 1 × 10 −3 ,所以 ε * (Y100 ) = × 10 −3 。 2 2
《数值分析》第1章 引言
![《数值分析》第1章 引言](https://img.taocdn.com/s3/m/e75d80240c22590103029d41.png)
( 1.2)
可见结果是相当精确的.实际上结果的六位数字都是正确的.
2 算法常表现为一个连续过程的离散化
例2 计算积分值
1
I
1
dx
0 1 x
编辑ppt
结束
将[0,1]分为4等分,分别计算4个小曲边梯形的面积的 近似值,然后加起来作为积分的近似值(如图1-1).记被积 函数为 f(x) ,即 f (x) 1
数值分析是计算数学的一个主要部分,方法解决科 学研究或工程技术问题,一般按如下途径进行:
实际问题
模型设计
算法设计
程序设计
上机计算
编辑ppt
问题的解 结束
其中算法设计是数值分析课程的主要内容.
数值分析课程研究常见的基本数学问题的数值解法.包含 了数值代数(线性方程组的解法、非线性方程的解法、矩阵求 逆、矩阵特征值计算等)、数值逼近、数值微分与数值积分、 常微分方程及偏微分方程的数值解法等.它的基本理论和研究 方法建立在数学理论基础之上,研究对象是数学问题,因此 它是数学的分支之一.
误差限:*|e*|的一个上 . 界
例如,毫 76米 5x尺 0.5
在工程中常记为:x= x*± *.
如 l=10.2±0.05mm ,R=1500±100Ω
编辑ppt
2、相对误差与相对误差限 误差不能完全刻画近似值的 精度.如测量百米跑道产生10cm的误差与测量一个课桌长度 产生1cm的误差,我们不能简单地认为后者更精确,还应考 虑被测值的大小.下面给出定义:
误差分析是一门比较艰深的专门学科.在数值分析中主要 讨论截断误差及舍入误差.但一个训练有素的计算工作者, 当发现计算结果与实际不符时,应当能诊断出误差的来源, 并采取相应的措施加以改进,直至建议对模型进行修改.
数值分析教材
![数值分析教材](https://img.taocdn.com/s3/m/517c31c56137ee06eff91873.png)
第一章绪论与误差第一节数值分析研究对象及特点一、数值分析课的地位:数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支。
它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。
用计算机解决科学技术和工程问题的步骤:实际问题→建立数学模型→研究计算方法→程序设计→上机计算→求出结果。
例如:⑴ 某一地区的地形图,用空中航测方法,空中连续拍照。
⑵ 为形成三维地形图,建立了一个大型超定线性方程组。
⑶ 采用最小二乘方法求解该方程组的最小二乘解, 然后再整体平滑。
⑷ 编程序,形成一个大型程序,上机进行计算。
二、数值分析课的主要内容:计算机只能进行加减乘除四则运算和一些简单的函数计算(即使是函数也是通过数值分析方法处理,转化为四则运算而形成了的一个小型软件包)。
1.数值代数:求解线性和非线性方程的解法, 分直接方法和间接方法。
2.插值和数值逼近。
3.数值微分和数值积分。
4.常微分方程和偏微分方程数值解法。
三、数值分析具有的特点1. 面向计算机,要根据计算机的特点提供切实可行的有效算法,即算法只能包含加、减、乘、除和逻辑运算,这些运算是计算机能直接处理的运算。
2. 有可靠的理论分析,能任意逼近并达到精度要求,对近似算法要保证收敛性和数值稳定性,还要对误差进行分析。
3. 要有好的计算复杂性。
时间复杂性好是指节省时间,空间复杂性好是指节省存储量,这也是建立算法要研究的问题,它关系到算法能否在计算机上实现。
4. 要有数值试验,即任何一个算法除了从理论上要满足上述三点外还要通过数值试验证明是行之有效的。
四、对算法所要考虑的问题:1. 计算速度1 例如:求解一个20阶线性方程组,用加减消元法需3000次乘法运算,而用克莱姆法则要进行次运算,如用每秒1亿次乘法运算的计算机要30万年。
2. 存储量。
大型问题有必要考虑。
3. 数值稳定性。
在大量计算中,舍入误差是积累还是能控制,这与数值稳定性算法有关。
例一元二次方程其精确解为如用求根公式:以及字长为8位的计算器求解有:则:,那么: 的值与精确解有天壤之别。
数值分析
![数值分析](https://img.taocdn.com/s3/m/051aa007866fb84ae45c8d7a.png)
* * 1 2 * 1 * * 1 * * * * * * * * * * *
到x *的第一位非零数字共有 n位,就说x * 有n位有效数字.
即
x* 10m (a1 a2 101 an 10( n1) ) 1 x x * 10mn1 2
(2.1)
其中a1 0 . 并且 (2.2)
例1
• 按四舍五入写出下述各数具有5位有效数字的近似 数: 187.9325 0.037 855 51 8.000 033 2.718 281 8
加法和减法结果的误差
(x
* 1
x2 ) ( x1 x2 )
* 1
*
(x
x1 ) ( x2 x2 )
*
*
e( x ) e( x2 )
* 1
误差限: (x x ) (x ) (x )
* 1 * 2 * 1 * 2
乘法的结果误差
x x x1 x2 x x ( x x1 x )(x2 x2 x2 ) x1 x2 ( x1 e( x1 ))(x2 e( x2 )) x x x x x e( x2 ) x2 e( x ) e( x )e( x2 ) x e ( x2 ) x2 e ( x ) e ( x ) e ( x 2 )
例2 重力加速度
若以m/s2为单位, g≈9.80m/s2, 1 m n 1 1 * 10 g 9.80 102 , 2 2 * 1 按(2.1), m 0, n 3. 绝对误差限 1 102. 2 若以km/s2为单位, g≈0.00980m/s2, 1 g 0.00980 105 , 2 * 1 按(2.1), m 3, n 3. 绝对误差限 2 105. 2 而相对误差限相同:
数值分析引论习题与答案(易大义版)
![数值分析引论习题与答案(易大义版)](https://img.taocdn.com/s3/m/91df894584254b35effd3463.png)
数值分析引论课后习题与答案易大义版第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限.解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。
线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3)由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
数值分析--第1章 绪论
![数值分析--第1章 绪论](https://img.taocdn.com/s3/m/34c7247e84254b35effd347d.png)
数值分析--第1章绪论第一章绪论上世纪中叶诞生的计算机给科学、工程技术和人类的社会生活带来一场新的革命。
它使科学计算平行于理论分析和实验研究,成为人类探索未知科学领域和进行大型工程设计的第三种方法和手段。
在独创性工作的先行性研究中,科学计算更有突出的作用。
在今天,熟练地运用电子计算机进行科学计算,已成为科学工作者的一项基本技能。
然而,科学计算并不是计算机本身的自然产物,而是数学与计算机结合的结果,它的核心内容是以现代化的计算机及数学软件为工具,以数学模型为基础进行模拟研究。
近年来,它同时也成为数学科学本身发展的源泉和途径之一。
1 数值分析的研究对象与特点数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。
一般地说,用计算机解决科学计算问题,首先需要针对实际问题提炼出相应的数学模型,然后为解决数学模型设计出数值计算方法,经过程序设计之后上机计算,求出数值结果,再由实验来检验。
概括为实际问题数学模型计算方法程序设计计算结果由实际问题的提出到上机求得问题的解答的整个过程都可看作是应用数学的任务。
如果细分的话,由实际问题应用有关科学知识和数学理论建立数学模型这一过程,通常作为应用数学的任务,而根据数学模型提出求解的数值计算方法直到编出程序上机计算出结果,这一过程则是计算数学的任务,即数值分析研究的对象。
因此,数值分析是寻求数学问题近似解的方法、过程及其理论的一个数学分支。
它以纯数学作为基础,但却不完全像纯数学那样只研究数学本身的理论,而是着重研究数学问题求解的数值方法及与此有关的理论,包括方法的收敛性,稳定性及误差分析;还要根据计算机的特点研究计算时间最省(或计算费用最省)的计算方法。
有的方法在理论上虽然还不够完善与严密,但通过对比分析,实际计算和实践检验等手段,被证明是行之有效的方法也可采用。
因此数值分析既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际试验的高度技术性的特点,是一门与使用计算机密切结合的实用性很强的数学课程。
第1章数值分析-绪论
![第1章数值分析-绪论](https://img.taocdn.com/s3/m/e789fa193b3567ec112d8a0d.png)
实际运算 Er (a) (x a) / a
r / a
例5 a=3.14是π的近似值。
E(a) 3.14 0.002
Er
(a)
0.002
0.002 3.14
6.36942104
三、有效数字 例如 3.14159265...
取3位,a=3.14,δ≤0.002 取5位,a=3.1416,δ≤0.000008
a 10m 0.a1a2...an
a1是1到9中的一个整数, a2,…,an为0到9中的任
意整数。m为整数,
且
E(a) x a 1 10mn 2
成立,
ห้องสมุดไป่ตู้
则称a近似 x 有n位有效数字。
【注】 近似数的有效数字不但给出了近似值的大小, 而且还指出了它的绝对误差限。
数值分析——绪论
例6 设 x 0.002567, a 0.00256 102 0.256 则 x a 0.00005 1 104
2
因为m=-2,所以n=2, 即a有2位有效数字。
若 a 0.00257 102 0.257
则
x a 0.000003 0.000005 1 105 2
因为m=-2,所以n=3, 即a有3位有效数字。
例7 设x =8.00001,则a=8.0000具有5位有效数字。
例如,用毫米刻度的米尺测量一长度 x , 读出和该长度接近的刻度 a, a 是 x
的近似值,它的误差限是0.5mm.如读出的长度 是765mm,则
x 765 0.5 764.5 x 765.5
数值分析——绪论
对于一般情形 x a 即
a x a ,有时记为 x=a
例4 绝对误差的局限性例子。
数值分析第五版_李庆扬__课后习题答案
![数值分析第五版_李庆扬__课后习题答案](https://img.taocdn.com/s3/m/c7c9da66011ca300a7c3900f.png)
第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈ 进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()n f x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅ 且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少?解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=10099Y Y ∴=-9998Y Y =9897Y Y =……10Y Y =-依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。
数值分析原理课件第一章
![数值分析原理课件第一章](https://img.taocdn.com/s3/m/caeefdacfc0a79563c1ec5da50e2524de518d015.png)
第一章 绪 论本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题.§1.1 引 言计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。
由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括(1)非线性方程的近似求解方法;(2)线性代数方程组的求解方法;(3)函数的插值近似和数据的拟合近似;(4)积分和微分的近似计算方法;(5)常微分方程初值问题的数值解法;(6)优化问题的近似解法;等等从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关.计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差.我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断,从而产生截断误差. 如的计算是无穷过程,当用作为的 +++=!21!111e !1!21!111n e n ++++= e 近似时,则需要进行有限过程的计算,但产生了截断误差.e e n - 当用计算机计算时,因为舍入误差的存在,我们也只能得到的近似值,也就是n e n e *e 说最终用近似,该近似值既包含有舍入误差,也包含有截断误差.*e e 当参与计算的原始数据是从仪器中观测得来时,也不可避免得有观测误差.由于这些误差的大量存在,我们得到的只能是近似结果,进而对这些结果的“可靠性”进行分析就是必须的,它成为计算方法的第二个显著特点. 可靠性分析包括原问题的适定性和算法的收敛性、稳定性.所谓适定性问题是指解存在、惟一,且解对原始数据具有连续依赖性的问题. 对于非适定问题的求解,通常需要作特殊的预处理,然后才能做数值计算. 在这里,如无特殊说明,都是对适定的问题进行求解.对于给定的算法,若有限步内得不到精确解,则需研究其收敛性. 收敛性是研究当允许计算时间越来越长时,是否能够得到越来越可靠的结果,也就是研究截断误差是否能够趋于零.对于给定的算法,稳定性分析是指随着计算过程的逐步向前推进,研究观测误差、舍入对于同一类模型问题的求解算法可能不止一种,常希望从中选出高效可靠的求解算法. 如我国南宋时期著名的数学家秦九韶就提出求n 次多项式值0111a x a x a x a n n nn ++++-- 的如下快速算法;n a s =; k n a t -=t sx s +=),,2,1(n k =它通过n 次乘法和n 次加法就计算出了任意n 次多项式的值. 再如幂函数可以通过如下64x 快速算法计算出其值;x s =;循环6次s s s ⋅=如上算法仅用了6次乘法运算,就得到运算结果.算法最终需要在计算机上运行相应程序,才能得到结果,这样就要关注算法的时间复杂度(计算机运行程序所需时间的度量)、空间复杂度(程序、数据对存储空间需求的度量)和逻辑复杂度(关联程序的开发周期、可维护性以及可扩展性). 事实上,每一种算法都有自己的局限性和优点,仅仅理论分析是很不够的,大量的实际计算也非常重要,结合理论分析以及相当的数值算例结果才有可能选择出适合自己关心问题的有效求解算法. 也正因如此,只有理论分析结合实际计算才能真正把握准算法.§1.2 误差的度量与传播一、误差的度量误差的度量方式有绝对误差、相对误差和有效数字.定义1.1 用作为量的近似,则称为近似值的绝对误差.*x x )(:**x e x x =-*x 由于量x 的真值通常未知,所以绝对误差不能依据定义求得,但根据测量工具或计算情况,可以估计出绝对误差绝对值的一个较小上界,即有ε (1.1)ε≤-=x x x e **)(称正数为近似值的绝对误差限,简称误差. 这样得到不等式ε*x εε+≤≤-**x x x 工程中常用ε±=*x x 表示近似值的精度或真值x 所在的范围.*x 误差是有量纲的,所以仅误差数值的大小不足以刻划近似的准确程度. 如量 (1.2)m m cm s μ50001230000005.023.15.0123±=±=±=为此,我们需要引入相对误差定义1.2 用作为量的近似,称为近似值的相对误差. 当0*≠x x )(:**x e xxx r =-*x 是x 的较好近似时,也可以用如下公式计算相对误差*x (1.3)***)(xx x x e r -= 显然,相对误差是一个无量纲量,它不随使用单位变化. 如式(1.2)中的量s 的近似,无论使用何种单位,它的相对误差都是同一个值.同样地,因为量x 的真值未知,我们需要引入近似值的相对误差限,它是相*x )(*x r ε对误差绝对值的较小上界. 结合式(1.1)和(1.3),相对误差限可通过绝对误差限除以近似*x 值的绝对值得到,即(1.4)***)()(xx x r εε=为给出近似数的一种表示法,使之既能表示其大小,又能体现其精确程度,需引入有效数字以及有效数的概念.定义1.3 设量的近似值有如下标准形式x *x p n ma a a a x 21*.010⨯±= (1.5)()pm p n m n m m a a a a ----⨯++⨯++⨯+⨯±101010102211 =其中且,m 为近似值的量级. 如果使不等式}9,,1,0{}{1 ⊂=pi i a 01≠a (1.6)n m x x -⨯≤-1021*成立的最大整数为n ,则称近似值具有n 位有效数字,它们分别是、、… 和 . *x 1a 2a n a 特别地,如果有,即最后一位数字也是有效数字,则称是有效数.p n =*x 从定义可以看出,近似数是有效数的充分必要条件是末位数字所在位置的单位一半是绝对误差限. 利用该定义也可以证明,对真值进行“四舍五入”得到的是有效数. 对于有效数,有效数字的位数等于从第一位非零数字开始算起,该近似数具有的位数. 注意,不能给有效数的末位之后随意添加零,否则就改变了它的精度.例1.1 设量,其近似值,,. 试回答这三个近π=x 141.3*1=x 142.3*2=x 722*3=x 似值分别有几位有效数字,它们是有效数吗?解 这三个近似值的量级,因为有1=m 312*110211021005.000059.0--⨯=⨯=≤=- x x 413*2102110210005.00004.0--⨯=⨯=≤=- x x571428571428.3*3=x 312*310211021005.0001.0--⨯=⨯=≤=- x x 所以和都有3位有效数字,但不是有效数. 具有4位有效数字,是有效数.*1x *3x *2x 二、误差的传播这里仅介绍初值误差传播,即假设自变量带有误差,函数值的计算不引入新的误差. 对于函数有近似值,利用在点处),,,(21n x x x f y =),,,(**2*1*n x x x f y =),,,(**2*1n x x x 的泰勒公式(Taylor Formula),可以得到 )(),,,()(*1**2*1**i i ni n i x x x x xf y y y e -≈-=∑=(1.7))(),,,(*1**2*1i ni n i x e x x xf ∑== 其中,是的近似值,是的绝对误差. 式(1.7)表明函ii x f f ∂∂=:*i x i x )(*i x e *i x ),,2,1(n i =数值的绝对误差近似等于自变量绝对误差的线性组合,组合系数为相应的偏导数值. 从式(1.7)也可以推得如下函数值的相对误差传播近似计算公式 (1.8))(),,,()(***1**2*1*i r i ni ni r x e yx x x x f y e ∑=≈对于一元函数,从式(1.7)和(1.8)可得到如下初值误差传播近似计算公式)(x f y = (1.9))()()(***x e x f y e '≈ (1.10))()()(*****x e yx x f y e r r '≈式(1.9)表明,当导数值的绝对值很大时,即使自变量的绝对误差比较小,函数值的绝对误差也可能很大.例1.2 试建立函数的绝对误差(限)、相对误差n n x x x x x x f y +++== 2121),,,(的近似传播公式,以及时的相对误差限传播公式.{}ni i x 1*0=> 解 由公式(1.7)和(1.8)可分别推得和的绝对误差、相对误差传播公式如下(1.11)∑∑==≈ni i ini nix e x e x x xf y e 1**1**2*1*)()(),,,()(= (1.12)∑∑==≈ni i r i i r i ni ni r x e yx x e y x x x x f y e 1******1**2*1*)()(),,,()(= 进而有∑∑∑===≤≤≈ni i n i ini ix x e xe y e 1*1*1**)()()()(ε于是有和的绝对误差限近似传播公式 ∑=≈ni ixy 1**)()(εε当时,由式(1.3)推得相对误差限的近似传播公式{}ni i x 1*=>)(max )(max )(max )()()(*11***11***11****1**i r ni ni i ir n i ni i i r n i ni i r i ni ir x yx x yx x x y x yxy εεεεεε≤≤=≤≤=≤≤====≤=≈∑∑∑∑ 例1.3使用足够长且最小刻度为1mm 的尺子,量得某桌面长的近似值3.1304*=a mm ,宽的近似值mm (数据的最后一位均为估计值). 试求桌子面积近似值的绝8.704*=b 对误差限和相对误差限.解 长和宽的近似值的最后一位都是估计位,尺子的最小刻度是毫米,故有误差限 mm ,mm 5.0)(*=a ε5.0)(*=b ε面积,由式(1.7)得到近似值的绝对误差近似为ab S =***b a S = )()()(*****b e a a e b S e +≈进而有绝对误差限 mm 255.10045.03.13045.08.704)()()(*****=⨯+⨯=+≈b a a b S εεε相对误差限 %11.00011.08.7043.130455.1004)()(***=≈⨯=≈S S S r εε§1.3 数值实验与算法性能比较本节通过几个简单算例说明解决同一个问题可以有不同的算法,但算法的性能并不完全相同,他们各自有自己的适用范围,并进而指出算法设计时应该注意的事项. 算例1.1 表达式,在计算过程中保留7位有效数字,研究对不同)1(1111+=+-x x x x 的x ,两种计算公式的计算精度的差异.说明1:Matlab 软件采用IEEE 规定的双精度浮点系统,即64位浮点系统,其中尾数占52位,阶码占10位,尾数以及阶码的符号各占1位. 机器数的相对误差限(机器精度)eps=2-52≈2.220446×10-16,能够表示的数的绝对值在区间(2.2250739×10-308,1.797693×10308)内,该区间内的数能够近似表达,但有舍入误差,能够保留至少15位有效数字. 其原理可参阅参考文献[2, 4].分析算法1: 和算法2: 的误差时,精确解用双精111)(1+-=x x x y )1(1)(2+=x x x y 度的计算结果代替. 我们选取点集中的点作为x ,比较两种方法误差的差异.301}{=i i π 从图1.1可以看出,当x 不是很大时,两种算法的精度相当,但当x 很大时算法2的精度明显高于算法1. 这是因为,当x 很大时,和是相近数,用算法1进行计算时出x 111+x 现相近数相减,相同的有效数字相减后变成零,于是有效数字位数急剧减少,自然相对误差增大. 这一事实也可以从误差传播公式(1.12)分析出. 鉴于此,算法设计时,应该避免相近数相减.在图1.2中我们给出了当x 接近时,两种算法的精度比较,其中变量x 依次取为1-. 从图中可以看出两种方法的相对误差基本上都为,因而二者的精度相当.{}3011=--i iπ710-图1.1 算例1.1中两种算法的相对误差图()+∞→x图1.2 算例1.1中两种算法的精度比较)1(-→x 算例1.2 试用不同位数的浮点数系统求解如下线性方程组⎩⎨⎧=+=+2321200001.02121x x x x 说明2:浮点数系统中的加减法在运算时,首先按较大的阶对齐,其次对尾数实施相应的加减法运算,最后规范化存入计算机.算法1 首先用第一个方程乘以适当的系数加至第二个方程,使得第二个方程的的系1x 数为零,这时可解出;其次将带入第一个方程,进而求得(在第三章中称该方法为高2x 2x 1x 斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法1a 和算法1b . 算法 2 首先交换两个方程的位置,其次按算法1计算未知数 (第三章中称其为选主元的高斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法2a 和算法2b .方程组的精确解为, ,用不同的算法计算出的...25000187.01=x ...49999874.02=x 结果见表1.1.表1.1 对算例1.2用不同算法的计算结果比较算例1.2*1x )(*1x r ε*2x )(*2x r ε算法1a 0.00000.10×1010.50000.25×10-7算法2a 0.25000.75×10-70.50000.25×10-7算法1b 0.26000000.40×10-10.49999870.10×10-6算法2b0.25000200.50×10-80.50000000.25×10-7对于算例1.2,表中的数据表明,当用4位尾数计算时,算法1给出错误的结果,算法2则给出解很好的近似. 这是因为在实现算法1时,需要给第一个方程乘以加00001.0/2-至第二个方程,从而削去第二个方程中的系数,但在计算的系数时需做如下运算1x 2x(1.13)661610000003.0104.0103.0104.03200001.02⨯⨯⨯⨯=+⨯+=-+--对上式用4位尾数进行计算,其结果为. 因为舍入误差,给相对较大的数加以6104.0⨯-相对较小的数时,出现大数“吃掉”小数的现象. 计算右端项时,需做如下运算(1.14)661610000002.0102.0102.0102.02100001.02⨯⨯⨯⨯=+⨯+=-+--同样出现了大数吃小数现象,其结果为. 这样,得到的变形方程组6102.0⨯-⎩⎨⎧⨯-=⨯-⨯=⨯+⨯62612114102.0104.0101.0102.0101.0x x x 中没有原方程组中第二个方程的信息,因而其解远偏离于原方程组的解. 该算法中之所以出现较大数的原因是因为运算,因而算法设计中尽可能避免用绝对值较大的数00001.0/2-除以绝对值较小的数. 其实当分子的量级远远大于分母的量级时,除法运算还会导致溢出,计算机终止运行.虽从单纯的一步计算来看,大数吃掉小数,只是精度有所损失,但多次的大数吃小数,累计起来可能带来巨大的误差,甚至导致错误. 例如在算法1a 中出现了两次大数吃小数现象,带来严重的后果. 因而尽可能避免大数吃小数的出现在算法设计中也是非常必要的. 当用较多的尾数位数进行计算,舍入误差减小,算法1和2的结果都有所改善,算法1的改进幅度更大些.算例1.3 计算积分有递推公式,已知⎰+=1055dx x x I n ),2,1(511 =-=-n I nI n n . 采用IEEE 双精度浮点数,分别用如下两种算法计算的近似值.56ln 0=I 30I算法1 取的近似值为,按递推公式计算0I 6793950.18232155*0=I *1*51--=n n I nI *30I 算法2 因为,取的近似值为)139(5156)139(611039103939+⨯=<<=+⨯⎰⎰dx x I dx x 39I ,按递推公式计算3333330.004583332001240121*39≈⎪⎭⎫ ⎝⎛+=I ⎪⎭⎫ ⎝⎛-=-**1151n n I n I *30I 算法1和算法2 的计算结果见表1.2. 误差绝对值的对数图见图1.3.表1.2 算例1.3的计算结果算法1算法2n *nI n n I I -*n *nI nn I I -*18.8392e-002 1.9429e-01639 4.5833e-0033.9959e-0042 5.8039e-0029.8532e-016384.2115e-0037.9919e-0053 4.3139e-002 4.9197e-01537 4.4209e-003 1.5984e-0054 3.4306e-002 2.4605e-01436 4.5212e-003 3.1967e-0065 2.8468e-002 1.2304e-01335 4.6513e-003 6.3935e-0076 2.4325e-002 6.1520e-01334 4.7840e-003 1.2787e-007………33 4.9255e-003 2.5574e-00825 1.1740e+001 1.1734e+00132 5.0755e-003 5.1148e-00926-5.8664e+001 5.8670e+00131 5.2349e-003 1.0230e-00927 2.9336e+002 2.9335e+002 305.4046e-003 2.0459e-01028-1.4667e+003 1.4668e+003 297.3338e+0037.3338e+003 30-3.6669e+004 3.6669e+004图1.3 算例1.3用不同算法计算结果的误差绝对值的对数图从表1.2中的计算结果可以看出,算法1随着计算过程的推进,绝对误差几乎不断地以5的倍数增长,即有0*02*221*1*555I I I I I I I I n n n n n n n -≈≈-≈-≈----- 成立. 对于逐步向前推进的算法,若随着过程的进行,相对误差在不断增长,导致产生不可靠的结果,这种算法称之为数值不稳定的算法. 对于算法1绝对误差按5的幂次增长,但真值的绝对值却在不断变小且小于1,相对误差增长的速度快于5的幂次,导致产生错误的结果,因而算法1数值不稳定,不能使用. 而算法2随着计算过程的推进,绝对误差几乎不断地缩小为上一步的1/5,即有m m n m n n n n n n n I I I I I I I I 5/5/5/*22*21*1*++++++-≈≈-≈-≈- 成立. 绝对误差不断变小,真值的绝对值随着过程向前推进却在变大,这样相对误差也越来越小,这样的方法称之为数值稳定的算法. 算法1和算法2的误差对数示意图见图1.3. 这个算例告诉我们应该选用数值稳定的算法.知识结构图⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧算法设计要点数值方法的稳定性数值方法的收敛性算法多元函数一元函数传播有效数字相对误差(限)绝对误差(限)度量截断误差舍入误差误差的产生误差误差与算法习题一1 已知有效数,,. 试给出各个近似值的绝对误105.3*1-=x 4*210125.0⨯=x 010.0*3=x 差限和相对误差限,并指出它们各有几位有效数字.2 证明当近似值是x 的较好近似时,计算相对误差的计算公式和相差一个*x x x x -***xxx -和同阶的无穷小量.2*⎪⎪⎭⎫⎝⎛-x x x 3 设x 的近似值具有如式(1.5)的表示形式,试证明*x 1)若具有n 位有效数字,则相对误差;*x n r a x e -⨯≤11*1021)(2)若相对误差,则至少具有n 位有效数字.n r a x e -⨯+≤11*10)1(21)(*x 4 试建立二元算术运算的绝对误差限传播近似计算公式.5 试建立如下表达式的相对误差限近似传播公式,并针对第1题中数据,求下列各近似值的相对误差限.1) ; 2) ; 3) *3*2*1*1x x x y +=3*2*2x y =*3*2*3/x x y =6若例题1.3中使用的尺子长度是80mm ,最小刻度为1mm ,量得某桌面长的近似值mm ,宽的近似值mm . 试估计桌子长度、宽度的绝对误差限,并3.1304*=a 8.704*=b 求用该近似数据计算出的桌子面积的绝对误差限和相对误差限.7 改变如下计算公式,使其计算结果更为精确.1) 且0,cos 1≠-x xx1<<x 2)1,1ln )1ln()1(ln 1>>--++=⎰+N N N N N xdx N N3) 1,133>>-+x x x 8 (数值试验)试通过分析和数值试验两种手段,比较如下三种计算近似值算法的可靠性.1-e 算法1 ;∑=--≈mn nn e 01!)1( 算法2 ;101!1-=-⎪⎭⎫ ⎝⎛≈∑m n n e算法3 ;101)!(1-=-⎪⎪⎭⎫ ⎝⎛-≈∑m n n m e9 (数值试验)设某应用问题归结为如下递推计算公式 ,,72.280=y 251-=-n n y y,2,1=n 在计算时取为具有5位有效数字的有效数. 试分析近似计算公式的2*c **1*5c y y n n -=-绝对误差传播以及相对误差传播情况,并通过数值实验验证 (准确值可以用IEEE 双精度浮点运算结果代替),该算法可靠可用吗?。
数值分析课程第五版课后习题答案
![数值分析课程第五版课后习题答案](https://img.taocdn.com/s3/m/4cb52bc7da38376baf1faee4.png)
第一章 绪论3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(2.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
[解]53232323*42*4*2*2*41***4*2*1088654.01021)430.56(461.561021)430.56(461.561021)430.56(031.01021430.561)()()(1)()/(-----=⨯≈⨯⨯=⨯⨯=⨯⨯+⨯⨯=+=⎪⎪⎭⎫⎝⎛∂∂=∑x x x x x x x f x x e n k k kεεε。
数值分析第1章绪论
![数值分析第1章绪论](https://img.taocdn.com/s3/m/930b5961905f804d2b160b4e767f5acfa0c78343.png)
THANKS
感谢您的观看
算法创新
在数值分析中,创新算法的提出是推 动学科发展的重要动力。新的算法可 以解决传统算法难以处理的问题,提 高计算效率和精度。
Part
05
Байду номын сангаас
数值分析的展望与启示
数值分析与其他学科的交叉研究
数值分析与物理学的交叉
数值分析在解决物理问题中扮演着重要角色,如流体动力学、电磁学和量子力学等领域。 通过数值模拟和计算,可以更深入地理解物理现象和预测新现象。
Part
04
数值分析的挑战与未来发展
数值稳定性的挑战
数值稳定性问题
在数值分析中,算法的数值稳定性是一个重要的问题。不稳定的算法可能会导致计算结果的误差累积,从而影响 结果的精度。
解决方法
为了提高数值稳定性,可以采用多种方法,如改进算法、增加迭代次数、使用稳定的数据类型等。
高性能计算的需求
高性能计算的重要性
或最小化线性目标函数问 题,如单纯形法等。
微分法
数值微分
利用已知函数值估计函数在某点 的导数值。
偏微分方程数值解
通过有限差分法、有限元法等求 解偏微分方程的数值解。
数值积分
利用已知函数值计算函数在某个 区间的积分值。
常微分方程数值解
通过离散化方法求解常微分方程 的数值解,如欧拉法、龙格-库塔 法等。
逼近法
最佳平方逼近
利用已知的离散数据点构造一个多项式,使得该 多项式在最小二乘意义下逼近目标函数。
傅里叶逼近
利用傅里叶级数的性质进行逼近,适用于周期函 数的逼近。
ABCD
切比雪夫逼近
利用切比雪夫多项式的性质进行逼近,具有最佳 逼近和一致逼近的特点。
数值分析课件 第一章 绪论
![数值分析课件 第一章 绪论](https://img.taocdn.com/s3/m/ae34e67831b765ce05081423.png)
注:
的每一位都是有效数字, 称是有效数 若 x∗ 的每一位都是有效数字,则 x∗称是有效数
特别, 四舍五入” 特别,经“四舍五入”得到的数均为有效数
Th .1将 x 的近似值 x 表示为x = ±0.a1a2 Lak Lan ×10, 1 1 ×10−(k−1) 是有效数字, 若 ak 是有效数字,则相对误差不超过 ; 21 ∗ ∗ er ,且有 er ≤ ×10−k 反之, 反之,若已知相对误差 , 2 必为有效数字。 则ak 必为有效数字。
收敛性: 收敛性:方法的可行性
§1
误 差
/* Error */
一、 误差的来源与分类 /* Source & Classification */
1、从实际问题中抽象出数学模型 、 —— 模型误差 /* Modeling Error */ 2、通过观测得到模型中某些参数(或物理量)的值 、通过观测得到模型中某些参数(或物理量) —— 观测误差 /* Measurement Error */ 3、数学模型与数值算法之间的误差 、 —— 方法误差 (截断误差 /* Truncation Error */ ) 截断误差 4、由于机器字长有限,原始数据和计算过程会产生新的误差 、由于机器字长有限, —— 舍入误差 /* Roundoff Error */
注:0.2300有4位有效数字,而00023只有2位有效数 0.2300有 位有效数字, 00023只有 位有效数 只有2 12300如果写成0.123× 如果写成0.123 则表示最多只有3 字。12300如果写成0.123×105,则表示最多只有3 位有效数字。数字末尾的0不可随意省去! 位有效数字。数字末尾的0不可随意省去!
二、 误差分析的基本概念 /* Basic Concepts */
数值分析 第1章
![数值分析 第1章](https://img.taocdn.com/s3/m/6b470f2b0722192e4536f658.png)
3.计算复杂性尽可能小 从实际需要出发,我们还需要考虑计算量的大小, 即所谓计算复杂性问题。它由以下两个因素决定的: 使用中央处理器 CPU)的时间,主要由四则运算 使用中央处理器( 的时间 主要由四则运算 的次数决定; 占用内存储器的空间,主要由使用的数据量来决 定。
4.要有数值化结果 数值计算的许多方法是建立在离散化的基础上进 行的, 其解决问题的最终结果不是解析解而是数值近似 解。对于给定的数学模型,采用不同的离散手段可以导 致不同的数值方法,应该通过计算机进行数值试验,进 行分析、比较来选定算法。 对新提出的算法,有的在理论上虽然还未证明其 收敛性,但可以从具体试验中发现其规律,为理论证明 提供线索。
x2 =
−b − b 2 − 4ac 2c = 2a −b + b 2 − 4ac
9
来严重影响 应尽量避免 来严重影响,应尽量避免。 例3
,
在 4 位浮点十进制数下,用消去法解线性方程
⎧0.00003 x1 − 3 x 2 = 0.6 ⎨ x1 + 2 x 2 = 1 . ⎩
组
2 ×10 =1 . 109 + 109
§1.1
预备知识
一、集合
把一些确定的彼此不相同的事物汇集在一起成为一 个整体,称为集合。 表示方法:描述法;列举法。 分类:有限集;无限集(可列集,不可列集) 。
9
10
可列集(可数集) : 设 A 是无限集,若 A 中的一切元素可以用自然数 编号(即 A 与自然数集 N 一一对应) ,使 A 写成 A={ A { a1 , a2 , a3 ,L an ,L },则称 A 为可列集 (或可数集) 。 否则,称为不可列集。 如:有理数集是可列集,数列构成的集合是可列 集;无理数集、[0,1]中的全体实数构成的集合是不 可列集。
《数值分析》第1章
![《数值分析》第1章](https://img.taocdn.com/s3/m/e58d694eb307e87101f696bd.png)
b
上两式作用得到:
4T ( h) − T ( 2h) = 3 I + O (h4 )
忽略高阶项得, I ≈ T (h) + (T (h) − T (2h)) . 公式的精度为 O (h4 ) .
1 3
此
其中 c1 , c2 ,L与 h 无关,则有,
19
20
§3 误差来源与误差分析的重要性
误差来源(或分类)
(1) 模型误差:建立数学模型时忽略一些次要 因素而引起的与真实情况的误差.
(2) 测量误差:数学模型中的一些已知参数, 由于受到测量工具或其它主观因素的影 响所带来的误差.
21
(3) 截断误差:数学模型常难以求解,往往要 用近似、易于求解的问题代替,这种简化 引起的误差.
P ( x ) = a0 x n + L + an −1 x + an 已知,对输入
的x,要计算P(x)的值,采取方法
u0 = 0 ⎧ t 1 = 1, ⎪ ⎨ t k = xt k − 1 , k = 2 , L , n ⎪u = u k = 1, L , n k −1 + a n− k tk , ⎩ k
29 30
例 15. 为使 20 的相对误差小于 0.1% ,要取几 位有效数字.
例 16. 用 3. 1416 表示π 的近似值,求其相对误 差?
解:因为 a1 = 3, n = 5 ,所以
er ( x ) ≤
1 1 × 10−5 + 1 = × 10−4 2× 3 6
解: 由 er ≤ 只需
1 × 10− n + 1 且 a1 = 4 , 为使 er ≤ 0.1% , 2a1
数值分析第4版答案
![数值分析第4版答案](https://img.taocdn.com/s3/m/df1320e4524de518964b7dca.png)
第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。
解:近似值*x 的相对误差为*****r e x x e x x δ-===而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。
解:设()n f x x =,则函数的条件数为'()||()p xf x C f x =又1'()n f x nx-= , 1||n p nx nx C n x-⋅∴==又((*))(*)r p r x n C x εε≈⋅ 且(*)r e x 为2((*))0.02nr x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字;*20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。
4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。
解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯***123*********123231132143(2)()()()()1111.10210.031100.031385.6101.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈ **24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x εεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C VRππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -=-(n=1,2,…)计算到100Y 。
数值分析实验指导书
![数值分析实验指导书](https://img.taocdn.com/s3/m/f66266de84254b35eefd347e.png)
dx(n?0,1,?,20)的递推关系,并在计算机上实现解题 建立积分In??05?x
nn?11x?5x11??xn?1dx?。建立下列两种递推公式: 提示:由In?5In?1??005?xn
111??I??5I?I??I??n?n?1n?1n?1(A)?n (B)?55n,讨论数值计算的稳定性
数字。
解 由?x?3.142?3.1415926???0.00041, 误差限为??1?10?3. 2
?3因m?0,n??3,由定义知x具有4位有效数字,准确到10位的近似数。
2例3 已知近似数a?1.2864,b?0.635,求b,a?b的误差限和准确数位。
解 因(?a)?11?10?4,(?b)??10?3, 22
1
2?3 ??bb??b?b?b?b?2b??b??2?0.635??10
所以 ?b1??10?2 2?10???1
22?2, b2准确到10?2位。
?(a?b)??a??b??(a)??(b)??10?2,则a?b准确到10?2位。
1.3 数值实验 12
xn
A. 0.5 B. 0.05
C. 0.005 D. 0.0005.
解 因 45.0?0.450?10,它为具有3位有效数字的近似数, 2
11?10?3?102??10?1。所以,答案为B. 22
*例2 已知x???3.1415926??, 求近似值x?3.142的误差限,准确数字或有效其误差限为 ??
数值分析实验指导
第一章 绪论
1.1 主要内容
误差的来源与分类:计算误差,截断误差(方法误差)
误差和误差限的概念及计算:绝对误差,绝对误差限,相对误差,相对误差限. 有效数位,有效数字的判断
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航空航天工程:神州飞船系列
数值计算方法的意义、内容与方法
20 世纪最伟大的科学技术发明---计算机 计算机是对人脑的模拟,它强化了人的思维智能;
计算机的发展和应用,已不仅仅是一种科学技术 现象,而且成了一种政治、军事、经济和社会现象; 没有软件的支持,超级计算机只是一堆废铁而已;
图 7.8
(x x3)2 ( y y3 )2 (z z3 )2 (t3-t) c 0
(x x4 )2 ( y y4 )2 (z z4 )2 (t4 -t) c 0
(x x5 )2 ( y y5 )2 (z z5 )2 (t5 -t) c 0
(x x6 )2 ( y y6 )2 (z z6 )2 (t6 -t) c 0
计算机辅助设计:波音777应用三维立 体建模,数字化设计与有限元计算的 第一架喷气客机。
医学与生物工程:CT、核磁共振与 Radon 变换;至病基因与药物设计;人 造生物材料的彷真响应;传染病动力学 模型。
电子系统自动化设计: 大规模集成电路的设计与逻辑检测。
材料设计: 性能设计的大规模计算与模拟:设计用 于生产新的高热值、高压材料中的化学 蒸发沉淀反应器。
答曰:上禾一秉九斗四分斗之一。中禾 一秉四斗四分斗之一。下禾一秉二斗四 分斗之三。-------《九章算术》
a11 a12 a1n x1 b1
a21
ห้องสมุดไป่ตู้
an1
a22
an2
a2n
ann
x2
b2
xn bn
Axb
线性方程组的求解!
2、天体力学中的Kepler方程
这个问题就是要求由函数f(x)=sin x 给定的曲线 从x=0到x=48英寸间的弧长L.
由微积分学我们知道,所求的弧长可表示为:
L 48 1 ( f ' (x)) 2 dx 48 1 (cos x)2 dx
0
0
上述积分称为第二类椭圆积分,它不能用普通 方法来计算.
数值积分!
7. 蝴蝶效应
洛伦兹吸引子(Lorenz attractor)是由MIT大学的气象学家E dward Lorenz在1963年给出的,他给出第一个混沌现象——蝴 蝶效应。
图1 蝴蝶效应示意图
洛伦兹方程是大气流体动力学模型的一个简化的常微分方程组:
dx dt
x
y
dy
dt
rx
y
xz
dz dt
bz
xy
该方程组来源于模拟大气对流,该模型除了在天气预报中有显 著的应用之外,还可以用于研究空气污染和全球侯变化。洛伦 兹借助于这个模型,将大气流体运动的强度x与水平和垂直方
软件的核心就是算法。 算法犹如乐谱, 软件犹如CD盘片, 而硬件如同CD唱机。
诺贝尔奖得主,计算物理学家 Wilson提出
向的温度变化y和z联系了起来。参数 称为普兰特数,r是规范 化的瑞利数,b 和几何形状相关。洛伦兹方程是非线性方程组,
无法求出解析解,必须使用数值方法求解上述微分方程组。洛
伦兹用数值解绘制结果图1,并发现了混沌现象。
常(偏)微分方程数值解!
现代科学计算在工程计算中的应用
天气预报: 计算能力的发展将把海洋、大气和生态系统 的综合知识融合成一个气象变化模型。
根据这些数据,希望合理地估计出其它深度(如500米, 600米,1000米…)处的水温.
插值法!
5、人口预测
下面给出的是中国1900 年到2000年的人口数, 我们的目标是预测未来 的人口数(数据量较大
时)
y 1t 3 2t 2 3t 4
s (t 1979) / 30
y 1s3 2s2 3s 4
车辆与道路工程设计与模拟: 车辆与道路相互作用综合系统设计。
信息与通信工程:GPS卫星导航
燃烧与爆炸工程: 燃烧对环境的影响;计算流体力学 与爆炸工程。 存储与物流系统: 工农业发展使得产品的存储、交流和时效 性极大提高;废物和垃圾问题成为城市生 活的重大问题。规划计算和系统分析成为 常用计算方法。
§1 Introduction
数值分析 能够做什么?
应用问题举例
1、一个两千年前的例子
今有上禾三秉,中禾二秉,下禾一秉,
实三3十x九斗;2 y z 39 上禾二秉,中禾三秉,下禾一秉,
2x 3y z 34 实三十四斗; 上禾一秉,中禾二秉,下禾三秉, 实二十六斗。
问上x、中、2下y禾实一3秉z各几何2?6
数据拟合!
1950 1960 1970 1980 1990 2000
55196 66207 82992 98705 114333 126743
6、铝制波纹瓦的长度问题
建筑上用的一种铝制波纹瓦是用一种机器 将一块平整的铝板压制而成的.
假若要求波纹瓦长4英尺,每个波纹的高度(从 中心线)为1英寸,且每个波纹以近似2π英寸为 一个周期. 求制做一块波纹瓦所需铝板的长度 L.
f1(x1, x2 ,
f
2
(
x1,
x2
,
fn (x1, x2 ,
xn ) 0 xn ) 0
xn ) 0
F(x) 0
记为
其中,F : D Rn Rn, x (x1, x2 ,
, xn )T
非线性方程组的求解!
4、已经测得在某处海洋不同深度处的水温如下:
深度(M) 466 741 950 1422 1634 水温(oC)7.04 4.28 3.40 2.54 2.13
x sin x t 0,0 1
x是行星运动的轨道,它是时间t 的 函数.
非线性方程求根!
3、全球定位系统(Global Positioning System, GPS)
全球定位系统: 在地球的任何一 个位置,至少可 以同时收到4颗 以上卫星发射的
信号
8
S6
S5
(x, y, z表,t示) 地球上一个
6
接收点R的当前位置,
Height
4
S3
卫星Si的位置为
2
S4
(xi , yi , z,i ,则ti 得) 到下列
S1
非线性方程组
0
R
10
S2 5
8
4
6
(x x1)2 ( y y1)2 (z z1)2 (t1-t) c 0
2 N-S positions 0 0
(x x2 )2 ( y y2 )2 (z z2 )2 (t2 -t) c 0